Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import numbers | |
| from abc import ABCMeta, abstractmethod | |
| import numpy as np | |
| import torch | |
| from ..hook import Hook | |
| class LoggerHook(Hook): | |
| """Base class for logger hooks. | |
| Args: | |
| interval (int): Logging interval (every k iterations). | |
| ignore_last (bool): Ignore the log of last iterations in each epoch | |
| if less than `interval`. | |
| reset_flag (bool): Whether to clear the output buffer after logging. | |
| by_epoch (bool): Whether EpochBasedRunner is used. | |
| """ | |
| __metaclass__ = ABCMeta | |
| def __init__(self, | |
| interval=10, | |
| ignore_last=True, | |
| reset_flag=False, | |
| by_epoch=True): | |
| self.interval = interval | |
| self.ignore_last = ignore_last | |
| self.reset_flag = reset_flag | |
| self.by_epoch = by_epoch | |
| def log(self, runner): | |
| pass | |
| def is_scalar(val, include_np=True, include_torch=True): | |
| """Tell the input variable is a scalar or not. | |
| Args: | |
| val: Input variable. | |
| include_np (bool): Whether include 0-d np.ndarray as a scalar. | |
| include_torch (bool): Whether include 0-d torch.Tensor as a scalar. | |
| Returns: | |
| bool: True or False. | |
| """ | |
| if isinstance(val, numbers.Number): | |
| return True | |
| elif include_np and isinstance(val, np.ndarray) and val.ndim == 0: | |
| return True | |
| elif include_torch and isinstance(val, torch.Tensor) and len(val) == 1: | |
| return True | |
| else: | |
| return False | |
| def get_mode(self, runner): | |
| if runner.mode == 'train': | |
| if 'time' in runner.log_buffer.output: | |
| mode = 'train' | |
| else: | |
| mode = 'val' | |
| elif runner.mode == 'val': | |
| mode = 'val' | |
| else: | |
| raise ValueError(f"runner mode should be 'train' or 'val', " | |
| f'but got {runner.mode}') | |
| return mode | |
| def get_epoch(self, runner): | |
| if runner.mode == 'train': | |
| epoch = runner.epoch + 1 | |
| elif runner.mode == 'val': | |
| # normal val mode | |
| # runner.epoch += 1 has been done before val workflow | |
| epoch = runner.epoch | |
| else: | |
| raise ValueError(f"runner mode should be 'train' or 'val', " | |
| f'but got {runner.mode}') | |
| return epoch | |
| def get_iter(self, runner, inner_iter=False): | |
| """Get the current training iteration step.""" | |
| if self.by_epoch and inner_iter: | |
| current_iter = runner.inner_iter + 1 | |
| else: | |
| current_iter = runner.iter + 1 | |
| return current_iter | |
| def get_lr_tags(self, runner): | |
| tags = {} | |
| lrs = runner.current_lr() | |
| if isinstance(lrs, dict): | |
| for name, value in lrs.items(): | |
| tags[f'learning_rate/{name}'] = value[0] | |
| else: | |
| tags['learning_rate'] = lrs[0] | |
| return tags | |
| def get_momentum_tags(self, runner): | |
| tags = {} | |
| momentums = runner.current_momentum() | |
| if isinstance(momentums, dict): | |
| for name, value in momentums.items(): | |
| tags[f'momentum/{name}'] = value[0] | |
| else: | |
| tags['momentum'] = momentums[0] | |
| return tags | |
| def get_loggable_tags(self, | |
| runner, | |
| allow_scalar=True, | |
| allow_text=False, | |
| add_mode=True, | |
| tags_to_skip=('time', 'data_time')): | |
| tags = {} | |
| for var, val in runner.log_buffer.output.items(): | |
| if var in tags_to_skip: | |
| continue | |
| if self.is_scalar(val) and not allow_scalar: | |
| continue | |
| if isinstance(val, str) and not allow_text: | |
| continue | |
| if add_mode: | |
| var = f'{self.get_mode(runner)}/{var}' | |
| tags[var] = val | |
| tags.update(self.get_lr_tags(runner)) | |
| tags.update(self.get_momentum_tags(runner)) | |
| return tags | |
| def before_run(self, runner): | |
| for hook in runner.hooks[::-1]: | |
| if isinstance(hook, LoggerHook): | |
| hook.reset_flag = True | |
| break | |
| def before_epoch(self, runner): | |
| runner.log_buffer.clear() # clear logs of last epoch | |
| def after_train_iter(self, runner): | |
| if self.by_epoch and self.every_n_inner_iters(runner, self.interval): | |
| runner.log_buffer.average(self.interval) | |
| elif not self.by_epoch and self.every_n_iters(runner, self.interval): | |
| runner.log_buffer.average(self.interval) | |
| elif self.end_of_epoch(runner) and not self.ignore_last: | |
| # not precise but more stable | |
| runner.log_buffer.average(self.interval) | |
| if runner.log_buffer.ready: | |
| self.log(runner) | |
| if self.reset_flag: | |
| runner.log_buffer.clear_output() | |
| def after_train_epoch(self, runner): | |
| if runner.log_buffer.ready: | |
| self.log(runner) | |
| if self.reset_flag: | |
| runner.log_buffer.clear_output() | |
| def after_val_epoch(self, runner): | |
| runner.log_buffer.average() | |
| self.log(runner) | |
| if self.reset_flag: | |
| runner.log_buffer.clear_output() | |