|  | from datetime import datetime | 
					
						
						|  | import json | 
					
						
						|  | import math | 
					
						
						|  | from typing import Callable, Iterator, Union | 
					
						
						|  | import argparse | 
					
						
						|  |  | 
					
						
						|  | from io import StringIO | 
					
						
						|  | import os | 
					
						
						|  | import pathlib | 
					
						
						|  | import tempfile | 
					
						
						|  | import zipfile | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode | 
					
						
						|  | from src.diarization.diarization import Diarization | 
					
						
						|  | from src.diarization.diarizationContainer import DiarizationContainer | 
					
						
						|  | from src.diarization.transcriptLoader import load_transcript | 
					
						
						|  | from src.hooks.progressListener import ProgressListener | 
					
						
						|  | from src.hooks.subTaskProgressListener import SubTaskProgressListener | 
					
						
						|  | from src.languages import get_language_names | 
					
						
						|  | from src.modelCache import ModelCache | 
					
						
						|  | from src.prompts.jsonPromptStrategy import JsonPromptStrategy | 
					
						
						|  | from src.prompts.prependPromptStrategy import PrependPromptStrategy | 
					
						
						|  | from src.source import AudioSource, get_audio_source_collection | 
					
						
						|  | from src.vadParallel import ParallelContext, ParallelTranscription | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import ffmpeg | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | from src.download import ExceededMaximumDuration, download_url | 
					
						
						|  | from src.utils import optional_int, slugify, str2bool, write_srt, write_vtt | 
					
						
						|  | from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription | 
					
						
						|  | from src.whisper.abstractWhisperContainer import AbstractWhisperContainer | 
					
						
						|  | from src.whisper.whisperFactory import create_whisper_container | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MAX_FILE_PREFIX_LENGTH = 17 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MAX_AUTO_CPU_CORES = 8 | 
					
						
						|  |  | 
					
						
						|  | WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2"] | 
					
						
						|  |  | 
					
						
						|  | class VadOptions: | 
					
						
						|  | def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, | 
					
						
						|  | vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT): | 
					
						
						|  | self.vad = vad | 
					
						
						|  | self.vadMergeWindow = vadMergeWindow | 
					
						
						|  | self.vadMaxMergeSize = vadMaxMergeSize | 
					
						
						|  | self.vadPadding = vadPadding | 
					
						
						|  | self.vadPromptWindow = vadPromptWindow | 
					
						
						|  | self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \ | 
					
						
						|  | else VadInitialPromptMode.from_string(vadInitialPromptMode) | 
					
						
						|  |  | 
					
						
						|  | class WhisperTranscriber: | 
					
						
						|  | def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None, | 
					
						
						|  | vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None, | 
					
						
						|  | app_config: ApplicationConfig = None): | 
					
						
						|  | self.model_cache = ModelCache() | 
					
						
						|  | self.parallel_device_list = None | 
					
						
						|  | self.gpu_parallel_context = None | 
					
						
						|  | self.cpu_parallel_context = None | 
					
						
						|  | self.vad_process_timeout = vad_process_timeout | 
					
						
						|  | self.vad_cpu_cores = vad_cpu_cores | 
					
						
						|  |  | 
					
						
						|  | self.vad_model = None | 
					
						
						|  | self.inputAudioMaxDuration = input_audio_max_duration | 
					
						
						|  | self.deleteUploadedFiles = delete_uploaded_files | 
					
						
						|  | self.output_dir = output_dir | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.diarization: DiarizationContainer = None | 
					
						
						|  |  | 
					
						
						|  | self.diarization_kwargs = None | 
					
						
						|  | self.app_config = app_config | 
					
						
						|  |  | 
					
						
						|  | def set_parallel_devices(self, vad_parallel_devices: str): | 
					
						
						|  | self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None | 
					
						
						|  |  | 
					
						
						|  | def set_auto_parallel(self, auto_parallel: bool): | 
					
						
						|  | if auto_parallel: | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())] | 
					
						
						|  |  | 
					
						
						|  | self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES) | 
					
						
						|  | print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.") | 
					
						
						|  |  | 
					
						
						|  | def set_diarization(self, auth_token: str, enable_daemon_process: bool = True, **kwargs): | 
					
						
						|  | if self.diarization is None: | 
					
						
						|  | self.diarization = DiarizationContainer(auth_token=auth_token, enable_daemon_process=enable_daemon_process, | 
					
						
						|  | auto_cleanup_timeout_seconds=self.app_config.diarization_process_timeout, | 
					
						
						|  | cache=self.model_cache) | 
					
						
						|  |  | 
					
						
						|  | self.diarization_kwargs = kwargs | 
					
						
						|  |  | 
					
						
						|  | def unset_diarization(self): | 
					
						
						|  | if self.diarization is not None: | 
					
						
						|  | self.diarization.cleanup() | 
					
						
						|  | self.diarization_kwargs = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transcribe_webui_simple(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vad, vadMergeWindow, vadMaxMergeSize, | 
					
						
						|  | word_timestamps: bool = False, highlight_words: bool = False, | 
					
						
						|  | diarization: bool = False, diarization_speakers: int = 2): | 
					
						
						|  | return self.transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vad, vadMergeWindow, vadMaxMergeSize, | 
					
						
						|  | word_timestamps, highlight_words, | 
					
						
						|  | diarization, diarization_speakers) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transcribe_webui_simple_progress(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vad, vadMergeWindow, vadMaxMergeSize, | 
					
						
						|  | word_timestamps: bool = False, highlight_words: bool = False, | 
					
						
						|  | diarization: bool = False, diarization_speakers: int = 2, | 
					
						
						|  | progress=gr.Progress()): | 
					
						
						|  |  | 
					
						
						|  | vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, self.app_config.vad_padding, self.app_config.vad_prompt_window, self.app_config.vad_initial_prompt_mode) | 
					
						
						|  |  | 
					
						
						|  | if diarization: | 
					
						
						|  | self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers) | 
					
						
						|  | else: | 
					
						
						|  | self.unset_diarization() | 
					
						
						|  |  | 
					
						
						|  | return self.transcribe_webui(modelName, languageName, urlData, multipleFiles, microphoneData, task, vadOptions, | 
					
						
						|  | word_timestamps=word_timestamps, highlight_words=highlight_words, progress=progress) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transcribe_webui_full(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, | 
					
						
						|  |  | 
					
						
						|  | word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str, | 
					
						
						|  | initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, | 
					
						
						|  | condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, | 
					
						
						|  | compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float, | 
					
						
						|  | diarization: bool = False, diarization_speakers: int = 2, | 
					
						
						|  | diarization_min_speakers = 1, diarization_max_speakers = 5): | 
					
						
						|  |  | 
					
						
						|  | return self.transcribe_webui_full_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, | 
					
						
						|  | word_timestamps, highlight_words, prepend_punctuations, append_punctuations, | 
					
						
						|  | initial_prompt, temperature, best_of, beam_size, patience, length_penalty, suppress_tokens, | 
					
						
						|  | condition_on_previous_text, fp16, temperature_increment_on_fallback, | 
					
						
						|  | compression_ratio_threshold, logprob_threshold, no_speech_threshold, | 
					
						
						|  | diarization, diarization_speakers, | 
					
						
						|  | diarization_min_speakers, diarization_max_speakers) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transcribe_webui_full_progress(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, | 
					
						
						|  |  | 
					
						
						|  | word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str, | 
					
						
						|  | initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, | 
					
						
						|  | condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, | 
					
						
						|  | compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float, | 
					
						
						|  | diarization: bool = False, diarization_speakers: int = 2, | 
					
						
						|  | diarization_min_speakers = 1, diarization_max_speakers = 5, | 
					
						
						|  | progress=gr.Progress()): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if temperature_increment_on_fallback is not None: | 
					
						
						|  | temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)) | 
					
						
						|  | else: | 
					
						
						|  | temperature = [temperature] | 
					
						
						|  |  | 
					
						
						|  | vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if diarization: | 
					
						
						|  | self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, | 
					
						
						|  | min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) | 
					
						
						|  | else: | 
					
						
						|  | self.unset_diarization() | 
					
						
						|  |  | 
					
						
						|  | return self.transcribe_webui(modelName, languageName, urlData, multipleFiles, microphoneData, task, vadOptions, | 
					
						
						|  | initial_prompt=initial_prompt, temperature=temperature, best_of=best_of, beam_size=beam_size, patience=patience, length_penalty=length_penalty, suppress_tokens=suppress_tokens, | 
					
						
						|  | condition_on_previous_text=condition_on_previous_text, fp16=fp16, | 
					
						
						|  | compression_ratio_threshold=compression_ratio_threshold, logprob_threshold=logprob_threshold, no_speech_threshold=no_speech_threshold, | 
					
						
						|  | word_timestamps=word_timestamps, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, highlight_words=highlight_words, | 
					
						
						|  | progress=progress) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def perform_extra(self, languageName, urlData, singleFile, whisper_file: str, | 
					
						
						|  | highlight_words: bool = False, | 
					
						
						|  | diarization: bool = False, diarization_speakers: int = 2, diarization_min_speakers = 1, diarization_max_speakers = 5, progress=gr.Progress()): | 
					
						
						|  |  | 
					
						
						|  | if whisper_file is None: | 
					
						
						|  | raise ValueError("whisper_file is required") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if diarization: | 
					
						
						|  | self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, | 
					
						
						|  | min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) | 
					
						
						|  | else: | 
					
						
						|  | self.unset_diarization() | 
					
						
						|  |  | 
					
						
						|  | def custom_transcribe_file(source: AudioSource): | 
					
						
						|  | result = load_transcript(whisper_file.name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not "language" in result: | 
					
						
						|  | result["language"] = languageName | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = self._handle_diarization(source.source_path, result) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  | multipleFiles = [singleFile] if singleFile else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return self.transcribe_webui("base", "", urlData, multipleFiles, None, None, None, | 
					
						
						|  | progress=progress,highlight_words=highlight_words, | 
					
						
						|  | override_transcribe_file=custom_transcribe_file, override_max_sources=1) | 
					
						
						|  |  | 
					
						
						|  | def transcribe_webui(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, | 
					
						
						|  | vadOptions: VadOptions, progress: gr.Progress = None, highlight_words: bool = False, | 
					
						
						|  | override_transcribe_file: Callable[[AudioSource], dict] = None, override_max_sources = None, | 
					
						
						|  | **decodeOptions: dict): | 
					
						
						|  | try: | 
					
						
						|  | sources = self.__get_source(urlData, multipleFiles, microphoneData) | 
					
						
						|  |  | 
					
						
						|  | if override_max_sources is not None and len(sources) > override_max_sources: | 
					
						
						|  | raise ValueError("Maximum number of sources is " + str(override_max_sources) + ", but " + str(len(sources)) + " were provided") | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | selectedLanguage = languageName.lower() if len(languageName) > 0 else None | 
					
						
						|  | selectedModel = modelName if modelName is not None else "base" | 
					
						
						|  |  | 
					
						
						|  | if override_transcribe_file is None: | 
					
						
						|  | model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation, | 
					
						
						|  | model_name=selectedModel, compute_type=self.app_config.compute_type, | 
					
						
						|  | cache=self.model_cache, models=self.app_config.models) | 
					
						
						|  | else: | 
					
						
						|  | model = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | download = [] | 
					
						
						|  | zip_file_lookup = {} | 
					
						
						|  | text = "" | 
					
						
						|  | vtt = "" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | downloadDirectory = tempfile.mkdtemp() | 
					
						
						|  | source_index = 0 | 
					
						
						|  |  | 
					
						
						|  | outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | total_duration = sum([source.get_audio_duration() for source in sources]) | 
					
						
						|  | current_progress = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | root_progress_listener = self._create_progress_listener(progress) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for source in sources: | 
					
						
						|  | source_prefix = "" | 
					
						
						|  | source_audio_duration = source.get_audio_duration() | 
					
						
						|  |  | 
					
						
						|  | if (len(sources) > 1): | 
					
						
						|  |  | 
					
						
						|  | source_index += 1 | 
					
						
						|  | source_prefix = str(source_index).zfill(2) + "_" | 
					
						
						|  | print("Transcribing ", source.source_path) | 
					
						
						|  |  | 
					
						
						|  | scaled_progress_listener = SubTaskProgressListener(root_progress_listener, | 
					
						
						|  | base_task_total=total_duration, | 
					
						
						|  | sub_task_start=current_progress, | 
					
						
						|  | sub_task_total=source_audio_duration) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if override_transcribe_file is None: | 
					
						
						|  | result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vadOptions, scaled_progress_listener, **decodeOptions) | 
					
						
						|  | else: | 
					
						
						|  | result = override_transcribe_file(source) | 
					
						
						|  |  | 
					
						
						|  | filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | current_progress += source_audio_duration | 
					
						
						|  |  | 
					
						
						|  | source_download, source_text, source_vtt = self.write_result(result, filePrefix, outputDirectory, highlight_words) | 
					
						
						|  |  | 
					
						
						|  | if len(sources) > 1: | 
					
						
						|  |  | 
					
						
						|  | if (len(source_text) > 0): | 
					
						
						|  | source_text += os.linesep + os.linesep | 
					
						
						|  | if (len(source_vtt) > 0): | 
					
						
						|  | source_vtt += os.linesep + os.linesep | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | source_text = source.get_full_name() + ":" + os.linesep + source_text | 
					
						
						|  | source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | download.extend(source_download) | 
					
						
						|  | text += source_text | 
					
						
						|  | vtt += source_vtt | 
					
						
						|  |  | 
					
						
						|  | if (len(sources) > 1): | 
					
						
						|  |  | 
					
						
						|  | zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for source_download_file in source_download: | 
					
						
						|  |  | 
					
						
						|  | filePostfix = os.path.basename(source_download_file).split("-")[-1] | 
					
						
						|  | zip_file_name = zipFilePrefix + "-" + filePostfix | 
					
						
						|  | zip_file_lookup[source_download_file] = zip_file_name | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(sources) > 1: | 
					
						
						|  | downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip") | 
					
						
						|  |  | 
					
						
						|  | with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip: | 
					
						
						|  | for download_file in download: | 
					
						
						|  |  | 
					
						
						|  | zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file)) | 
					
						
						|  | zip.write(download_file, arcname=zip_file_name) | 
					
						
						|  |  | 
					
						
						|  | download.insert(0, downloadAllPath) | 
					
						
						|  |  | 
					
						
						|  | return download, text, vtt | 
					
						
						|  |  | 
					
						
						|  | finally: | 
					
						
						|  |  | 
					
						
						|  | if self.deleteUploadedFiles: | 
					
						
						|  | for source in sources: | 
					
						
						|  | print("Deleting source file " + source.source_path) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | os.remove(source.source_path) | 
					
						
						|  | except Exception as e: | 
					
						
						|  |  | 
					
						
						|  | print("Error deleting source file " + source.source_path + ": " + str(e)) | 
					
						
						|  |  | 
					
						
						|  | except ExceededMaximumDuration as e: | 
					
						
						|  | return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]" | 
					
						
						|  |  | 
					
						
						|  | def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, language: str, task: str = None, | 
					
						
						|  | vadOptions: VadOptions = VadOptions(), | 
					
						
						|  | progressListener: ProgressListener = None, **decodeOptions: dict): | 
					
						
						|  |  | 
					
						
						|  | initial_prompt = decodeOptions.pop('initial_prompt', None) | 
					
						
						|  |  | 
					
						
						|  | if progressListener is None: | 
					
						
						|  |  | 
					
						
						|  | progressListener = ProgressListener() | 
					
						
						|  |  | 
					
						
						|  | if ('task' in decodeOptions): | 
					
						
						|  | task = decodeOptions.pop('task') | 
					
						
						|  |  | 
					
						
						|  | initial_prompt_mode = vadOptions.vadInitialPromptMode | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (initial_prompt_mode is None): | 
					
						
						|  | initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT | 
					
						
						|  |  | 
					
						
						|  | if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or | 
					
						
						|  | initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT): | 
					
						
						|  |  | 
					
						
						|  | prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode) | 
					
						
						|  | elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE): | 
					
						
						|  |  | 
					
						
						|  | prompt_strategy = JsonPromptStrategy(initial_prompt) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | whisperCallable = model.create_callback(language, task, prompt_strategy=prompt_strategy, **decodeOptions) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (vadOptions.vad == 'silero-vad'): | 
					
						
						|  |  | 
					
						
						|  | process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions) | 
					
						
						|  | result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener) | 
					
						
						|  | elif (vadOptions.vad == 'silero-vad-skip-gaps'): | 
					
						
						|  |  | 
					
						
						|  | skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions) | 
					
						
						|  | result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener) | 
					
						
						|  | elif (vadOptions.vad == 'silero-vad-expand-into-gaps'): | 
					
						
						|  |  | 
					
						
						|  | expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions) | 
					
						
						|  | result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener) | 
					
						
						|  | elif (vadOptions.vad == 'periodic-vad'): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | periodic_vad = VadPeriodicTranscription() | 
					
						
						|  | period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow) | 
					
						
						|  | result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | if (self._has_parallel_devices()): | 
					
						
						|  |  | 
					
						
						|  | periodic_vad = VadPeriodicTranscription() | 
					
						
						|  | period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1) | 
					
						
						|  |  | 
					
						
						|  | result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = self._handle_diarization(audio_path, result) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  | def _handle_diarization(self, audio_path: str, input: dict): | 
					
						
						|  | if self.diarization and self.diarization_kwargs: | 
					
						
						|  | print("Diarizing ", audio_path) | 
					
						
						|  | diarization_result = list(self.diarization.run(audio_path, **self.diarization_kwargs)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print("Diarization result: ") | 
					
						
						|  | for entry in diarization_result: | 
					
						
						|  | print(f"  start={entry.start:.1f}s stop={entry.end:.1f}s speaker_{entry.speaker}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input = self.diarization.mark_speakers(diarization_result, input) | 
					
						
						|  |  | 
					
						
						|  | return input | 
					
						
						|  |  | 
					
						
						|  | def _create_progress_listener(self, progress: gr.Progress): | 
					
						
						|  | if (progress is None): | 
					
						
						|  |  | 
					
						
						|  | return ProgressListener() | 
					
						
						|  |  | 
					
						
						|  | class ForwardingProgressListener(ProgressListener): | 
					
						
						|  | def __init__(self, progress: gr.Progress): | 
					
						
						|  | self.progress = progress | 
					
						
						|  |  | 
					
						
						|  | def on_progress(self, current: Union[int, float], total: Union[int, float]): | 
					
						
						|  |  | 
					
						
						|  | self.progress(current / total) | 
					
						
						|  |  | 
					
						
						|  | def on_finished(self): | 
					
						
						|  | self.progress(1) | 
					
						
						|  |  | 
					
						
						|  | return ForwardingProgressListener(progress) | 
					
						
						|  |  | 
					
						
						|  | def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig, | 
					
						
						|  | progressListener: ProgressListener = None): | 
					
						
						|  | if (not self._has_parallel_devices()): | 
					
						
						|  |  | 
					
						
						|  | return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener) | 
					
						
						|  |  | 
					
						
						|  | gpu_devices = self.parallel_device_list | 
					
						
						|  |  | 
					
						
						|  | if (gpu_devices is None or len(gpu_devices) == 0): | 
					
						
						|  |  | 
					
						
						|  | gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (self.gpu_parallel_context is None): | 
					
						
						|  |  | 
					
						
						|  | self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout) | 
					
						
						|  |  | 
					
						
						|  | if (self.cpu_parallel_context is None): | 
					
						
						|  | self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout) | 
					
						
						|  |  | 
					
						
						|  | parallel_vad = ParallelTranscription() | 
					
						
						|  | return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable, | 
					
						
						|  | config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, | 
					
						
						|  | cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context, | 
					
						
						|  | progress_listener=progressListener) | 
					
						
						|  |  | 
					
						
						|  | def _has_parallel_devices(self): | 
					
						
						|  | return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1 | 
					
						
						|  |  | 
					
						
						|  | def _concat_prompt(self, prompt1, prompt2): | 
					
						
						|  | if (prompt1 is None): | 
					
						
						|  | return prompt2 | 
					
						
						|  | elif (prompt2 is None): | 
					
						
						|  | return prompt1 | 
					
						
						|  | else: | 
					
						
						|  | return prompt1 + " " + prompt2 | 
					
						
						|  |  | 
					
						
						|  | def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions): | 
					
						
						|  |  | 
					
						
						|  | if (self.vad_model is None): | 
					
						
						|  | self.vad_model = VadSileroTranscription() | 
					
						
						|  |  | 
					
						
						|  | config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, | 
					
						
						|  | max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize, | 
					
						
						|  | segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding, | 
					
						
						|  | max_prompt_window=vadOptions.vadPromptWindow) | 
					
						
						|  |  | 
					
						
						|  | return config | 
					
						
						|  |  | 
					
						
						|  | def write_result(self, result: dict, source_name: str, output_dir: str, highlight_words: bool = False): | 
					
						
						|  | if not os.path.exists(output_dir): | 
					
						
						|  | os.makedirs(output_dir) | 
					
						
						|  |  | 
					
						
						|  | text = result["text"] | 
					
						
						|  | language = result["language"] if "language" in result else None | 
					
						
						|  | languageMaxLineWidth = self.__get_max_line_width(language) | 
					
						
						|  |  | 
					
						
						|  | print("Max line width " + str(languageMaxLineWidth)) | 
					
						
						|  | vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words) | 
					
						
						|  | srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words) | 
					
						
						|  | json_result = json.dumps(result, indent=4, ensure_ascii=False) | 
					
						
						|  |  | 
					
						
						|  | output_files = [] | 
					
						
						|  | output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt")); | 
					
						
						|  | output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt")); | 
					
						
						|  | output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt")); | 
					
						
						|  | output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json")); | 
					
						
						|  |  | 
					
						
						|  | return output_files, text, vtt | 
					
						
						|  |  | 
					
						
						|  | def clear_cache(self): | 
					
						
						|  | self.model_cache.clear() | 
					
						
						|  | self.vad_model = None | 
					
						
						|  |  | 
					
						
						|  | def __get_source(self, urlData, multipleFiles, microphoneData): | 
					
						
						|  | return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration) | 
					
						
						|  |  | 
					
						
						|  | def __get_max_line_width(self, language: str) -> int: | 
					
						
						|  | if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]): | 
					
						
						|  |  | 
					
						
						|  | return 40 | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return 80 | 
					
						
						|  |  | 
					
						
						|  | def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str: | 
					
						
						|  | segmentStream = StringIO() | 
					
						
						|  |  | 
					
						
						|  | if format == 'vtt': | 
					
						
						|  | write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) | 
					
						
						|  | elif format == 'srt': | 
					
						
						|  | write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) | 
					
						
						|  | else: | 
					
						
						|  | raise Exception("Unknown format " + format) | 
					
						
						|  |  | 
					
						
						|  | segmentStream.seek(0) | 
					
						
						|  | return segmentStream.read() | 
					
						
						|  |  | 
					
						
						|  | def __create_file(self, text: str, directory: str, fileName: str) -> str: | 
					
						
						|  |  | 
					
						
						|  | with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: | 
					
						
						|  | file.write(text) | 
					
						
						|  |  | 
					
						
						|  | return file.name | 
					
						
						|  |  | 
					
						
						|  | def close(self): | 
					
						
						|  | print("Closing parallel contexts") | 
					
						
						|  | self.clear_cache() | 
					
						
						|  |  | 
					
						
						|  | if (self.gpu_parallel_context is not None): | 
					
						
						|  | self.gpu_parallel_context.close() | 
					
						
						|  | if (self.cpu_parallel_context is not None): | 
					
						
						|  | self.cpu_parallel_context.close() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (self.diarization is not None): | 
					
						
						|  | self.diarization.cleanup() | 
					
						
						|  | self.diarization = None | 
					
						
						|  |  | 
					
						
						|  | def create_ui(app_config: ApplicationConfig): | 
					
						
						|  | ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores, | 
					
						
						|  | app_config.delete_uploaded_files, app_config.output_dir, app_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ui.set_parallel_devices(app_config.vad_parallel_devices) | 
					
						
						|  | ui.set_auto_parallel(app_config.auto_parallel) | 
					
						
						|  |  | 
					
						
						|  | is_whisper = False | 
					
						
						|  |  | 
					
						
						|  | if app_config.whisper_implementation == "whisper": | 
					
						
						|  | implementation_name = "Whisper" | 
					
						
						|  | is_whisper = True | 
					
						
						|  | elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]: | 
					
						
						|  | implementation_name = "Faster Whisper" | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ") | 
					
						
						|  |  | 
					
						
						|  | ui_description = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse " | 
					
						
						|  | ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition " | 
					
						
						|  | ui_description += " as well as speech translation and language identification. " | 
					
						
						|  |  | 
					
						
						|  | ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option." | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_whisper: | 
					
						
						|  | ui_description += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)." | 
					
						
						|  |  | 
					
						
						|  | if app_config.input_audio_max_duration > 0: | 
					
						
						|  | ui_description += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s" | 
					
						
						|  |  | 
					
						
						|  | ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)." | 
					
						
						|  |  | 
					
						
						|  | whisper_models = app_config.get_model_names() | 
					
						
						|  |  | 
					
						
						|  | common_inputs = lambda : [ | 
					
						
						|  | gr.Dropdown(choices=whisper_models, value=app_config.default_model_name, label="Model"), | 
					
						
						|  | gr.Dropdown(choices=sorted(get_language_names()), label="Language", value=app_config.language), | 
					
						
						|  | gr.Text(label="URL (YouTube, etc.)"), | 
					
						
						|  | gr.File(label="Upload Files", file_count="multiple"), | 
					
						
						|  | gr.Audio(source="microphone", type="filepath", label="Microphone Input"), | 
					
						
						|  | gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | common_vad_inputs = lambda : [ | 
					
						
						|  | gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD"), | 
					
						
						|  | gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window), | 
					
						
						|  | gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | common_word_timestamps_inputs = lambda : [ | 
					
						
						|  | gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps), | 
					
						
						|  | gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | has_diarization_libs = Diarization.has_libraries() | 
					
						
						|  |  | 
					
						
						|  | if not has_diarization_libs: | 
					
						
						|  | print("Diarization libraries not found - disabling diarization") | 
					
						
						|  | app_config.diarization = False | 
					
						
						|  |  | 
					
						
						|  | common_diarization_inputs = lambda : [ | 
					
						
						|  | gr.Checkbox(label="Diarization", value=app_config.diarization, interactive=has_diarization_libs), | 
					
						
						|  | gr.Number(label="Diarization - Speakers", precision=0, value=app_config.diarization_speakers, interactive=has_diarization_libs) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0 | 
					
						
						|  |  | 
					
						
						|  | simple_transcribe = gr.Interface(fn=ui.transcribe_webui_simple_progress if is_queue_mode else ui.transcribe_webui_simple, | 
					
						
						|  | description=ui_description, article=ui_article, inputs=[ | 
					
						
						|  | *common_inputs(), | 
					
						
						|  | *common_vad_inputs(), | 
					
						
						|  | *common_word_timestamps_inputs(), | 
					
						
						|  | *common_diarization_inputs(), | 
					
						
						|  | ], outputs=[ | 
					
						
						|  | gr.File(label="Download"), | 
					
						
						|  | gr.Text(label="Transcription"), | 
					
						
						|  | gr.Text(label="Segments") | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | full_description = ui_description + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash." | 
					
						
						|  |  | 
					
						
						|  | full_transcribe = gr.Interface(fn=ui.transcribe_webui_full_progress if is_queue_mode else ui.transcribe_webui_full, | 
					
						
						|  | description=full_description, article=ui_article, inputs=[ | 
					
						
						|  | *common_inputs(), | 
					
						
						|  |  | 
					
						
						|  | *common_vad_inputs(), | 
					
						
						|  | gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding), | 
					
						
						|  | gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window), | 
					
						
						|  | gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode"), | 
					
						
						|  |  | 
					
						
						|  | *common_word_timestamps_inputs(), | 
					
						
						|  | gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations), | 
					
						
						|  | gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations), | 
					
						
						|  |  | 
					
						
						|  | gr.TextArea(label="Initial Prompt"), | 
					
						
						|  | gr.Number(label="Temperature", value=app_config.temperature), | 
					
						
						|  | gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0), | 
					
						
						|  | gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0), | 
					
						
						|  | gr.Number(label="Patience - Zero temperature", value=app_config.patience), | 
					
						
						|  | gr.Number(label="Length Penalty - Any temperature", value=app_config.length_penalty), | 
					
						
						|  | gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens), | 
					
						
						|  | gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text), | 
					
						
						|  | gr.Checkbox(label="FP16", value=app_config.fp16), | 
					
						
						|  | gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback), | 
					
						
						|  | gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold), | 
					
						
						|  | gr.Number(label="Logprob threshold", value=app_config.logprob_threshold), | 
					
						
						|  | gr.Number(label="No speech threshold", value=app_config.no_speech_threshold), | 
					
						
						|  |  | 
					
						
						|  | *common_diarization_inputs(), | 
					
						
						|  | gr.Number(label="Diarization - Min Speakers", precision=0, value=app_config.diarization_min_speakers, interactive=has_diarization_libs), | 
					
						
						|  | gr.Number(label="Diarization - Max Speakers", precision=0, value=app_config.diarization_max_speakers, interactive=has_diarization_libs), | 
					
						
						|  |  | 
					
						
						|  | ], outputs=[ | 
					
						
						|  | gr.File(label="Download"), | 
					
						
						|  | gr.Text(label="Transcription"), | 
					
						
						|  | gr.Text(label="Segments") | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | perform_extra_interface = gr.Interface(fn=ui.perform_extra, | 
					
						
						|  | description="Perform additional processing on a given JSON or SRT file", article=ui_article, inputs=[ | 
					
						
						|  | gr.Dropdown(choices=sorted(get_language_names()), label="Language", value=app_config.language), | 
					
						
						|  | gr.Text(label="URL (YouTube, etc.)"), | 
					
						
						|  | gr.File(label="Upload Audio File", file_count="single"), | 
					
						
						|  | gr.File(label="Upload JSON/SRT File", file_count="single"), | 
					
						
						|  | gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words), | 
					
						
						|  |  | 
					
						
						|  | *common_diarization_inputs(), | 
					
						
						|  | gr.Number(label="Diarization - Min Speakers", precision=0, value=app_config.diarization_min_speakers, interactive=has_diarization_libs), | 
					
						
						|  | gr.Number(label="Diarization - Max Speakers", precision=0, value=app_config.diarization_max_speakers, interactive=has_diarization_libs), | 
					
						
						|  |  | 
					
						
						|  | ], outputs=[ | 
					
						
						|  | gr.File(label="Download"), | 
					
						
						|  | gr.Text(label="Transcription"), | 
					
						
						|  | gr.Text(label="Segments") | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | demo = gr.TabbedInterface([simple_transcribe, full_transcribe, perform_extra_interface], tab_names=["Simple", "Full", "Extra"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_queue_mode: | 
					
						
						|  | demo.queue(concurrency_count=app_config.queue_concurrency_count) | 
					
						
						|  | print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")") | 
					
						
						|  | else: | 
					
						
						|  | print("Queue mode disabled - progress bars will not be shown.") | 
					
						
						|  |  | 
					
						
						|  | demo.launch(share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ui.close() | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | default_app_config = ApplicationConfig.create_default() | 
					
						
						|  | whisper_models = default_app_config.get_model_names() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation) | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | 
					
						
						|  | parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \ | 
					
						
						|  | help="Maximum audio file length in seconds, or -1 for no limit.") | 
					
						
						|  | parser.add_argument("--share", type=bool, default=default_app_config.share, \ | 
					
						
						|  | help="True to share the app on HuggingFace.") | 
					
						
						|  | parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \ | 
					
						
						|  | help="The host or IP to bind to. If None, bind to localhost.") | 
					
						
						|  | parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \ | 
					
						
						|  | help="The port to bind to.") | 
					
						
						|  | parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \ | 
					
						
						|  | help="The number of concurrent requests to process.") | 
					
						
						|  | parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \ | 
					
						
						|  | help="The default model name.") | 
					
						
						|  | parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \ | 
					
						
						|  | help="The default VAD.") | 
					
						
						|  | parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \ | 
					
						
						|  | help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") | 
					
						
						|  | parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \ | 
					
						
						|  | help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") | 
					
						
						|  | parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \ | 
					
						
						|  | help="The number of CPU cores to use for VAD pre-processing.") | 
					
						
						|  | parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \ | 
					
						
						|  | help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") | 
					
						
						|  | parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \ | 
					
						
						|  | help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") | 
					
						
						|  | parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \ | 
					
						
						|  | help="directory to save the outputs") | 
					
						
						|  | parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\ | 
					
						
						|  | help="the Whisper implementation to use") | 
					
						
						|  | parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \ | 
					
						
						|  | help="the compute type to use for inference") | 
					
						
						|  | parser.add_argument("--threads", type=optional_int, default=0, | 
					
						
						|  | help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS") | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument('--auth_token', type=str, default=default_app_config.auth_token, help='HuggingFace API Token (optional)') | 
					
						
						|  | parser.add_argument("--diarization", type=str2bool, default=default_app_config.diarization, \ | 
					
						
						|  | help="whether to perform speaker diarization") | 
					
						
						|  | parser.add_argument("--diarization_num_speakers", type=int, default=default_app_config.diarization_speakers, help="Number of speakers") | 
					
						
						|  | parser.add_argument("--diarization_min_speakers", type=int, default=default_app_config.diarization_min_speakers, help="Minimum number of speakers") | 
					
						
						|  | parser.add_argument("--diarization_max_speakers", type=int, default=default_app_config.diarization_max_speakers, help="Maximum number of speakers") | 
					
						
						|  | parser.add_argument("--diarization_process_timeout", type=int, default=default_app_config.diarization_process_timeout, \ | 
					
						
						|  | help="Number of seconds before inactivate diarization processes are terminated. Use 0 to close processes immediately, or None for no timeout.") | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args().__dict__ | 
					
						
						|  |  | 
					
						
						|  | updated_config = default_app_config.update(**args) | 
					
						
						|  |  | 
					
						
						|  | if (threads := args.pop("threads")) > 0: | 
					
						
						|  | torch.set_num_threads(threads) | 
					
						
						|  |  | 
					
						
						|  | print("Using whisper implementation: " + updated_config.whisper_implementation) | 
					
						
						|  | create_ui(app_config=updated_config) |