Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Copyright (c) OpenMMLab. All rights reserved. | |
| from torch import nn | |
| from .registry import CONV_LAYERS | |
| CONV_LAYERS.register_module('Conv1d', module=nn.Conv1d) | |
| CONV_LAYERS.register_module('Conv2d', module=nn.Conv2d) | |
| CONV_LAYERS.register_module('Conv3d', module=nn.Conv3d) | |
| CONV_LAYERS.register_module('Conv', module=nn.Conv2d) | |
| def build_conv_layer(cfg, *args, **kwargs): | |
| """Build convolution layer. | |
| Args: | |
| cfg (None or dict): The conv layer config, which should contain: | |
| - type (str): Layer type. | |
| - layer args: Args needed to instantiate an conv layer. | |
| args (argument list): Arguments passed to the `__init__` | |
| method of the corresponding conv layer. | |
| kwargs (keyword arguments): Keyword arguments passed to the `__init__` | |
| method of the corresponding conv layer. | |
| Returns: | |
| nn.Module: Created conv layer. | |
| """ | |
| if cfg is None: | |
| cfg_ = dict(type='Conv2d') | |
| else: | |
| if not isinstance(cfg, dict): | |
| raise TypeError('cfg must be a dict') | |
| if 'type' not in cfg: | |
| raise KeyError('the cfg dict must contain the key "type"') | |
| cfg_ = cfg.copy() | |
| layer_type = cfg_.pop('type') | |
| if layer_type not in CONV_LAYERS: | |
| raise KeyError(f'Unrecognized norm type {layer_type}') | |
| else: | |
| conv_layer = CONV_LAYERS.get(layer_type) | |
| layer = conv_layer(*args, **kwargs, **cfg_) | |
| return layer | |
 
			
