import gradio as gr import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, AutoImageProcessor from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # Set device to GPU if available, else CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Update model path to your local path model_name = 'failspy/kappa-3-phi-abliterated' # create model and load it to the specified device model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) def inference(prompt, image, temperature, beam_size): # Phi-3 uses a chat template messages = [ {"role": "user", "content": f"Can you describe this image?\n{prompt}"} ] # Apply chat template and add generation prompt inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(device) # Process the image using AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained(model_name) pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device) # Add debug prints print(f"Device of model: {next(model.parameters()).device}") print(f"Device of inputs: {inputs.input_ids.device}") print(f"Device of pixel_values: {pixel_values.device}") # generate with torch.cuda.amp.autocast(): output_ids = model.generate( inputs.input_ids, pixel_values=pixel_values, max_new_tokens=1024, temperature=temperature, num_beams=beam_size, use_cache=True )[0] return tokenizer.decode(output_ids[inputs.input_ids.shape[1]:], skip_special_tokens=True).strip() with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") image_input = gr.Image(label="Image", type="pil") temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Output") submit_button.click( fn=inference, inputs=[prompt_input, image_input, temperature_input, beam_size_input], outputs=output_text ) demo.launch(share=True)