Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import gradio as gr | |
from transformers import pipeline | |
import tempfile | |
import os | |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo" | |
BATCH_SIZE = 8 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs, previous_transcription): | |
previous_transcription += pipe(inputs[1], batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] | |
return previous_transcription | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
input_audio_microphone = gr.Audio(streaming=True) | |
output = gr.Textbox(label="Transcription", value="") | |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=3, concurrency_limit=None) | |
demo.queue().launch() |