Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ model_name = 'cognitivecomputations/dolphin-vision-72b'
|
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
model_name,
|
| 22 |
torch_dtype=torch.float16,
|
| 23 |
-
device_map="auto",
|
| 24 |
trust_remote_code=True
|
| 25 |
)
|
| 26 |
|
|
@@ -29,7 +29,7 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
|
| 32 |
-
def inference(prompt, image):
|
| 33 |
messages = [
|
| 34 |
{"role": "user", "content": f'<image>\n{prompt}'}
|
| 35 |
]
|
|
@@ -55,6 +55,8 @@ def inference(prompt, image):
|
|
| 55 |
input_ids,
|
| 56 |
images=image_tensor,
|
| 57 |
max_new_tokens=1024,
|
|
|
|
|
|
|
| 58 |
use_cache=True
|
| 59 |
)[0]
|
| 60 |
|
|
@@ -65,10 +67,16 @@ with gr.Blocks() as demo:
|
|
| 65 |
with gr.Column():
|
| 66 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
|
| 67 |
image_input = gr.Image(label="Image", type="pil")
|
|
|
|
|
|
|
| 68 |
submit_button = gr.Button("Submit")
|
| 69 |
with gr.Column():
|
| 70 |
output_text = gr.Textbox(label="Output")
|
| 71 |
|
| 72 |
-
submit_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
demo.launch(share=True)
|
|
|
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
model_name,
|
| 22 |
torch_dtype=torch.float16,
|
| 23 |
+
device_map="auto",
|
| 24 |
trust_remote_code=True
|
| 25 |
)
|
| 26 |
|
|
|
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
|
| 32 |
+
def inference(prompt, image, temperature, beam_size):
|
| 33 |
messages = [
|
| 34 |
{"role": "user", "content": f'<image>\n{prompt}'}
|
| 35 |
]
|
|
|
|
| 55 |
input_ids,
|
| 56 |
images=image_tensor,
|
| 57 |
max_new_tokens=1024,
|
| 58 |
+
temperature=temperature,
|
| 59 |
+
num_beams=beam_size,
|
| 60 |
use_cache=True
|
| 61 |
)[0]
|
| 62 |
|
|
|
|
| 67 |
with gr.Column():
|
| 68 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
|
| 69 |
image_input = gr.Image(label="Image", type="pil")
|
| 70 |
+
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
| 71 |
+
beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size")
|
| 72 |
submit_button = gr.Button("Submit")
|
| 73 |
with gr.Column():
|
| 74 |
output_text = gr.Textbox(label="Output")
|
| 75 |
|
| 76 |
+
submit_button.click(
|
| 77 |
+
fn=inference,
|
| 78 |
+
inputs=[prompt_input, image_input, temperature_input, beam_size_input],
|
| 79 |
+
outputs=output_text
|
| 80 |
+
)
|
| 81 |
|
| 82 |
demo.launch(share=True)
|