Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -10,8 +10,8 @@ transformers.logging.set_verbosity_error() | |
| 10 | 
             
            transformers.logging.disable_progress_bar()
         | 
| 11 | 
             
            warnings.filterwarnings('ignore')
         | 
| 12 |  | 
| 13 | 
            -
            # set device | 
| 14 | 
            -
            device = torch.device("cuda | 
| 15 |  | 
| 16 | 
             
            model_name = 'cognitivecomputations/dolphin-vision-7b'
         | 
| 17 |  | 
| @@ -19,9 +19,9 @@ model_name = 'cognitivecomputations/dolphin-vision-7b' | |
| 19 | 
             
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 20 | 
             
                model_name,
         | 
| 21 | 
             
                torch_dtype=torch.float16,
         | 
| 22 | 
            -
                 | 
| 23 | 
             
                trust_remote_code=True
         | 
| 24 | 
            -
            ).to(device) | 
| 25 |  | 
| 26 | 
             
            tokenizer = AutoTokenizer.from_pretrained(
         | 
| 27 | 
             
                model_name,
         | 
| @@ -39,15 +39,14 @@ def inference(prompt, image): | |
| 39 | 
             
                )
         | 
| 40 |  | 
| 41 | 
             
                text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
         | 
| 42 | 
            -
                input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
         | 
| 43 |  | 
|  | |
| 44 |  | 
| 45 | 
            -
                 | 
| 46 | 
            -
             | 
| 47 | 
            -
                # Generate with autocast for mixed precision on the specified GPU
         | 
| 48 | 
            -
                with torch.cuda.amp.autocast():
         | 
| 49 | 
             
                    output_ids = model.generate(
         | 
| 50 | 
            -
                        input_ids | 
| 51 | 
             
                        images=image_tensor,
         | 
| 52 | 
             
                        max_new_tokens=2048,
         | 
| 53 | 
             
                        use_cache=True
         | 
|  | |
| 10 | 
             
            transformers.logging.disable_progress_bar()
         | 
| 11 | 
             
            warnings.filterwarnings('ignore')
         | 
| 12 |  | 
| 13 | 
            +
            # set device
         | 
| 14 | 
            +
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
         | 
| 15 |  | 
| 16 | 
             
            model_name = 'cognitivecomputations/dolphin-vision-7b'
         | 
| 17 |  | 
|  | |
| 19 | 
             
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 20 | 
             
                model_name,
         | 
| 21 | 
             
                torch_dtype=torch.float16,
         | 
| 22 | 
            +
                device_map='auto', # Keep auto device mapping
         | 
| 23 | 
             
                trust_remote_code=True
         | 
| 24 | 
            +
            ).to(device)  # Explicitly move the model to the device
         | 
| 25 |  | 
| 26 | 
             
            tokenizer = AutoTokenizer.from_pretrained(
         | 
| 27 | 
             
                model_name,
         | 
|  | |
| 39 | 
             
                )
         | 
| 40 |  | 
| 41 | 
             
                text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
         | 
| 42 | 
            +
                input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) # Move input_ids to device
         | 
| 43 |  | 
| 44 | 
            +
                image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # Move image_tensor to device
         | 
| 45 |  | 
| 46 | 
            +
                # generate
         | 
| 47 | 
            +
                with torch.cuda.amp.autocast(): # Use autocast for mixed precision
         | 
|  | |
|  | |
| 48 | 
             
                    output_ids = model.generate(
         | 
| 49 | 
            +
                        input_ids,
         | 
| 50 | 
             
                        images=image_tensor,
         | 
| 51 | 
             
                        max_new_tokens=2048,
         | 
| 52 | 
             
                        use_cache=True
         |