KingNish's picture
Update app.py
dcd55a1 verified
raw
history blame
2.36 kB
import spaces
import torch
import gradio as gr
import tempfile
import os
import uuid
import scipy.io.wavfile
import time
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME, language="en")
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=25,
torch_dtype=torch_dtype,
device=device,
)
@spaces.GPU
def transcribe(inputs, previous_transcription):
start_time = time.time()
try:
filename = f"{uuid.uuid4().hex}.wav"
sample_rate, audio_data = inputs
scipy.io.wavfile.write(filename, sample_rate, audio_data)
transcription = pipe(filename)["text"]
previous_transcription += transcription
end_time = time.time()
latency = end_time - start_time
return previous_transcription, str(latency)
except Exception as e:
print(f"Error during Transcription: {e}")
return previous_transcription, "Error"
def clear():
return ""
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
with gr.Row():
input_audio_microphone = gr.Audio(streaming=True)
output = gr.Textbox(label="Transcription", value="")
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
with gr.Row():
clear_button = gr.Button("Clear Output")
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
clear_button.click(clear, outputs=[output])
demo.launch()