Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
|
|
3 |
|
4 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
5 |
from youtube_transcript_api import YouTubeTranscriptApi
|
@@ -13,11 +14,24 @@ from langchain.prompts.chat import (
|
|
13 |
)
|
14 |
|
15 |
|
16 |
-
def
|
17 |
-
"""
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
def create_db_from_video_url(video_url, api_key):
|
@@ -25,17 +39,13 @@ def create_db_from_video_url(video_url, api_key):
|
|
25 |
Creates an Embedding of the Video and performs
|
26 |
"""
|
27 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004", google_api_key=api_key)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
return "Invalid YouTube URL!"
|
32 |
-
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
33 |
-
text = "\n".join([t["text"] for t in transcript])
|
34 |
-
print(text)
|
35 |
# cannot provide this directly to the model so we are splitting the transcripts into small chunks
|
36 |
|
37 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
38 |
-
docs = text_splitter.split_documents(
|
39 |
print(docs)
|
40 |
|
41 |
db = FAISS.from_documents(docs, embedding=embeddings)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import yt_dlp
|
4 |
|
5 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
6 |
from youtube_transcript_api import YouTubeTranscriptApi
|
|
|
14 |
)
|
15 |
|
16 |
|
17 |
+
def get_transcript_yt_dlp(video_url):
|
18 |
+
"""Fetches transcript using yt_dlp."""
|
19 |
+
ydl_opts = {
|
20 |
+
"writesubtitles": True,
|
21 |
+
"writeautomaticsub": True,
|
22 |
+
"skip_download": True,
|
23 |
+
"subtitleslangs": ["en"], # Fetch English subtitles
|
24 |
+
}
|
25 |
+
|
26 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
27 |
+
info_dict = ydl.extract_info(video_url, download=False)
|
28 |
+
subtitles = info_dict.get("subtitles") or info_dict.get("automatic_captions")
|
29 |
+
|
30 |
+
if subtitles and "en" in subtitles:
|
31 |
+
sub_url = subtitles["en"][0]["url"]
|
32 |
+
return f"Transcript URL: {sub_url}"
|
33 |
+
else:
|
34 |
+
return "No subtitles available!"
|
35 |
|
36 |
|
37 |
def create_db_from_video_url(video_url, api_key):
|
|
|
39 |
Creates an Embedding of the Video and performs
|
40 |
"""
|
41 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004", google_api_key=api_key)
|
42 |
+
|
43 |
+
transcripts = get_transcript_yt_dlp(video_url)
|
44 |
+
print(transcripts)
|
|
|
|
|
|
|
|
|
45 |
# cannot provide this directly to the model so we are splitting the transcripts into small chunks
|
46 |
|
47 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
48 |
+
docs = text_splitter.split_documents(transcripts)
|
49 |
print(docs)
|
50 |
|
51 |
db = FAISS.from_documents(docs, embedding=embeddings)
|