Spaces:
Runtime error
Runtime error
| from transformers import pipeline | |
| import pandas as pd | |
| import re | |
| from tqdm import tqdm | |
| import matplotlib.pyplot as plt | |
| import twitter_scraper as ts | |
| import gradio as gr | |
| from gradio.mix import Parallel | |
| pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier" | |
| pretrained_ner = "cahya/bert-base-indonesian-NER" | |
| sentiment_pipeline = pipeline( | |
| "sentiment-analysis", | |
| model=pretrained_sentiment, | |
| tokenizer=pretrained_sentiment, | |
| return_all_scores=True | |
| ) | |
| ner_pipeline = pipeline( | |
| "ner", | |
| model=pretrained_ner, | |
| tokenizer=pretrained_ner | |
| ) | |
| examples = [ | |
| "Jokowi sangat kecewa dengan POLRI atas kerusuhan yang terjadi di Malang", | |
| "Lesti marah terhadap perlakuan KDRT yang dilakukan oleh Bilar", | |
| "Ungkapan rasa bahagia diutarakan oleh Coki Pardede karena kebabasannya dari penjara" | |
| ] | |
| def sentiment_analysis(text): | |
| output = sentiment_pipeline(text) | |
| return {elm["label"]: elm["score"] for elm in output[0]} | |
| def ner(text): | |
| output = ner_pipeline(text) | |
| return {"text": text, "entities": output} | |
| def sentiment_df(df): | |
| text_list = list(df["Text"].astype(str).values) | |
| result = [sentiment_analysis(text) for text in text_list] | |
| df['Label'] = [pred['label'] for pred in result] | |
| df['Score'] = [round(pred['Score'], 3) for pred in result] | |
| return df | |
| def twitter_analyzer(keyword, max_tweets): | |
| df = ts.scrape_tweets(keyword, max_tweets=max_tweets) | |
| df["Text"] = df["Text"].apply(ts.preprocess_text) | |
| print("Analyzing sentiment...") | |
| df = sentiment_df(df) | |
| fig = plt.figure() | |
| df.groupby(["Label"])["Text"].count().plot.pie(autopct="%.1f%%", figsize=(6,6)) | |
| return fig, df[["URL", "Text", "Label", "Score"]] | |
| sentiment_demo = gr.Interface( | |
| fn=sentiment_analysis, | |
| inputs="text", | |
| outputs="label") | |
| ner_demo = gr.Interface( | |
| ner, | |
| "text", | |
| gr.HighlightedText(), | |
| examples=examples) | |
| if __name__ == "__main__": | |
| with gr.Blocks() as demo: | |
| gr.Markdown("""Entity Based Sentiment Analysis Indonesia""") | |
| gr.Markdown( | |
| """ | |
| """ | |
| ) | |
| with gr.Tab("Single Input"): | |
| Parallel( | |
| sentiment_demo, ner_demo, | |
| inputs=gr.Textbox(lines=10, label="Input Text", placeholder="Enter sentences here..."), | |
| examples=examples | |
| ) | |
| with gr.Tab("Twitter"): | |
| with gr.Blocks(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| keyword_textbox = gr.Textbox(lines=1, label="Keyword") | |
| max_tweets_component = gr.Number(value=10, label="Total of Tweets to Scrape", precision=0) | |
| button = gr.Button("Submit") | |
| plot_component = gr.Plot(label="Pie Chart of Sentiments") | |
| dataframe_component = gr.DataFrame(type="pandas", | |
| label="Dataframe", | |
| max_rows=(20,'fixed'), | |
| overflow_row_behaviour='paginate', | |
| wrap=True) | |
| gr.Markdown( | |
| """ | |
| """ | |
| ) | |
| button.click(twitter_analyzer, | |
| inputs=[keyword_textbox, max_tweets_component], | |
| outputs=[plot_component, dataframe_component]) | |
| demo.launch(inbrowser=True) |