Spaces:
Runtime error
Runtime error
| import argparse, os, sys, glob | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from tqdm import tqdm, trange | |
| from imwatermark import WatermarkEncoder | |
| from itertools import islice | |
| from einops import rearrange | |
| from torchvision.utils import make_grid | |
| import time | |
| from pytorch_lightning import seed_everything | |
| from torch import autocast | |
| from contextlib import contextmanager, nullcontext | |
| from ldm.util import instantiate_from_config | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from ldm.models.diffusion.plms import PLMSSampler | |
| from ldm.models.diffusion.dpm_solver import DPMSolverSampler | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| from transformers import AutoFeatureExtractor | |
| # load safety model | |
| safety_model_id = "CompVis/stable-diffusion-safety-checker" | |
| safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) | |
| safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) | |
| def chunk(it, size): | |
| it = iter(it) | |
| return iter(lambda: tuple(islice(it, size)), ()) | |
| def numpy_to_pil(images): | |
| """ | |
| Convert a numpy image or a batch of images to a PIL image. | |
| """ | |
| if images.ndim == 3: | |
| images = images[None, ...] | |
| images = (images * 255).round().astype("uint8") | |
| pil_images = [Image.fromarray(image) for image in images] | |
| return pil_images | |
| def load_model_from_config(config, ckpt, verbose=False): | |
| print(f"Loading model from {ckpt}") | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| if "global_step" in pl_sd: | |
| print(f"Global Step: {pl_sd['global_step']}") | |
| sd = pl_sd["state_dict"] | |
| model = instantiate_from_config(config.model) | |
| m, u = model.load_state_dict(sd, strict=False) | |
| if len(m) > 0 and verbose: | |
| print("missing keys:") | |
| print(m) | |
| if len(u) > 0 and verbose: | |
| print("unexpected keys:") | |
| print(u) | |
| model.cuda() | |
| model.eval() | |
| return model | |
| def put_watermark(img, wm_encoder=None): | |
| if wm_encoder is not None: | |
| img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
| img = wm_encoder.encode(img, 'dwtDct') | |
| img = Image.fromarray(img[:, :, ::-1]) | |
| return img | |
| def load_replacement(x): | |
| try: | |
| hwc = x.shape | |
| y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) | |
| y = (np.array(y)/255.0).astype(x.dtype) | |
| assert y.shape == x.shape | |
| return y | |
| except Exception: | |
| return x | |
| def check_safety(x_image): | |
| safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") | |
| x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) | |
| assert x_checked_image.shape[0] == len(has_nsfw_concept) | |
| for i in range(len(has_nsfw_concept)): | |
| if has_nsfw_concept[i]: | |
| x_checked_image[i] = load_replacement(x_checked_image[i]) | |
| return x_checked_image, has_nsfw_concept | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| nargs="?", | |
| default="a painting of a virus monster playing guitar", | |
| help="the prompt to render" | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| type=str, | |
| nargs="?", | |
| help="dir to write results to", | |
| default="outputs/txt2img-samples" | |
| ) | |
| parser.add_argument( | |
| "--skip_grid", | |
| action='store_true', | |
| help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
| ) | |
| parser.add_argument( | |
| "--skip_save", | |
| action='store_true', | |
| help="do not save individual samples. For speed measurements.", | |
| ) | |
| parser.add_argument( | |
| "--ddim_steps", | |
| type=int, | |
| default=50, | |
| help="number of ddim sampling steps", | |
| ) | |
| parser.add_argument( | |
| "--plms", | |
| action='store_true', | |
| help="use plms sampling", | |
| ) | |
| parser.add_argument( | |
| "--dpm_solver", | |
| action='store_true', | |
| help="use dpm_solver sampling", | |
| ) | |
| parser.add_argument( | |
| "--laion400m", | |
| action='store_true', | |
| help="uses the LAION400M model", | |
| ) | |
| parser.add_argument( | |
| "--fixed_code", | |
| action='store_true', | |
| help="if enabled, uses the same starting code across samples ", | |
| ) | |
| parser.add_argument( | |
| "--ddim_eta", | |
| type=float, | |
| default=0.0, | |
| help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
| ) | |
| parser.add_argument( | |
| "--n_iter", | |
| type=int, | |
| default=2, | |
| help="sample this often", | |
| ) | |
| parser.add_argument( | |
| "--H", | |
| type=int, | |
| default=512, | |
| help="image height, in pixel space", | |
| ) | |
| parser.add_argument( | |
| "--W", | |
| type=int, | |
| default=512, | |
| help="image width, in pixel space", | |
| ) | |
| parser.add_argument( | |
| "--C", | |
| type=int, | |
| default=4, | |
| help="latent channels", | |
| ) | |
| parser.add_argument( | |
| "--f", | |
| type=int, | |
| default=8, | |
| help="downsampling factor", | |
| ) | |
| parser.add_argument( | |
| "--n_samples", | |
| type=int, | |
| default=3, | |
| help="how many samples to produce for each given prompt. A.k.a. batch size", | |
| ) | |
| parser.add_argument( | |
| "--n_rows", | |
| type=int, | |
| default=0, | |
| help="rows in the grid (default: n_samples)", | |
| ) | |
| parser.add_argument( | |
| "--scale", | |
| type=float, | |
| default=7.5, | |
| help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
| ) | |
| parser.add_argument( | |
| "--from-file", | |
| type=str, | |
| help="if specified, load prompts from this file", | |
| ) | |
| parser.add_argument( | |
| "--config", | |
| type=str, | |
| default="configs/stable-diffusion/v1-inference.yaml", | |
| help="path to config which constructs model", | |
| ) | |
| parser.add_argument( | |
| "--ckpt", | |
| type=str, | |
| default="models/ldm/stable-diffusion-v1/model.ckpt", | |
| help="path to checkpoint of model", | |
| ) | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| default=42, | |
| help="the seed (for reproducible sampling)", | |
| ) | |
| parser.add_argument( | |
| "--precision", | |
| type=str, | |
| help="evaluate at this precision", | |
| choices=["full", "autocast"], | |
| default="autocast" | |
| ) | |
| opt = parser.parse_args() | |
| if opt.laion400m: | |
| print("Falling back to LAION 400M model...") | |
| opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" | |
| opt.ckpt = "models/ldm/text2img-large/model.ckpt" | |
| opt.outdir = "outputs/txt2img-samples-laion400m" | |
| seed_everything(opt.seed) | |
| config = OmegaConf.load(f"{opt.config}") | |
| model = load_model_from_config(config, f"{opt.ckpt}") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| if opt.dpm_solver: | |
| sampler = DPMSolverSampler(model) | |
| elif opt.plms: | |
| sampler = PLMSSampler(model) | |
| else: | |
| sampler = DDIMSampler(model) | |
| os.makedirs(opt.outdir, exist_ok=True) | |
| outpath = opt.outdir | |
| print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
| wm = "StableDiffusionV1" | |
| wm_encoder = WatermarkEncoder() | |
| wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
| batch_size = opt.n_samples | |
| n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
| if not opt.from_file: | |
| prompt = opt.prompt | |
| assert prompt is not None | |
| data = [batch_size * [prompt]] | |
| else: | |
| print(f"reading prompts from {opt.from_file}") | |
| with open(opt.from_file, "r") as f: | |
| data = f.read().splitlines() | |
| data = list(chunk(data, batch_size)) | |
| sample_path = os.path.join(outpath, "samples") | |
| os.makedirs(sample_path, exist_ok=True) | |
| base_count = len(os.listdir(sample_path)) | |
| grid_count = len(os.listdir(outpath)) - 1 | |
| start_code = None | |
| if opt.fixed_code: | |
| start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) | |
| precision_scope = autocast if opt.precision=="autocast" else nullcontext | |
| with torch.no_grad(): | |
| with precision_scope("cuda"): | |
| with model.ema_scope(): | |
| tic = time.time() | |
| all_samples = list() | |
| for n in trange(opt.n_iter, desc="Sampling"): | |
| for prompts in tqdm(data, desc="data"): | |
| uc = None | |
| if opt.scale != 1.0: | |
| uc = model.get_learned_conditioning(batch_size * [""]) | |
| if isinstance(prompts, tuple): | |
| prompts = list(prompts) | |
| c = model.get_learned_conditioning(prompts) | |
| shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
| samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
| conditioning=c, | |
| batch_size=opt.n_samples, | |
| shape=shape, | |
| verbose=False, | |
| unconditional_guidance_scale=opt.scale, | |
| unconditional_conditioning=uc, | |
| eta=opt.ddim_eta, | |
| x_T=start_code) | |
| x_samples_ddim = model.decode_first_stage(samples_ddim) | |
| x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
| x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() | |
| x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim) | |
| x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) | |
| if not opt.skip_save: | |
| for x_sample in x_checked_image_torch: | |
| x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
| img = Image.fromarray(x_sample.astype(np.uint8)) | |
| img = put_watermark(img, wm_encoder) | |
| img.save(os.path.join(sample_path, f"{base_count:05}.png")) | |
| base_count += 1 | |
| if not opt.skip_grid: | |
| all_samples.append(x_checked_image_torch) | |
| if not opt.skip_grid: | |
| # additionally, save as grid | |
| grid = torch.stack(all_samples, 0) | |
| grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
| grid = make_grid(grid, nrow=n_rows) | |
| # to image | |
| grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
| img = Image.fromarray(grid.astype(np.uint8)) | |
| img = put_watermark(img, wm_encoder) | |
| img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) | |
| grid_count += 1 | |
| toc = time.time() | |
| print(f"Your samples are ready and waiting for you here: \n{outpath} \n" | |
| f" \nEnjoy.") | |
| if __name__ == "__main__": | |
| main() | |