Spaces:
Running
Running
File size: 8,721 Bytes
1565811 99e421f 1353ca3 52962c0 172e426 1565811 172e426 827d87f 172e426 1565811 172e426 19dcca7 172e426 1565811 29b44e9 715fe0c 0775a2e 19dcca7 d2763b3 19dcca7 172e426 1565811 19dcca7 3c57a21 1565811 19dcca7 abd7620 d2763b3 1565811 19dcca7 172e426 7535eaf 172e426 d341489 19dcca7 172e426 19dcca7 648d463 c9f5c91 648d463 19dcca7 648d463 1565811 1ec9d51 1565811 19dcca7 24a8e81 19dcca7 7535eaf 19dcca7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth" -O weights/RetinaFace-R50.pth')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth" -O weights/GPEN-512.pth')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth" -O weights/GPEN-1024-Color.pth ')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth" -O weights/realesrnet_x2.pth ')
os.system('wget "https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Inpainting-1024.pth" -O weights/GPEN-Inpainting-1024.pth ')
jksp= os.environ['SELFIE']
os.system(f'wget "{jksp}" -O weights/GPEN-BFR-2048.pth')
import gradio as gr
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
'''
import os
import cv2
import glob
import time
import math
import imutils
import argparse
import numpy as np
from PIL import Image, ImageDraw
import __init_paths
from face_enhancement import FaceEnhancement
from face_colorization import FaceColorization
from face_inpainting import FaceInpainting
from gradio_imageslider import ImageSlider
def brush_stroke_mask(img, color=(255,255,255)):
min_num_vertex = 8
max_num_vertex = 28
mean_angle = 2*math.pi / 5
angle_range = 2*math.pi / 15
min_width = 12
max_width = 80
def generate_mask(H, W, img=None):
average_radius = math.sqrt(H*H+W*W) / 8
mask = Image.new('RGB', (W, H), 0)
if img is not None: mask = img #Image.fromarray(img)
for _ in range(np.random.randint(1, 4)):
num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
angle_min = mean_angle - np.random.uniform(0, angle_range)
angle_max = mean_angle + np.random.uniform(0, angle_range)
angles = []
vertex = []
for i in range(num_vertex):
if i % 2 == 0:
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
else:
angles.append(np.random.uniform(angle_min, angle_max))
h, w = mask.size
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
for i in range(num_vertex):
r = np.clip(
np.random.normal(loc=average_radius, scale=average_radius//2),
0, 2*average_radius)
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
vertex.append((int(new_x), int(new_y)))
draw = ImageDraw.Draw(mask)
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=color, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=color)
return mask
width, height = img.size
mask = generate_mask(height, width, img)
return mask
def resize(image, width = 1024):
aspect_ratio = float(image.shape[1])/float(image.shape[0])
height = width/aspect_ratio
image = cv2.resize(image, (int(height),int(width)))
return image
def inference(file, mode, res_percentage, zoom, x_shift, y_shift):
im = cv2.resize(file, None, fx = (res_percentage/100), fy = (res_percentage/100))
if mode == "enhance":
faceenhancer = FaceEnhancement(size=512, model='GPEN-512', channel_multiplier=2, device='cpu', u=False)
img, orig_faces, enhanced_faces = faceenhancer.process(im)
elif mode == "colorize":
model = {'name':'GPEN-1024-Color', 'size':1024}
if len(im.shape) == 3:
if im.shape[2] == 1:
grayf = im[:, :, 0]
elif im.shape[2] == 3:
grayf = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
elif im.shape[2] == 4:
grayf = cv2.cvtColor(im, cv2.COLOR_BGRA2GRAY)
grayf = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
grayf = cv2.cvtColor(grayf, cv2.COLOR_GRAY2BGR) # channel: 1->3
facecolorizer = FaceColorization(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
colorf = facecolorizer.process(grayf)
img = cv2.resize(colorf, (grayf.shape[1], grayf.shape[0]))
elif mode == "inpainting":
im2 = resize(im, width = 1024)
model = {'name':'GPEN-Inpainting-1024', 'size':1024}
faceinpainter = FaceInpainting(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
im3 = np.asarray(brush_stroke_mask(Image.fromarray(im2)))
img = faceinpainter.process(im3)
elif mode == "selfie":
model = {'name':'GPEN-BFR-2048', 'size':2048}
faceenhancer = FaceEnhancement(size=model['size'], model=model['name'], channel_multiplier=2, device='cpu')
img, orig_faces, enhanced_faces = faceenhancer.process(im)
else:
faceenhancer = FaceEnhancement(size=512, model='GPEN-512', channel_multiplier=2, device='cpu', u=True)
img, orig_faces, enhanced_faces = faceenhancer.process(im)
(in_img, out_img) = zoom_image(zoom, x_shift, y_shift, im, img)
return img, (in_img, out_img)
title = "GPEN"
description = "Gradio demo for GAN Prior Embedded Network for Blind Face Restoration in the Wild. This version of gradio demo includes face colorization from GPEN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center;'><a href='https://arxiv.org/abs/2105.06070' target='_blank'>GAN Prior Embedded Network for Blind Face Restoration in the Wild</a> | <a href='https://github.com/yangxy/GPEN' target='_blank'>Github Repo</a></p><p style='text-align: center;'><img src='https://img.shields.io/badge/Hugging%20Face-Original%20demo-blue' alt='https://huggingface.co/spaces/akhaliq/GPEN' width='172' height='20' /></p>"
def zoom_image(zoom, x_shift, y_shift, input_img, output_img = None):
if output_img is None:
return None
img = Image.fromarray(input_img)
out_img = Image.fromarray(output_img)
img_w, img_h = img.size
zoom_factor = (100 - zoom) / 100
x_shift /= 100
y_shift /= 100
zoom_w, zoom_h = int(img_w * zoom_factor), int(img_h * zoom_factor)
x_offset = int((img_w - zoom_w) * x_shift)
y_offset = int((img_h - zoom_h) * y_shift)
crop_box = (x_offset, y_offset, x_offset + zoom_w, y_offset + zoom_h)
img = img.resize((img_w, img_h), Image.BILINEAR).crop(crop_box)
out_img = out_img.resize((img_w, img_h), Image.BILINEAR).crop(crop_box)
return (img, out_img)
with gr.Blocks() as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
output_img = gr.Image(label="Result", interactive=False)
restore_type = gr.Radio(["enhance", "colorize", "inpainting", "selfie", "enhanced+background"], value="enhance", type="value", label="Type")
max_res = gr.Slider(1, 200, step=0.5, value=100, label="Output image Resolution Percentage (Higher% = longer processing time)")
zoom = gr.Slider(0, 100, step=1, value=50, label="Zoom Percentage (0 = original size)")
x_shift = gr.Slider(0, 100, step=1, label="Horizontal shift Percentage (Before/After)")
y_shift = gr.Slider(0, 100, step=1, label="Vertical shift Percentage (Before/After)")
run = gr.Button("Run")
with gr.Row():
before_after = ImageSlider(label="Before/After", type="pil", value=None)
run.click(
inference,
inputs=[input_img, restore_type, max_res, zoom, x_shift, y_shift],
outputs=[output_img, before_after]
)
gr.Examples([
['enhance.png', 'enhance', 100, 0, 0, 0],
['color.png', 'colorize', 100, 0, 0, 0],
['inpainting.png', 'inpainting', 100, 0, 0, 0],
['selfie.png', 'selfie', 100, 0, 0, 0]
], inputs=[input_img, restore_type, max_res, zoom, x_shift, y_shift])
zoom.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img, output_img], outputs=[before_after])
x_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img, output_img], outputs=[before_after])
y_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img, output_img], outputs=[before_after])
demo.launch() |