Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| import torch.nn as nn | |
| from annotator.uniformer.mmcv import build_from_cfg | |
| from .registry import DROPOUT_LAYERS | |
| def drop_path(x, drop_prob=0., training=False): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of | |
| residual blocks). | |
| We follow the implementation | |
| https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501 | |
| """ | |
| if drop_prob == 0. or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| # handle tensors with different dimensions, not just 4D tensors. | |
| shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) | |
| random_tensor = keep_prob + torch.rand( | |
| shape, dtype=x.dtype, device=x.device) | |
| output = x.div(keep_prob) * random_tensor.floor() | |
| return output | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of | |
| residual blocks). | |
| We follow the implementation | |
| https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501 | |
| Args: | |
| drop_prob (float): Probability of the path to be zeroed. Default: 0.1 | |
| """ | |
| def __init__(self, drop_prob=0.1): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training) | |
| class Dropout(nn.Dropout): | |
| """A wrapper for ``torch.nn.Dropout``, We rename the ``p`` of | |
| ``torch.nn.Dropout`` to ``drop_prob`` so as to be consistent with | |
| ``DropPath`` | |
| Args: | |
| drop_prob (float): Probability of the elements to be | |
| zeroed. Default: 0.5. | |
| inplace (bool): Do the operation inplace or not. Default: False. | |
| """ | |
| def __init__(self, drop_prob=0.5, inplace=False): | |
| super().__init__(p=drop_prob, inplace=inplace) | |
| def build_dropout(cfg, default_args=None): | |
| """Builder for drop out layers.""" | |
| return build_from_cfg(cfg, DROPOUT_LAYERS, default_args) | |
 
			
