Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| from dataclasses import dataclass, field | |
| from TTS.config import BaseAudioConfig, BaseTrainingConfig | |
| class BaseVocoderConfig(BaseTrainingConfig): | |
| """Shared parameters among all the vocoder models. | |
| Args: | |
| audio (BaseAudioConfig): | |
| Audio processor config instance. Defaultsto `BaseAudioConfig()`. | |
| use_noise_augment (bool): | |
| Augment the input audio with random noise. Defaults to False/ | |
| eval_split_size (int): | |
| Number of instances used for evaluation. Defaults to 10. | |
| data_path (str): | |
| Root path of the training data. All the audio files found recursively from this root path are used for | |
| training. Defaults to `""`. | |
| feature_path (str): | |
| Root path to the precomputed feature files. Defaults to None. | |
| seq_len (int): | |
| Length of the waveform segments used for training. Defaults to 1000. | |
| pad_short (int): | |
| Extra padding for the waveforms shorter than `seq_len`. Defaults to 0. | |
| conv_path (int): | |
| Extra padding for the feature frames against convolution of the edge frames. Defaults to MISSING. | |
| Defaults to 0. | |
| use_cache (bool): | |
| enable / disable in memory caching of the computed features. If the RAM is not enough, if may cause OOM. | |
| Defaults to False. | |
| epochs (int): | |
| Number of training epochs to. Defaults to 10000. | |
| wd (float): | |
| Weight decay. | |
| optimizer (torch.optim.Optimizer): | |
| Optimizer used for the training. Defaults to `AdamW`. | |
| optimizer_params (dict): | |
| Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` | |
| """ | |
| audio: BaseAudioConfig = field(default_factory=BaseAudioConfig) | |
| # dataloading | |
| use_noise_augment: bool = False # enable/disable random noise augmentation in spectrograms. | |
| eval_split_size: int = 10 # number of samples used for evaluation. | |
| # dataset | |
| data_path: str = "" # root data path. It finds all wav files recursively from there. | |
| feature_path: str = None # if you use precomputed features | |
| seq_len: int = 1000 # signal length used in training. | |
| pad_short: int = 0 # additional padding for short wavs | |
| conv_pad: int = 0 # additional padding against convolutions applied to spectrograms | |
| use_cache: bool = False # use in memory cache to keep the computed features. This might cause OOM. | |
| # OPTIMIZER | |
| epochs: int = 5000 # total number of epochs to train. | |
| wd: float = 0.0 # Weight decay weight. | |
| optimizer: str = "AdamW" | |
| optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) | |
| class BaseGANVocoderConfig(BaseVocoderConfig): | |
| """Base config class used among all the GAN based vocoders. | |
| Args: | |
| use_stft_loss (bool): | |
| enable / disable the use of STFT loss. Defaults to True. | |
| use_subband_stft_loss (bool): | |
| enable / disable the use of Subband STFT loss. Defaults to True. | |
| use_mse_gan_loss (bool): | |
| enable / disable the use of Mean Squared Error based GAN loss. Defaults to True. | |
| use_hinge_gan_loss (bool): | |
| enable / disable the use of Hinge GAN loss. Defaults to True. | |
| use_feat_match_loss (bool): | |
| enable / disable feature matching loss. Defaults to True. | |
| use_l1_spec_loss (bool): | |
| enable / disable L1 spectrogram loss. Defaults to True. | |
| stft_loss_weight (float): | |
| Loss weight that multiplies the computed loss value. Defaults to 0. | |
| subband_stft_loss_weight (float): | |
| Loss weight that multiplies the computed loss value. Defaults to 0. | |
| mse_G_loss_weight (float): | |
| Loss weight that multiplies the computed loss value. Defaults to 1. | |
| hinge_G_loss_weight (float): | |
| Loss weight that multiplies the computed loss value. Defaults to 0. | |
| feat_match_loss_weight (float): | |
| Loss weight that multiplies the computed loss value. Defaults to 100. | |
| l1_spec_loss_weight (float): | |
| Loss weight that multiplies the computed loss value. Defaults to 45. | |
| stft_loss_params (dict): | |
| Parameters for the STFT loss. Defaults to `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}`. | |
| l1_spec_loss_params (dict): | |
| Parameters for the L1 spectrogram loss. Defaults to | |
| `{ | |
| "use_mel": True, | |
| "sample_rate": 24000, | |
| "n_fft": 1024, | |
| "hop_length": 256, | |
| "win_length": 1024, | |
| "n_mels": 80, | |
| "mel_fmin": 0.0, | |
| "mel_fmax": None, | |
| }` | |
| target_loss (str): | |
| Target loss name that defines the quality of the model. Defaults to `G_avg_loss`. | |
| grad_clip (list): | |
| A list of gradient clipping theresholds for each optimizer. Any value less than 0 disables clipping. | |
| Defaults to [5, 5]. | |
| lr_gen (float): | |
| Generator model initial learning rate. Defaults to 0.0002. | |
| lr_disc (float): | |
| Discriminator model initial learning rate. Defaults to 0.0002. | |
| lr_scheduler_gen (torch.optim.Scheduler): | |
| Learning rate scheduler for the generator. Defaults to `ExponentialLR`. | |
| lr_scheduler_gen_params (dict): | |
| Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`. | |
| lr_scheduler_disc (torch.optim.Scheduler): | |
| Learning rate scheduler for the discriminator. Defaults to `ExponentialLR`. | |
| lr_scheduler_disc_params (dict): | |
| Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`. | |
| scheduler_after_epoch (bool): | |
| Whether to update the learning rate schedulers after each epoch. Defaults to True. | |
| use_pqmf (bool): | |
| enable / disable PQMF for subband approximation at training. Defaults to False. | |
| steps_to_start_discriminator (int): | |
| Number of steps required to start training the discriminator. Defaults to 0. | |
| diff_samples_for_G_and_D (bool): | |
| enable / disable use of different training samples for the generator and the discriminator iterations. | |
| Enabling it results in slower iterations but faster convergance in some cases. Defaults to False. | |
| """ | |
| model: str = "gan" | |
| # LOSS PARAMETERS | |
| use_stft_loss: bool = True | |
| use_subband_stft_loss: bool = True | |
| use_mse_gan_loss: bool = True | |
| use_hinge_gan_loss: bool = True | |
| use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN) | |
| use_l1_spec_loss: bool = True | |
| # loss weights | |
| stft_loss_weight: float = 0 | |
| subband_stft_loss_weight: float = 0 | |
| mse_G_loss_weight: float = 1 | |
| hinge_G_loss_weight: float = 0 | |
| feat_match_loss_weight: float = 100 | |
| l1_spec_loss_weight: float = 45 | |
| stft_loss_params: dict = field( | |
| default_factory=lambda: { | |
| "n_ffts": [1024, 2048, 512], | |
| "hop_lengths": [120, 240, 50], | |
| "win_lengths": [600, 1200, 240], | |
| } | |
| ) | |
| l1_spec_loss_params: dict = field( | |
| default_factory=lambda: { | |
| "use_mel": True, | |
| "sample_rate": 24000, | |
| "n_fft": 1024, | |
| "hop_length": 256, | |
| "win_length": 1024, | |
| "n_mels": 80, | |
| "mel_fmin": 0.0, | |
| "mel_fmax": None, | |
| } | |
| ) | |
| target_loss: str = "loss_0" # loss value to pick the best model to save after each epoch | |
| # optimizer | |
| grad_clip: float = field(default_factory=lambda: [5, 5]) | |
| lr_gen: float = 0.0002 # Initial learning rate. | |
| lr_disc: float = 0.0002 # Initial learning rate. | |
| lr_scheduler_gen: str = "ExponentialLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
| lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) | |
| lr_scheduler_disc: str = "ExponentialLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
| lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) | |
| scheduler_after_epoch: bool = True | |
| use_pqmf: bool = False # enable/disable using pqmf for multi-band training. (Multi-band MelGAN) | |
| steps_to_start_discriminator = 0 # start training the discriminator after this number of steps. | |
| diff_samples_for_G_and_D: bool = False # use different samples for G and D training steps. | |