Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,174 +1,44 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
import os
|
| 3 |
-
import random
|
| 4 |
-
import uuid
|
| 5 |
-
import gradio as gr
|
| 6 |
import spaces
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
import
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
DESCRIPTION = """ # Instant Image
|
| 16 |
-
### Super fast text to Image Generator.
|
| 17 |
-
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
|
| 18 |
-
### First Image processing takes time then images generate faster.
|
| 19 |
-
"""
|
| 20 |
-
if not torch.cuda.is_available():
|
| 21 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 22 |
-
|
| 23 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
| 25 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "3000"))
|
| 26 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 27 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 28 |
-
PORT = int(os.getenv("DEMO_PORT", "15432"))
|
| 29 |
-
|
| 30 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
style_list = [
|
| 34 |
-
{
|
| 35 |
-
"name": "(No style)",
|
| 36 |
-
"prompt": "{prompt}",
|
| 37 |
-
"negative_prompt": "",
|
| 38 |
-
},
|
| 39 |
-
{
|
| 40 |
-
"name": "Cinematic",
|
| 41 |
-
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
| 42 |
-
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
| 43 |
-
},
|
| 44 |
-
{
|
| 45 |
-
"name": "Realistic",
|
| 46 |
-
"prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed",
|
| 47 |
-
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured",
|
| 48 |
-
},
|
| 49 |
-
{
|
| 50 |
-
"name": "Anime",
|
| 51 |
-
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
| 52 |
-
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"name": "Digital Art",
|
| 56 |
-
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
| 57 |
-
"negative_prompt": "photo, photorealistic, realism, ugly",
|
| 58 |
-
},
|
| 59 |
-
{
|
| 60 |
-
"name": "Pixel art",
|
| 61 |
-
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
| 62 |
-
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
| 63 |
-
},
|
| 64 |
-
{
|
| 65 |
-
"name": "Fantasy art",
|
| 66 |
-
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
| 67 |
-
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
| 68 |
-
},
|
| 69 |
-
{
|
| 70 |
-
"name": "3D Model",
|
| 71 |
-
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
| 72 |
-
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
| 73 |
-
},
|
| 74 |
-
]
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 78 |
-
STYLE_NAMES = list(styles.keys())
|
| 79 |
-
DEFAULT_STYLE_NAME = "(No style)"
|
| 80 |
-
NUM_IMAGES_PER_PROMPT = 1
|
| 81 |
-
|
| 82 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
| 83 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 84 |
-
if not negative:
|
| 85 |
-
negative = ""
|
| 86 |
-
return p.replace("{prompt}", positive), n + negative
|
| 87 |
-
|
| 88 |
-
if torch.cuda.is_available():
|
| 89 |
-
|
| 90 |
-
pipe = PixArtAlphaPipeline.from_pretrained(
|
| 91 |
-
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
| 92 |
-
torch_dtype=torch.float16,
|
| 93 |
-
use_safetensors=True,
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
if os.getenv('CONSISTENCY_DECODER', False):
|
| 97 |
-
print("Using DALL-E 3 Consistency Decoder")
|
| 98 |
-
pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
|
| 99 |
-
|
| 100 |
-
if ENABLE_CPU_OFFLOAD:
|
| 101 |
-
pipe.enable_model_cpu_offload()
|
| 102 |
-
else:
|
| 103 |
-
pipe.to(device)
|
| 104 |
-
print("Loaded on Device!")
|
| 105 |
-
|
| 106 |
-
# speed-up T5
|
| 107 |
-
pipe.text_encoder.to_bettertransformer()
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
| 112 |
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
| 116 |
-
img.save(unique_name)
|
| 117 |
-
return unique_name
|
| 118 |
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
return seed
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
negative_prompt: str = "",
|
| 129 |
-
style: str = DEFAULT_STYLE_NAME,
|
| 130 |
-
use_negative_prompt: bool = False,
|
| 131 |
-
seed: int = 0,
|
| 132 |
-
width: int = 1024,
|
| 133 |
-
height: int = 1024,
|
| 134 |
-
inference_steps: int = 4,
|
| 135 |
-
randomize_seed: bool = False,
|
| 136 |
-
use_resolution_binning: bool = True,
|
| 137 |
-
progress=gr.Progress(track_tqdm=True),
|
| 138 |
-
):
|
| 139 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 140 |
-
generator = torch.Generator().manual_seed(seed)
|
| 141 |
-
|
| 142 |
-
if not use_negative_prompt:
|
| 143 |
-
negative_prompt = None # type: ignore
|
| 144 |
-
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
width=width,
|
| 150 |
-
height=height,
|
| 151 |
-
guidance_scale=0,
|
| 152 |
-
num_inference_steps=inference_steps,
|
| 153 |
-
generator=generator,
|
| 154 |
-
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
| 155 |
-
use_resolution_binning=use_resolution_binning,
|
| 156 |
-
output_type="pil",
|
| 157 |
-
).images
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
return image_paths, seed
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
|
| 169 |
-
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
|
| 170 |
-
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
|
| 171 |
-
]
|
| 172 |
|
| 173 |
with gr.Blocks() as demo:
|
| 174 |
gr.Markdown(DESCRIPTION)
|
|
@@ -188,29 +58,6 @@ with gr.Blocks() as demo:
|
|
| 188 |
with gr.Accordion("Advanced options", open=False):
|
| 189 |
with gr.Group():
|
| 190 |
with gr.Row():
|
| 191 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
|
| 192 |
-
negative_prompt = gr.Text(
|
| 193 |
-
label="Negative prompt",
|
| 194 |
-
max_lines=1,
|
| 195 |
-
placeholder="Enter a negative prompt",
|
| 196 |
-
visible=True,
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
# num_imgs = gr.Slider(
|
| 200 |
-
# label="Num Images",
|
| 201 |
-
# minimum=1,
|
| 202 |
-
# maximum=8,
|
| 203 |
-
# step=1,
|
| 204 |
-
# value=1,
|
| 205 |
-
# )
|
| 206 |
-
style_selection = gr.Radio(
|
| 207 |
-
show_label=True,
|
| 208 |
-
container=True,
|
| 209 |
-
interactive=True,
|
| 210 |
-
choices=STYLE_NAMES,
|
| 211 |
-
value=DEFAULT_STYLE_NAME,
|
| 212 |
-
label="Image Style",
|
| 213 |
-
)
|
| 214 |
seed = gr.Slider(
|
| 215 |
label="Seed",
|
| 216 |
minimum=0,
|
|
@@ -223,64 +70,69 @@ with gr.Blocks() as demo:
|
|
| 223 |
width = gr.Slider(
|
| 224 |
label="Width",
|
| 225 |
minimum=256,
|
| 226 |
-
maximum=
|
| 227 |
step=32,
|
| 228 |
-
value=
|
| 229 |
)
|
| 230 |
height = gr.Slider(
|
| 231 |
label="Height",
|
| 232 |
minimum=256,
|
| 233 |
-
maximum=
|
| 234 |
step=32,
|
| 235 |
-
value=
|
| 236 |
)
|
| 237 |
-
with gr.Row():
|
| 238 |
-
inference_steps = gr.Slider(
|
| 239 |
-
label="Steps",
|
| 240 |
-
minimum=4,
|
| 241 |
-
maximum=20,
|
| 242 |
-
step=1,
|
| 243 |
-
value=4,
|
| 244 |
-
)
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
use_negative_prompt.change(
|
| 255 |
-
fn=lambda x: gr.update(visible=x),
|
| 256 |
-
inputs=use_negative_prompt,
|
| 257 |
-
outputs=negative_prompt,
|
| 258 |
-
api_name=False,
|
| 259 |
-
)
|
| 260 |
|
| 261 |
-
|
| 262 |
-
triggers=[
|
| 263 |
-
prompt.submit,
|
| 264 |
-
negative_prompt.submit,
|
| 265 |
-
run_button.click,
|
| 266 |
-
],
|
| 267 |
-
fn=generate,
|
| 268 |
-
inputs=[
|
| 269 |
-
prompt,
|
| 270 |
-
negative_prompt,
|
| 271 |
-
style_selection,
|
| 272 |
-
use_negative_prompt,
|
| 273 |
-
# num_imgs,
|
| 274 |
-
seed,
|
| 275 |
-
width,
|
| 276 |
-
height,
|
| 277 |
-
inference_steps,
|
| 278 |
-
randomize_seed,
|
| 279 |
-
],
|
| 280 |
-
outputs=[result, seed],
|
| 281 |
-
api_name="run",
|
| 282 |
-
)
|
| 283 |
|
| 284 |
if __name__ == "__main__":
|
| 285 |
-
demo.
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from os import path
|
| 6 |
+
from safetensors.torch import load_file
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 10 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 11 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 12 |
+
os.environ["HF_HOME"] = cache_path
|
| 13 |
|
| 14 |
+
import gradio as gr
|
| 15 |
+
import torch
|
| 16 |
+
from diffusers import StableDiffusionXLPipeline, LCMScheduler
|
| 17 |
|
| 18 |
+
# from scheduling_tcd import TCDScheduler
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 21 |
|
| 22 |
+
class timer:
|
| 23 |
+
def __init__(self, method_name="timed process"):
|
| 24 |
+
self.method = method_name
|
|
|
|
| 25 |
|
| 26 |
+
def __enter__(self):
|
| 27 |
+
self.start = time.time()
|
| 28 |
+
print(f"{self.method} starts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 31 |
+
end = time.time()
|
| 32 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
if not path.exists(cache_path):
|
| 35 |
+
os.makedirs(cache_path, exist_ok=True)
|
|
|
|
| 36 |
|
| 37 |
+
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16)
|
| 38 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 39 |
+
unet_state = load_file(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda")
|
| 40 |
+
pipe.unet.load_state_dict(unet_state)
|
| 41 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
with gr.Blocks() as demo:
|
| 44 |
gr.Markdown(DESCRIPTION)
|
|
|
|
| 58 |
with gr.Accordion("Advanced options", open=False):
|
| 59 |
with gr.Group():
|
| 60 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
seed = gr.Slider(
|
| 62 |
label="Seed",
|
| 63 |
minimum=0,
|
|
|
|
| 70 |
width = gr.Slider(
|
| 71 |
label="Width",
|
| 72 |
minimum=256,
|
| 73 |
+
maximum=8192,
|
| 74 |
step=32,
|
| 75 |
+
value=2048,
|
| 76 |
)
|
| 77 |
height = gr.Slider(
|
| 78 |
label="Height",
|
| 79 |
minimum=256,
|
| 80 |
+
maximum=8192,
|
| 81 |
step=32,
|
| 82 |
+
value=2048,
|
| 83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 86 |
+
if randomize_seed:
|
| 87 |
+
seed = random.randint(0, MAX_SEED)
|
| 88 |
+
return seed
|
| 89 |
+
|
| 90 |
+
@spaces.GPU(duration=10)
|
| 91 |
+
def process_image( height, width, prompt, seed, randomize_seed):
|
| 92 |
+
global pipe
|
| 93 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
| 94 |
+
return pipe(
|
| 95 |
+
prompt=str,,
|
| 96 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
| 97 |
+
num_inference_steps=1,
|
| 98 |
+
guidance_scale=0.,
|
| 99 |
+
height=int(height),
|
| 100 |
+
width=int(width),
|
| 101 |
+
timesteps=[800],
|
| 102 |
+
randomize_seed: bool = False,
|
| 103 |
+
use_resolution_binning: bool = True,
|
| 104 |
+
progress=gr.Progress(track_tqdm=True),
|
| 105 |
+
).images
|
| 106 |
+
|
| 107 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 108 |
+
generator = torch.Generator().manual_seed(seed)
|
| 109 |
+
|
| 110 |
+
reactive_controls = [ height, width, prompt, seed, randomize_seed]
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
btn.click(process_image, inputs=reactive_controls, outputs=[output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|
| 116 |
+
demo.launch()
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
DESCRIPTION = """ # Instant Image
|
| 120 |
+
### Super fast text to Image Generator.
|
| 121 |
+
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
|
| 122 |
+
### First Image processing takes time then images generate faster.
|
| 123 |
+
"""
|
| 124 |
+
if not torch.cuda.is_available():
|
| 125 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
| 129 |
+
|
| 130 |
+
examples = [
|
| 131 |
+
"A Monkey with a happy face in the Sahara desert.",
|
| 132 |
+
"Eiffel Tower was Made up of ICE.",
|
| 133 |
+
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
|
| 134 |
+
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
|
| 135 |
+
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
|
| 136 |
+
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
|
| 137 |
+
]
|
| 138 |
+
|