Spaces:
Runtime error
Runtime error
| import sys | |
| import os | |
| sys.path.append('./') | |
| os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 fastapi==0.111.0 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps") | |
| import spaces | |
| from fastapi import FastAPI | |
| app = FastAPI() | |
| from PIL import Image | |
| import gradio as gr | |
| from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
| from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
| from src.unet_hacked_tryon import UNet2DConditionModel | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPVisionModelWithProjection, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| ) | |
| from diffusers import DDPMScheduler,AutoencoderKL | |
| from typing import List | |
| import torch | |
| import os | |
| from transformers import AutoTokenizer | |
| import numpy as np | |
| from torchvision import transforms | |
| device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
| def pil_to_binary_mask(pil_image, threshold=0): | |
| np_image = np.array(pil_image) | |
| grayscale_image = Image.fromarray(np_image).convert("L") | |
| binary_mask = np.array(grayscale_image) > threshold | |
| mask = np.zeros(binary_mask.shape, dtype=np.uint8) | |
| for i in range(binary_mask.shape[0]): | |
| for j in range(binary_mask.shape[1]): | |
| if binary_mask[i,j] == True : | |
| mask[i,j] = 1 | |
| mask = (mask*255).astype(np.uint8) | |
| output_mask = Image.fromarray(mask) | |
| return output_mask | |
| base_path = 'yisol/IDM-VTON' | |
| unet = UNet2DConditionModel.from_pretrained( | |
| base_path, | |
| subfolder="unet", | |
| torch_dtype=torch.float16, | |
| ) | |
| unet.requires_grad_(False) | |
| tokenizer_one = AutoTokenizer.from_pretrained( | |
| base_path, | |
| subfolder="tokenizer", | |
| revision=None, | |
| use_fast=False, | |
| ) | |
| tokenizer_two = AutoTokenizer.from_pretrained( | |
| base_path, | |
| subfolder="tokenizer_2", | |
| revision=None, | |
| use_fast=False, | |
| ) | |
| noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | |
| text_encoder_one = CLIPTextModel.from_pretrained( | |
| base_path, | |
| subfolder="text_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| text_encoder_two = CLIPTextModelWithProjection.from_pretrained( | |
| base_path, | |
| subfolder="text_encoder_2", | |
| torch_dtype=torch.float16, | |
| ) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| base_path, | |
| subfolder="image_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| vae = AutoencoderKL.from_pretrained(base_path, | |
| subfolder="vae", | |
| torch_dtype=torch.float16, | |
| ) | |
| # "stabilityai/stable-diffusion-xl-base-1.0", | |
| UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( | |
| base_path, | |
| subfolder="unet_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| UNet_Encoder.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| vae.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| tensor_transfrom = transforms.Compose( | |
| [ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| pipe = TryonPipeline.from_pretrained( | |
| base_path, | |
| unet=unet, | |
| vae=vae, | |
| feature_extractor= CLIPImageProcessor(), | |
| text_encoder = text_encoder_one, | |
| text_encoder_2 = text_encoder_two, | |
| tokenizer = tokenizer_one, | |
| tokenizer_2 = tokenizer_two, | |
| scheduler = noise_scheduler, | |
| image_encoder=image_encoder, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.unet_encoder = UNet_Encoder | |
| def start_tryon(person_img, pose_img, mask_img, cloth_img, garment_des, denoise_steps, seed): | |
| # Assuming device is set up (e.g., "cuda" or "cpu") | |
| pipe.to(device) | |
| pipe.unet_encoder.to(device) | |
| # Resize and prepare images | |
| garm_img = cloth_img.convert("RGB").resize((768, 1024)) | |
| human_img = person_img.convert("RGB").resize((768, 1024)) | |
| mask = pil_to_binary_mask(mask_img.convert("RGB").resize((768, 1024))) | |
| # Prepare pose image (already uploaded) | |
| pose_img = pose_img.resize((768, 1024)) | |
| # Embedding generation for prompts | |
| with torch.no_grad(): | |
| with torch.cuda.amp.autocast(): | |
| # Generate text embeddings for garment description | |
| prompt = f"model is wearing {garment_des}" | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| )= pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt = "a photo of " + garment_des | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * 1 | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * 1 | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds_cloth, | |
| _, | |
| _, | |
| _, | |
| )= pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=False, | |
| negative_prompt=negative_prompt, | |
| ) | |
| # Convert images to tensors for processing | |
| pose_img_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16) | |
| garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16) | |
| # Prepare the generator with optional seed | |
| generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
| # Generate the virtual try-on output image | |
| images = pipe( | |
| prompt_embeds=prompt_embeds.to(device, torch.float16), | |
| negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), | |
| pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16), | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16), | |
| num_inference_steps=denoise_steps, | |
| generator=generator, | |
| strength=1.0, | |
| pose_img=pose_img_tensor.to(device, torch.float16), | |
| text_embeds_cloth=prompt_embeds_cloth.to(device, torch.float16), | |
| cloth=garm_tensor.to(device, torch.float16), | |
| mask_image=mask, | |
| image=human_img, | |
| height=1024, | |
| width=768, | |
| ip_adapter_image=garm_img.resize((768, 1024)), | |
| guidance_scale=2.0, | |
| )[0] | |
| return images[0] | |
| # Gradio interface for the virtual try-on model | |
| image_blocks = gr.Blocks().queue() | |
| with image_blocks as demo: | |
| gr.Markdown("## SmartLuga") | |
| with gr.Row(): | |
| with gr.Column(): | |
| person_img = gr.Image(label='Person Image', sources='upload', type="pil") | |
| pose_img = gr.Image(label='Pose Image', sources='upload', type="pil") | |
| mask_img = gr.Image(label='Mask Image', sources='upload', type="pil") | |
| with gr.Column(): | |
| cloth_img = gr.Image(label='Garment Image', sources='upload', type="pil") | |
| garment_des = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", label="Garment Description") | |
| with gr.Column(): | |
| denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1) | |
| seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42) | |
| with gr.Column(): | |
| image_out = gr.Image(label="Output Image", elem_id="output-img", show_share_button=False) | |
| try_button = gr.Button(value="Try-on") | |
| try_button.click(fn=start_tryon, inputs=[person_img, pose_img, mask_img, cloth_img, garment_des, denoise_steps, seed], outputs=[image_out], api_name='tryon') | |
| image_blocks.launch() |