""" Streamlit app """ try: __import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') except: pass import os import streamlit as st from ragvizexpander import RAGVizChain from ragvizexpander.llms import * from ragvizexpander.embeddings import * from ragvizexpander.splitters import RecursiveChar2TokenSplitter st.set_page_config( page_title="RAGVizExpander Demo", page_icon="🔬", layout="wide" ) os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"] os.environ['HF_API_KEY'] = st.secrets["HF_API_KEY"] if "chart" not in st.session_state: st.session_state['chart'] = None if "loaded" not in st.session_state: st.session_state['loaded'] = False st.title("RAGVizExpander Demo🔬") st.markdown("📦 More details can be found at the GitHub repo [here](https://github.com/KKenny0/RAGVizExpander)") if not st.session_state['loaded']: main_page = st.empty() main_button = st.empty() with main_page.container(): uploaded_file = st.file_uploader("Upload your file", label_visibility="collapsed", type=['pdf', 'docx', 'txt', 'pptx']) # --- setting llm model st.markdown("### Settings for *LLM* model") st.session_state["llm_model_type"] = st.radio("Select type of llm model", ["OpenAI", "Ollama"], horizontal=True) if st.session_state["llm_model_type"] == "OpenAI": st.session_state["openai_llm_base_url"] = st.text_input("Enter OpenAI LLM API Base") st.session_state["openai_llm_api_key"] = st.text_input("Enter OpenAI LLM API Key") st.session_state["openai_llm_model"] = st.text_input("Enter OpenAI LLM model name") st.session_state["chosen_llm_model"] = ChatOpenAI( base_url=st.session_state["openai_llm_base_url"], api_key=st.session_state["openai_llm_api_key"], model_name=st.session_state["openai_llm_model"], ) else: st.session_state["ollama_llm_model"] = st.text_input("Enter Ollama model name") st.session_state["chosen_llm_model"] = ChatOllama(model_name=st.session_state["ollama_llm_model"]) st.markdown("""---""") # --- setting embedding model st.markdown("### Settings for *EMBEDDING* model") st.session_state["embedding_model_type"] = st.radio("Select type of embedding model", ["OpenAI", "SentenceTransformer", "HuggingFace", "TEI"], horizontal=True) if st.session_state["embedding_model_type"] == "OpenAI": st.session_state["openai_embed_model"] = st.selectbox("Select embedding model", ["text-embedding-3-small", "text-embedding-3-large", "text-embedding-ada-002"]) st.session_state["openai_embed_api_key"] = st.text_input("Enter OpenAI Embedding API Key") st.session_state["openai_embed_api_base"] = st.text_input("Enter OpenAI Embedding API Base") st.session_state["chosen_embedding_model"] = OpenAIEmbeddings( api_base=st.session_state["openai_embed_api_base"], api_key=st.session_state["openai_embed_api_key"], model_name=st.session_state["openai_embed_model"], ) elif st.session_state["embedding_model_type"] == "HuggingFace": st.session_state["hf_embed_model"] = st.text_input("Enter HF repository name") st.session_state["hf_api_key"] = st.text_input("Enter HF API key") st.session_state["chosen_embedding_model"] = HuggingFaceEmbeddings( model_name=st.session_state["hf_embed_model"], api_key=st.session_state["hf_api_key"] ) else: st.session_state["tei_api_url"] = st.text_input("Enter TEI(Text-Embedding-Inference) api url") st.session_state["chosen_embedding_model"] = TEIEmbeddings( api_url=st.session_state["tei_api_url"] ) st.markdown("""---""") # --- setting chunking parameters st.markdown("### Settings for *CHUNKING* model") st.session_state["chunk_size"] = st.number_input("Chunk size", value=500, min_value=100, max_value=1000, step=100) st.session_state["chunk_overlap"] = st.number_input("Chunk overlap", value=0, min_value=0, max_value=100, step=10) st.session_state["split_func"] = RecursiveChar2TokenSplitter( chunk_size=st.session_state["chunk_size"], chunk_overlap=st.session_state["chunk_overlap"], ) if st.button("Build Vector DB"): st.session_state["client"] = RAGVizChain(embedding_model=st.session_state["chosen_embedding_model"], llm=st.session_state["chosen_llm_model"], split_func=st.session_state["split_func"]) main_page.empty() main_button.empty() with st.spinner("Building Vector DB"): st.session_state["client"].load_data(uploaded_file,) st.session_state['loaded'] = True st.rerun() else: col1, col2 = st.columns(2) st.session_state['query'] = col1.text_area("Enter your query here") st.session_state['technique'] = col1.radio("Select retrival technique", ["naive", "HyAE", "multi_qns"], horizontal=True) st.session_state['top_k'] = col1.number_input("Top k", value=5, min_value=1, max_value=10, step=1) if col1.button("Execute Query"): st.session_state['chart'] = st.session_state["client"].visualize_query(st.session_state['query'], retrieval_method=st.session_state['technique'], top_k=st.session_state['top_k']) if st.session_state['chart'] is not None: col2.plotly_chart(st.session_state['chart']) if col1.button("Reset Application"): st.session_state['loaded'] = False st.rerun()