Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 7,886 Bytes
			
			| 65de097 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | import sys
sys.path.append('./')
import gradio as gr
import torch
from PIL import Image
import torch.nn.functional as F
from transformers import CLIPImageProcessor
# Add necessary imports and initialize the model as in your code...
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
from ip_adapter.ip_adapter import Resampler
import matplotlib.pyplot as plt
import torch.utils.data as data
import torchvision
import numpy as np
import torch
import torch.nn.functional as F
from accelerate.logging import get_logger
from accelerate.utils import  set_seed
from torchvision import transforms
from diffusers import AutoencoderKL, DDPMScheduler
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, 
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
# Define a class to hold configuration arguments
class Args:
    def __init__(self):
        self.pretrained_model_name_or_path = "yisol/IDM-VTON"
        self.width = 768
        self.height = 1024
        self.num_inference_steps = 10
        self.seed = 42
        self.guidance_scale = 2.0
        self.mixed_precision = None
        
# Determine the device to be used for computations (CUDA if available)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger = get_logger(__name__, log_level="INFO")
def pil_to_tensor(images):
    images = np.array(images).astype(np.float32) / 255.0
    images = torch.from_numpy(images.transpose(2, 0, 1))
    return images
args = Args()
# Define the data type for model weights
weight_dtype = torch.float16
if args.seed is not None:
        set_seed(args.seed)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        torch_dtype=torch.float16,
         )
unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        torch_dtype=torch.float16,
        )
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="image_encoder",
        torch_dtype=torch.float16,
    )
unet_encoder = UNet2DConditionModel_ref.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet_encoder",
        torch_dtype=torch.float16,
    )
text_encoder_one = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        torch_dtype=torch.float16,
        )
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder_2",
        torch_dtype=torch.float16,
    )
tokenizer_one = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=None,
        use_fast=False,
    )
tokenizer_two = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=None,
        use_fast=False,
    )
 # Freeze vae and text_encoder and set unet to trainable
unet.requires_grad_(False)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet_encoder.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet_encoder.to(device, weight_dtype)
unet.eval()
unet_encoder.eval()
pipe = TryonPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            unet=unet,
            vae=vae,
            feature_extractor= CLIPImageProcessor(),
            text_encoder = text_encoder_one,
            text_encoder_2 = text_encoder_two,
            tokenizer = tokenizer_one,
            tokenizer_2 = tokenizer_two,
            scheduler = noise_scheduler,
            image_encoder=image_encoder,
            unet_encoder = unet_encoder,
            torch_dtype=torch.float16,
    ).to(device)
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
# Function to generate the image based on inputs
def generate_virtual_try_on(person_image, cloth_image, mask_image, pose_image,cloth_des):
    # Prepare the input images as tensors
    person_image = person_image.resize((args.width, args.height))
    cloth_image = cloth_image.resize((args.width, args.height))
    mask_image = mask_image.resize((args.width, args.height))
    pose_image = pose_image.resize((args.width, args.height))
    # Define transformations
    transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
    ])
    guidance_scale=2.0
    seed=42
    to_tensor = transforms.ToTensor()
    person_tensor = transform(person_image).unsqueeze(0).to(device)  # Add batch dimension
    cloth_pure = transform(cloth_image).unsqueeze(0).to(device)
    mask_tensor = to_tensor(mask_image)[:1].unsqueeze(0).to(device)  # Keep only one channel
    pose_tensor = transform(pose_image).unsqueeze(0).to(device)
    # Prepare text prompts
    prompt = ["A person wearing the cloth"+cloth_des]  # Example prompt
    negative_prompt = ["monochrome, lowres, bad anatomy, worst quality, low quality"]
    # Encode prompts
    with torch.inference_mode():
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = pipe.encode_prompt(
            prompt,
            num_images_per_prompt=1,
            do_classifier_free_guidance=True,
            negative_prompt=negative_prompt,
        )
    prompt_cloth = ["a photo of"+cloth_des]
    with torch.inference_mode():
     (
        prompt_embeds_c,
        _,
        _,
        _,
     ) = pipe.encode_prompt(
        prompt_cloth,
        num_images_per_prompt=1,
        do_classifier_free_guidance=False,
        negative_prompt=negative_prompt,
    )
    # Encode garment using IP-Adapter
    clip_processor = CLIPImageProcessor()
    image_embeds = clip_processor(images=cloth_image, return_tensors="pt").pixel_values.to(device)
    # Generate the image
    generator = torch.Generator(pipe.device).manual_seed(seed) if seed is not None else None
    with torch.no_grad():
        images = pipe(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            num_inference_steps=args.num_inference_steps,
            generator=generator,
            strength=1.0,
            pose_img=pose_tensor,
            text_embeds_cloth=prompt_embeds_c,
            cloth=cloth_pure,
            mask_image=mask_tensor,
            image=(person_tensor + 1.0) / 2.0,
            height=args.height,
            width=args.width,
            guidance_scale=guidance_scale,
            ip_adapter_image=image_embeds,
        )[0]
    # Convert output image to PIL format for display
    generated_image = transforms.ToPILImage()(images[0])
    return generated_image
# Create Gradio interface
iface = gr.Interface(
    fn=generate_virtual_try_on,
    inputs=[
        gr.Image(type="pil", label="Person Image"),
        gr.Image(type="pil", label="Cloth Image"),
        gr.Image(type="pil", label="Mask Image"),
        gr.Image(type="pil", label="Pose Image"),
        gr.Textbox(label="cloth_des"),  # Add text input
        
        
    ],
    outputs=gr.Image(type="pil", label="Generated Image"),
)
# Launch the interface
iface.launch() |