Kilos1's picture
Create app.py
be917bf verified
# Import the Gradio library for creating web interfaces
import gradio as gr
# Import the pipeline module from transformers for using pre-trained models
from transformers import pipeline
# Import numpy for numerical operations
import numpy as np
# Initialize the automatic speech recognition pipeline using the Whisper base English model
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
# Define the transcription function that takes audio input and returns transcribed text
def transcribe(stream,new_chunk):
# Unpack the audio tuple into sample rate (sr) and audio data (y)
sr, y = new_chunk
# Convert the audio data to 32-bit float
y = y.astype(np.float32)
# Normalize the audio data to be between -1 and 1
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
# Use the transcriber to convert audio to text and return the result
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
# Create a Gradio interface for the transcribe function
demo = gr.Interface(
# Specify the function to run
transcribe,
# Define the input component as an audio recorder with microphone source
["state", gr.Audio(sources=["microphone"], streaming=True)],
# Specify the output component as text
["state", "text"],
live = True
)
demo.launch()