Spaces:
Running
Running
| from dataclasses import dataclass, field | |
| from TTS.vocoder.configs.shared_configs import BaseVocoderConfig | |
| from TTS.vocoder.models.wavegrad import WavegradArgs | |
| class WavegradConfig(BaseVocoderConfig): | |
| """Defines parameters for WaveGrad vocoder. | |
| Example: | |
| >>> from TTS.vocoder.configs import WavegradConfig | |
| >>> config = WavegradConfig() | |
| Args: | |
| model (str): | |
| Model name used for selecting the right model at initialization. Defaults to `wavegrad`. | |
| generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is | |
| considered as a generator too. Defaults to `wavegrad`. | |
| model_params (WavegradArgs): Model parameters. Check `WavegradArgs` for default values. | |
| target_loss (str): | |
| Target loss name that defines the quality of the model. Defaults to `avg_wavegrad_loss`. | |
| epochs (int): | |
| Number of epochs to traing the model. Defaults to 10000. | |
| batch_size (int): | |
| Batch size used at training. Larger values use more memory. Defaults to 96. | |
| seq_len (int): | |
| Audio segment length used at training. Larger values use more memory. Defaults to 6144. | |
| use_cache (bool): | |
| enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is | |
| not large enough. Defaults to True. | |
| mixed_precision (bool): | |
| enable / disable mixed precision training. Default is True. | |
| eval_split_size (int): | |
| Number of samples used for evalutaion. Defaults to 50. | |
| train_noise_schedule (dict): | |
| Training noise schedule. Defaults to | |
| `{"min_val": 1e-6, "max_val": 1e-2, "num_steps": 1000}` | |
| test_noise_schedule (dict): | |
| Inference noise schedule. For a better performance, you may need to use `bin/tune_wavegrad.py` to find a | |
| better schedule. Defaults to | |
| ` | |
| { | |
| "min_val": 1e-6, | |
| "max_val": 1e-2, | |
| "num_steps": 50, | |
| } | |
| ` | |
| grad_clip (float): | |
| Gradient clipping threshold. If <= 0.0, no clipping is applied. Defaults to 1.0 | |
| lr (float): | |
| Initila leraning rate. Defaults to 1e-4. | |
| lr_scheduler (str): | |
| One of the learning rate schedulers from `torch.optim.scheduler.*`. Defaults to `MultiStepLR`. | |
| lr_scheduler_params (dict): | |
| kwargs for the scheduler. Defaults to `{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}` | |
| """ | |
| model: str = "wavegrad" | |
| # Model specific params | |
| generator_model: str = "wavegrad" | |
| model_params: WavegradArgs = field(default_factory=WavegradArgs) | |
| target_loss: str = "loss" # loss value to pick the best model to save after each epoch | |
| # Training - overrides | |
| epochs: int = 5000 | |
| batch_size: int = 96 | |
| seq_len: int = 6144 | |
| use_cache: bool = True | |
| mixed_precision: bool = True | |
| eval_split_size: int = 50 | |
| # NOISE SCHEDULE PARAMS | |
| train_noise_schedule: dict = field(default_factory=lambda: {"min_val": 1e-6, "max_val": 1e-2, "num_steps": 1000}) | |
| test_noise_schedule: dict = field( | |
| default_factory=lambda: { # inference noise schedule. Try TTS/bin/tune_wavegrad.py to find the optimal values. | |
| "min_val": 1e-6, | |
| "max_val": 1e-2, | |
| "num_steps": 50, | |
| } | |
| ) | |
| # optimizer overrides | |
| grad_clip: float = 1.0 | |
| lr: float = 1e-4 # Initial learning rate. | |
| lr_scheduler: str = "MultiStepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
| lr_scheduler_params: dict = field( | |
| default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} | |
| ) | |