import cv2 import numpy as np from torch.utils import data from utils.transforms import get_affine_transform class SimpleFileDataset(data.Dataset): def __init__(self, img_path, input_size=[512, 512], transform=None): self.img_path = img_path # A single file path self.input_size = input_size self.transform = transform self.aspect_ratio = input_size[1] * 1.0 / input_size[0] self.input_size = np.asarray(input_size) def __len__(self): return 1 # Only one image, so the length is 1 def _box2cs(self, box): x, y, w, h = box[:4] return self._xywh2cs(x, y, w, h) def _xywh2cs(self, x, y, w, h): center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 if w > self.aspect_ratio * h: h = w * 1.0 / self.aspect_ratio elif w < self.aspect_ratio * h: w = h * self.aspect_ratio scale = np.array([w, h], dtype=np.float32) return center, scale def __getitem__(self, index): img = cv2.imread(self.img_path, cv2.IMREAD_COLOR) h, w, _ = img.shape # Get person center and scale person_center, s = self._box2cs([0, 0, w - 1, h - 1]) r = 0 trans = get_affine_transform(person_center, s, r, self.input_size) input_img = cv2.warpAffine( img, trans, (int(self.input_size[1]), int(self.input_size[0])), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)) input_img = self.transform(input_img) meta = { 'name': self.img_path, 'center': person_center, 'height': h, 'width': w, 'scale': s, 'rotation': r } return input_img, meta