{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "a6E1i51cQQXL" }, "source": [ "# Birds Classification\n", "\n", "---" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "8CbuPg6IQQXP" }, "source": [ "## Problem Description\n", "\n", "- To classify an Image of a Bird to any one of the 510 species.\n", "- This problem is a Multi-class Image Classification Problem.\n", "\n", "## Dataset Description\n", "\n", "- The dataset has 510 classes. \n", "- There are 81,950 training images, 2,550 test images and 2,550 validation images.\n", "\n", "## Models Tried\n", "\n", "- EfficientNetB2\n", "- Vision Transformer\n", "\n", "## Evaluation Metrics Used\n", "\n", "- Accuracy" ] }, { "cell_type": "markdown", "metadata": { "id": "DJZZNaplQQXQ" }, "source": [ "## 1. Importing the required Libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "oiDnSYBtQQXS" }, "outputs": [], "source": [ "import torch\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "kECYtI1MQQXU" }, "outputs": [], "source": [ "import os\n", "import shutil\n", "import random" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "sfPP5jPfRcFA", "outputId": "d6ba4279-fe81-4f60-89e8-f219b4818329" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mounted at /content/drive\n" ] } ], "source": [ "# mounting google drive to colab\n", "from google.colab import drive\n", "drive.mount('/content/drive')" ] }, { "cell_type": "markdown", "metadata": { "id": "kQ4wpOz4QQXV" }, "source": [ "## 2. Getting the data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "hoI_H0WVRjAu", "outputId": "ad1db933-0a8e-4bc5-cdff-b444d285ee31" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'/content/kaggle.json'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "shutil.copy2(\"/content/drive/MyDrive/Colab Notebooks/kaggle.json\", \"/content\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "PEV6tsEa3sYK", "outputId": "b301c08e-02a4-4adb-de2b-0332fa6bcd41" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Requirement already satisfied: torchinfo in /usr/local/lib/python3.9/dist-packages (1.7.2)\n" ] } ], "source": [ "!pip install torchinfo\n", "from torchinfo import summary" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "pYcYqTxmNUOj", "outputId": "40124116-653c-4777-dc1a-28efa69c1607" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Requirement already satisfied: torchmetrics in /usr/local/lib/python3.9/dist-packages (0.11.4)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.9/dist-packages (from torchmetrics) (23.0)\n", "Requirement already satisfied: torch>=1.8.1 in /usr/local/lib/python3.9/dist-packages (from torchmetrics) (1.13.1+cu116)\n", "Requirement already satisfied: numpy>=1.17.2 in /usr/local/lib/python3.9/dist-packages (from torchmetrics) (1.22.4)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch>=1.8.1->torchmetrics) (4.5.0)\n" ] } ], "source": [ "!pip install torchmetrics" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "epin160RQp-G", "outputId": "551323a3-40de-4333-fee4-648605365781" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Requirement already satisfied: kaggle in /usr/local/lib/python3.9/dist-packages (1.5.13)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from kaggle) (2.27.1)\n", "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.9/dist-packages (from kaggle) (2.8.2)\n", "Requirement already satisfied: certifi in /usr/local/lib/python3.9/dist-packages (from kaggle) (2022.12.7)\n", "Requirement already satisfied: urllib3 in /usr/local/lib/python3.9/dist-packages (from kaggle) (1.26.15)\n", "Requirement already satisfied: python-slugify in /usr/local/lib/python3.9/dist-packages (from kaggle) (8.0.1)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from kaggle) (4.65.0)\n", "Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.9/dist-packages (from kaggle) (1.16.0)\n", "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.9/dist-packages (from python-slugify->kaggle) (1.3)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->kaggle) (3.4)\n", "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->kaggle) (2.0.12)\n", "Downloading 100-bird-species.zip to /content\n", " 99% 1.88G/1.89G [00:09<00:00, 211MB/s]\n", "100% 1.89G/1.89G [00:09<00:00, 225MB/s]\n" ] } ], "source": [ "# getting the data from kaggle\n", "!pip install kaggle\n", "!mkdir ~/.kaggle\n", "!cp kaggle.json ~/.kaggle/\n", "!chmod 600 ~/.kaggle/kaggle.json\n", "\n", "!kaggle datasets download gpiosenka/100-bird-species" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "EhGfcOQhST2-" }, "outputs": [], "source": [ "# extracting the dataset\n", "from zipfile import ZipFile\n", "\n", "with ZipFile(\"/content/100-bird-species.zip\", \"r\") as zipref:\n", " zipref.extractall(\"/content/Dataset\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "7jgGhpgMQQXV" }, "outputs": [], "source": [ "# setting up train, validation and test directories\n", "train_dir = \"/content/Dataset/train\"\n", "valid_dir = \"/content/Dataset/valid\"\n", "test_dir = \"/content/Dataset/test\"" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "7L4P-RAzQQXW" }, "outputs": [], "source": [ "# setting up a function to know how many images and classes are available\n", "def walk_through(path: str):\n", " \"\"\"\n", " Getting the number of images in each classes.\n", " \"\"\"\n", " for dirpath, dirname, filename in os.walk(path):\n", " print(f\"Directory: {dirpath}\")\n", " print(f\"No. of Sub-directories: {len(dirname)}\")\n", " print(f\"No. of Files: {len(filename)}\\n\")\n", " " ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IL10zcxrQQXX", "outputId": "90a3fe02-1393-4509-b217-dcf8dc5bafb6" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Directory: /content/Dataset/train\n", "No. of Sub-directories: 510\n", "No. of Files: 0\n", "\n", "Directory: /content/Dataset/train/NORTHERN JACANA\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/NICOBAR PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GOLDEN BOWER BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/AUSTRALASIAN FIGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/LUCIFER HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/COMMON HOUSE MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/RUBY THROATED HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/PALM NUT VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 192\n", "\n", "Directory: /content/Dataset/train/AMERICAN GOLDFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/COCK OF THE ROCK\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/GUINEAFOWL\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/ZEBRA DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/GOLDEN CHEEKED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/CURL CRESTED ARACURI\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/GREY CUCKOOSHRIKE\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/INDIAN PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/BLACK FRANCOLIN\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/NORTHERN SHOVELER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/MALEO\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/WHIMBREL\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/BLOOD PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/HORNED SUNGEM\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/TRUMPTER SWAN\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/SCARLET TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/POMARINE JAEGER\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/BLUE MALKOHA\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/ANDEAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/GOLDEN EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/RUDDY SHELDUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/ALBERTS TOWHEE\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/PYGMY KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/ALBATROSS\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/MYNA\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/GAMBELS QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/CRESTED WOOD PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/LOONEY BIRDS\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/ELEGANT TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/EURASIAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/SHORT BILLED DOWITCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/FLAME BOWERBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/BLACK AND YELLOW BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/MALAGASY WHITE EYE\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/TAILORBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/TAIWAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/PURPLE GALLINULE\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/AMERICAN ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 147\n", "\n", "Directory: /content/Dataset/train/BORNEAN PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/MALLARD DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/BEARDED BELLBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/FAN TAILED WIDOW\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/DALMATIAN PELICAN\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/CALIFORNIA QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/MASKED BOOBY\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/RED TAILED HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 202\n", "\n", "Directory: /content/Dataset/train/FIRE TAILLED MYZORNIS\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/CROW\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/CALIFORNIA GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/AMETHYST WOODSTAR\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/JACK SNIPE\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/GO AWAY BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/FASCIATED WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/BULWERS PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/INDIAN VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/TAWNY FROGMOUTH\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/MASKED BOBWHITE\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/HOODED MERGANSER\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/CRESTED COUA\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/PEACOCK\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/WOOD THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 211\n", "\n", "Directory: /content/Dataset/train/FAIRY BLUEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/STEAMER DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/OKINAWA RAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RUFOUS KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/SPLENDID WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/CRIMSON SUNBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 198\n", "\n", "Directory: /content/Dataset/train/CHESTNET BELLIED EUPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/GREEN WINGED DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/CAPE ROCK THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/DARK EYED JUNCO\n", "No. of Sub-directories: 0\n", "No. of Files: 203\n", "\n", "Directory: /content/Dataset/train/JACOBIN PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 204\n", "\n", "Directory: /content/Dataset/train/WOODLAND KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 194\n", "\n", "Directory: /content/Dataset/train/ROUGH LEG BUZZARD\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/CHINESE BAMBOO PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/RED LEGGED HONEYCREEPER\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/CAMPO FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/MERLIN\n", "No. of Sub-directories: 0\n", "No. of Files: 209\n", "\n", "Directory: /content/Dataset/train/HAWAIIAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RAINBOW LORIKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/BLACK TAIL CRAKE\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/CAPUCHINBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/RED WINGED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/SWINHOES PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 217\n", "\n", "Directory: /content/Dataset/train/BROWN HEADED COWBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 192\n", "\n", "Directory: /content/Dataset/train/CUBAN TODY\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/WHITE THROATED BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/VIOLET TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/BAIKAL TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/GUINEA TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/WHITE BROWED CRAKE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/AMERICAN REDSTART\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/IVORY GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/EASTERN TOWEE\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/BALTIMORE ORIOLE\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/BLUE THROATED TOUCANET\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/AFRICAN OYSTER CATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/HAWFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/FLAME TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/ASIAN CRESTED IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/NORTHERN BEARDLESS TYRANNULET\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/GOULDIAN FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/CHATTERING LORY\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/ASIAN GREEN BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 220\n", "\n", "Directory: /content/Dataset/train/BLACK THROATED BUSHTIT\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/LITTLE AUK\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/CARMINE BEE-EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/EASTERN GOLDEN WEAVER\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/CROWNED PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/HOUSE FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 248\n", "\n", "Directory: /content/Dataset/train/RED BELLIED PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/CEDAR WAXWING\n", "No. of Sub-directories: 0\n", "No. of Files: 180\n", "\n", "Directory: /content/Dataset/train/SRI LANKA BLUE MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/SORA\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/ABBOTTS BOOBY\n", "No. of Sub-directories: 0\n", "No. of Files: 180\n", "\n", "Directory: /content/Dataset/train/KAGU\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/LIMPKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/TAKAHE\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/OVENBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 233\n", "\n", "Directory: /content/Dataset/train/COMMON STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/EMERALD TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/YELLOW CACIQUE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/APAPANE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/WALL CREAPER\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/STRIPPED MANAKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/GOLD WING WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/CHIPPING SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/VULTURINE GUINEAFOWL\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/NORTHERN RED BISHOP\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/CHUCAO TAPACULO\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/DOUBLE BRESTED CORMARANT\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/CANARY\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/CRESTED FIREBACK\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/LARK BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ANDEAN LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/KIWI\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/AMERICAN AVOCET\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/SMITHS LONGSPUR\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/OYSTER CATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 207\n", "\n", "Directory: /content/Dataset/train/INLAND DOTTEREL\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/CANVASBACK\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/BOBOLINK\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/TROPICAL KINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GANG GANG COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/BALI STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/SAYS PHOEBE\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/YELLOW BELLIED FLOWERPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GOLDEN PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/JAVA SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/JABIRU\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/BARN SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/ROSEATE SPOONBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 193\n", "\n", "Directory: /content/Dataset/train/PINK ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/GREAT KISKADEE\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/PARADISE TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/SUPERB STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/WHITE NECKED RAVEN\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/RED BROWED FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/GOLDEN PIPIT\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/SAND MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/WATTLED CURASSOW\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/AFRICAN CROWNED CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/EASTERN WIP POOR WILL\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/RED HEADED DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RAZORBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 194\n", "\n", "Directory: /content/Dataset/train/BUSH TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/SUNBITTERN\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/INDIAN ROLLER\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/NORTHERN FULMAR\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/CASSOWARY\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/BALD EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ALPINE CHOUGH\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/GREATER PEWEE\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/EASTERN ROSELLA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLACK COCKATO\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/AMERICAN PIPIT\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/RED FACED CORMORANT\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/SPANGLED COTINGA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/SCARLET FACED LIOCICHLA\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/BAR-TAILED GODWIT\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/GOLDEN PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/INCA TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/BAY-BREASTED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/FOREST WAGTAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/TASMANIAN HEN\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/AMERICAN FLAMINGO\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/COMMON FIRECREST\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/SPOON BILED SANDPIPER\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/EASTERN BLUEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BREWERS BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/CHUKAR PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/IMPERIAL SHAQ\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/REGENT BOWERBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/GREEN JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/HOATZIN\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/ANHINGA\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/ECUADORIAN HILLSTAR\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/CRESTED CARACARA\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/OSPREY\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/BLACKBURNIAM WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/PUNA TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/CRESTED NUTHATCH\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/SPOTTED WHISTLING DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 184\n", "\n", "Directory: /content/Dataset/train/JOCOTOCO ANTPITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/PHILIPPINE EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/VIOLET GREEN SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 201\n", "\n", "Directory: /content/Dataset/train/CAPE LONGCLAW\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/MOURNING DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/ORANGE BRESTED BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/ANTBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/WHITE CHEEKED TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/BLACK-NECKED GREBE\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/EASTERN BLUEBONNET\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/GREY PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/RUFUOS MOTMOT\n", "No. of Sub-directories: 0\n", "No. of Files: 189\n", "\n", "Directory: /content/Dataset/train/EMPEROR PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BROWN NOODY\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/ROADRUNNER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RED BEARDED BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/BUFFLEHEAD\n", "No. of Sub-directories: 0\n", "No. of Files: 184\n", "\n", "Directory: /content/Dataset/train/VARIED THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 193\n", "\n", "Directory: /content/Dataset/train/HARLEQUIN DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/ANIANIAU\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/ARARIPE MANAKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/COMMON IORA\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/BARROWS GOLDENEYE\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/D-ARNAUDS BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 233\n", "\n", "Directory: /content/Dataset/train/MARABOU STORK\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/CLARKS NUTCRACKER\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/GREAT GRAY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/EVENING GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/TOUCHAN\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/LONG-EARED OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/IVORY BILLED ARACARI\n", "No. of Sub-directories: 0\n", "No. of Files: 149\n", "\n", "Directory: /content/Dataset/train/ROCK DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/COMMON LOON\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/EURASIAN GOLDEN ORIOLE\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/GREAT XENOPS\n", "No. of Sub-directories: 0\n", "No. of Files: 149\n", "\n", "Directory: /content/Dataset/train/HOOPOES\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/WATTLED LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/KING EIDER\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/BLACK VENTED SHEARWATER\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/SNOWY PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 130\n", "\n", "Directory: /content/Dataset/train/AZURE JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/WILD TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/HIMALAYAN BLUETAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/APOSTLEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/CRESTED SERPENT EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 181\n", "\n", "Directory: /content/Dataset/train/BLUE GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/WILSONS BIRD OF PARADISE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/BORNEAN BRISTLEHEAD\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/COLLARED ARACARI\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/MANDRIN DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/LOGGERHEAD SHRIKE\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/GRAY KINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/EUROPEAN TURTLE DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/EUROPEAN GOLDFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/TURQUOISE MOTMOT\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/VERMILION FLYCATHER\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/TIT MOUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/SCARLET MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/PHAINOPEPLA\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/BLUE COAU\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/PUFFIN\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/BALD IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GREY HEADED FISH EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/TRICOLORED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/FIORDLAND PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/RED HEADED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/CRAB PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/BARRED PUFFBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/AFRICAN FIREFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/CHARA DE COLLAR\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/BLACK-CAPPED CHICKADEE\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/PURPLE MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/GROVED BILLED ANI\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/CRANE HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/KILLDEAR\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/EASTERN YELLOW ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 205\n", "\n", "Directory: /content/Dataset/train/BLUE DACNIS\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/BLUE GRAY GNATCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 195\n", "\n", "Directory: /content/Dataset/train/GYRFALCON\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/RED TAILED THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 130\n", "\n", "Directory: /content/Dataset/train/CRESTED SHRIKETIT\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/ANDEAN SISKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/DOWNY WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/ASIAN DOLLARD BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/ELLIOTS PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/PEREGRINE FALCON\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/WHITE BREASTED WATERHEN\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/VICTORIA CROWNED PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/TEAL DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/RED WISKERED BULBUL\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/GURNEYS PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/CACTUS WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/COPPERSMITH BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/OSTRICH\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/AZURE TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/GRAY PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ROYAL FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/SQUACCO HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/HIMALAYAN MONAL\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/NORTHERN FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/MALACHITE KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/GREAT ARGUS\n", "No. of Sub-directories: 0\n", "No. of Files: 189\n", "\n", "Directory: /content/Dataset/train/BROWN CREPPER\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/BANDED BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 194\n", "\n", "Directory: /content/Dataset/train/PARAKETT AKULET\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/CALIFORNIA CONDOR\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/STORK BILLED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/HELMET VANGA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLUE GROUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/IWI\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/LESSER ADJUTANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BLACK SKIMMER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLACK VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/GILA WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/ALTAMIRA YELLOWTHROAT\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/RED FACED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/RED SHOULDERED HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/EARED PITA\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/HYACINTH MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/LAUGHING GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 208\n", "\n", "Directory: /content/Dataset/train/CREAM COLORED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/GREAT JACAMAR\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/DARJEELING WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/CRIMSON CHAT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/WHITE CRESTED HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/FIERY MINIVET\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/AZURE BREASTED PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/HORNED LARK\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/PURPLE SWAMPHEN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/AUSTRAL CANASTERO\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/VEERY\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/EGYPTIAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/EMU\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/HEPATIC TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLACK BAZA\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/CLARKS GREBE\n", "No. of Sub-directories: 0\n", "No. of Files: 182\n", "\n", "Directory: /content/Dataset/train/BANDED PITA\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/BEARDED BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/SNOWY EGRET\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/TREE SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 181\n", "\n", "Directory: /content/Dataset/train/BORNEAN LEAFBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/HORNED GUAN\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/PATAGONIAN SIERRA FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 130\n", "\n", "Directory: /content/Dataset/train/FRILL BACK PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 209\n", "\n", "Directory: /content/Dataset/train/RUDY KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/CINNAMON TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/WILLOW PTARMIGAN\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/ABBOTTS BABBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/NORTHERN MOCKINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/MAGPIE GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/CAPE MAY WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GLOSSY IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/INDIAN BUSTARD\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/BLACK-THROATED SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/CERULEAN WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/ANNAS HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/BURCHELLS COURSER\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/CRESTED OROPENDOLA\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/NORTHERN CARDINAL\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/GOLDEN CHLOROPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/EASTERN MEADOWLARK\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/AFRICAN PIED HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/VIOLET BACKED STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 201\n", "\n", "Directory: /content/Dataset/train/GREATER PRAIRIE CHICKEN\n", "No. of Sub-directories: 0\n", "No. of Files: 203\n", "\n", "Directory: /content/Dataset/train/STRIATED CARACARA\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/YELLOW HEADED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/SCARLET CROWNED FRUIT DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/MASKED LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/KOOKABURRA\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/AZURE TIT\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/BROWN THRASHER\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/GILDED FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/PURPLE FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/NOISY FRIARBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/COMMON GRACKLE\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/MIKADO PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BANANAQUIT\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/TOWNSENDS WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/NORTHERN PARULA\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/FAIRY PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BLACK THROATED HUET\n", "No. of Sub-directories: 0\n", "No. of Files: 145\n", "\n", "Directory: /content/Dataset/train/CHINESE POND HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/BLACK NECKED STILT\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/GREEN BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/INDIGO BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/CAPE GLOSSY STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/CAATINGA CACHOLOTE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/BLUE HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/VERDIN\n", "No. of Sub-directories: 0\n", "No. of Files: 182\n", "\n", "Directory: /content/Dataset/train/AMERICAN BITTERN\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/MILITARY MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 208\n", "\n", "Directory: /content/Dataset/train/MANGROVE CUCKOO\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/MALABAR HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/LAZULI BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/BELTED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GREATOR SAGE GROUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 184\n", "\n", "Directory: /content/Dataset/train/ASHY STORM PETREL\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/SURF SCOTER\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/COPPERY TAILED COUCAL\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/ORIENTAL BAY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/DAURIAN REDSTART\n", "No. of Sub-directories: 0\n", "No. of Files: 146\n", "\n", "Directory: /content/Dataset/train/WOOD DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 214\n", "\n", "Directory: /content/Dataset/train/COMMON POORWILL\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/VENEZUELIAN TROUPIAL\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/AMERICAN KESTREL\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/BAND TAILED GUAN\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/SATYR TRAGOPAN\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/NORTHERN GANNET\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/OCELLATED TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ROSE BREASTED GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 174\n", "\n", "Directory: /content/Dataset/train/GREAT TINAMOU\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/EURASIAN BULLFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/CASPIAN TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 213\n", "\n", "Directory: /content/Dataset/train/BLONDE CRESTED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/RED KNOT\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/BIRD OF PARADISE\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/PYRRHULOXIA\n", "No. of Sub-directories: 0\n", "No. of Files: 209\n", "\n", "Directory: /content/Dataset/train/WHITE EARED HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/CUBAN TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/INDIGO FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/AMERICAN WIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/CAPPED HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/AVADAVAT\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/IBISBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/BLACK HEADED CAIQUE\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/IBERIAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/HARLEQUIN QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/SANDHILL CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/RED BILLED TROPICBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 212\n", "\n", "Directory: /content/Dataset/train/RED FODY\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/ABYSSINIAN GROUND HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/SCARLET IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/BLACK SWAN\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/WRENTIT\n", "No. of Sub-directories: 0\n", "No. of Files: 193\n", "\n", "Directory: /content/Dataset/train/FAIRY TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/CRESTED AUKLET\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/HOUSE SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/RING-NECKED PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/BLACK THROATED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/PARUS MAJOR\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/TURKEY VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/ALEXANDRINE PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/QUETZAL\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/COLLARED CRESCENTCHEST\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/ORNATE HAWK EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 208\n", "\n", "Directory: /content/Dataset/train/RED NAPED TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/SAMATRAN THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/DUSKY LORY\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/UMBRELLA BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/RUBY CROWNED KINGLET\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/ANTILLEAN EUPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/BLACK FACED SPOONBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/JAPANESE ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/PAINTED BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/MCKAYS BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/BANDED STILT\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/HAMERKOP\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/SNOW GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/HARPY EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/CINNAMON ATTILA\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/AFRICAN EMERALD CUCKOO\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GRANDALA\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/CINNAMON FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/BRANDT CORMARANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GREEN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/NORTHERN GOSHAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/KING VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/DUSKY ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/STRIPED OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/GREAT POTOO\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/ENGGANO MYNA\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/ASHY THRUSHBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/SNOWY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/BARN OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/LILAC ROLLER\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/BEARDED REEDLING\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/CRESTED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/RUFOUS TREPE\n", "No. of Sub-directories: 0\n", "No. of Files: 274\n", "\n", "Directory: /content/Dataset/train/GRAY CATBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/DEMOISELLE CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/STRIPPED SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ROSY FACED LOVEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/ROSE BREASTED COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/AZARAS SPINETAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/FRIGATE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/KAKAPO\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/AUCKLAND SHAQ\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/SHOEBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/DOUBLE BARRED FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/DOUBLE EYED FIG PARROT\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/AMERICAN COOT\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/SPOTTED CATBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/WHITE TAILED TROPIC\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/PALILA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/VISAYAN HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/PLUSH CRESTED JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/AFRICAN PYGMY GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/JANDAYA PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n" ] } ], "source": [ "walk_through(train_dir)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GPuYdUimQQXa", "outputId": "52547129-440d-45c6-b5de-826b51a56974" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Directory: /content/Dataset/valid\n", "No. of Sub-directories: 510\n", "No. of Files: 0\n", "\n", "Directory: /content/Dataset/valid/NORTHERN JACANA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NICOBAR PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN BOWER BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AUSTRALASIAN FIGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LUCIFER HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON HOUSE MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUBY THROATED HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PALM NUT VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN GOLDFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COCK OF THE ROCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GUINEAFOWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ZEBRA DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN CHEEKED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CURL CRESTED ARACURI\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREY CUCKOOSHRIKE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INDIAN PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK FRANCOLIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN SHOVELER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MALEO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHIMBREL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLOOD PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HORNED SUNGEM\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TRUMPTER SWAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SCARLET TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/POMARINE JAEGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE MALKOHA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANDEAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUDDY SHELDUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ALBERTS TOWHEE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PYGMY KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ALBATROSS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MYNA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GAMBELS QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED WOOD PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LOONEY BIRDS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ELEGANT TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EURASIAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SHORT BILLED DOWITCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FLAME BOWERBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK AND YELLOW BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MALAGASY WHITE EYE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TAILORBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TAIWAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PURPLE GALLINULE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BORNEAN PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MALLARD DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BEARDED BELLBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FAN TAILED WIDOW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DALMATIAN PELICAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CALIFORNIA QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MASKED BOOBY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED TAILED HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FIRE TAILLED MYZORNIS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CROW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CALIFORNIA GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMETHYST WOODSTAR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JACK SNIPE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GO AWAY BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FASCIATED WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BULWERS PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INDIAN VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TAWNY FROGMOUTH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MASKED BOBWHITE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HOODED MERGANSER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED COUA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PEACOCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WOOD THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FAIRY BLUEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/STEAMER DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/OKINAWA RAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUFOUS KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SPLENDID WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRIMSON SUNBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHESTNET BELLIED EUPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREEN WINGED DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAPE ROCK THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DARK EYED JUNCO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JACOBIN PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WOODLAND KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROUGH LEG BUZZARD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHINESE BAMBOO PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED LEGGED HONEYCREEPER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAMPO FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MERLIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HAWAIIAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RAINBOW LORIKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK TAIL CRAKE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAPUCHINBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED WINGED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SWINHOES PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BROWN HEADED COWBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CUBAN TODY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE THROATED BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VIOLET TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BAIKAL TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GUINEA TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE BROWED CRAKE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN REDSTART\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/IVORY GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN TOWEE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BALTIMORE ORIOLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE THROATED TOUCANET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AFRICAN OYSTER CATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HAWFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FLAME TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ASIAN CRESTED IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN BEARDLESS TYRANNULET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOULDIAN FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHATTERING LORY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ASIAN GREEN BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK THROATED BUSHTIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LITTLE AUK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CARMINE BEE-EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN GOLDEN WEAVER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CROWNED PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HOUSE FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED BELLIED PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CEDAR WAXWING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SRI LANKA BLUE MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SORA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ABBOTTS BOOBY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KAGU\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LIMPKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TAKAHE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/OVENBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EMERALD TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/YELLOW CACIQUE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/APAPANE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WALL CREAPER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/STRIPPED MANAKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLD WING WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHIPPING SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VULTURINE GUINEAFOWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN RED BISHOP\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHUCAO TAPACULO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DOUBLE BRESTED CORMARANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CANARY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED FIREBACK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LARK BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANDEAN LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KIWI\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN AVOCET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SMITHS LONGSPUR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/OYSTER CATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INLAND DOTTEREL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CANVASBACK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BOBOLINK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TROPICAL KINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GANG GANG COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BALI STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SAYS PHOEBE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/YELLOW BELLIED FLOWERPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JAVA SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JABIRU\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BARN SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROSEATE SPOONBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PINK ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT KISKADEE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PARADISE TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SUPERB STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE NECKED RAVEN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED BROWED FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN PIPIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SAND MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WATTLED CURASSOW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AFRICAN CROWNED CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN WIP POOR WILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED HEADED DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RAZORBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BUSH TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SUNBITTERN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INDIAN ROLLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN FULMAR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CASSOWARY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BALD EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ALPINE CHOUGH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREATER PEWEE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN ROSELLA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK COCKATO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN PIPIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED FACED CORMORANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SPANGLED COTINGA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SCARLET FACED LIOCICHLA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BAR-TAILED GODWIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INCA TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BAY-BREASTED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FOREST WAGTAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TASMANIAN HEN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN FLAMINGO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON FIRECREST\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SPOON BILED SANDPIPER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN BLUEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BREWERS BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHUKAR PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/IMPERIAL SHAQ\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/REGENT BOWERBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREEN JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HOATZIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANHINGA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ECUADORIAN HILLSTAR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED CARACARA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/OSPREY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACKBURNIAM WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PUNA TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED NUTHATCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SPOTTED WHISTLING DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JOCOTOCO ANTPITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PHILIPPINE EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VIOLET GREEN SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAPE LONGCLAW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MOURNING DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ORANGE BRESTED BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANTBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE CHEEKED TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK-NECKED GREBE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN BLUEBONNET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREY PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUFUOS MOTMOT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EMPEROR PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BROWN NOODY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROADRUNNER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED BEARDED BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BUFFLEHEAD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VARIED THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HARLEQUIN DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANIANIAU\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ARARIPE MANAKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON IORA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BARROWS GOLDENEYE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/D-ARNAUDS BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MARABOU STORK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CLARKS NUTCRACKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT GRAY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EVENING GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TOUCHAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LONG-EARED OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/IVORY BILLED ARACARI\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROCK DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON LOON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EURASIAN GOLDEN ORIOLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT XENOPS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HOOPOES\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WATTLED LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KING EIDER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK VENTED SHEARWATER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SNOWY PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AZURE JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WILD TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HIMALAYAN BLUETAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/APOSTLEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED SERPENT EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WILSONS BIRD OF PARADISE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BORNEAN BRISTLEHEAD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COLLARED ARACARI\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MANDRIN DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LOGGERHEAD SHRIKE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GRAY KINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EUROPEAN TURTLE DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EUROPEAN GOLDFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TURQUOISE MOTMOT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VERMILION FLYCATHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TIT MOUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SCARLET MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PHAINOPEPLA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE COAU\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PUFFIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BALD IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREY HEADED FISH EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TRICOLORED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FIORDLAND PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED HEADED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRAB PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BARRED PUFFBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AFRICAN FIREFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHARA DE COLLAR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK-CAPPED CHICKADEE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PURPLE MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GROVED BILLED ANI\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRANE HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KILLDEAR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN YELLOW ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE DACNIS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE GRAY GNATCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GYRFALCON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED TAILED THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED SHRIKETIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANDEAN SISKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DOWNY WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ASIAN DOLLARD BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ELLIOTS PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PEREGRINE FALCON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE BREASTED WATERHEN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VICTORIA CROWNED PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TEAL DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED WISKERED BULBUL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GURNEYS PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CACTUS WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COPPERSMITH BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/OSTRICH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AZURE TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GRAY PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROYAL FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SQUACCO HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HIMALAYAN MONAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MALACHITE KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT ARGUS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BROWN CREPPER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BANDED BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PARAKETT AKULET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CALIFORNIA CONDOR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/STORK BILLED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HELMET VANGA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE GROUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/IWI\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LESSER ADJUTANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK SKIMMER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GILA WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ALTAMIRA YELLOWTHROAT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED FACED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED SHOULDERED HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EARED PITA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HYACINTH MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LAUGHING GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CREAM COLORED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT JACAMAR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DARJEELING WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRIMSON CHAT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE CRESTED HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FIERY MINIVET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AZURE BREASTED PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HORNED LARK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PURPLE SWAMPHEN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AUSTRAL CANASTERO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VEERY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EGYPTIAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EMU\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HEPATIC TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK BAZA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CLARKS GREBE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BANDED PITA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BEARDED BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SNOWY EGRET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TREE SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BORNEAN LEAFBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HORNED GUAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PATAGONIAN SIERRA FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FRILL BACK PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUDY KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CINNAMON TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WILLOW PTARMIGAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ABBOTTS BABBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN MOCKINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MAGPIE GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAPE MAY WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GLOSSY IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INDIAN BUSTARD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK-THROATED SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CERULEAN WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANNAS HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BURCHELLS COURSER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED OROPENDOLA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN CARDINAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GOLDEN CHLOROPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EASTERN MEADOWLARK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AFRICAN PIED HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VIOLET BACKED STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREATER PRAIRIE CHICKEN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/STRIATED CARACARA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/YELLOW HEADED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SCARLET CROWNED FRUIT DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MASKED LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KOOKABURRA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AZURE TIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BROWN THRASHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GILDED FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PURPLE FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NOISY FRIARBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON GRACKLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MIKADO PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BANANAQUIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TOWNSENDS WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN PARULA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FAIRY PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK THROATED HUET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CHINESE POND HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK NECKED STILT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREEN BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INDIGO BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAPE GLOSSY STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAATINGA CACHOLOTE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLUE HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VERDIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN BITTERN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MILITARY MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MANGROVE CUCKOO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MALABAR HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LAZULI BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BELTED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREATOR SAGE GROUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ASHY STORM PETREL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SURF SCOTER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COPPERY TAILED COUCAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ORIENTAL BAY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DAURIAN REDSTART\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WOOD DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COMMON POORWILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VENEZUELIAN TROUPIAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN KESTREL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BAND TAILED GUAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SATYR TRAGOPAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN GANNET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/OCELLATED TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROSE BREASTED GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT TINAMOU\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/EURASIAN BULLFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CASPIAN TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLONDE CRESTED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED KNOT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BIRD OF PARADISE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PYRRHULOXIA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE EARED HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CUBAN TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/INDIGO FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN WIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CAPPED HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AVADAVAT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/IBISBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK HEADED CAIQUE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/IBERIAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HARLEQUIN QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SANDHILL CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED BILLED TROPICBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED FODY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ABYSSINIAN GROUND HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SCARLET IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK SWAN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WRENTIT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FAIRY TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED AUKLET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HOUSE SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RING-NECKED PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK THROATED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PARUS MAJOR\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/TURKEY VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ALEXANDRINE PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/QUETZAL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/COLLARED CRESCENTCHEST\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ORNATE HAWK EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RED NAPED TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SAMATRAN THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DUSKY LORY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/UMBRELLA BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUBY CROWNED KINGLET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ANTILLEAN EUPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BLACK FACED SPOONBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JAPANESE ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PAINTED BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/MCKAYS BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BANDED STILT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HAMERKOP\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SNOW GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/HARPY EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CINNAMON ATTILA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AFRICAN EMERALD CUCKOO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GRANDALA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CINNAMON FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BRANDT CORMARANT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREEN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/NORTHERN GOSHAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KING VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DUSKY ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/STRIPED OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GREAT POTOO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ENGGANO MYNA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ASHY THRUSHBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SNOWY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BARN OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/LILAC ROLLER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/BEARDED REEDLING\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/CRESTED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/RUFOUS TREPE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/GRAY CATBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DEMOISELLE CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/STRIPPED SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROSY FACED LOVEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/ROSE BREASTED COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AZARAS SPINETAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/FRIGATE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/KAKAPO\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AUCKLAND SHAQ\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SHOEBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DOUBLE BARRED FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/DOUBLE EYED FIG PARROT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AMERICAN COOT\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/SPOTTED CATBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/WHITE TAILED TROPIC\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PALILA\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/VISAYAN HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/PLUSH CRESTED JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/AFRICAN PYGMY GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n", "Directory: /content/Dataset/valid/JANDAYA PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 5\n", "\n" ] } ], "source": [ "walk_through(valid_dir)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "uQQFfu6OQQXb", "outputId": "1a3f7aab-1ce7-4fda-e044-f228fa98911e" }, "outputs": [ { "data": { "text/plain": [ "['ABBOTTS BABBLER',\n", " 'ABBOTTS BOOBY',\n", " 'ABYSSINIAN GROUND HORNBILL',\n", " 'AFRICAN CROWNED CRANE',\n", " 'AFRICAN EMERALD CUCKOO',\n", " 'AFRICAN FIREFINCH',\n", " 'AFRICAN OYSTER CATCHER',\n", " 'AFRICAN PIED HORNBILL',\n", " 'AFRICAN PYGMY GOOSE',\n", " 'ALBATROSS',\n", " 'ALBERTS TOWHEE',\n", " 'ALEXANDRINE PARAKEET',\n", " 'ALPINE CHOUGH',\n", " 'ALTAMIRA YELLOWTHROAT',\n", " 'AMERICAN AVOCET',\n", " 'AMERICAN BITTERN',\n", " 'AMERICAN COOT',\n", " 'AMERICAN FLAMINGO',\n", " 'AMERICAN GOLDFINCH',\n", " 'AMERICAN KESTREL',\n", " 'AMERICAN PIPIT',\n", " 'AMERICAN REDSTART',\n", " 'AMERICAN ROBIN',\n", " 'AMERICAN WIGEON',\n", " 'AMETHYST WOODSTAR',\n", " 'ANDEAN GOOSE',\n", " 'ANDEAN LAPWING',\n", " 'ANDEAN SISKIN',\n", " 'ANHINGA',\n", " 'ANIANIAU',\n", " 'ANNAS HUMMINGBIRD',\n", " 'ANTBIRD',\n", " 'ANTILLEAN EUPHONIA',\n", " 'APAPANE',\n", " 'APOSTLEBIRD',\n", " 'ARARIPE MANAKIN',\n", " 'ASHY STORM PETREL',\n", " 'ASHY THRUSHBIRD',\n", " 'ASIAN CRESTED IBIS',\n", " 'ASIAN DOLLARD BIRD',\n", " 'ASIAN GREEN BEE EATER',\n", " 'AUCKLAND SHAQ',\n", " 'AUSTRAL CANASTERO',\n", " 'AUSTRALASIAN FIGBIRD',\n", " 'AVADAVAT',\n", " 'AZARAS SPINETAIL',\n", " 'AZURE BREASTED PITTA',\n", " 'AZURE JAY',\n", " 'AZURE TANAGER',\n", " 'AZURE TIT',\n", " 'BAIKAL TEAL',\n", " 'BALD EAGLE',\n", " 'BALD IBIS',\n", " 'BALI STARLING',\n", " 'BALTIMORE ORIOLE',\n", " 'BANANAQUIT',\n", " 'BAND TAILED GUAN',\n", " 'BANDED BROADBILL',\n", " 'BANDED PITA',\n", " 'BANDED STILT',\n", " 'BAR-TAILED GODWIT',\n", " 'BARN OWL',\n", " 'BARN SWALLOW',\n", " 'BARRED PUFFBIRD',\n", " 'BARROWS GOLDENEYE',\n", " 'BAY-BREASTED WARBLER',\n", " 'BEARDED BARBET',\n", " 'BEARDED BELLBIRD',\n", " 'BEARDED REEDLING',\n", " 'BELTED KINGFISHER',\n", " 'BIRD OF PARADISE',\n", " 'BLACK AND YELLOW BROADBILL',\n", " 'BLACK BAZA',\n", " 'BLACK COCKATO',\n", " 'BLACK FACED SPOONBILL',\n", " 'BLACK FRANCOLIN',\n", " 'BLACK HEADED CAIQUE',\n", " 'BLACK NECKED STILT',\n", " 'BLACK SKIMMER',\n", " 'BLACK SWAN',\n", " 'BLACK TAIL CRAKE',\n", " 'BLACK THROATED BUSHTIT',\n", " 'BLACK THROATED HUET',\n", " 'BLACK THROATED WARBLER',\n", " 'BLACK VENTED SHEARWATER',\n", " 'BLACK VULTURE',\n", " 'BLACK-CAPPED CHICKADEE',\n", " 'BLACK-NECKED GREBE',\n", " 'BLACK-THROATED SPARROW',\n", " 'BLACKBURNIAM WARBLER',\n", " 'BLONDE CRESTED WOODPECKER',\n", " 'BLOOD PHEASANT',\n", " 'BLUE COAU',\n", " 'BLUE DACNIS',\n", " 'BLUE GRAY GNATCATCHER',\n", " 'BLUE GROSBEAK',\n", " 'BLUE GROUSE',\n", " 'BLUE HERON',\n", " 'BLUE MALKOHA',\n", " 'BLUE THROATED TOUCANET',\n", " 'BOBOLINK',\n", " 'BORNEAN BRISTLEHEAD',\n", " 'BORNEAN LEAFBIRD',\n", " 'BORNEAN PHEASANT',\n", " 'BRANDT CORMARANT',\n", " 'BREWERS BLACKBIRD',\n", " 'BROWN CREPPER',\n", " 'BROWN HEADED COWBIRD',\n", " 'BROWN NOODY',\n", " 'BROWN THRASHER',\n", " 'BUFFLEHEAD',\n", " 'BULWERS PHEASANT',\n", " 'BURCHELLS COURSER',\n", " 'BUSH TURKEY',\n", " 'CAATINGA CACHOLOTE',\n", " 'CACTUS WREN',\n", " 'CALIFORNIA CONDOR',\n", " 'CALIFORNIA GULL',\n", " 'CALIFORNIA QUAIL',\n", " 'CAMPO FLICKER',\n", " 'CANARY',\n", " 'CANVASBACK',\n", " 'CAPE GLOSSY STARLING',\n", " 'CAPE LONGCLAW',\n", " 'CAPE MAY WARBLER',\n", " 'CAPE ROCK THRUSH',\n", " 'CAPPED HERON',\n", " 'CAPUCHINBIRD',\n", " 'CARMINE BEE-EATER',\n", " 'CASPIAN TERN',\n", " 'CASSOWARY',\n", " 'CEDAR WAXWING',\n", " 'CERULEAN WARBLER',\n", " 'CHARA DE COLLAR',\n", " 'CHATTERING LORY',\n", " 'CHESTNET BELLIED EUPHONIA',\n", " 'CHINESE BAMBOO PARTRIDGE',\n", " 'CHINESE POND HERON',\n", " 'CHIPPING SPARROW',\n", " 'CHUCAO TAPACULO',\n", " 'CHUKAR PARTRIDGE',\n", " 'CINNAMON ATTILA',\n", " 'CINNAMON FLYCATCHER',\n", " 'CINNAMON TEAL',\n", " 'CLARKS GREBE',\n", " 'CLARKS NUTCRACKER',\n", " 'COCK OF THE ROCK',\n", " 'COCKATOO',\n", " 'COLLARED ARACARI',\n", " 'COLLARED CRESCENTCHEST',\n", " 'COMMON FIRECREST',\n", " 'COMMON GRACKLE',\n", " 'COMMON HOUSE MARTIN',\n", " 'COMMON IORA',\n", " 'COMMON LOON',\n", " 'COMMON POORWILL',\n", " 'COMMON STARLING',\n", " 'COPPERSMITH BARBET',\n", " 'COPPERY TAILED COUCAL',\n", " 'CRAB PLOVER',\n", " 'CRANE HAWK',\n", " 'CREAM COLORED WOODPECKER',\n", " 'CRESTED AUKLET',\n", " 'CRESTED CARACARA',\n", " 'CRESTED COUA',\n", " 'CRESTED FIREBACK',\n", " 'CRESTED KINGFISHER',\n", " 'CRESTED NUTHATCH',\n", " 'CRESTED OROPENDOLA',\n", " 'CRESTED SERPENT EAGLE',\n", " 'CRESTED SHRIKETIT',\n", " 'CRESTED WOOD PARTRIDGE',\n", " 'CRIMSON CHAT',\n", " 'CRIMSON SUNBIRD',\n", " 'CROW',\n", " 'CROWNED PIGEON',\n", " 'CUBAN TODY',\n", " 'CUBAN TROGON',\n", " 'CURL CRESTED ARACURI',\n", " 'D-ARNAUDS BARBET',\n", " 'DALMATIAN PELICAN',\n", " 'DARJEELING WOODPECKER',\n", " 'DARK EYED JUNCO',\n", " 'DAURIAN REDSTART',\n", " 'DEMOISELLE CRANE',\n", " 'DOUBLE BARRED FINCH',\n", " 'DOUBLE BRESTED CORMARANT',\n", " 'DOUBLE EYED FIG PARROT',\n", " 'DOWNY WOODPECKER',\n", " 'DUSKY LORY',\n", " 'DUSKY ROBIN',\n", " 'EARED PITA',\n", " 'EASTERN BLUEBIRD',\n", " 'EASTERN BLUEBONNET',\n", " 'EASTERN GOLDEN WEAVER',\n", " 'EASTERN MEADOWLARK',\n", " 'EASTERN ROSELLA',\n", " 'EASTERN TOWEE',\n", " 'EASTERN WIP POOR WILL',\n", " 'EASTERN YELLOW ROBIN',\n", " 'ECUADORIAN HILLSTAR',\n", " 'EGYPTIAN GOOSE',\n", " 'ELEGANT TROGON',\n", " 'ELLIOTS PHEASANT',\n", " 'EMERALD TANAGER',\n", " 'EMPEROR PENGUIN',\n", " 'EMU',\n", " 'ENGGANO MYNA',\n", " 'EURASIAN BULLFINCH',\n", " 'EURASIAN GOLDEN ORIOLE',\n", " 'EURASIAN MAGPIE',\n", " 'EUROPEAN GOLDFINCH',\n", " 'EUROPEAN TURTLE DOVE',\n", " 'EVENING GROSBEAK',\n", " 'FAIRY BLUEBIRD',\n", " 'FAIRY PENGUIN',\n", " 'FAIRY TERN',\n", " 'FAN TAILED WIDOW',\n", " 'FASCIATED WREN',\n", " 'FIERY MINIVET',\n", " 'FIORDLAND PENGUIN',\n", " 'FIRE TAILLED MYZORNIS',\n", " 'FLAME BOWERBIRD',\n", " 'FLAME TANAGER',\n", " 'FOREST WAGTAIL',\n", " 'FRIGATE',\n", " 'FRILL BACK PIGEON',\n", " 'GAMBELS QUAIL',\n", " 'GANG GANG COCKATOO',\n", " 'GILA WOODPECKER',\n", " 'GILDED FLICKER',\n", " 'GLOSSY IBIS',\n", " 'GO AWAY BIRD',\n", " 'GOLD WING WARBLER',\n", " 'GOLDEN BOWER BIRD',\n", " 'GOLDEN CHEEKED WARBLER',\n", " 'GOLDEN CHLOROPHONIA',\n", " 'GOLDEN EAGLE',\n", " 'GOLDEN PARAKEET',\n", " 'GOLDEN PHEASANT',\n", " 'GOLDEN PIPIT',\n", " 'GOULDIAN FINCH',\n", " 'GRANDALA',\n", " 'GRAY CATBIRD',\n", " 'GRAY KINGBIRD',\n", " 'GRAY PARTRIDGE',\n", " 'GREAT ARGUS',\n", " 'GREAT GRAY OWL',\n", " 'GREAT JACAMAR',\n", " 'GREAT KISKADEE',\n", " 'GREAT POTOO',\n", " 'GREAT TINAMOU',\n", " 'GREAT XENOPS',\n", " 'GREATER PEWEE',\n", " 'GREATER PRAIRIE CHICKEN',\n", " 'GREATOR SAGE GROUSE',\n", " 'GREEN BROADBILL',\n", " 'GREEN JAY',\n", " 'GREEN MAGPIE',\n", " 'GREEN WINGED DOVE',\n", " 'GREY CUCKOOSHRIKE',\n", " 'GREY HEADED FISH EAGLE',\n", " 'GREY PLOVER',\n", " 'GROVED BILLED ANI',\n", " 'GUINEA TURACO',\n", " 'GUINEAFOWL',\n", " 'GURNEYS PITTA',\n", " 'GYRFALCON',\n", " 'HAMERKOP',\n", " 'HARLEQUIN DUCK',\n", " 'HARLEQUIN QUAIL',\n", " 'HARPY EAGLE',\n", " 'HAWAIIAN GOOSE',\n", " 'HAWFINCH',\n", " 'HELMET VANGA',\n", " 'HEPATIC TANAGER',\n", " 'HIMALAYAN BLUETAIL',\n", " 'HIMALAYAN MONAL',\n", " 'HOATZIN',\n", " 'HOODED MERGANSER',\n", " 'HOOPOES',\n", " 'HORNED GUAN',\n", " 'HORNED LARK',\n", " 'HORNED SUNGEM',\n", " 'HOUSE FINCH',\n", " 'HOUSE SPARROW',\n", " 'HYACINTH MACAW',\n", " 'IBERIAN MAGPIE',\n", " 'IBISBILL',\n", " 'IMPERIAL SHAQ',\n", " 'INCA TERN',\n", " 'INDIAN BUSTARD',\n", " 'INDIAN PITTA',\n", " 'INDIAN ROLLER',\n", " 'INDIAN VULTURE',\n", " 'INDIGO BUNTING',\n", " 'INDIGO FLYCATCHER',\n", " 'INLAND DOTTEREL',\n", " 'IVORY BILLED ARACARI',\n", " 'IVORY GULL',\n", " 'IWI',\n", " 'JABIRU',\n", " 'JACK SNIPE',\n", " 'JACOBIN PIGEON',\n", " 'JANDAYA PARAKEET',\n", " 'JAPANESE ROBIN',\n", " 'JAVA SPARROW',\n", " 'JOCOTOCO ANTPITTA',\n", " 'KAGU',\n", " 'KAKAPO',\n", " 'KILLDEAR',\n", " 'KING EIDER',\n", " 'KING VULTURE',\n", " 'KIWI',\n", " 'KOOKABURRA',\n", " 'LARK BUNTING',\n", " 'LAUGHING GULL',\n", " 'LAZULI BUNTING',\n", " 'LESSER ADJUTANT',\n", " 'LILAC ROLLER',\n", " 'LIMPKIN',\n", " 'LITTLE AUK',\n", " 'LOGGERHEAD SHRIKE',\n", " 'LONG-EARED OWL',\n", " 'LOONEY BIRDS',\n", " 'LUCIFER HUMMINGBIRD',\n", " 'MAGPIE GOOSE',\n", " 'MALABAR HORNBILL',\n", " 'MALACHITE KINGFISHER',\n", " 'MALAGASY WHITE EYE',\n", " 'MALEO',\n", " 'MALLARD DUCK',\n", " 'MANDRIN DUCK',\n", " 'MANGROVE CUCKOO',\n", " 'MARABOU STORK',\n", " 'MASKED BOBWHITE',\n", " 'MASKED BOOBY',\n", " 'MASKED LAPWING',\n", " 'MCKAYS BUNTING',\n", " 'MERLIN',\n", " 'MIKADO PHEASANT',\n", " 'MILITARY MACAW',\n", " 'MOURNING DOVE',\n", " 'MYNA',\n", " 'NICOBAR PIGEON',\n", " 'NOISY FRIARBIRD',\n", " 'NORTHERN BEARDLESS TYRANNULET',\n", " 'NORTHERN CARDINAL',\n", " 'NORTHERN FLICKER',\n", " 'NORTHERN FULMAR',\n", " 'NORTHERN GANNET',\n", " 'NORTHERN GOSHAWK',\n", " 'NORTHERN JACANA',\n", " 'NORTHERN MOCKINGBIRD',\n", " 'NORTHERN PARULA',\n", " 'NORTHERN RED BISHOP',\n", " 'NORTHERN SHOVELER',\n", " 'OCELLATED TURKEY',\n", " 'OKINAWA RAIL',\n", " 'ORANGE BRESTED BUNTING',\n", " 'ORIENTAL BAY OWL',\n", " 'ORNATE HAWK EAGLE',\n", " 'OSPREY',\n", " 'OSTRICH',\n", " 'OVENBIRD',\n", " 'OYSTER CATCHER',\n", " 'PAINTED BUNTING',\n", " 'PALILA',\n", " 'PALM NUT VULTURE',\n", " 'PARADISE TANAGER',\n", " 'PARAKETT AKULET',\n", " 'PARUS MAJOR',\n", " 'PATAGONIAN SIERRA FINCH',\n", " 'PEACOCK',\n", " 'PEREGRINE FALCON',\n", " 'PHAINOPEPLA',\n", " 'PHILIPPINE EAGLE',\n", " 'PINK ROBIN',\n", " 'PLUSH CRESTED JAY',\n", " 'POMARINE JAEGER',\n", " 'PUFFIN',\n", " 'PUNA TEAL',\n", " 'PURPLE FINCH',\n", " 'PURPLE GALLINULE',\n", " 'PURPLE MARTIN',\n", " 'PURPLE SWAMPHEN',\n", " 'PYGMY KINGFISHER',\n", " 'PYRRHULOXIA',\n", " 'QUETZAL',\n", " 'RAINBOW LORIKEET',\n", " 'RAZORBILL',\n", " 'RED BEARDED BEE EATER',\n", " 'RED BELLIED PITTA',\n", " 'RED BILLED TROPICBIRD',\n", " 'RED BROWED FINCH',\n", " 'RED FACED CORMORANT',\n", " 'RED FACED WARBLER',\n", " 'RED FODY',\n", " 'RED HEADED DUCK',\n", " 'RED HEADED WOODPECKER',\n", " 'RED KNOT',\n", " 'RED LEGGED HONEYCREEPER',\n", " 'RED NAPED TROGON',\n", " 'RED SHOULDERED HAWK',\n", " 'RED TAILED HAWK',\n", " 'RED TAILED THRUSH',\n", " 'RED WINGED BLACKBIRD',\n", " 'RED WISKERED BULBUL',\n", " 'REGENT BOWERBIRD',\n", " 'RING-NECKED PHEASANT',\n", " 'ROADRUNNER',\n", " 'ROCK DOVE',\n", " 'ROSE BREASTED COCKATOO',\n", " 'ROSE BREASTED GROSBEAK',\n", " 'ROSEATE SPOONBILL',\n", " 'ROSY FACED LOVEBIRD',\n", " 'ROUGH LEG BUZZARD',\n", " 'ROYAL FLYCATCHER',\n", " 'RUBY CROWNED KINGLET',\n", " 'RUBY THROATED HUMMINGBIRD',\n", " 'RUDDY SHELDUCK',\n", " 'RUDY KINGFISHER',\n", " 'RUFOUS KINGFISHER',\n", " 'RUFOUS TREPE',\n", " 'RUFUOS MOTMOT',\n", " 'SAMATRAN THRUSH',\n", " 'SAND MARTIN',\n", " 'SANDHILL CRANE',\n", " 'SATYR TRAGOPAN',\n", " 'SAYS PHOEBE',\n", " 'SCARLET CROWNED FRUIT DOVE',\n", " 'SCARLET FACED LIOCICHLA',\n", " 'SCARLET IBIS',\n", " 'SCARLET MACAW',\n", " 'SCARLET TANAGER',\n", " 'SHOEBILL',\n", " 'SHORT BILLED DOWITCHER',\n", " 'SMITHS LONGSPUR',\n", " 'SNOW GOOSE',\n", " 'SNOWY EGRET',\n", " 'SNOWY OWL',\n", " 'SNOWY PLOVER',\n", " 'SORA',\n", " 'SPANGLED COTINGA',\n", " 'SPLENDID WREN',\n", " 'SPOON BILED SANDPIPER',\n", " 'SPOTTED CATBIRD',\n", " 'SPOTTED WHISTLING DUCK',\n", " 'SQUACCO HERON',\n", " 'SRI LANKA BLUE MAGPIE',\n", " 'STEAMER DUCK',\n", " 'STORK BILLED KINGFISHER',\n", " 'STRIATED CARACARA',\n", " 'STRIPED OWL',\n", " 'STRIPPED MANAKIN',\n", " 'STRIPPED SWALLOW',\n", " 'SUNBITTERN',\n", " 'SUPERB STARLING',\n", " 'SURF SCOTER',\n", " 'SWINHOES PHEASANT',\n", " 'TAILORBIRD',\n", " 'TAIWAN MAGPIE',\n", " 'TAKAHE',\n", " 'TASMANIAN HEN',\n", " 'TAWNY FROGMOUTH',\n", " 'TEAL DUCK',\n", " 'TIT MOUSE',\n", " 'TOUCHAN',\n", " 'TOWNSENDS WARBLER',\n", " 'TREE SWALLOW',\n", " 'TRICOLORED BLACKBIRD',\n", " 'TROPICAL KINGBIRD',\n", " 'TRUMPTER SWAN',\n", " 'TURKEY VULTURE',\n", " 'TURQUOISE MOTMOT',\n", " 'UMBRELLA BIRD',\n", " 'VARIED THRUSH',\n", " 'VEERY',\n", " 'VENEZUELIAN TROUPIAL',\n", " 'VERDIN',\n", " 'VERMILION FLYCATHER',\n", " 'VICTORIA CROWNED PIGEON',\n", " 'VIOLET BACKED STARLING',\n", " 'VIOLET GREEN SWALLOW',\n", " 'VIOLET TURACO',\n", " 'VISAYAN HORNBILL',\n", " 'VULTURINE GUINEAFOWL',\n", " 'WALL CREAPER',\n", " 'WATTLED CURASSOW',\n", " 'WATTLED LAPWING',\n", " 'WHIMBREL',\n", " 'WHITE BREASTED WATERHEN',\n", " 'WHITE BROWED CRAKE',\n", " 'WHITE CHEEKED TURACO',\n", " 'WHITE CRESTED HORNBILL',\n", " 'WHITE EARED HUMMINGBIRD',\n", " 'WHITE NECKED RAVEN',\n", " 'WHITE TAILED TROPIC',\n", " 'WHITE THROATED BEE EATER',\n", " 'WILD TURKEY',\n", " 'WILLOW PTARMIGAN',\n", " 'WILSONS BIRD OF PARADISE',\n", " 'WOOD DUCK',\n", " 'WOOD THRUSH',\n", " 'WOODLAND KINGFISHER',\n", " 'WRENTIT',\n", " 'YELLOW BELLIED FLOWERPECKER',\n", " 'YELLOW CACIQUE',\n", " 'YELLOW HEADED BLACKBIRD',\n", " 'ZEBRA DOVE']" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# creating a list of class_names\n", "class_names = []\n", "for dir_name in os.listdir(train_dir):\n", " class_names.append(dir_name)\n", "\n", "class_names.sort()\n", "class_names" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IYWwh7vvQQXb", "outputId": "e66968f6-8f29-42e4-c7ad-ac508de9b98f" }, "outputs": [ { "data": { "text/plain": [ "510" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(class_names)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3OlejoWYIHLX", "outputId": "b0fd22fc-a33c-47e9-e0b1-3bf46a9ad0ba" }, "outputs": [ { "data": { "text/plain": [ "('/content/Dataset/train', '/content/Dataset/valid', '/content/Dataset/test')" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dir, valid_dir, test_dir" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "3MSfRafhMzZ-", "outputId": "54ecce38-0196-439b-add5-7f3101a57cdb" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'test'" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_dir.split(\"/\")[-1]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8x28Oo5YN48X", "outputId": "3125074f-2756-4d74-cda3-361c584cde34" }, "outputs": [ { "data": { "text/plain": [ "('/content/Dataset/train', '/content/Dataset/valid', '/content/Dataset/test')" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dir, valid_dir, test_dir" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "r0GSf6vBQQXh" }, "outputs": [], "source": [ "def get_total_images(path):\n", " \"\"\"\n", " Returns the total number of images of all classes in the directory\n", " \"\"\"\n", " total_images = 0\n", " for classes in os.listdir(path):\n", " for imgs in os.listdir(path + \"/\" + classes):\n", " total_images += 1\n", " return total_images" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xpHwolzrMqE4", "outputId": "7ac5c96d-6c2e-464e-e5eb-e8fc8370fc54" }, "outputs": [ { "data": { "text/plain": [ "81950" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_total_images(train_dir)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "NfsfYULIMp_f", "outputId": "84242f59-2e61-4b84-9759-7e0ad5ab27b7" }, "outputs": [ { "data": { "text/plain": [ "2550" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_total_images(valid_dir)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Poyi9NiwMpup", "outputId": "0b4130bc-80e3-467a-e91e-122610d1d55f" }, "outputs": [ { "data": { "text/plain": [ "2550" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_total_images(test_dir)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7N5ELqEjOpQ9", "outputId": "b9be98cb-3a2f-4e81-814e-236a362784c2" }, "outputs": [ { "data": { "text/plain": [ "510" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(class_names)" ] }, { "cell_type": "markdown", "metadata": { "id": "6P0lnq67QQXd" }, "source": [ "### 1.1. Viewing a Random Image" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "E3k-M3xpeXfk", "outputId": "4ddd888c-1636-4e33-b7ef-6127846e3d9f" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'/content/Dataset/train'" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dir" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "id": "aU19q4AAQQXd" }, "outputs": [], "source": [ "def random_img_plot(img_path: str, num_images: int):\n", " \"\"\"\n", " Randomly plot an image in the given class.\n", " \"\"\"\n", " class_name = random.sample(class_names, k=num_images)\n", "\n", " actual_img_path_list = [img_path + \"/\" + cls for cls in class_name]\n", " img_path_list = []\n", " for img_path in actual_img_path_list:\n", " for dirpath, _ , images in os.walk(img_path):\n", " img_path_list.append(dirpath + \"/\" + random.sample(images, k=1)[0])\n", "\n", " plt.figure(figsize=(30, 10))\n", " for ind, img in enumerate(img_path_list):\n", " plt.subplot(1, num_images, ind+1)\n", " plt.imshow(plt.imread(img))\n", " plt.axis(False)\n", " plt.title(class_name[ind]+f\"\\nSize: {plt.imread(img).shape}\", fontsize=18)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 304 }, "id": "5CLfJUmfQQXe", "outputId": "da8ea142-94dd-49c0-9bb2-8ac9204143d8" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABpgAAAFXCAYAAAC2vk23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d6AlyV3f+/lVd59w08Sd3dksabUrCQkJSWAeYLPYgIkmGNkmGSHZfg7vGZNsY4MtsjHBPNs4YLAlIYzBBAMGk2xJZKGActhdbU6T7szcdEJ3Vb0/flXdfc4954aZO7szO/Xd7bn3dqiurvCrX/2ieO9JSEhISEhISEhISEhISEhISEhISEhISEhISNgrzLNdgYSEhISEhISEhISEhISEhISEhISEhISEhIRrC0nBlJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkLAvJAVTQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwr6QFEwJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJ+0JSMCUkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCTsC0nBlJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkLAvJAVTQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwr6QFEzPMETk+SLy4yLyURHZEpHzIvIREXmTiHxWuOeNIuL3eLwhPPO2qfOliDwpIj8rIi+dUY97w33fMnV+uvyhiNwvIj8iIkdb9925h7rd2rr/4alrGyLyqIj8uoj8fRE5fAltuSIi3yEi7xGR9dCeHxaRHxSRG6fufVF471tmlHNTq153zbj+H8K1V4W/Xxv+/or91jkhIeHqQIsGzjs+der+vxPOr4nIwi5l7kZXRyLygIj8qIgcC/fcKiIXROQDItKZU/6Ph+e/aM71g1g7po9vb5X/hqlrTkRWReR/i8hfmlOneO9Pz7n+NhHZmHUtISHhymEP9GrPc3YGbRiLyBkR+WMR+Vci8olzyoo06/ic6y9ulflnd/iWA6Mzc2jiWRF5h4j8bRHJ5nzDnXPKizzja6fOX5H9QHguE5Enwvnv2Me37nXvEA8b6v3BUO/PExHZSzsnJFzLmJoLf3POPV5E/ueca39ORP57mG9jETktuif+0jn3T9MCG575VRH5jHDPXvbm9TH1Hd8y673zvmMOnbwqecfd7g30zovI/95DWX9BRH5ORB4T5eXXReTdIvK90pJ7TD3zjKxjIvL5rbFx+27fkpAAICILIvIPROT3wrwsReRUoEevFZF8xjOXSr9m8nr7vW/qmSMiMgjPfe0O903LIsci8oiI/OSs+SIN7zbveKB17zTtdSJyUUQ+JiL/TUReM6sd9/Btt4jIvxSR9wdaMwrf8RYR+QtT9+4qa5i6f5ouTx+/M3X/rjzrjHfsiV5eRlt/75z3PiwiH9xj2e3jbZfR9jPX+nB9L/umy25/ucQ9w0Fj3wM94dIhIq8G3g6UwJuBDwF94IXA5wLrwFuB/wj8ztTjPwV8FJieSO9v/T4C/kb4vQ+8Cvh64AtE5NXe+4/tsarvBX44/H4U+ALgG4HPEZFXee/HrXt/O3zLLKxO/f048G3h9x5wM3Av8P8B/1REvtJ7/3/2UkERuRv4TeAO4BeBn0Tb9VOBbwC+XkS+2Hv/RwDe+4+KyNPAZ84oLhLFKtTngRnXLwB/upe6JSQkXFP4GeDXZ5yfpgOvBz4OvAB4DfCmfb7nvTR09QhK878B+GwReaX3/nER+QbgjcB3Af+4/bCI/EXgbwL/xXs/j4k5iLVjVr2n8c+Ah1Ae4gXA/w38soh8tff+v84p5ytF5Ae997PKS0hIuPpwKXM20oYMpXOvQGnnN4jIj3jv5wox5+D1KG88AF4H/N4VqPMstGmiADcCfw3498CLUdp9yXgG9gOfj/LYHwdeKyLf4733c6pzKXuHuG4KsAzcA3wp8NeB3xGR13jvL8x5X0LCcw1vEJG3eO8He7lZRL4P3Q8/gu5fHwJuAr4K+CUR+Sng6733dsbjfwfYADrAJwB/C/i8IPB6NzAtYP1y4MuA7wM+st8P2wXXPO8YBK9fitLKzxKRO733D8+4z6D0+G+g/fZfgfvRfngV8PdQHv3EjNc8U+vY64HH0PXq64Hv3OfzCdcZRA2rfw24G+U1vh84i47jzwb+C/AS4B+2nrkc+nUl8NVAN9TjdSiPNA9tWeQS8GfRufL5IvIy7/25Gc/8a+CdM86vzzjXlosuAc8Hvgj4q8B7ROTLvPeP7vw5ChH5QpTX6gL/HfhxlIbcidKs3xGRL/Tet2UY72VnWUNbhhsR6fI0nmrVZa88a7z/Uunlftoa4B+IyL/13j815zrA77J9XfynwItmnD8V6n8pbX+pOMj2v9Q9w8HCe5+OZ+gAfhXwwMvnXL9ph2c98LYdrr8N2Jhx/u+HZ//N1Pl7w/lvmfGe/7lD3V8T/r4z/P1v9/jtDwMfnHPtM4GL6OS4aw9lLQAfA8bAF864/mpUIXQauLF1/r+GOt81df9/BD4M/BHwlqlrJ8Mzv9I699pw7iue7TGVjnSk49KOeTRwzr0vD/d+LfAe4O37KXMHuvpL4dpfbp37H6iy+1Nb5w6hm8ZHgJV9fuclrR1z7n1DKO/Vc9rnA3Pe/35gCPzm5bw/HelIx8Edu9Crfc3ZebQhXDsK/O9w/R9NXXtjOH98xnMFutn7SeBHUKHq8pxvOTA6M+9e1DDqSeDinG+4c055kWd8bevcFdsPhHt+CTWS+Evh/s/a57fua+8QrmWoYMMD/+vZHt/pSMeVPFpz4Z3h57fNuGcb74cqATwqiFyYupajxkse+K6pazNpZWuO/+qcekbafO8u3zGXF57zHfuhqTPXB54h3nGne1Hhq0OFnmPgO+fc912hTv8V6My4fhj4VzPOPyPrGHBDqP93oIa3DwHybM6RdFzdByqg/igqtP7yOfd8MvB3W38fKP2a8b493Tf1zJ+iPObfD3P5+XPue5gZssgwLz3wzVPnX8se5X3sIhcF/kGkdUC+h/I+AdhCFWIvnnFdgK8B/nzr3J5lDeH8G5jDt88oY188637p5SW2dVx7/+Ne+7p1/W2Av9JtP/W+Pe+bLrf9p67tumc46COFyHtm8ULgnPf+fbMueu+fvgLvjO7eL7zMcn4z/NwWQu5y4b1/O/DNqKb/H+9yO+jidjfwo977X5tR3ruAf4IyW9/auvTW8HPajfNeVCv89vD79LX2swkJCdcfXo9uCn8RZX7/nMwIp3kJiFYmbfr8t4DzwJtEpB/O/ShwC2oRtnYA7z1QhDXtLPPXmUeBfwd87rRbeUJCwlWJA5uz3vtV1OtzDfg2EVnc46NfjFo3vgmlu4uoFeg8XFE6470fop75syxA94srth8QDRH9RaiV46+jxlav32cx+947eO+t9/6bgd9HPSo+Y5/vTEi4FvFzqOfQP5IZYYjaEA1//D0oP/nV3vut9nXvfYV69TwKfIuI3LCH9x/UPv8Zx1XCO74eFb69G/ifqMfnhHxMRE6g8oRHgNf5GV4A3vsL3vtvnFH+M7WOfS0q4P+p8J47gcRvJ+yEv4F6H/+w9/4XZ93gvX+n9/7fwRWjX5cFEXkl6in/JlSZUaFeTPvBFaeh3vsfBX4aeCnqDb8bvgtVAP4N7/02z1OveIvfW+SnWbKG/WLPPOtl0sv94B2o8ux1InLPZZbVxkG2/UHh2dAhXDKSgumZxceBYyLy5c/gO18Qfk6Hq9svIlE6O3W+JyLHZxyH91n+T6Gu9l+wh3tj7qMf3+GeN6IWGX+5dS4qie6NJ0TkJKqsigqmW0SkTYDvnXo2ISHhuYWFGfRrOV4UkS7qfv/z3vtNlIEt2T8DOwvb6LP3/jQaAuVu4F8EN+3XAj92JZmZOXT8uOwhZrSIHEG9FHZaZ74X9VT9AZGUoyMh4RrAgc3ZoGT6JdQbc6+Kh9ejVti/571/P2qluhvdPbA6t2jgDSLyEhH5AdSy8T9eTrkBV3I/8NdRb6I3B4HPTwNfLiKH9lHG5ewdfjL8/MJLeDYh4VqDR40jD6Fhd3bCp6OhpH458HrbC1NF9ltQAdde9sQHtc+fxQsfl91zplyzvKOIfDLwMpqQ128EbkdDg7XxhagH65tD/+wHz9Q69jo0usLDNIYFB7FPSXjuYi/ytDauBP26XEQD0F/w3p9FlcRfN60k3gW70dDlOTRur8ZSET8Rfu7IG4lIL9zzmPf+N/b5jlnY7fsOzfm+fuue/fCsl0Mv99vW34Z6FH3/Pt8zE5fZ9sUOa2ixw3MH3f7POpKC6ZnF96CCyV8QkftE5D+LJo5/8UG9oDUobxNNtPevw6W37KOY9gR5oYh8IyrwvAj88tS9rwfOzDh+fz/19t6PgPuAk23h7hy8FFj33k/nSGmXt4W6/d4pIkvh3AOou+O9rVvj728LdbZMejjdi3oTXLk4lQkJCc8mvpPt9Os/ta5/KboBfhNAYGB/DWVgJ5K974I2Xb1LRP4eGoN4Aw2LV8N7//OoIuv/Ra3Q7wf+0b6/bO9YZDYdP4Nahk0jMkM3icino55dhh3WGa9xrf8lGoZkJ+vNhISEqwBXYM5GPuru3W4UkZuBv4huUH04/Sbg/9qJZz7AOrdp4mk03vk3o+GTvn2nB/eIK7kfeB3wu77JI/ImVNjzVfMeOKC9Q8Se+zkh4bkA7/3voCGj/q6I3LHDrS8NP9+zS5HvDj9fNuPa0TBXbxaRz6bJN3Ipc7WNWbxwPObhWucdXwdsAr8Q/v5faN2nPT5jv713P4U/U+uYiPwZ1Pgh7lMqdA/xZUGJl5AwCy8F1rz3D+7jfrg8+nVgCMqAr0KVS5vh9JuAW9F5NwtZi9+5U0S+Bg1VVgH/bc4z/5nZNO4H9lnlvfJGL0Rz/7x3n+XDPmQNLfwOs7/v77Xu2Q/Pekn0MmBfbe01R+h/Rmndp17C+6ZxOW3/ucxfDz9th+cOuv2fdexqXZJwcPDe/5GIvArdpH4+mlTu6wFE5PfQ+Ox7JfKzEBm9Np4Cvs7vLwlZnCBtvA/4WzMsFn4Z+LczytjYx/siYuinFeYnc4vX9+IKGMs71KrPW4GvFZG7vff3oQqk+6JroYi8J5z7cWm8m/6H997t4zsSEhKuHfw4msCxjTZ9eT0ay/ftrXNvRBVPn4cqm/aCWXT1PWhs61mWYP8PGt7iRuCLpkMRHDCGaBiPWZiV4H06geQIZf52E7z+KMowfY+I/IL3vtxPJRMSEp5x/CgHN2fbPN5ueC0qeHxz69xPAz+ICgW/dcYzET/K5dd5mibeCHw58M9FxHnvv+sSyqxxpfYDIvJpaOLif9l61/tE5L1ou/37GY8d1N4hYj/9nJDwXME/QgWr3416Ec5CnBMXdymrvX+dxjRPdhH41hjG6jIwixeO+O05569Z3jFYh38lKpzeAPDelyLy08DfEZGjwfMWmn7bb4jq1/LMrGOvRxVlP98690Y078tXAT+2v2onXCdYQfOD7ed+uDz6dZD4cjSXz5ta534d5WdehyqMp/EitvM7DwBfEzwMZ+G7gN+bcf6x/VSWvfNGl0pvYP+yBlA6c9+M8/W5ffKsl1P/S2nrN6CRZv4l8Ocu4Z1tXE7d38H8teyHaTzJpnHQ7f+sIymYnmF47z+AMhwEK6fPRGOg/lngl0XkVbNiVe4RbUbvKMrgfg7791RrT5AR8Ij3/tE59z4eLLcOAnud1GvsbeM6ayF8Kxqn+LPQiXsvk4Ljt6NECia9mxISEp6buH8eDQs0+i+gbu0vaEWquA9Vgr+evSuYIl0VNATHN6FWVjPpvff+vIh8FLjRe/9He3zHpcLuk45HZmgBpaV/HzgSrCbnwnu/JSJvQAUZfxv4N5dW3YSEhGcCBzxn98TjiRLa16HWnkYm8939AWok9G3z6M0B1XkWTfxpEflfwBtE5Oe99x/eZ5l+4o8rsx94PWrl+KdT7fabaI6YT5whRDmovUPE5WzQExKuSXjv/1REfgb4ahH5oTnCyr0KXncS5P7lUM4yauj0NWg4osvFTrzwvGeuZd7xK9B+ePsUrfxdVDHzNTSenLHfdouwUuOZWsdEQ0f9NVRWcVOrrzZRwfnrSQqmhNmIdGQ/98Pl0a+DRIyi9PjU/Pot4DUicjxEHWnjYeBvht9vQiM0fSLqwTQPHzggWed+5Jywv76J2JesIeBPvOav3xH74Fkvp/77bmvv/ZMi8qPAPxGRL/be/+olvDficup+doc19PwOzx10+z/rSCHynkV47x/x3r8ZHSB/gLoUfsplFGm9978Tjp8D/hKauO7HReQT91HO2VY5v7eDcunAIJrn5G7gKe/9Tt5LAB8EVqYWk+nyFlArhYejZVJAnYdJJvMvRbwdDdN3Dyn/UkLC9Y6vR9fJv4WGqYvHh1Hm44tk70lMI139be/9T6IMQYW6O/d3efZqw5+Eb/kVr0k6/ynwt0Tkb+/h2f+Mhi/99j2EQ01ISHj2cVBzNvKhsyzb2/hM1NLv5UzS3ftRvuxG4It2KeNK0ZnfRDfu97bODcLPhTnPLE7dtw0HsR8QDQf9V9BY73/KZLvFEKuzcnIc1N4hYq/9nJDwXMO3o3zdvNBJHww/X7lLOfH6B2Zc+90wV3/Je/91aEjn7xaRz993bZ95XE28YwyD95NM0spfDOfbtDL22yfto/xnah17Dbof+cIZ77kL+CQRecU+6p1w/SDK056/j/vh8ujXgUBEnocqqW9Aldbtcf/VQAdVEk9js8XvvAU1Iv048LNBLnglsVfe6H7UwP8Vl/COZ0TWsAvPein08nLxA8A54Ptkf/m3pnE5bf+M4QroEA4UScF0FSDE5X1H+POWAyzXAd+AboZ/6KDKvUL4WjTm5V68ASLz9zd2uOevo5vsX2yfDDHpH0aZu3vD6baC6fcBhy5a96LE6ootkAkJCVcngvXha9E4vK+Zcfy/KI2ZFwplR4TQG98OPA/4xsuu8LOLH0YtJb9HRHb0LvXeWzQp5wngW56BuiUkJFwGDmLOishR4MtQi9bdcnS+Dt3g/VVm095VtufIOPA6z0FM1NsW9j0Ufs6Lhf7iqfvm4jL3A38FWAL+CbPb7feArxGRzi51uNy9Q+ybvXr3JiQ8J+C9fwgNQ/l5InLvjFv+EA1J9SWiib+3IeQV+RrUs3BWiKdpfBtwAfgR2V9e0KsBzwrvKCIvQEMp/TSzaeV/AF4eQhKB0rIh6nXU3eNrnql17HXAk3Pe8dVobukd35Nw3SLmHttJntbGlaBfl4qvR3mUv8nssf8xZhvUTMB7P0T34IfRPHRXErGdd+SNQp1+HbhdRD73cl54pWUNc3jWS6GXl1uPNTRP0UuBr7uMcg6s7Z8JXCkdwuUiKZieQYjI54jItrCEQaMcB/F+Q27sCO/9/Wiix88Rkc84yLIPCiLymSiTuQ58/x4e+QmUIf0mEfm8GeW9MpRzBo1zPI23om6xfxt40Hv/eLzgvb+A5pv6SoJ3U5i8CQkJ1xc+G7gD+Cnv/c/POP4tqqzelYHdAT8FPAh8y26b66sZITb89wHH0JAnu93/P9CNyjehG+eEhISrGJczZ4Ny6b+j4UG+1++QT05EDqGhi37Le/9zs2gv8CvA5+9mbXrQdCYYHXxJ+PPdrUu/jIa/+3+mlTeiSd7/GvAorcTYV2g/8HpUaPmDc9rtJ1Ea/SU7lsKl7R1EJBORHwI+A/h17/0f7LP+CQnPBXwPGmbnX05f8N6PgH+GKoLfMm1RHhRE/w7lPX/Qz8+Z0S7zPBrK7UXo3vWawbPIO74OFU7/yBxa+QOt+wj98IPAncBPzFLSi8iKiPyr8Pszso6JyN2oh8IvzNmn/FfUsOCrnilBb8I1hZ9AFTHfIiIz+QIReZWI/F24MvTrUhA8VF6LhlP7iTnz62eAl4nIJ+9Wnvf+rWhozNcGz6grUedvQBW+7wd+dg+P/DPU6/0nQlSlWWV+lYj8+T2Uddmyhv3wrPullweIf4fKZb4TdVq4VBxk2x8Ing0dwuUg5WB6ZvGvgGMi8iuoV8wWcBuagPFu4M0hvuJB4/tQa4LvRF1BDxJ3i8gsF1SA3/HeP936+1Dr3i5wM42n0Gngr/k9JCjz3m+KyF8CfgP4NRH5BTT2cIW6B34tsAF86dT7I96KWj78OeC/zLj+djT+crx3Hv6yiLxoxvmPe+9/ZrfvSEhIuKoRLf5+cYd7fgH4ZhH5VO/9H+/3Bd77SkS+Hw1x8g1ocuhnA/kOdPxB7/0f7qGMn0KZsm8SkX8drIl2wj9CN74vRmPFJyQkXN3Yy5z9/MAXGeAIGiLjy1CPnx/03s8y+mnjK4E+jWXtLPwCKlz4OuBfHECdZ2GaJp5AE0p/Ohrf/3/HC977j4nIv0Atzd8jIj+LWvm+ALVYXQb+erBGjzjQ/UBo808D3ujn5zP5FTQ/0+tRhd9u2Gnv8MpW+ywD96D5YO5A2+er9lr3hITnErz3Z0XkB5nDz3nvfzyEeP9W4MMi8mZUKHYTSv9eBryF/VnT/3+odfp3iMjPTNGaK4lrjncMQvDXoiH03zPrHu/9wyLyblQx883Bqv0NwEmUpn+GiPw31Ni1g4ZTeg2a5+QbeebWsWjgttt77kXX4f+2y3sSriN4zfP1RajHyf8Qkd8CfhuN3nMDKqP7i7SU5QdAv75JRGYZGf2fKXox9z7UWOk21GhmHn4BnbOvB965w30R341++7ez3ePvzwbPrFn46SlD9LZcdAHlA78IeAlqmPSlO/BoNbz3HxSR16CKsveJyM+hnioDlM/6EjT85q6hUfcga4h8+zQ2vfe/FH7fL8/6BvZOL9vYT1tPf+dYRL4DXVNAx/G+cZBtv0dcifZ/duG9T8czdKAaxh9DPWTOogqRc6gS43WA2eFZD7xth+tvAzZ2uP4zoYzPDH/fG/7+lhnv+Z97+JY7w707HZ/duv/hqWtbwGOo++zfBw5fQnseQpnS96IKpQEaq/iHgJt2eO7WVj2+bsb1L21df+mM66/d5bt/49kea+lIRzp2PubRwHDtKOre/e5dyvi/Qhk/vlOZO9FVNOTSI8B54NDUtbcRPKAv4zv3snbsRM/e0rr3DeHcq+eU9X+H6/98j98eLf/nrl3pSEc6rsxxifRq5pxt0YZ4jFE+90/QjdEnzinvjeH+4+Hvd6JKkCM71LuLegh87HLqvEP5s2jiAN3U/ROgO+e5v4ry8xfCNzyNKnK20UsOeD+AWot64It3+bbfREMm3db61kvZO8TDomEPPwS8Cfi8Z3tcpyMdz8Qxj36Gawto2LKd6NK9qBD0qUAvz6B74i+bc/8ErZxx/fuZsa9t0eZ79/sdrXu2fcccOnlV8o6o4ejF8PsXhmd/eJdnvi3c91VT5z870PXHQ7+to4Lj7wZOhnuu+DoGZGGMnWbn9eIWNPT/bz3bcyYdV+cR6NU3ouGLz4exewpVPH0tkM145lLp17zjH+/1vjD/PPCyXb7rYyg/1g9/Pwx8cIf7/yh8+wvC36/dpS4eyMO9d06dd2F+34cqdl8T791n39yC8ncfQGWdIzTc8k8xRdN3oR/bZA1s59unj8dbz18Sz8oe6OVltPW/nfE+QXOQ+l36+m3sIl85qLZvvW+3fdOBt3+rbm97JmmKhBcnJCQkJCQkJCQkJCQkJCQkJCRc8xCRPwWOeu/veLbrkpCQkJCQ8FxGysGUkJCQkJCQkJCQkJCQkJCQkPCcQMiH9CLUCj0hISEhISHhCiLlYEpISEhISEhISEhISEhISEhIuKYRclp8NppzuYfmH0lISEhISEi4gkgeTAkJCQkJCQkJCQkJCQkJCQkJ1zo+D/gRVLn0eu/9Lz/L9UlISEhISHjOI+VgSkhISEhISEhISEhISEhISEhISEhISEhISNgXkgdTQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwr6QFEwJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJ+0JSMB0ARORhEXnbs12PWRCRzxeRKiS7TLjKISJ9EXlSRP75s12XhISrDYnWJhwUEq1NSJiNRGcTDgqJziYkzEaiswkHhURnExLmI9HahINCorV7Q1IwzYGIPF9EflxEPioiWyJyXkQ+IiJvEpHPerbrtxeISA78MPDT3vuPts6/UkR+SETeE77rvIi8U0T+rogUU2X0RORvisgvBwI9EJEHReRnROTFe6jDyVC+F5FvuczvuVbr/aki8vMi8oCIrIfjgyLyz0XkUPte7/0A+BfAt4rIyct5b0LCtYBEa+t7ryaada3WO9HahIQZSHS2vvdqolfXar0TnU1ImIFEZ+t7ryZ6da3WO9HZhIQ5SLS2vvdqolnXar0TrT1g5M92Ba5GiMirgbcDJfBm4ENAH3gh8LnAOvDW1iP3AP4ZruZe8BrgxcBXTp3/h8BnA/8D+E9ABnwR8GPAl4jI53nv4/fcCfw48PvATwJPAs8H/g7w5eHetzIf/4aDG2fXar3vBhaAnw71MMAnA/8U+AoR+ZRAsCJ+Evhe4JuAbz2gOiQkXHVItPaqpVnXar0TrU1ImEKis1ctvbpW653obELCFBKdvWrp1bVa70RnExJmINHaq5ZmXav1TrT2oOG9T8fUAfwqSohePuf6Tc92Hff4Hb8HvG/G+U8HejPOvyV89xe1zh0DXjHj3pcAI+BdO7z/LwEWnXwe+JbL/J5rst47vCeW/1dmXHsTcAboPtvjKB3puFJHorVXJ826Vuu9w3sSrU3HdXskOnt10qtrtd47vCfR2XRct0eis1cnvbpW673DexKdTcd1fSRae3XSrGu13ju8J9HaSzxSiLzZeCFwznv/vlkXvfdPt/+WqdieIvKG4LI377izde8hEfmB4JY3EpEzwT3w+dPvFZEXyB5jdIrITcBnAL8+o/5/4L0fznjsZ8PPl7buPee9f++MMj4MfLB979T7l1GN9b8H3rmXOu+Ga7XeO+CR8PPIjGv/CzgOXBNuvgkJl4hEa5t7rxqada3WewckWptwPSPR2ebeq4ZeXav13gGJziZcz0h0trn3qqFX12q9d0CiswnXOxKtbe69amjWtVrvHZBo7SUihcibjY8D94jIl3vvf/ESnv9F4IGpcz00zmaOum4iGtfxD4Hbgf+MunieBP4u8A4RebX3/pFWGf8buAOQPdThM8PPP9lHvW8NP0/tdqOImFDXefd+P+oa+U+BT9pHHS4F10S9RWQBdcFcAF4F/AAwBn5nxu1/FH7eC/zGQdYjIeEqQqK1uyDR2v0j0dqEhAkkOrsLEp3dPxKdTUiYQKKzuyDR2f0j0dmEhG1ItHYXJFq7fyRae3BICqbZ+B7gc4BfEJH70fiQ7wTe5r3/yG4Pe+/fD7w//i0iAvwMsAz8Ze/9uXDpu9B4k5/a1sKLyBuBDwDfCbz2Er/hJeHnx/dys4gsoa6AF4Ff3sMjfxslAN89o6xPRWNofpX3/qJ+/pXBNVbv7wK+ufX3h4Av9t5v6yPv/SMiUgGfcNCVSEi4ipBo7e5ItHb/SLQ2IaFBorO7I9HZ/SPR2YSEBonO7o5EZ/ePRGcTEiaRaO3uSLR2/0i09qBwULH2nmsH8DLgjagG1beO3wWeP3XvwyhRm1fW94Rn/2HrnABngd9EXeymj98CnryM+v+78M5b93BvhiZk88BX7uH+TwOGwHuZirUJFCjR/Y3WuXu5AjEyr7V6oy69nw18BWol8W6USM67/xTwjmdy3KcjHc/0kWjtjvcnWntp9U20Nh3paB2Jzu54f6Kzl1bfRGfTkY7WkejsjvcnOntp9U10Nh3pmDoSrd3x/kRrL62+idYeVN8/2xW4Fg7U3fGvB6LlwwDvtK7PJVzA14VnfmLq/IkpgjjrsJdR5x8LZdy2y30GTVTmgX+yh3JfBZwHHgRumXH924EB8ILWuQMnXNdqvafe+Rd3IrrAaeCPn4kxno50XA1HorUT918VNOtarffUOxOtTUc6wpHo7MT9VwW9ulbrPfXORGfTkY5wJDo7cf9VQa+u1XpPvTPR2XSko3UkWjtx/1VBs67Vek+9M9HaSzxSiLw9wGt8zTeLyE8Bvwd8OvApqEvmXIjIvcB/Av4P6tI3cTn8/B00xuNB40z4eRR4bNYNIc7lT6BE+Tu999+3U4Ei8krgt1E3x8/y3j8xdf0kGhPzTfqn3BUu3RJ+HgvnnvLeb+7/k67tek/De/+bInIKjeX6MzNuOULTjwkJz3kkWlvff1XQrGu13tNItDYhoUGis/X9VwW9ulbrPY1EZxMSGiQ6W99/VdCra7Xe00h0NiFhEonW1vdfFTTrWq33NBKtvQw82xqua+1AXeY88Fdb5x5mSjMO3AOsAh8Fjswox6Ca2iviWoe693ngK+ZcN2jCOg989x7Ke2X4nkeA58255xXsru2fW6c9ftc1We8d6ncB+NCM83eGd37/szHO05GOZ/tItDbR2gPup0Rr05GOqSPR2URnD7ifEp1NRzqmjkRnE5094H5KdDYd6ZhxJFqbaO0B91OitZdwJA+mGRCRzwHe6r2vps73gc8Nf354h+ePAb8GOOALvffnp+/x3jsR+Wng74nIV3jvf35GOSe896dbf78AKLz3H93DZ7w9/PxUYKLskMzuPwFfD3yf9/47dipIRD4J1SxvoJrlh+bc+hDwmhnnPwF4A/Bm4FeBP9pD/WfV41qt903e+6dnnP864BDwCzMe+9Tw8+0zriUkPCeQaO22elwtNOtarXeitQkJU0h0dls9rhZ6da3WO9HZhIQpJDq7rR5XC726Vuud6GxCwgwkWrutHlcLzbpW651o7QFDvGrhEloQkQ8Cx4BfQeN4bgG3AV8F3A282Xv/da37HwYe9t7fG/7+WeCvAP8B+IMZr/gl7/2miBwC3ga8HPg54I+BMRpL9AuAd3vvXzv1nju89zJd4JzveCtwo/f+JVPnfwj4ZuB9wA/NePTj3vs/CvfegSY5Owp8J/Dxed+zQz3uBd4KfKv3/oemrr0B+OfA13vv37jL91yr9X4PcA4lfI+ixOozgC8BngA+zXv/2NQzbwY+H03+N9qp/ISEaxWJ1l61NOtarXeitQkJU0h09qqlV9dqvROdTUiYQqKzVy29ulbrnehsQsIMJFp71dKsa7XeidYeNPxV4EZ1tR2o9vvH0AlyFqjQgfdW4HWAmbr/YVqulygx2smF787WvQvAd6AEcgCsAx9BNcB/ZsZ7/D6+46+E971q6vxu9Xtj6957d7l34nvm1COWsS0JG40r6+fs4Xuu1Xr/HTSG65PowrQJvB/4fuDYjPsXUW3+Dz7bcyEd6biSR6K1Vy3NulbrnWhtOtIxdSQ6e9XSq2u13onOpiMdU0eis1ctvbpW653obDrSMeNItPaqpVnXar0TrT3gI3kwPYchIhlKfN/rvf+aZ7s+sxC0xuve+898tuuyH1zJeovINwDfC7zQe//UQZefkJBwsEi09soh0dqEhARIdPZKItHZhIQESHT2SiLR2YSEhIhEa68cEq19dpEUTM9xiMjnoXFGX+q9/8izXZ82ROQE8BRqAfCuZ7s+e8WVrHeIH/sg8B+89995kGUnJCRcOSRae/BItDYhIaGNRGcPHonOJiQktJHo7MEj0dmEhIRpJFp78Ei09tlHUjAlJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQk7Avm2a5AQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwrWFpGBKSEhISEhISEhISEhISEhISEhISEhISEhI2BfynS7edsdR75xDo+gJhozMFIgYBEFCdD1rK7z36H/gpUQETCbkRU6WCyKCiCczVh+SDO8F58BZg3Ngncc5j3OOqtIyIRzeIyLkeY4xJpQndLpCngtZZig6BiMVRS50ioyFfoelXo/Fbp+FTo9+p08v69LLe+SmIDMZ4vXdVVVhraWqKjaHAwaDEWVlqaylLC1l5bDe4QFjoOhk9PtdOp2cosjodzt0iozcGIwYDAJoOzlKSsaUtmI8qqgqR1laBqOK4chSVhZrHdZ6nDZO+Or4/fpOEZCgEizyDCMGwbS0hIIgeAfOaUkxBKJBKDIhz3LyzFBkGTmGTp6R5xlFltHJPHmeYTJ9ma08o6rUNrBaz8G4ZFRZSueorGNUOjaGI7ZGI8bjUtvMearSAQ6pvwAQBwKSCVmW0clzskz7Ls8EYwzGCCLUfW+9wzk9Ku8YDMd1+5RVReV8/Z2xvfLCkIWyMjFkAoXouTzL6EiGYPDO1+1WliXW+TDWM6wHay2CltHJCwox5FmubZUX9PKcTjcnzzLyzNDpdOj2OpgsQ0JHGWPIipwsz8PY1bo658B7CHUQtH9NnFNVhbN6j584mvnpnMNZj7VO6++bdhOBLMsoioIsy8IhdDodiqIgz3OKTl5fE5FmFIXfvfdUVUVVVYzHY8qyZDweMxwOGY1GjEcjxiM9773HWnDeY53Fxfp5j/O+Hri+LlsP6x2TYTolTHf93t96/4eF6wB/7Ss+3R8/dgM33XQzJ07cxMMPP8yZ02d50Ytewl13vZA879Dv9xkOBpw7e5Ynn3wC5xzWWs6dO8fq6irD4ZCNjQ3KsqS0JWM7YjAYYK1lPB5R2YqVlRVOnDiB0nVPnuesrW+wtbXFYDBkOByRZRnOQrfboyg6YV4allaWOXzkCCdOHOfkyRs5eniFCxfOcebs05w98zS2HGPtGAhjFYutfD1/y9ICJlAFhTE690SUJlirdAvnoBk2AR7vHeDr+SIiGBMfcWoykdGsERBosd4rRumqjkl0rhoDRsKg1JVOn41jdQg4EEecJrYC7w1CB8Mix4+dpNtZotNZ4PixG8myAuccxhh6vR69Xo+F/iKLi8ssLy9jcGxsbNLr9eh0CqytqOyI0WhEv7fA4SPHGAzHeECMrntLS0scXj7G2dPnGA2HZLkny8Y88shH+cCH/oiP3vdeBltjnA8LhXg8FcvLfYblJnjITI6RHv3uMY4cuoXjR2/hxhO3MyxLnveCOzl58gaOHF1mONrg1pvvptvpYAxU4yH/4d//Gx78+AOsr61hK6WNF9bWGI9HWFdifUVVDbGu0n7JckZDXT+9NWQmY3Glw9LSCkZytgZDTp05zebGCOhgpKDb6XHLrSf4jE9/NceOHWZzfYMPf/Aj/Ksf/kGeeOJBLl48w8bGBZ58/Gke+vhTnLhpiYXlnCeffor3feiDdBe6eIFxWWqfAs5qv2ZkCBm4DHyGSIflwzdw7PhNvPRlr+SlL305x0/cwCKOp089wuNPPsjHH/wQH/3w+1ldPU9ZVTgcljFg8UZXOO8Lnve8l3LvZ34u73/fh/j93/19fuSHfpCnHnuMxcUFNjc3+cPffwf33HMP73jHH7O6eo6FhQU+68/fS14UfOQjH+HBBx9kPB5z9Ogxjp+4gRMnTnDzzTezsrLM29/+dm655WZuuulG3vXOd7CxscHWsCQv+hw/dhNHDx0BsWSFBdnkySfv5+zq43hvdfwbo+NWdOx75/GRaxCHch2Wn/xPDzznae2/efOvNexIa82L/FI8177W/ru9VnmvdMi07m04NrbdP73GtsuseYIW2nxupNfTZYlI/fz0c+2yZ31Lu37xZ3zfbqGzp+s//a3turXbdta7Z5W503unv2m3ekw/v9dyZ5Vf89Nh0ZnVVu22nFfObvWZhfb4mDV+9nNt+r3zvn36uYnxHzhuvR6578kyjAgmLOLW2qm2iUe7IpEX3s6Ptus6jYm9YqtcEQl/ZruMG9d6N9Sb27CH28scmtW/s/D3vubzn/N09qte9+keJsdV0y6Rj1PsZQ5s79lWXzE1D+O673U0tlnIhqsjrIE6rq21gZ9s9j15nuPi8Il7KwdGcgyCKyv6eQ9nnQ4XgfXlMQAZQo6At2Bd4FNN/a56tIrutQWD8YJ4Aac1NIATTyWT68IEwvhu2rkZi5EvrmUzYUwbr60wPcem17b6/LZz2eR9zQ0T5cVOmp4N82jsTmuDnpQJajG9VscxNZt2hLaZHmp+Ow2aRx/bv8+j8TMR6r23SW9oj9jpuTOf9s159Zxr3sU9+Pa1a/szs8fGrPujrHD2+kIYDNtbwnkbHjbbnmvqMPNTZtRBf/+NX3nXc57OArzhn32DxxhMZnQvCypnU/JW0wgbeMi41+50OmRZhjGmGc9KtfGisrc4FyK/A4EP8QAqF5Dw3kaOJCojbs0jW/m6XJhcC5QEBvoYduwQ56FBxEz0vbR4ish/Z633Ne9t6hxlGBL4gLg2NO+RWiYF4LCN3NHZQEO1LcUI4JpxF9aF2PA1XQKc207TXLzYggntZ4xKTKf3AjV/2qJjbbmg81W9R6jf06q3b73PexeOuO+wOG8nypvoI2fxc/YfjXzaNHV0Kvt1NPsaLdfWfzvnsK6sf4/vVR7R1XW31urhLKOyVNlWVVJZldeXZUlVVbUsrLKWyo7D91mcs1SUQKXyHgN5oTJmU1SYzBHXBues7oUNmAxM3sijY5u72G71OtvIoeI8i+PABLbSWtEOcCDe0+5aEwW+BiSHLI98tavL9MaAQJaZCX56Fh2e3qPEvWNVWcrS1V3Wnk95XuiaLgaPDSPUIeJBPFkmOOtxVZDx2gJnDdgcZ/XaR35+Yyat3VHBFAlGPfFcVCaFCeTahD02i0MMZLk03F/oCGOUsOnkUMWOSCA83qngoxby11sEZfrYvpgbY8BHBVjTqHmWURQ53aJQYXoQoud5RpEXFHlObnKMZIGZsxOESYXuBus8xnuyDGykCuGztG1oV7QhrsgEAbHOM64s47KkHKuyqiyt/l6WVJWjsp7KqZJJX+Jb5XqMUYZRfBA4qKw2tI3oNkgm2yHCe6+KlkzI80zbwxiKTBUmuVEFSVHE5wTnlRA563Chn6MyQBUbqtyIBMJZO0EoRAhUzU8ombxX5saYOEkjURK8TDJSbYZRRMi8kJlMFwfXTJb4w3tAWsobbzCZYLKg9AsLmC5QUi/Gzml/ehplqrWerF4stY5i4rMGE4lKfHFY0I1AZgxismYsFTlZntULiHOunvjO27iF1brERgpwoQ9im8QBV/eD97hA/JplTZW5s5jfhuBPK3Ym75kmVvV551Qp5nWkx4XROaf96bRPxQuSCeI9xrl6MxUX9whpzW99iWwTUlwPuPuFL2FxcZHFhSWMZBw5fJylxcOI5Dz++FN4B0VRsL62ztZgk/FoRF7knDp1itVzq2xsbtApOmwNRrrwViWjaoz3hrIaI1nOUn+R4zec4Oix45w/f57NjU02t1SpNB5VlGNHVXmqssJah/eCtZBnOSbLsBas9ZRjy3hsGY9VWe6dIcs6jEbjsK1WptE6Q5aB9xXeWYwIpfXKMEJNJ7ynXmfqIZuZMMZ8mC++RVs8ROYZNUqIDCRG8GKoSktRhIWYWK5pza1IPyKt0D91TXe0SCnGCN5LXedIEwSDMRkGVVJJi8nK84zRyNbKs06nQx4Uu957hqMBFy9eDEqoJTqdAjGuNq44v7qKyTv0+n2KTl4/t7W1pb93OlTlgIox4/GQ8VjXEW20sFYYwZMxGI9wDjp5QafoMh4Jve4Chw4dYnl5GUQZOWctF9fWGAw3WDm0SLfbpchzynLExYvnOXfunCqWRLDOUg7Lev5b1zB8DqeMcq0dDBsc79jaGjAeWzyGcVkyHpdhHTf0el2Wl5dYXFwkzzMWFxexlWU4HFFVFYcOrTAeb7C6epqyLDl27AidrjAcbHLu3DmMMZTjCh9ea62tN08+0Kwiy5VpA6yzbG1t0d3YYGtrg9F4SJ4XVOWQhcUljh27gfWNkzz22MNsbA2wgy1sFYSkmcc6h8NgsowbbzxJt9NHMDjrGY/HGGMYjVXJ673nwQcfZDQaIaJK1UcefZStrQGnT59iY2OTra0tqsoimaEoCrrdLo8++ihVVdHv9zl8+DC33nob73vfe9VIpdriyScfx1eO5eU+NxxeYWFhgYcefn9Y6xqI+Lgct07qP83qc/1iL0qVnVBv5Ngu4NppnW3/nCegnidUmifcmnUt8hy7PTurXtPYa1vN3pDujOmNdXx2r8L7vdZpL0qLS7l2qeXsBTsps/aLgyqneZ56vzLBM8Jl83O7jdcGDYHb3s/NuJosz09Qv2nBSbusy8VBlXMtoD2Pm++e3Ku3MU/psFfUAsDQn74ekIKrf5sem3FfRb0PazRWgAFnLSBkxmCdCjM9Hms9w+GIYTVSo8O8oFMUZKNIr3Tci8kwWQ7eBwNGp/ul1l6uLf3zqFBHv0cm5tX8j2+3V9hzC7TnA6jsQM9uVy7Fn9tpdntzdgnyeplUCrXn3r6UNPH1M6fQHmmu7O0Ldluv9w8f/9dq7LiWxXlzebqRS6nrbmvCPCXTXqF7vdnfVSsyL6GJp40f9kM3ngtwRo35JSiZVFTrwaisShVAQkZQZOQZnaIIe6NgYBb24HG/ZJ0Fa+t3RLlR/J3WrsG7sIaKgywjynMjEY1OCt4rbYtltKRZGGOaNcOrcLM2jGvdWc8d8Sq4i8J2ttMVAuWPstCo5HB+cphNyhxj3YI82zff7KJSwUn4xkn5d7RJ8b6RaTlntr+jpYjQsRuvTSqk2phct6KcvFXmTIVxkAnH/W88G2V7+B3ncWx6lQU3csG2QjLKcJxrzIZ1r9E8bxBs6J82/Z82dmquSVAENsqfvfAM7fJ8q85RKSTGqxzCqrLGO4+TIKtA5SWICboKdO5MjL+m/WfVJYq8JcitppXl2iaxvxunGxHwxof280F/ENpFTDizfVy0283UsuyG72rGvcrbRSL/1S4jY7e1xnvUaSX+dBZbemzpcVYNZuZhRwXT5EfEl7Umlp0c9M47MJ6sFnJTK2SMEUwW6IG2qAoiXVNm7EghMnJacjMgIQ42CYxLM0CD7jsIvIo8pyiCMinPyTITPGWUwGaiHkCEQW+Mw7lApEUFh5lR4WVU8ETBqP6tmnWth9QLpBL3MMjCJHZOGdKq9JSlY1xZquAdZa16AunhKSsb5T51+6nXiwo5DQZjwDl9kwrymv5B1Eo/WuFHQqgKJlN7rORZ9OjR8/o9vn6x/hqpRBCweoKHWfimoDVWJZMqDlxN+Bp1BxInZct6zKuyQi3ETOCxGyuX6UnctqTw7YXOR8FZtCYI/LrRcuoxYlSppIq6oAmutx1h3PioWPM6/sS09Xx6X9g8GBPaWaIFhXpiZSYokvK8VjDlRUEWPMNEBHEOcRaxTRtJ/JbIiUpQuKGWJxIk8fVy5n3tHaQLty740xuHWZZh3jeegs57JBDH9gasVmC5SUuNuLDJVPmNxVywLAm8hAi4aD2KEqnQXTTdNDWGr0PcfPPt2gYORmNL0enjfclwWLG5cZHReIwxGWU5rq08KuvZ2hoxKisqC56K0bhSa4Wqqi0+EE+316XbW6DXW8SYgjzvItmYalwhkpMXQk8KiqKvDKZV7yb1ustD/xZ4byhLx2hUMhpbICPPunifAXlg4JTbqarIDAXCL6ooivRSBCRzZK6hr861GJQ4doOCEpHgLeCIG7FIaXzcVAevTsICH9cJ7y1x4y2BCUA8XqLPaGAKJCrq47z3QB7WrPYOtyHQ8R2R1pZlyeLiIt1uh7IsGY2GLCws1MpUFzxliyIPbV0B2tZlWTIcjrHDMUePLQRvw0w9DosiWNoK3juGwwFZZ8xoPApjQq12dY1tGF/vIcs6iOQ4n5HnHQ6tHGFxcZlOt1uvjVrXESIFy0sr9XtsVbK1tYW1VWPB4z3jssTkWa3ca9YBFzaSFmsj0054plIlpvOUZUVZlhgpEIFOp2BxcYHFhR7WllhbUeQ5x4/fwHhcMhiMGI5GVNbS7/fo9zpUfpONi2PW1taCAtNCUG63Ua/R3qkxQ2DIbVVhq4rRaMRwNMB7h5icotunv7jMocNHOHz4KGtra4zLMaVVhaFrjQMRw7FjN6AOp0Kn02N19QJnz55leXkBaysEw9bmgE6nW2/gVlfPs7a2xvnzF9ja2gprurC1OWB19TxGVNF06623cfTIUfIsp99bxFqHRB4lU9qa5Wo04r1+S80j1Ux9PRp06LaG8eTKfH1glhBiN6XLTEFGaw320Grv7QK8WWW2f84zCJknAGw/O6/sWef2++17wY4b1SkeZD/vnHfPTs9ejjJqVv9dalnzcDmCsGlerv2zfX2ecm/eGNvP+6aenvq5M5ry5vTrDs/u9L26/4qb1Kl3tarWXsHxvvW+lkSk3qTsUJl2nWW+99t03a8fbO+r9vlLQnvdmvdOoabFbRFm3c+tARAVUR5PZqKho294ydbYdmGPFXkZAJMVjEdDxuMKI2OKIievMvJuB5O19jTSCHJ1i5qhgo845BqeM+6DHZOGmfM/Oe792kzr9ifnre9z6esMxVK9l58zlufTGdl5Ys+rh58+3+a52jKh2WXU8zLKjIjNtTvd3W2+7pd2NxKRvdCCedcbg7zpuuyFvlyqEc1+FE0zu3GCXsPMwRDlTa1rcR3Wx2Vm2dP3XpfIRA0rjdIP9SYyFHmhsqciDzIvNbjOcpX/xb2ndRXOqZBYIHhaQBy1jczItcZQpLVqaKnyNxp5mQRZnHfgHbV+Y9saHu+b4oUJ+qMoB2jtxqVVTtyW1/JDGlrXyJSjcWigrFNKzrZsG6iNpeMa0lZ0RCXU9Jrvva+jD8U9dzyv7/X1tI5cRzO2Z3gNBczk91r0oalDpNENH9QogpzKF5sWZ3KmqRLIo+3oQmP59gNM9pHENaZVXR8aMyxJk98RZMixfirXadoh/tQ2kbrfp7Hb/qdRUEEtd24PNa/ODE48OK+ODj4oISUqfIIRc1xS22vzFC1rqhh5g/i+wKx4iQOPutVqWuWDXE3wxtfhq/T9pu6kyf3T5Brb3pdCW6nUKOuivqC9dkzQ4dbiFJVbk6NDWuNYZSe2clSlyvhsNd/DelcFU7sxEfDSKAHazEbUFEahshhqrxtVLhlVMIlFXR6VgfGiDVp/nsSPBEfVNGnNo4SX+6j4iW5sEmieWhTnWRDKBSFpnqunTq1kqQWR1GUYI2ReFS+ZMVhjyMRhjcFkDo8htr8+k9WeKjq4pBZ7ikcFo95TOYt1UFrPuHKUpVMvpui5VDm1SLYqGJ4Q3Btfl+19dB01QRgViIcoka8nqtEQfcY01gSZaSmXcvXyyoNgMDOiDHGb9AgQPM5sWHzwUiuQokuiKpiCBt3VEd+aARzGg2ktTJF3d94j4TsyExcoqednTSgCgY4eM7X1V/2TbX8LUiuRMhoPpjx8U+MAIfhwTr0lVHGWGa+hpghl0Sx8qmRqjZkQ5q/IVAicFTmSZUhmasGwyRoFk7adwZqW5te5YAni1ALfN4ukdXZCG00UaLWOtqI1NkIdKicQKR/nqXOqtAoHEjy6YKLMCQVTqF97UY3EMSqDs2BxIoS+bTEcOlJp/ghz3kncyMTlnIn3Xy84dsNJtjY32djcZGswQMSwvjliPNKwhIPBAETo9/qYTL0kRuMSTEG3twhSUJZjik4fjAVTqCdPtcXyyiIrK8usrBzi2NGjdDpdimKBxaXDbGxsABAtGXQMafnxbxHBWkdvoUev12Wh36NT9CmKPkXewZiCrcGIIu9SVWOqsqQqS5wrsZWtFdplaUHUI0+VrwZvxmR5mGNGmQ/vHHhVCmv4Oo/3lSpyjbrLuxCuVAAfXNaV3iijkGX6PRpGFCqnIVdNpkyEqqAiDaX+ObXFCUcWGKPtKQvVMibc6XwIRzgmz3O63YzRyLC1tRmsPHw9n733HDp0qFb0gqcoCra2tlTRU1YaPq/bwYT1ptfrMdxS9+/xeMzGxgb9RcdgMKAsK/AG5yELdVcXdUsmHYq8i/dCVRmWF1Y4evQE/f5i7a3b6eQMhgPywrC8vMiRI8dxrsI5KCsdg+qpaGtlVmkrukHBlBlthGhooDSqoqoAH6xkRBVLgtNwqmVFVVo6nQKTCZ1OzsJCj8WFLoPhFsPBFr1un7vuuit4+pxmbe0CzlmOHDkMvuD8+ojReMTGxgZZt4OzFTgf+p8wtkXd3jE4q0ovnAFydMX2lOWY4UDbvt9fxFHS7S+ycugIx264kfMXzjMYDRmOBphMqKwHEzZXCMeP3cTGunpnLSwscebMOR5++CFuveUk3U4X7yHLco4cOcpwNGRjfZ3NTfVa2tjYYDAYsry8wuLiElVpuXD+IrZy3H33PbzonrvpdAoGW4M6vG7eyVlcWmJl+QidrEu/36eqSrYGFxiPxyA+rOmttTgod+NmPm4IqOdCQhvTguyZiofpn3Pu2avoY54QaN7729fn1f1Shdu7CWx2UmK1n99JQda+txEozd9k7/b+vTy32zPTisR59WrX+3LeuZ+6xfq0f17Ku/cqkGzfO7/8Ft8daI1v8fmRtkwKS+a9dFpAtPN3TRcTzKxmCDiI20ZdxWfQvbZgrN7DSf0lCftC7Lv2ufntuCcFtEyWIK1xNSGwjP/Wna6b9vhnU2zgU5yjCMZANhgzZSE6igkCN+ccWVYg3qiRZ27odvpsesP6+jrj4QDZgKNLy3Rch6yTIZlQhfGjPKoB47Au0BjfGmtBGOZRGYsLkV3Ez7Zentuq9WIjrUYI1jStG3eiaVGgH6dGLWBjHt2IArRpYVi7PrGsOZ4mU8VGkVD72yZfPX9V3aZoIrSt374mXeLS+AxgmraHsz4KCmXivt0NAabO1+4W2+/bXlb7pv3RwvlGCVN9FOdniHLSHp+TQtz5/MP1CsnVcyka+mV5h6LXpdfr0+326XS7IYqP1DIrL46qHFNVpR5ujC0rjVAVFOEu9n3cb0/xQ0pMW54w3gc5WZDtxjCocT9YC7TjqhvGcrDIr/vWe7y0dtsti/EYYalF4EMjRBmh/tG8Qf/10BhjM8nb+Kkwdm0Fkz7bhEWLNHCaP4yf2S6n9ekTYxoxLZrezIVp2dpcgzKZTbfUUF89iZrvU8eJOpKHb+Q6JuwDHV4Nv6Wl8ApVm+Bt69Ztqi7xfNN1M2kK3te8WdM+UdqynY9tt0V8V204oovk1Me3jd2VPgoSUnIYCPv8KKPwIeUBYZ1tZKVRwdT2wJ7mY+pXhq9vpEbORQeRlp4k1D0q2QhymRj60RgDma77PrZ0CBvZXlNr8e7EWjB7jyVBRh37VMSFueNoohNrYVEXU0e9ar1I5bmBhwpzzjuNEFSWjqpEZTxzsKOCqSiKMAG9hkMLhCeGW3G+mYbUXj6+EaYbVPheRC+ZGB7ZhEkniHGhU4MHROgQI0JVRSKGuneL13BiocOlVqLoRLKhnt6qVa9ByI3mFypMyC0EiI+W9JNMkYZCik3fhFGTEIKpZlSzlobVq1ujBYy1eNHf8YDVMD2V94wtVCWMx45xaanKilFZUY4945DnqLIaHgnaSq/YjjFeo1bQ5M0knM2ca9vrIMlqLxv1IovxoNvx+gWTFfXArRUMXnBCcOsUDV1llem2TpVjUUAah6x2WOxMqesTFYm1QtFFAuqADK8y0uCBNUmAJYZOaxEf7X/qxTBOLhMEy9GbLTch55QxFMaQmZCXJSwkueSYPMcap6HBSq+eVWGgxYXOhCYwBvJQhioyCzqdgm6R08kzyDJ8S7mUd5o8SLF9o3KuCpb/trIgFlz4Vq9zzHoN5OBdE7YrjtEmP9r2vo85oIJ0OrSruqqqFb+FSvs9hhirCXoI5eBD/itvHVVZ1XnKAJ0TkaHwVo8wzrzUDmRKpry2p/GCFRDjkaAsNUHEa2vPiMmF9npBr7fIeGzpdDzWGh599HG2Ngesr28wHI6CwqKLMQVFoR5FedHl+A03kuc5nU6HpaUl+v1+rZjo9nucOHGCpaWlOg/Q4uIivV4PIJSR40FDvQWluXdtZqNhCKqqDLF+VYniqoqqGlGWI8YjDfU1Hg0ZDFRofvHiRdbW1tjY2GBzc5MLF9c5e/YsW1sDRuMxVTWmrNbpdrthMVX61u0uEOPwVqWj2+kyGoUQos4G44U8LJg+eNbEvGOOTCqlE9ZqCLOggMoLg8YBdrTJS+ArqHnmcCGO3zgS2wpcLwSFq4UseFYFZmV5eYnl5eU6b9ni4iL9fn8iH1qZGZaXV6iqChFYWVmhsqN63MeQeP1uTxX84ul1C6qxYzwcY632xXAw4uzZ01xcW6OsHMbk4G3IRyWYvACv606e9el1lzi8coJOZ5HM5FhbsbZ+AcQwPDdgNBqQZRmbG0O8M3SKDGcto9GIqioZjoZUtiLPMzodZR+cs5RlxWhUUrkQw7c2RkAt6fICRBhXY9bXN6lKi3NQFF263S79/iKLS316/YJev8P586vcecft3HTTTRw77Dh7ZpWnnz5FVW3S6QrLK4usnltjONxiNBrhfKBHIlgcpVVDDReVlb4l2EA3MIKOaWtLRsNNtjbWsdUYyY/QKw5hOhkYx823nWMw3NK6b64xGo/JusqYVdZTWbjn7hfzpjf+LA99/GG6nQU6RY/HH3+CtYvn6ff6rK0NOX7iGLfddhsX1y5w//33Bb4jU+/mKvQZquzLiwJjckajMU8/fZq1tYucXz1HVVV85MMf5bY77uCWW27j1a98NX/8R+9kYfEEa2tneOKJh8gyCWF5Yjzl7cx4HPcq47q+aG0be7Xqnak4mlIszBTWwXaZzA6vm37P9O/7XRf3IqR/JrDT+6c3STC7vffyjoPgG3ZSiO1Wp70I+q4l7PcbomVr25J2f7iccdpsimdtvuvN5VzEXDqy820Je8Y2Yf8lzlEVE0k9PKZHSVsJEv9u9vb6hLQf9IFdC3EsqrHFhfDN9bqo0fEIxs7kec7xYydYXFik1+mpx/SwZHNtk/Pnz3Pm6VOU50uGF1YxRUbe69A/tITpZZhchUgWh7UVMdcGwTreW2pLfC9hz4fTfbtvjGX2hKnmbQvAFE0EkO1r2vbnnxVslzs2l/ZIIlrcepj5z+4aGLHTurL3qdE2vpwl/9nLPJtWVm0vo76zFgg3fOPO72nunyyU2f3amsBt4f/0PjRhO5YOHwq5tTtqPNrp0e+rYinPO2SZ7tN8kB+qTKekLDKsLbC2ZFwKQ7HYsdO0DGJqGb6IGuep0Hu7kWUdHq8W5tdalUbRYvXO2tAZWz8tAj7kwKvhJXhjBZlfVPfU46P5W3/6YKysyoHopIBXRxmVJ0yOSc9USGbfeLS2oxLEdzuaHJLt90ZYqNNHNKcbmbIP90dvoln7iXnGSvV7Q9s0JU7fG5Up8ZzK3WPkk/hcbMf2/mCu8lYlrU3MmNCM24wJmsoirURTMcxgTM3RJnLRY6atrGu3g2/1yTxqFpWbbTmNiAlyxqhcM7V8Js4BnMNbVShVztVG9pG+6bqvK7EJ4fWQyVVEonVxq/WbijVtHQ/xjeG8Gq2owFuiAQpxHsS3bG/j9iiet0+aVlQ2Og5ThzxsmKng1eezEHEy8tExUlzQjYQILThw1oWIbBORNLdhlxxMBm81TmEMJRTjFdYdXi80+jEx3E4WPDtMrnl/NP8MIe+NWsh77/BB2eEluo8TBi/kQUGi53zd2FEzl+Um5MVBFVCxLggmWBplJqfI1IOpkIy81h6HwRYUCZEhtb75zsxk+IyQ4Mxo2J1AeE20Wg+DtSod5EF5EUKr2RAuSkPfecYllKWnqjxlFRROZUVpbQg3pzmYJBBEH4RimUhwF40a0Ca3hYRMfjXxAqIZu/e+DgcXlUmaP0g0V1Dok6j4i0oGR3TxVIFsJJjOo/3mJIT9c1S1ZUNU6tB4/oRGrReK0O7bJoUnyiTBe01CGga2KjXVNcrbOA7j5AEJyso4Uox4RLJaqGhE6BQFRZ5pGDuEXEKIu7DwWpthWguHMR5xFSH6YLAio/H2Ct+WGchFyA1kcRLjNTdWFtyRi6yeE0YTNGnbZgasNn41HuOMC0SQeqFzrUNiouxa6xwUgMTtvAQiFTdWkAWN2PRCEBVTgcaSZU0c0noB9IG446jGGmqtKiu1cqlGmn8kJOYMdLcOXWhqKb3B4THisHFee8H5DLzHYWormcb7rzUsriOecn1zA8ly8k4XRiWI4czqOQZbA4pOlztuu5WXfMIncPPNN3P8+DGOHDmMAJ1OR5XgoZwshGYsy5KNzQFlWarCZ3PI+QvrDIeP1gpODcc2RD0iQ2xipyHevBfKmIsJHQudbk63U9Dv9dTrxMDS0iIL/T5FkfOC578oJA/N6XY7AFQh/Nh4XBKZz8FoxObmJufPr/L4Ew/x6KOP8tTTT3PmzBnOnz/P2toFqnIMIV79eDSm1+sHnbXDuoqytKp0zzKyvCBzPiSqLKnsQA0bOhl4q8qHYBRgbantlGUh31lYO6JPo+hCGjenIhCjC7flTtHSw3tNCEm96VJPpHZi+2g0YJ0KFnq9LmU1Yms4xAfGZjgcYm1JZjJ6/R5iCo4cOaI0O1dFelmWGCN0ux3cYp+yXGBtfY3V1bNsbmyqG3Swg/A4oler0MHZnKKzwPLScW48cQe56SFklOOKixcv0l9apCi6lOOStbUNNjdHdHsdhqOScjyi1+uwsnKIp558ksFgC2cdnU6X0WjMeDyulWnW+zp0qIT1uijyWsFUeQ0D2zYI8J7QZhUb6xc5V1huPHGUw4cOcdttt3PD0ZvY2tjkwoVTbA0qjLFsbW1QliM2NjfYHGxRdDsa5zl47zppWT5GxTWqBBcjtfHHuFRPqa3NDTY316nGA0alo9PJyLIu3d4SR4/dyHCoirXKjnn67GOMx5tIVmB8hrWGkydvo9tZxJgO3U6P2267HRHD+vqGehwVfU6fPstDDz3MjTfewCs/6dWUZckfv+MPETHkWYfM5ORZTlU5trY2OHdulbW1NZ568kmMQFmNa4UzQK/T5fDhwxy/4VhQ0uocEAlxkisd65rEMwqz4iYxMv8Nnb8eME9JdCmCz22KiLDxbW9KZ1p0M38j2d467kfBMq/+bYu2/WBeWft9Zj+Ya90+4x3zrl+qIq1ddz9Bmyb7aVZb7rTBa1+/lPY5aIViY92483ifttDdXt7u9GLa82LyfXvvp21WvK0ipPV7e6O/V2VlXOfDDgbYHppst7G4FxyU8vNawTwl+Y60KOz7432xE6Kpz6SiMI6vuH+Iz0ojGGW672omLQjBMrp5l263w9ZgoHvLwDuVZYlkmea/FeiIwZUVw60NfFUxzgfkWUYn7/Cie+6i0+myduEiT3zgUc6eO8vG1hbDcsTWhTXyfpeip15Ned6yXg+8ZRxxkc/WOrq6us67HenafCPTKTrVUv/urPxt7d+3nQ3vjCUqo4ffScrUUk74plObMmd+mmw7P29Mza59kIqEF6gswdf74cnqTbbFXteQfc3/8O9OxgvN+Z3ftf25KDiNZfvWMN+ljq1NzW4GNNNfE++ZTx9nlwuT31gbF7bGSX3et8I7Xz/kc184fPQI/d4C3a4al+Z5BzG58vmi9EVlgypz1VloyEw0KI9z14dwXaI5jiKC4B0jZMHrYho1j9NOqQD172psKBP0PXpsxAhUcQxE5YeGXW9SkQB4EzyK6r2tQEhtAdFgPqv3ngDYqpkPYV8aU35EeaeEOlGn+gghTWmM7Vsi5onvi9/fVnTE7zYh+kmoZnh3iCThJkOatdutHvumfT4o42gZg7fq05zT9znnQn+0Qku11r+2QTnt39t/+xZ/1KJN9SrWrkb9e/CU8Y0jgLeW6EXqQxy+uPef9GqabIt59Mt7HxQevn51fa9vm7dHpU1cZ6ORseYXd6IONEXcHptI0+K+WNfiGK5R+2aiItQ0S9o8SVy/Gm5SWoxlmz6rCDTQcK/VN7SVapN5vCbbeka71Pf5OgJVw/PP+IYaKjPavijL5E+vsn/rwFlw5ey6wG4h8uoGnty0mECAJMYtbitlchMOIYvKpTx646ACMEfwolEXtswI3rQHRfjcVl/5KEZvCc01rFlwvAvlZGI0v5LJMJIHhUqmdkoTA1cX4vpTw7/eR8ZUE9RrM6iSTYmEKnM0F0ggVGEwapzD6JnRZAqxXr2ctHPjoPeB0YMmGfqcxTq4+0n4lsxkKsCL/dHq+Mg8xkGlXlghXFymoQpjWKQsy1RhEiaGjR4rPnqnhfo79VZSBZijcpqw1DmPs675rlrJ0mIS6sCkApFgS8P8R1dA0HqYVhkmuidJDGTUbDriAhTzojiv28OoUMtElWm50dwUmRhyY8hFlUF1SDgEfHAfDX3tjWBF6oRtCMErKjCteLyziAQFXSjPtNqbPMyFLIaH1NCNEpR4kwqfoODykVV0zawL5cWQZc2GKix8dUM3i9fkmI5EZ3Lb7HEE3WFYxFuLmmu7QzvGo5F6L1UVtiypbKUbrzCPjJiw8Mdxp/Mn1scZdceN48o5H4T2YS55gseY1P19vfGSg+GQTkc9j44WRzly5CgvfdnL6tBox4/fwNGjRzl0aIVev1crMUSkzoOGwHA0DIpi6pw9vV6fbq9PHDfj8RgJoQiqqkTEqCIp9Kdau2Qa6i6GwPRgMldvTdW7aMxgMGQ4HOGs5fSp042bfjAOQDTciDEZJsvodXvBuzXnyNEbWFxa5o7bX8hoNGI0GjEYDlhdPcfm5jpbm5usr69x5swpNrc2GZdDyvGYwXCT0UjDhYlVL0KT6TzW0GBl8EaNYSeFPM9xzmlYU4mSjDjKosB9knYBqlxuhQFoxnjW3pupFyAOMugUBbbU8ICjwZCLFy5w040nKTLNTmgri60cIzdSGhw8hcuyRIyh2+mSd7q1l2lkFDY3N+h1lyiKHNtRr0lrS4aDQfCEMnhXITnE2L/OOlWu53263SX63RW63UUgYzyuGI9HlOWYPgtYW7KxUTEuK9bXNzh0uB9yE6hnbZPvz9eWPdHLcSJpdVzjjEG8Wj5VTsfR1tYgMGumpvXqgVeQ57rmHj68xNGjh6mqMYOtLRZvX8KWFePxmOFwRNFxDIclRV4wHo/Y3BpgskxzWYUyVV8ebK4mSJ+H4IFdK/FtSVmOGY2GjEaDoJDMyTo9THaIw4eOsrF+kaWlZRYWFiiynJFXRXye5/S7izz11Ckef/wJxqOK22+9Aec8i4vLWDskMznVWENF9no9qspy5swZFhcXWegv0u10GY90HuZ5gbXjsEb3sZVjfW0DYwTnLcPhiKWlFQ6tHKLT7bK1tcWxY0cR8QxHAza3NkA8eZah7vDNekE97MP3Bw2r1P12fWInxcFOipaJzY3sLASqn6lFc5OCl3pz6r1a/Mwoo41Zio959bwacDnC9VnKn2nMU/pMCwL28o5ZyqXpcndTGu3le+cL8GY/v5vyaL/37qT0mN1uzV5QC6DZKe9Q3ux3eKaTIDfnt9d5ooQZe9/6e6eEFXFv0ey9ZpbY3rG0ngv8dWvM7UdZuG1+X0fYfYxOtYds+6WmlSqkojZy1bumyo9CkYbtnHybD2JEH/rCeZa6h1heXGFhYYHzcoG1ixdxrgKBQrpUVUVmMqLs2wPDzQHlYKT5D02Gt57bbr6FY0cPcfzIYY51DnNudZXV1VXOr66yeuE8w/GQamtANRJMJyfv5EguKgeTdoV9PaVMrCuN0OhSlEyxraTd5GZ+/8jkP9vndMvqr2ahJcpDdsD0ejhVv0thP0QmR0EjYAx0qpaRxF3L3l6yW1vvG+3m24HeRprTfvX07Tuv+818aU63+fJJRIFjDDbj91DP+hlp6rwTbZutUPN1v7Q/tN1DkwYO28vbrZ7XE/IsVxmnZGFfGsT/wSWy3rv69n5NlQ/OWpx14dDfvYuKgOjpqO8REayZ3iXH37Rs61upDXxTjo3eQ0HEExVM2p0hlBeNDELE4LyjznVPYxTjvcH7rBaat8eS99HIPJYpzd5UQGrRfdgf1zn3JNTXBe8lFwztGwWTi1REYp6mBiKttYWGZjMhD5UWzxSVYj4YCEc+pTEkF9BUfa15E9ehyXE/Gb6QIKf0tYKpnW7CT42HSUXOJK1vRfkK9Zkw3kC2PTf509dtEvc3tN5Na8/jvK9TcEyjoWfz+XKm3w91vzeKotb3h7pJiJTnggIua6/H0oS1834y9GDdCq0+lxgtp9aiSgx6FtZKlXf7IFMCQnoFrw4WLXeB2Ma0vqMRY4Rx6Ofxo9v3Pt7FgcPU/e01R1paiXhjs4Zqk0RjSoN4t23dmMauOZgk0CkNAURDIOrODp0jIddSUDDlUcCeZ2SZtJQJhIU/aNWC8iPLGu12FH7WvExrMavdyQTyLCNqvRGp8w5FpZLEyof2isTEG518rt58tNVoMfSaEDdAzmdkHlUuySRr7MMTOunVI0THXWibugPihwcrueBSaoxR4btRwtlYvse2CFM75IwymJA/qvZbmSD27QU6tm8WPJeyTMgzEwS+plbGRE8d5zX/UOzT2quq9q7SZH3W+vq8c5FIt+pQ91f83DajEIm0NN5n0vxsSJd+ieZuapROUZkYDxMWUBP6OgshDjITlEuS1W2WGSEXbY+owvBelZveezI8OIM3LuR6ab6rHv6hU30dFjAqVMCIJ8tMyL+UkeVZUOiZVg6mqGBqWsxmGZnTRHyqkAwkPSySIkZDFLZpP7Q8zTxMWTXMXkAmC3DoYuqCB0zN1DlbE/6okKiqClepVby15URRUdnnvW32MNEqxQvGe1zwjLXOtRjoMPfCRiGOg1jBbZvI5zA6nQ7Ly8t1iLtDK0c4dOgw/X6Poug0CpJMaURZlTivYT3KstTNcJaxtbVFnudBkZJpKLNuR0NFFhqyUfPpNCHmYk63Zn/mQ/g0WyuvPIJzGrO5LMcMh0MGWwPKckxZat6ltbWNmpmxtgoKHUOn0wleFFAUHYqioOh06Aa3/oWFQxw6VNQh5La2NinLEaPxkI2NdZ566gnOnD3D5uZ6CL+3xvr6RYaDAeORKkhKW1JVY4QKISO4cNbfZ0xBOR6SF0VtGNFeWJv5VlPqgKhgmpxTk/ucwMyFxM15lgUlUoWzFm8d3aJDnuV45xgNh1iryq4s5AoUEWxYPEyWURRFfL16yFYlW1tb9DoLxA1alumcs1UJXr0Qq8o3xg+ASjEyup0+C/0VlhYPUWRdxmUZ+rLUkAjOUlWW4WiMbA2wVTscgMXaisXFBTqdDlmuuZg8Xj1lvKvd4EUiLTGIUU9S5x228pRlxWAw1PEVQgWqx1unNkDpdjJOnDjGysoSzllGoyGCesJdvLjG1mCd/mKG9yXFYs6oVKVk0xPUvIi1TNATZVM8jVxHF2drK6rxiNFwS72zcKEPMvLMs7CwzOLiMguLy/T7C/X6CUKRFxxeOcz9993PY48+TqfosbJymNXVC3S7PaxTuj0eVRw+fFjHhqtY39hgcXGRlZVDrK6eZzAYkuc5IHQ6HRaLgsXFRdbX1xFjsFXJuKzwDo4cOcott9zK4cOHuHjxovaFJ8zLLTo9F8LqGlqZytqjdYL2KJ80S9ibsJtAo2b45218dnh24j2t6/tRJMT7D1qZdCnl7SZs2g17fXY3pciVVqxNf+d0+28bI/von/20324KonmK053K27UOU0Vdals3Yqm9wrc27q2ze26vdj39xLkJ3jjy2XM+az/9cz0LP3f+9vbmYW/PTRsXzhw5LeFX3aM1Uxv/bs518h69YpGF7iL5kQ4LnT6bm2q8ZK1lNB6TF1FQqeF2KjeugzvhRXnQ4YAiy1hZXuFQ/xBHN45xYXWVc2fO8uSTT3Lu7Bk2t7YYVSXVoMT4LhlFCBsSrKUzqdPi4BvVq+7ztrfNrGnn/azzE+LNusxZUqFZ+61ZQv66rCjl8tvLbvbNsv25GednYqf1MgiE91zWAWN/c9s3/855bPe1c2JUE1tyUhEzKZmaFCLOe+9kM88qa7vxRhxr89eXZizOuNYSXjbnCONm//T1eqazoFGFbOWoTKkpQ7zKnIS4b/d1DiXvrebW9WXIsWuxlQ3KJTQdiovRk5TSxeadEDRDvV/Wmxoaba2t6YNHjRxdEF0LhDQNUW4WnBWCciUqeKIxvZ/KMa9jrjHSjsai0fPCe5XvirgQLUvqkP8qp4oKN723Ft6Hv9seWHWYPB9kna2xaV0TZj8qlyTmTQ/t4ImGmI3ssu2NIiHvlLi2wrWpT1sGPMFvTvS+0oSJ/YdX5Z2vjYajAsoTc11NyAVb82j6/La5PTFnW/MvytB97MtQLybLa9fHu9Z1R8tIlbrcCSVJqOrkt4a/Z93f/qaadvpoexsKo04BFJXnjTwoPiNRlFSzh6FnWo1Sd1aLTZVJGbjoGDE+KunV6UOr0pInT9DMhkA3V5q/562BvrXY1DJ6P0krGxmY1At6mxeWutxooBLltCFkpsBukQx2VDAZMSHZWpiUxhNDKHqvfha150GYvHkmKpjJjeZeymOun6YP6gYQMJlaMGd4CFbvsT+cC6YVrQRwUgt3lD+zPmrz4uRVYYl34C240lEZq2HXMhXimRCaL2oVY+g3JbCCatQ17qIHRFTgpMxe43ZmjITQfFqGaptDODBcK5cNrY83GKOh6/Lc4FwWhGKRUEwOlGgZJF4ZUPEeCa6V8T8J/lLRIjwLSddN/D3koMozUS+e6L1E9OTxTc5H70MuKMuoKilLS2kdlXWaJwdfh/RzQcFkIzEOnxn5fwmDtp5wgeHIJHj9tLyX4vSZ8CqLEwD1ctHeFaJ6zWuypomFLs9yEE+RZXTyjDzT0HjGNO2SmzhhgtDRRMWegXrCe6qYEC0y/F4XDE36KvU40Liimkssyw2myDBFQVZoaMY817BMmogxD+3WxMHO8zwolwQbR0+WYZyOO+OiwmsW0W2YV2mNHRFpFIY6surcVrV1ZiuqQU0qAxPinY5fZy1lOdZ8NiFHmHdV/Y5mLiqtaIQ8oc1EakIbPddsaEcDOGMw3pM5/d0TFnkuT1h1reGee+7h5MlbWF5eplN0KMuYk0XbYTAYkHdyZQadCvxFhG63oCiy4M2UsbCwAKhSwjpPUSxpnwWmxzlLnmdESyZQ+tYWtmiOIvUKEpMFmiSIdDGmp2PLuVqplYX5k+d5SBRq63xd3qsCbDweU9qKCxcusLm5yfr5VS5eXOPpp85x7txZFew7x6FDhzh69DB33HEHt91+G5/48lfxWX/+c3C2YjQaMBhsMRhozPsnnnycxx57jI9//H4efPBBzg3PYStD7gt8ltHtdskzpQ02KGkkCx6gRsiUmseVlIkccWGBrg0KagagYQS0vYJSSEJoSecCg63zYmFhgec///msrKxgTMZ4XDIajciKgsOHD9c5BJ04JDOqmLOQh5AjeZYxKEdsbW0xGAwYL4woRyXj0UjzqOEDHdU6ZXmGiOZLVAVjF+8yet1Fjh45zg0nbiKjw+DiesinVen4Gm5hK8/W1giTFRw7fpRut6Ash5TVGDFw1113cfr004zHAy5eqMIYU/owLsfYGMrFGDBZ2CDEcIyW8bhkPC5rZr/T6dDr9dSDZzwkzzv0+svccsuNjEYjFhYWWFhYwJYVTz31FI8//gRVtcnxEyscOtxna7ilIfK2tnTZJyajlWBpo8yVtOhmhvIBWYidXI7HjMcDBoN1tjbW2Fi/iK3K2sO6qjTf1/LSYY4cOs6hlaMYY+h3u1gnLPYXOHnyJH/8x3/C06dOcdONN+Oc40Mf/gijUnNVmUzo9jLufN4d9Pu9EDZyyI033kRZjVk9f47BYMDCwgKj0YgTJ05wyy23cPLkST70oQ/RX1zgzJkznD59mqzIOXHjTXzyp3wKR48e5X3v/QAf+chH+JRP+UTyLG4Ktb0j3xEVjkyvrZGvDMrVhJ0xX5iyfZ2aVjhMCGxa/+qGjInN3F5WvavJO6mNy6nXXtb7/Xjv7Ae7e0XFMrf362wr7b29o13Wfus6b9y1x9t+lUtTtaqFhJqPdPKdcd83qy762PZrM98S6xr/bQtuaIQL82ZGFCboM1n9oh3EquGbpPVsI5ypjfqm+nqvuJ741nmY2wZR8lj/OS0Y2T5up8f75DjZa1u3BXj6czwsWbebuNLziZ/4Uu68804effQR7r//Ph586AHsuMSVMQxzhogL+zkVmwyHQ8R6xoMh4+EIljw2L1k60mfp0ElO3noDz3/h7Tz9+FM8/tjjnD59mrPnzjJc26C3tIAUmebJzEzYO4c1uDbWCbEsZOdvrMVb4pnlj+xrfjZuxP3MyaHlbOcDdhrOGiGAOrx9jVafzVszZynlp0RrO7x4B4+tCTnTVOWFbTR7N0yPv0uZ30FMOV3yPkpoDI9nvf4gac7llNUonSbObi9z2yvmt620hu22pxKtZbg5pMosZTGm6lb0Fj2dQuVi3lPvx1U+o/IDZ8d4orKp0hTaXpUxuLi/9c1/Qe5rTBP6XaTxIorwIfw5vjEkrmylaTPa63nYd6uRuAm51KNiR3MoZVmhkYlMpIuNkskYO/H+WAc12NfIVVLL2AAJUYSiWiQI3G1rIHrnICplWsoR54LssyWgj3vd9rtnjt0gd2noTTbB54vbXk7zLPU31XX01IqdKF9trgXZjbrDQEtWXbd5XCFqI3k1NG8rglywBjeheIG6nJnwzbP6uW1vtKZP67+dwwblpQtt7VyMiLJdvhlzN8XoWpNy0Bj6brtMdLolVaaoBDR+L1blJNZ6xDjd93vTWkWbsidbO/Au0r5v+g7CGPexO+rIb0ITVUzbyoa+1nKc8+H3FiM7sb7Gd03xRhM8s0eC44G246z+czRGwVL3Za3hlObbVA8VnGKMxxgbgm3MVzLtqGCqixZ159ZwcK0BGATvPgiSJCTAiqHy8iwINQQ8thZue6jzJCCCycLHuJbnigefZbVgz1ob8jWpsFpziHnysKEQUf1ULuouKmTgM1UEWAlJ6zJcBpV1iGZkwyM4S8gp47CBF2s2NbFxtTOjsMrWCeQhyzyQ4aUhqlKX4SB4D2WZUORt4qxE3FioqvANWfBECRsfgVoRFHxxlMDSHAIYMvVEMnEAhFBVxlCYDJNpklINI6i5iGJf4FVQ6iQo0NAUfN4L1kFVWcaVZWwtw3EQIFtH5UMYwKhswtdMsrQEttqhMU9Rcz2Lyq1wi04CbWu1gGdqUyshx1NYkKzFSQirFwZ+lmUYfChbwybmJlPPJWn6MTPB6gFhXIV6GSEKkK3VSeQiRUPqcH8absHWHh7WGl3AfYdoJWFUV6Uh8oyoG2y9OJoJgpBlWcjZJXinYyszBp9FxYGQ5TkEIuGCELtNwCUD6yYXKoGQJ8mBN5i2lbqXoNVu3JljH1hr8TZ4XzhHWY41IZ6LFh4xJKYqFmpyHEJgOqcDo/Gwij3cTI5ItnPRcIQIGrLPhJi47vpSML3gzhcgYnClY1gOWegval6m1lwuRyUImMxQFBrCoyxtTU+stVinyutIvCurwnIfrJjyTD2TTHDLtiF0WZYFxicwXs6VNQPTTD9f857RoqiqKiqv76xK9VjK8g5Fp9cwK4HOOee45ZZb6m/WfW4HYwxbW5qT6dSpUzz00EM88MADvPOd72R9fR2P5YYbjnP06FFOnDjBXXc9nxtOHOMVN97In/nUT6ff71GWYy6cP89TTz3JQw89yPvf/17Onj3H+toFNjfWGAw2OXrkFgbDDarS0enmIBbB6tokTeIlj9Ux7jWLmHPZNqGXifGtjVGPrG4XXykdqKpKlSte6Vino0q5PC8AQ1U5im6njuubZYaik7O5ua5zP5Pas6msyhDGUFhZWWFjY40LqxepqrGuJd6ytLzA5rBHNagoK0suBu+MrtfOcGjlCLfeeifHjt5Er9vn4uoag8GQohOMDygYDAYMByNG44rFxWX6/S6bW+tKB5zVUHCLC5y48UaKIsdZ7ev77nuAJ554gvF4rOPENKuSxjl2tYJxXFZgDHmW0e9rItput0c5GpNnnn63YHmpz8bGRS6sXuT82TXKoeOlL3o5p06dYmtrC+sGbG3lHDu+zONPPMbG5kZjJVYzV06VdLmOdURqQw1feWxVad0qj3Ulw8EmGxvrXLhwnvPnTjMarFMOO+R0yETIpYMhp8gKukWPIuswHK1jrebDuvXWm/mpN/863lusK3ny6Sc5dnSZ8xcu8IpXfCLPf97zcKWnLEch55nmLltaWuD0mdP6+wuex+bmgFOnTrG8vBxCEhoWFhbo9fsAbGxscPbsaQ4dOoSIsLi4QK/XZXGxz+HDK2xsLbOw2MO6svawAqlD4TWYEgZfpcqKqxHbBOw0QpX2+R09Wmj4w3j9SvXA9bCGPjPjt72Rjz9b/TclsNxN0fRM9ctubbNrXSTkm91JXzCjHGPMRFtMJNM+QDQGVvvzeN/eX+19S7ucPeSa2kOfX6/YSWC8V+xnvog0M3VCNCTBQyjsNXBgqzFjB96V3HffR3nhXXfy6le+nFe/8uVsbK5z/3338a4/fTePP/44axfXKIqCzWqTTrfDQn+BI8tHuOGO4yz3V5BKKCgYZltYNyIzGXk/4/jCEZaXF7n51hu5sHqBJ598ikcfeZxzq6uUW2MkM9ApyEL+XbVXNY2VtXGA3faN9QcG+Mk/a2O+NnZvwUsbvx4mdGBRfnK18BX12KmFgc8FBOHqTIHqNA7mmyfG1x7vbhsuJfp4ZbC1sRkM1gtGnRFVVdLrLWxbg6NsS7wDV1FV4+DFVKmAOxgVq5LA1vf7EKGiKifzK4lopA0RjUbkoZaJmSi/w2Od5rzRZ6iVBQR5ZRYM5dvKEBHBequyM6fyjahQEBFNFSLFxDpuQih+kSATMYYY2UcVTwbJM7yT2nsGopzK6/fbRhmitVdjzSjjVGWJr9t2UsE0pSCK65Zv/S3RI0ultu17ZymrVAE3tT+o74nPobWM9Q73T8gI4xpSh9TS6CPNNwbBTgw1REzb1CgotvG5Lf63MVbX+lg7qTBy3jGp7PJ1W9bXZvBa7XfPPOox1TxjaWTnEmTOHs3Hrd8rtYwAE+tq6nQtTkJe7SDDrEPte5A62VfTI43n07baazuHMVD7H0kwehXwxNRAocJ1uT6KnZlJv319V9Mfs2rgXS0zbl7SKoDW2KvLc035vh1tS5kKEchzg80cdhe71B0VTJkBvKGZatFjKZsgNM6rhbzJNO9SDLmmgnwlIo3lt173BsQZ9SSKzRQ4QhVQaQghndgVRdGhspb4hSrE13ijGrvRkklGJysQMlyFEsTcYJ0o7XTKqjlvtV4YyrLSThbNNVRZh6EJL9G2rGlPEmNMYKQc1uoAizkqdGC3+1A7LcsMIjnGBit3cTgxiNVNXGZbmuI6tF9U2pmgXAuDVaIXjiasj0lBRYJCxRiK2ltJQng2qZV8NZfq4yFUrqKyjrKylKXm4hiXFeOqCl5Neq2KYbNciwhmpg7xhhYH4hHjtZ/M5ASQeNSctCMG/dNqWWgl4osujnHAq2A2I8qFzZSCSb21Qsg8E5SeEhVuwScvlJ0J2DBWQcOF1TaMYdLXVvDS8nCqSkpryH0Wxo9jXJbkeUaeNZ52IlIrwWBy8ZC48QnnTAjtV4qtPdBc8J7zvmkDYwwmzxplb/BYqwdFS4MdGdEYsgxQK4IwDuu6hHf4GBotHjXjEcmZqYlOHE+6eHoQyIzmzMI1bqdtAtxWsvm6jCCUuEKCiKsdD9z3ce644w56/T7OOkajMXjBVU4tTLyv8y7hVdHXKCqD0iN4udUjzcS+jXnzdDHLQ24fHxSxBC8avVetKpq/0cSHwVIxLmSROdG/VUnfhEX0VJV6uTWbChUBRYVphBdL5SqywnDk6GGWV5a49baTTU6mrS02tzYYj8eBea342Mc+xp++d0vrZIQiz1k5tMLRI0dZWlrhE17yyXzSJ30ag61NVlfPcWH1HBfOn+X8hbN8/MH7Obd6mq3BBpLpypNlGsqVzCHi8E6ZEvXMskpaxYSwa2X4LlBmSmmO93GKeDa2thC3VXvoAIzHFeV4iyzL6XV7jCr9nk6nQ1HkVNWIwWAwMUfVK0z7RpVMGkqx6BQ4V2Gt5iRSSxeLtWMAyrEjKzoYU2Ck4MiRGzhy+Bidost4NGZra5PIYHofvLvGlebXK8cMB5tcuHiObk/pRDkesznYxFpLf6FPv38Lx44cpdvt8shjj4VQpzrmMpPT6/fxCKPRiOFoGDwprXotZhn9xR6LSwt0ig7e+WBUMWbl0BK33HoTVTnm0OFlttZLqrKk0+3y0Y9+NITCK1nf2KRyjs2tTSqrm4mYo6+mSrJ9QyvoRigq1iNfY23FYGuDtYurnD17mnNnnqQwFre8TLfIySXDjivKkYaR6PcWGYzW8U777/DhIwyGW4Cj2y1YWl5keXmJLL+JG244wfLyMqtnzvHAAw9w7NgRFhcX6S/06PW7OFtx880nueGGG3j66dM8feopzl84x8rqMsePH2dtY53Hnnic8XjEwkIP5xxbW1ucXz3P4cNH6PX6WFcxGG1RliO8d2SZ4HyJJrs1asIRl/t6oxlWTWnWlesR+xWCbRtT0UinVdYsa8R2stXd8lXonmJ7WZOb++b6NgVWa+N3KZgtFJaZ99Rr/4x3tjels9pk+r7d3rMbDkKgKTXj7rft6yRKr8OckXpvuLOgb5tlqtDih0PkhBnj6nLQtnrdi5JJaxL58HA+1nCKd9ttXE0LSebeH/cw8c/WpnbbrbEecz7FxJ2vxPsl/Dl/fmz7ffqF4eSEYHVqrM4a+7OU0PP+fi5jbr/v0I/t9pn3+9z3wQQtjvsLQ9gnRRoUBFsVY8Q7fFVy6syQJ59+DKRiod/HViPueuHzue2OW9jc1PX2vgce4PHHn+DixQtsrG+wtTHAji233nIrC/1Fer0+vUXD1uYW5VhzcJYGTGFYOrRCv7/A4SNHOXL4GGfOnOXC+fNcuHiR9a1NqtKSdXKyQsMllxrXSfd60ggTXQghVRQFlbPK27cEbNGAUn+fbO+4zs9tSt8IrOb0zuTtrbnQFnTVFNRvz9HTnjsT84TWmrZDDWZWe9v8Dh/D1BhqTk8QtW2KaT+7FaT1s9nV7K1u9Rsmicm2X3cb5+1v1T3YdqH09Fq0Nz5gPj8RKzeRZ3XOOjCx3wvJT7ffF6U/+8O0TC5BMRxuURQdYvg7sBjxGho/z1pzMkTa8Q6cxYjFUuGowl5QcywTPCqsKxvjcdekyHDB+FKNstWIUrcUoqlHvNX0I6GbrLca3UkJjHpQ4YInh1HVh23GsGt7B9koq9S9tgmyS0HIQ/g8IyprEy+ItbUctM6TJ6q8EgxSNsqCRtERxm04Yo6qWH91PLD1PR7wYd9J8DLRcGVT/KqACXLcKOdCIm9miIYDJlrS05IJRjogSu/bewYfeZI4H+qwhi0ZqVc5dx3yLyoOHBCUDnWOLWl2ztGrqSZIXtU10YMtok2rYx18XTnZ5pHU9pCaUDDFfGBBctxW5FlrsV4jZFnbVvI1iipVXk6W3UZUwInm+UHQ0PlBQK19o/b3GmoyOIkYa2qxWIymZAh8u2ynXyr/bK25U9diSXXen1hOzfRK/eyEfL7d1jX9a/aShLU/m9gjhiJd0zfiG99k3zpq5WqYB/HT2mPQBU1cY+weZfAeyTwxm8Ms7BIiT1oTI7i+tiakDhRH0DqFMGRBwRQqYOpNROMtU0+3esU2rc5pcimJgHeC80KeZ2S2CsnoweR5U64BfBby7ygh0rwigDfqoSSBhrmgMwwToIoCXAhCQq/eGq12kGjCZ11LiBWJSezYEI5HOaVQs/a/XvNMmaApNRoSrQjh3UxQxmjUozAQPYHoR629eh6ZWFnRck1rQESvpawOyWbqXEe0xq1HvzWGx9PJ6qico7KqRCqritJW+ntQMGnupRAWL7pWRuVPyGmBqCBPoidPNqlQaDNdMcxlXUpN1H090WJs1jbB0n2CflcWQr/V3lmiyiINEzjJzsTuiYH2PNrUGmRQiMqrZu2I49aH9tKFyjmHFeq2siFOq3UWE9yQvc9rIlozga7JXVZvXiNhDEdkthurDFPXQcOZaSPVql/vJ5RZ8UNnCXWmmdB60QzjSxUYrq5T3d7bWOlWq9a8RGBkQvvVusN4Tz1fmkW4+ZqwAHhlGJxcPRZwzwQee/QxnNUQcYuLi6wcOox3jeIwJuWMNHI7j639EWmBMolxwxcnfhx00vwpzXiAZvy0F2ojSuLbQpeoXDYhTKWnsVqOQ7mpV+s3D7VgSaJ7sOYPynsd+qbL8vJCmN+o8H8wYGNjg+FwyHA45Pz5VdbW1hiNRuoZMx7z9FOnOH3qLP3+EsvLRzh+7BiHD69w4sTN3HjiJFU5YnPzIrfdcSfnzp3h/MWznDn7NKdPP8m4GuKcegplmRosqPzPUFU+tGsWvkTD0rngyiXoeJWwAHtvGAyGZKJ516LSyXvPcDigKLp1zqV2/qXRaFR7lhnTnBdRC5uqquiE/FW9XhfBUZWWcfCKKasx1mnYAHUDNxjTod9b5vDho+R5gSeEpjSC8xax6pVpK8toOAq0viSzhvF4SLfXxTlLZSvGZQl4lhaXWOj3ueXmkwwGA6ytwnulZv5BLcTUw06TZjvfGED0+136/S6ZZIxH49DWwvLSIsePH+PihbMUecHy0hLLS4uU4xGnTz9NZUtMpkp8PKp0dOqh1DZumFx3W4w5MQyr1IPRGBO8RksGgw3OnT3NE489RDcXMvGYhUVwLjBohkxyFvqLbGx2KMshRgxLS4uU5RgxQqeTs7S0wB133Mb5C+fodXuU44rNzQ3W19c5fGRFhUDe1zzm4uICR48eYXNzE+8t4/GIixcv8OSTT7C5ucHZs2c0n5JTb7But8vjjz9Ov9+vn3VOx4J1JXkW6XrkY7LJyVv/vL436rMUN+3zO90fMa8FZ93bujpbkBOe863f94N5wrzpOrWvHeQaO0/wU2+G9vjcTkqMS6nvfgRSkbecC91RQy2obdbiaWXa3DG1S8irefWe9e2z2mrWONhNWD9ZxvycUrO+bbe6z6zf1N/Eze0OzxD5Zpl9T2uDObXTbz0067n6fh94mUYQsNto221sT9Sfg51vVzPmCXtqYdsUfZy1T9mRZoR/mlv8trKBWsFYz0vi1lnwUmFxOCeUzvPgw/djMseNJ07gHfQ6GUeOHuLwkUMcPXqE3kKfkydv4uy5VVbPnuP06TOUZcVTTz2NtY6z585y7OYFOr1uzcPF0OFZllEUXXr9RXJTsLy0wrnls/RPnyE/e5aNwZZyllajBJg8q7/LujZfL7XAqyVqgPaMkiizmd128dq2edBszXZo9dmFtq9MUJI9zo9wc6jH3tap+fRxDu3xk9d2wsTbpr6h3sV6v228Tdc30sqZLTBRXd/QoMlXz0TzXTu3rQ9l70yuZXazTNHw7Yq8udzPxPVtivcd8n3uzDfNv/96hnUVheQqAM48SAViEWPrvPcSQtC5KJuSCm8stQQmyBest1hfYX2JdeM6DUYMExcdYLwHI47SSr2vA107nbPULpQe3aO5ZgzUCiYX92LNPIrKhyi3iIob3VrmdXgxgMK7er/ceGsFhYIEBVOW17mYNCpSHHuNoXhUdkQBZKxjU19Vmk0ox2PjaygtIh/YnpUiQahfezbphs/4LMjxQtObvH5XLfOLfJbTVC2uznkTH4vCNV/3UVtGGmXHzRH2ez4og6a8tPT9If9VbAfaP0NbufYXtpaM1v2xrFiX+r/Ytr4dki/IdsXTVmZqm6shdf371OHCNzW6iOk8TlK3+cTfsa+EICsRjPM4EaSVr6hWQrVknVHmLNMMSKDdDf0itsw2Oq/D1E9WjYa3juNYh/4kfYtysUk+fNqgoKHnzbiO36OVa1pE6r4L7FlzrU2LY12FINsnOI+A2UGLtKOCCYKQvTWpvW9pGdH5ZUzMsxTCngWipnraxkMpTH9s3KDVAmkVdJlwtzGGIs9VG5+hltjGINJlOBpinaPTUWv+qtTcQ2pFHrw0xJBlGo4IMqyFEo/BYRE6WU5V58HRvEzqHWUoilxd5loMgmRGXeOcCzWeVEDV97UZhMjkhQGlY6rtBaCKM4KwISpkrFFPoEALwGkrmtBamajShJBrQjlPT55lIa9RCMeXqwa2Pf6jdVMYkmp04BpNcmXVU8k6Wx9VDIdnHVV93tWWVI5gsdBuESNBmRY8szIThJoh5mbIi0HN9It6yoSaRTfEehK1iVM9maKQmnociaiyST1/hFxMsN9uiJlz4EM+JgkeH86rsqa9gBgjmh8IVRx6UWJn0fYWr2O+so5xVZFVJbnNqbwnCy7F0V1Y5416ckUXyFrJFNo//nS+CUFZN6cmWdGRFyzxvFRkVu+JCqz2Rqrdfu1z25i9iPrdVchnNkXwWoQ9DnAJ4yjGQG0YgqAulGYRr8ddQ72aRakenyaE3fQhnOH1wzyunj3L2dNnOHToELfcegv3vPhFjIYVvV6PotsB7xkOh3S6GlLOxjYGJjeXzdLhfWPJ3Cj3Gjqu/Rl6MfY5zXyLRDsqD+o100emLzBtGJVht1bSaYFWXAhNCOEZx5V1JSbPWn9XVGWTpyfLMhYXF1lcXKzHX7fbxRhV5GxubrC6usoHP/ghPvzhD3HmzCqbW2OMGF720pdwzz13c8ftt3LkyHHuuvtuXvXJn0xZjVlfv8C73/MnvPtP38nZs6dZ37jI1tYamfFYXwHqQj0alvR6ndhqyuRCE1rQCCJZYHILnAjj8Zheb0E9w2JIUCMMhyOqSsPNdRc6dDqdEMatYjQcaliVPKfb7dLtali9qiopy7Hmu8o1F0C/3yczMBxWjMoRa2trDIZD7TfnybIc74TMdDh86DiHVo5QVRbnSoxk9PpdNjbXa7pprVXvKTRWd6dTgLd13aytaoukQ4dWWFlZZnl5iSeffIKNjXVV+AgYk2EdjMYlVWXD9zoISnFjIMtVwdTphNC2Y2V0O0XB0uISh5aXOXvmCbBw6803cuzY0ZAke4OiUD4h5hsryyoomHSgGtPkxWuzlBFxTBuT6RAO+cis1dVwNBpy6tTTZPmHWOgWdPOMjjFghYyMwhR0iy6Li8sUaz381hDvodvtUVVjOp0Fur0Oi4s9Xnj3XTz4oOCsZ21tjc3NjZAvLcd7x3CwRTkeN2tjyGVlrSqR1zfWuP/+++j0ugyHgzoc6Wg04siRI9x///0AvPKVn8Sdd96JyUpKO1YFYa7rgbMhlGkdRjjS/jiRNTTA9YppY4tp7KZoCqXUS/VuSpt6LZ2zrLXX2nn1nHduv0L//dwzrVTYSXkw69n9Yt572nXYa7n7US7FdbReV+Ouqyms/nVyIzn5nlmGPRPltzefU+XtWDs/e12dvdZOPjM9Tra9T6IR0XZecboO8+qzl++o90i+aeeGf2+enaWciwoCiM+2eJXmSVpijyB40DjzDe/j6/tqHte0rOM90F5BZHtdpttknvJvluLkekA7JOIsZVIjqPJNd8UNXavvJtHaM9SJ4bV/PJMzqolCocZZuQmBvEPfGhEwwTLdOoqi4CP3fZC8A51+xqHlw6xePIusGTKTU3Q63POiu3npy17CcDDi7NlV3vve9/HIQ4/w0MMP87H7Pka36PD8F97EXffczbHjx1laWibLMjWW8+pNLE44cvw4i0vLLC+vsLR8iIWFRZ4+c5q1zQ0GYzU0KvIisNkNzyJGJQHee0pbkUXevrUPaARELalWLQMQqEPyhDG7XZAx8ef2PpimWxOvaGRZu6xL7TnT7Eomr+1Ga+ajJYfZBfPm424K+ekydlL0t79z5vvrC75u/3ZR89ZkPe/wLYXNnulLa4lTWdNkZIlmYWOSxk7/PReT3kaTCjE/s3t8+73bvmd+n14vNHUessyTF0Knl9PpdugUGUUXTO4wuQ95X/RecRZflVhTqgTQhFzzBpy1VFRUboS1I0o3VmenIJuyLsjfUFmNF0PpRrS7SBVMk7KJGAEnntPcv+HvsD6rA1TDH+tKb2p6r4aBWWsuCQWVGtFLpsq1ifQcgslyzbdcy7FMK1VFiOxDNEz0kXAFHiB41rgQfaPOV61lNekf2pjcS4lI7VkCajxNyANVKxG8YKhCOwWDYkxI4RGeIRq+N22j24RGdhvlm1GWo9/QKHCa9Tiqe1yrj0I/eYezsV9aNLz1d+MppXVvPpbWM2qIH+vi6hBzfsIbTOmIC2k8Qt5wa2vFkg0yyVopVcsgaT0/uUZsk8z7ljLQa80mZGCo/DemZlEHAIJXkwS5q+ja3RonUb4Z5c6x5Jn8S/3Dh/6bGjOtfEez9ocS6hqjHswKO9o4MchEO4mva926v2m3mGdrYg0KyuHta26MSCaYTMVbJiiZ5mFHBVPemrDQdAgiYAweiyGrXxw9ZXJjVBESlQCeMOAEY+LGQJtOgjYqKhqicN8HAVeeZ7XyaGFhge6wQ1VZ+v0+RVFwfnWV8WgM3mGrCvICQYlOnnXYHIxZ6HURgcGoIhfB5U3HGMmwzlNZj0eVJxnU1thB/qqCWmN0Ia43lfEbNFRfQ0uaQW5MFLtbvEAWBDseRx40t8ZoTMPKga+iq2Ao3ylBMS2tZKh4ENbqkedtwa2DLAv6NXVjU0IsTR1DlJxINGIOJfXC0cltUWVg5YP1QiRJoW3UNz96J+n3iTHab4VBxIVxoW0jHrCBMEtsw7ZWPJK/wAbHiSJ1aNjWpG2HsQsJ00I4vCwotghjMjOioQKDdxdoWKh6s0LwNKoZIhc8vwKxjIQojlyvk9BZi9gKqQQZC3mnQ8dWSGU0ZxkeP9JcICbLMZl6sWmbN4uDs+olYCsb8h/ZFiFvtgTRuiHzHiMFFUJmWgv3xCJo2I1JFhxGGkJdM4NuknBnWY4TFeRKK9RPXKzbfaf/6vhwvlYZ1uu3A3wkoiJEp7f4NpPpWI9L1PWCl37CixkMBtx333387u+9lVe84hUcOXwMj6fT63DHHXdw++23432FSMZiv4sDyrJUAbkP+ZEI8w2YZSkmIvVCHhkFDbEZEDpCvDJf0qI7tXWN0U335ILfPDxfCCiBrrmahOj9LoxvHRZ5nk8oxmKOKOcsNoQPzLIMIxnLS4c5fOgYd73gHj7/876Q0XjE5tYWTzzxBI889DAPfPw+3vmuP2b94hrdbofjNxzj+A3HOHnzjbzoRS/nsz/nC7DOsrZ2gYcfepCPfORDPPTwg5w69TSrZ8+itKEKLvNelUlZ9HeEzHQoih6dokue9zHSwXvNl1QUBUVRkHd6jMYlW6MhMha8Mdy0fAOj0ZCyLDFGWFpYRLx6KuUh987a2hobG2s4X4VQegWVq8Co5+TFtTXtx1AXTeqqrHd/4RBHjtzIzSdvx0iH0XiEiCXPMrwvyXNqz5xu8Iza3BxSlmPGuWFtbZVDRxZx1jIej1m7uAbes7S4yNbWFu948OP8/u//PqdOPc14NAj9l1OWJcNRSVVVjMsxDoe1JUWe0e90OXz0GL1+jhgbQhyC95YjR47Q63UZDgZsrq9jGPNo+RgbayPOnblAJ8+Cvk5Xh1Fl2RqOqWyM5a3jK268vfc1c9VGfU0MWZ7jbBUY8IpxOeTC+XMMBgOq8ZDNtQu84hWvJpcOF86fpywr+v1FCukgFGTSxVnDxQvrDAZD7nrBHRw5ssJwtMm73/0uHnzg47z85S/nzjtvZ3mpS3+hy+GVFTY3Nzl1+jRiPAuLPYwRLl68yAMP3E+em6Bg7JKZnKXlZYbDIRsbG2xubaknYWa4cHGNj3/844zHY573/Nvp9Y1uLIuMvAPD4RgxKtTathPau/zlusNeBOQHocjZ9oxsD5231/fMVRo8g9hZCHYw5e37G/12RfPOPMUu7T1Vlv4xuYmcNujRakxu5K8U2oqY/SkT3Wzp59R9+1Gu7FS/5tnIUXsyMXMFtTPLqoUs6D6tfsbT7JilFieY1kCY6LJGQtDsc4WGf65zFuwP85WMCdv6t7UfnJxb0w/Gk9P9Ia3zHiEjWmNryNiw6w5769xkuKrCdlydV9f6MeOh4wMf/gDnL67yWZ95L14clVXDjXE14uLaebrdHouLSxy94RBf8MWfy3hYcubMGZ566ikefvhhPvq+P+UD7/8QK8uHuPHGm7jr7hfyok94KZ1uHxxU4xJvhP7SEotLK9x48iTHbjiB+/CHKM6fZ3MwYFSOubB2UcPlFUKRdyjLksxJHaKnyILoxij/bX17DsedVsYsNCqm6Ya+zPF6mfThYHHlmZxZxiD1+al79t8C+6l7kKnti07FzVczH32s57b5GfeAeyt/uh7TgtZLwyyB/u7vvh6wcKhf52Pt9jrkuVEjwSg9FhfC3Gtube9KXDbChfBrPvM4Y7F2RGWHVK7UexjXhqzOO0qv8kEARDDkVFWle3oaGVXMp9PQYA/W1fYDuidsQptFj5bZvFMYjnUOp6xWjOfkKgcwekREr6bMRDmCrg8xhYaEPPa1DLOF9lyoQwM6iw/5e6KMtXayqD2YYrNMlqe5rdv517VOUYGmRrR5XYbxhowMH64ZA95ppJhoCGNRGR0hTYnz1UT9299QezBZN3FP2wDE01bezFYeq9LF1x0Sw+u1FX5R2O+dx1FtK8d6W6eZAXBYPdfKzRQdP+I90UjfhSgu1loq15QzofSa+O6o3FJZbVRKNYqqoFz0PiTkCcuX1chrLveafiWOyVaqpGhST1AyxbMTbdX+9hlL0YSxoTRy7GhEVRvth2ejHmWb8klkqu/ifIm9IhPnfZBdh4frH81XNJFmJuehrftZBLLck3d03+rNfJq7s4LJZEH4HBo1KCRMPS91UmvuFT1EqBVLRloLa+gLg4Zu806VExorUloTUAWYRZZTFHkgHkJVlpTjMf1ej263x9LSohK3csy4MwqDSSerSIZzHuuFXrdL5cFVam2ujGZVT5bMqHth7OTKWsSockak6YtY/6gAI7xjmjkzUdCFr0PDSYi1qe/x6i2Drz2+skzbIMOo1bFrTRKrwl6ctNrSQKY5r4wRxDj1sjJavvOeTgZZTnNPHq1j62FEhuCyZgHR3EohPF7wZqqCx1Ll1JOpDH/bVmI2h9NBJioANFnUchowjpg3ygOSB+28V+IRFS21fjjQvTrpHM2P6L1UT7aophS1UFQvOA0nkAelUh4n7JTHXV2hWLJS0OA91lgAuECkLKrQomXFYYBRVelkyDOyckxedqjEU1hLx+qYtB6M9WSZI8saDXwdazTE63ZWPQh81cRObb5RJuLqx3BaOFczXtPCE4krev13QzTURTnmzTH1wqEWBKKMgVXrFxMFt6LKPus9pqWEam/MWy9WIh7HMdF9NYR4CLy5w4fnWhQc0PCaXDe48aZjrK6ucvTYMidvOs5osMkFLE8+/RRPP/0UGxsbeBGGowHLK0vcccedvOpTPpmXvOQTOHr0GAv9RRwSchVpHqFc1BuzLDVvkDIzWeMCjJDnQblqVYHSeKRKzdRAUF56UYsmr2HVInNksrxe6CLj2PZSgoae6X0Nc2lMK5+fV2Y4hjg14WdmNNyakZysKHAObOXrsWstlGWFMQWdDmAcL7jreTzvzjvUA6eqqMqKzc1NHnr4IR5+5BHe/e73srb2c9xw4wlecNcLuOfuu3nxi1/EPXe/TJUj4xHrF9f4gz/8A971rv/DmTNPMRwO6PW6WHFkpkuRZxjTwfucY8dPYitYX9ukyDtKo73WLxpIdDpF+Fvncb/foxyVlKMxWaZtNx6P2RoMWF9fYzQs1SKtu0inU9DtdBgMhkGBn5PlwpEjR1hYXGB9ax03qlSplXU5cvg4x46eYKG/wtGjxxgOh2yub7CxsY4NSpV+v0e/16fb61LZkuFwC8aeGAzwwsXzeOcZjUacv3Ce5YVFBgM4deop3v/+9/HAA/cxHA4DTVblVllZrPXBy5Wa/GR5RrffZXGhy9Jij3I8wnpHr5szKCvyPGc8GnHxwgWwsHxoibOnz9LJe7zqiz6J3/6d32Q4GnHo8DLHTxxj7eIGed7DmLzFd02KTfBew+TWNNQEoVGlXs4hx6MIysCOS4bOU5Yj7rtvwNbGJkVWcM8LP4HVc6usb5xnMBrQ6S/QKXrkRYknZ2NjSJ53ALj9tlv5s5/x6WysX+Cxhx/i/Lmz9LsdVlb69Lpdzpw5w7lzZ1k9fw7nK+776Md47JFHyfOCxx57nOM3nAhz0jIuLYNBziOPPMLyygpHjh7hyaef4uLFi/S7qhTsdrucP3+OwcixsbmmofLGI/IiJrONXx8NO3zgZYL1N9vXiecy5gnL92KxPFP47WMo6TAKZfK+bRs2H3ih9iskemprWeKnbAt3EZrMEuLtSUg/QyExT1k1r7x5ZbSvT1sZTj8/XxkzHzsJLttlRNFzeNkUl9F+pkl4vJMgTEI5O9VzVltGY45t4fF8Xercb9gJl6r0qccnzcZx5vVYjxnltdd2g9SGWI3hCHOfbRo5bqWVv65DnIjWKZMQIrv9XqSmWXUpJpSiAfaJ1r/N/j/mndOnTGaIRmWx1HY4W48LVtEqcFBWPBhzSVOP5gVN7gIRiF61jRYsYVcEOcP0uYiJYeRRz6Bt41Yoq7IOMRyjZXjraiPEwmSMxVOWNhgkBiv4zLI1GPH4E0/xB3/4R3zyqz9ZhV5VhXMjVe6UnnJtzPrGBbI8p1N0OHJ8mZtuOcYrX/0yhn/hczh16hSPP/Y4jz/+BO991/t4z7vex2233c6tt97G7XfeweEjh3EOqqqi8nDitpP8uZMneOzRx3jsscd44okn6GQ5ZVUxdmPGtqSX90A8VRB2mkwo7RiTGyTT7/JQK8xmr+eRU4qW8b4+O33/NA2bhUbBG2ex1AKxaYHbNE2YmBbTxc8hXfPo2va1XAuJcqt2i8x4eu67YtnT7534fYd61M9tI4j7xAwBZVPHJjrEvG+oueMZt00ol6bb1k9Xebswdda7vN9+z+S7Z3zM9Kv95PjZDdOC9esJ3YWCvGswRZj/xuMkKB3E4dD8Shgffi9BoiGzDV4lDl9UapOegR15XFlRuiqExlPZX1nF3OtqYGyrIDcMfK1GKvIhF1Mrb44NHtJB6eWC3MqjUXN8IBJiJITdD7LluCbHd4Y1VQBxGgIvRiMyqMNADJkXzytdCjKFILvVedkOOycTYzDyBhqirQqh6ho5dVVp/mLXNkCZQUqyLA+G71GmkWu+epG6DXNT1HQiywx5lgc5eJCJC4EXkW30xGslts3fRrkU+ZlpLyC/bc6owmxGdK7W7/Ge2N9R6RUV6T7KDb3yYdDIcqOCR50ZQm6nup6OysfIWC6MCxfGpyqiqhCuXz3K7LZwevO+r90G8Vvjl0lYsEIzIqJ8oLUxXCF16o6awfXgzWQo7aYdpW7Lpv3akZyo93stQfZk39XjscXnet/IpoPMtL13MsYE2Vtr7appbmv9CfK7Wp8Rc8hE3rim3dNrmfYkBkxmyHP9Vi1kPr3dUcEUQ6poF6hQzGRROBn8FaJrbc10a4Nqv6jSRJVPIfydGEQ0dptzHmd9zYFE5VIMuSfSbBA02XntOElmDIePHsNXI7a2VKO8uHyI1dWLNbEyJqPT7TEejrBhArrK4kzjWWVdFcLSNMQjaj3jZ7XzxDSeG6YeRHFA5VlwpgueXFlQ7oQRSSYh0ahp7T+8tqdBO97V5kU6GHwmeKv1qfc23uAy27iqKc0MzKV+W14Y8iKrvUyMxhwL3imEHFBhYnndf6nyIMRhnZq4qrBzrVisYaCjVugxX5EqvHyt7EJQBWRsQx+ssLyoN0zoCE3C1xrNE2Pcbzs1NfxRFjfEhIzjXuKz6kbeJjb1mI1t3ZrAxEWtXZ2YpDDOB+c0lJ8xmhDOWkZVRT4eY6NmHt34WqeWDMZlIaxdULyEhaGqSh2XVr3wfGX1HdFKoLWNmhCeTAnwp9ukzdg3cymcRxWu0YoifqiIYMXG/IO1wKWZG8pA2thmWrjWNxKqGL4iLipNE9MaNXHZqX+vrb1atOR6welTT2KyjMXFPkePHqKqxpSVZzzeYjDYYHX1DJuDLdbWLyLG8OhjD/PYE4/wvvf9KUePHmdl5RDLK4dYXl5BxFDkHfr9Zbrdbu39UuQdjInWMpHeBUaGxls1C8xNpMXQbGYkJNScWCzrxVAmGJS5gsNIO9pzsb4Unp9gAnyrrkbzwMUkm3Ej6YHguVrkBZ1CgiAq1M/DYDCk0+1x/PgJbr/9Dp588kkGwwGbG0M+/KGP8cTjT3H06GFWVlZYWV5meWmJV37Sp3DH7Tdx+sxTnDlzitXVczx96km2NrcYj0rK0tLtLLK4sMLGxoDRqCLP+5RVRZbnRHdmEzw7jcnp9XosLi6SZxmVlHjnqLyl29X8TEWnU4fW7Pf7FB0NjVeHgQ0eYHmuCoYqMBZGcsqxY/nIIkcOH+fwoaNB0KJ5mZz3OGsZjUZ4Z+n1uiwuLQDCeDxq1jM8w60hK4eX6neeO3eO0daAfr/LxsYGZVkyHo8BH1y3Tc1ENRsC7b88z+h2u/T7PTqdjCwDXxDWX/2WhV6XTIRyXLKwsMjNJ29mtKV9PB6PcW5Mt1to2L7KQ8eQ550Q5rStvGwzkbqYNkPPY7IMGzzSxId8iKgQczweB48ygzFjzp07yxNPPMbRw8c4e+40g+EmXkp6/QVEcpaXD9PvL7G6epEi73DH7Xdw2623cmhlmY21c5TjIaPhgNFgQNnL6HY6bBgoilzDAa4sc8MNxxkORwwGA4bDAcvLS2F+qQKoCmO9KAp6/T7OOYbDIb1en8XFJYwRrLWcv3Cera1NFZjlJigRm7BQ2gjKyUzQ7CkhxPWAtlJkP9hmUNFei2kx2u2N2/Q7d5J9SBCYH7BQum3l1j4XMUvp08b0d89Szu0khJvGtPBuco2ZX4955ewZU30y8Y4ZsrO4Du1lnMxqz+3tEZn+aT6u6e55yri2cdGs67OuzeqPbeW35BWzym3aZ6rPp6/75nyLWyUajsQNcbuE7U0/1f/td0x8a9wJ1DvomkcWE8OjxQgHod18E/Y8i+1f88wNTWwbaQXuonmnMDV4mg9v+KEZ168f0tpCez7Mu2f7PJlxefLUtsL8jN9CyBiicWHYCIXhYr1T4xIKxAhFZrCV1USjHkbDMY8+8jg3nTjJjTeeoNMp6nyP1qrMoAQYe6puF6SirHr0ewscOXqMxaVljh27gVtvvZ1Tp07x2GOPMRoMePihBzl77gw33nySm07eTH9hgaynwsVOnnPTyRvp9bosLy3yyEOPMNzaYlAaxGXgPZWrNJuiqDI3zwrll62v8yLMGmwN7z49h6WeSfE+3/p9nnHALFrSLnVq8x7unXXfHPhIC5q5Nc8gZNbYcdMUZXrezihnsq6T3zxLybZXA4x4PtuljLlzILAV++UGGj5YC/G1XCO+b0bdfWueTJU1v+5RniBNH8+bohNWNa2PEvZAI7ePqQRFlDHWe0PnsS7IBCPDKehAynRdzIzBG6sh0ZzFY8GHiDYSUlmMLd5XeEJUIwn5mYJySJxgK09ZlS25YhSwqzwrRh0JzBQSwpm6mJMJXyu5ogxBw9oZ9Y7wBC+dIIeiiXiVWTXWjOHxVARpWl5Nwcg1PoPKboneQOHvQElCyp3WvKnlha2oPWHcOxtzBMV7wteEnxGxLlF2oaFOg1cTEuqZ18ojM6Fg0rqpjDd6MJnm9xbvVdPm1t/et5U47VB6zR498oAe1Hje2dY3hCg24Vu8Z+LZevxNhej01lFrN7xvFEzEfFYhLB40CqWYcqVVx+g9ph5MNvw9maeprTxq5A+uOTdBt6bpR+PZFPlg59F8TNZrACAR8G3jOf//s/fnT7YkWX4f9nH3WO6a69vr1dpd1V09+wxmMCBGBhgGFEGaySDJKOk3/Qcy6d+iSIqCkRANIiQABDAAZutZMNPTXVvX8vaX610jwhf9cNwj4t68me9Vd8ModI13Z73Me2Px8HA/fs73e5ZWeG5fLbpnX90Lkuy/sg+pa0TaK+Rc3Kf7e2D3ezzfp/2zszt9qi/l0vmg45oKkRNRMVRrKzFD7xkDqIA2YFKWtRu6e3MNpvb5O7BOni8xokkx7wZFoKYYmaOEUNJx4aZFLQy1FsYSFxdvjH5KC0v3FaJAlsWIIR/w1uKtY1CWHB7sUxaGum64c+c2Te2o6gaQFDhFORBAsnH4IIyytY3ciy5dFHQgYALPddwDfZq+ig1r8IphGLpxatPXmfgCg477tzy/D17ArV4BMx1AuhKvEyOXfIxISGSIQuG0sKvtT6q3pKKQzRVZIYIMlTahaNzGzSAExPMvKLG6nESpdKSS71hh0ucpgse3YyKGnRZ2M9aSajc0YScIrcdU6CaWEvBYNpJE1tEuiHYLamf5tr9azwiNglAp2hpgqCTUYja/noLT3wc6IcWGQN782RLiQgWjnEN7g3YebS26qvHBRBY+enkkgskYjPYyH6KCJXXELLgeweR8rLMl9zbGtMdKf3uUZ/tInRfBNpCiotK4bcDrOFfaudH7XinVhbI6Fwe2t8H2lM4k4NqNKZFZIbTkbLuOenrlxr8t2HBVaH4T2uPHX3Hr1jFGw3g04HI+k1pqcX0rHXC+pq7XVHXF5eycp8+e8Fc//CHT6R57e/sc37rDnTt3BYwejNnfO+b4+JijoyP2pvtMJlOmJnn9yBgbo6VmTyZrWatUn6xXbFLHnPmhCzPf9AwBCBEYJ/6VWmhtiXbzi4pHCKJg6HbBEpWDzlMmyR6lhKxJxL54a6hWmdJRxgRSPbVUf6ZTModDxZtvvMnDh2/ivef58xc8evKYx48f8ezZM374wx8xHA6ZTibs7+9z585t3rj/gO9979f4Vv1dzs6EXPrk4x/x/Plzzs/Omc8WTPcOybKSECpsJJDTv21RUUVMH2ooipzhcEBwyRtMxrEocgaDQYwI01KzyEgaAKO7CMakWBmjMZmRqEcfhGBygclkn739Q0bjKcEr6srRxLpIznmqdYXRUqfPGM1yuWI+n2Eb8STzznNxfsHdN26jtMZay/n5OfPLSw7392mahuFw2DqCpEp3tr+v0NmreZ4zHJYMRwPyXBNCgzFApnCNRGuOhyOpu+gck8mEo4MjzvZn5HnJer1kMCwpygJjZK/f29/DmLxViPo2cl9O9yVe51jQzTWJpo65n2NkV5blGONZrha8PHnJk6ePeHn6nMbW5IVmejhC6Yxbh0eUgz2ePT1hMBjz7jvvcffOXYJ3vHj2FNvUGCSa1jmL1pK6YjqdMBoO2d/b4+HDN3j+/IWk5bMNo+EQH4Q8HA7HnF9cMhwOUUrRNLaNPhwOh4xGI7lmmXH6fM66WqONOOPU9Rqliph2TXVyNym6rwUA/vy2bs/afPjrSJib2iuBt97e1uH1u4Gtr/sqriOKXqfvNwFeX5u8uaZvfXBw11hvv4PrgMRdoN9P0q57quQQc9Mx111FltPVsdsFzG2iha2GtnMutqe8BlnXP+4mMvF12xVSUf4gETN9XfC1rh71zz6h19mWO+7d0yUFmNp5wf5JKJXIo5QytnftvsKPRFEnky60x8pO5nfY/btI1Lavf912tNdMdZgwsq01sVs+bn+wa61uyhSFOD1pbWKpg5jlJIBCvDONiraVF30XB5fnl3z6yWeMRyOOj48YDYesVkuxD9t6uQ6lgkQMLwyDwRA1LRmNRtx7cJ8HDx7w7eW3+OTjT/jx5z/m+csXPHv6hNOLM9Z1xfHt2+wdHDAoSzKdsXewx2QyZn86oVnXnJ2cYhZzWK9kTderFj/xwZObgsZVHUDWB/mvgFnQB/jb+bx1iN8pZzcttg3dvrtie87PpCXgsydLuzmhOuwssMlb9C/RQaM7v9+43pXbXz8Przv2pvP7z5E+v2kf29iLt3qY5LvawFVu6FeAPkiavrtWB7nmFW48U39/SfNuAx/pHZIAAPrPztb5YddroH9U+9s1+sSrxvTntQXflVpwyWlYd/tfSzxHcEypgPEaH3Ea5QIoj8JLNiQVna3zZIN7gnYE7XDKYmMNJQAXU5d551t8M4QQ6/YKKWCtQ7BRWkwukd60uKJF9KAUYCA1noRo6OzKVPNZKUUWQPuOcAFAqTY1Xkqbp1VXjD6d2/105wZF6wwfhU9vkDfnWpeeLfTw1JRNqLuGNpFYUrpHepn2OdqUeZE8MlocSU2McpKMX7T9lOCFLDoBJ3Kt50AWkooZCaaEa4bQRh51JFHMkpRqDfkewdN77rD1/MEnwZsO6VIdJ/JJor47nDKEFNAg5FJLIoWYASv9vUUw+RitdJVY6o5L1+9+OtwofUf/taA29PCkbqY6TN4FyezlICQ9N83XpFO2MEIci1jr46rOn7Dubk61mFb6np4t1JPl7bxu18pWC1eJJug9Wuh+0voROYGsRxXA9LoXcXvF5vvd2P+D3EAb4SuMAEDXthsJJhO9rzc38M4Y0pHNE9YzAXpS88ZojVGKzGT08EPwQdjzINEQKn4WYkiPUiqCcIUA+CqmeVMa5R1GyVSuV2sef/WI733vXQiOk5Nzjm8fc+/eAx49fsaLkzNZiFnO4dExq+WSi7Nz3nn7Lb76/Md4Z2URs+kd6JyTHJdZ1hIWaXAT2SLvtqfhpLEP6Y1GkglJQycpwRRGiUKrNEgKhhAjYYT8knyQck9hr7VEMTktkz2uBI2KoHMv6itL6c5U+7fKY/i/TsXxlIy1j2PuA8oFfATdMp+1BdsDSBBj6BFs7XNvTAfQGmNiZFZLrIWk17TjmISwS3WY0vlKYeMaVaE/sdPQhvgikuWXDMeewqNULIIaojdAb3X1hQA9JapdfHLPEMekn9vT+RDrUUWhkI4NQrLhPco5lG2gVtEIz1qCCaUwzneeCroRAwcZD2c93jpUkM3cWYv3HpMO6K1trdKGHNOa9JJpJwAgpRyUToqXRCsH+69NJU+Rbv6HILXAJPOeFk9QpbBKvOR1K+tiqsmeQqkAl+SP6t5N2/200bElL1ugL26KvZf/TVIUV6sFL144qqqOEQoDjo+PefbsGavVEuekro02mvF4zGg8Ih8MGA7G5EXOuq757LPP+NGPPkLIh5yimPDwjTd4++23uf/gPm88eIN3332Xe/fuUZYlWgtZk95/f7z7NcDadewll691ViIkiMWHjZznopeJLMerhQjD1j2UUmQ6a+8nJmEgzzOEUOqURkKI+XilvpwuC+l3kHDmdG8fHM5nGxGRISBKg7NdXmXnuHXrNg/eeAPrfo2mqbHW8uirL/jhD3/IZ599xr/4F/+c9XLFW2+9xXc//A6/8Avf4+//vf+Cv//3/jNOz0559uw5P/7x55y8PGd+saKuHGUxROuMIi/J80KimIzGOod1Um/Je0u1WjKfL6NTg8GYAucsxhjyPCMvB8wuFywWC8Z6RFEOMVkmqeSs9NVaS3Ik8l7kzng04MH9NxmWY4JXeKc4OzsHPNW6ZrWqWK9WDAYFs9kly+Wc8/Nzzs7O2gKbS9Z88slnPHzvDRSBy8sLqQF0OWNQFkzGI+7du9fWyvKxMGYrN0NXz04rGA0lYms8HlOUivVqTllkZEZT46mqir39PYbDEWDZn+wzu5xT5CVHx7e4c+c2v/zLv8jT589YryuUUown00gwxT2hZ4ioEOvZBK7sV977thgsIch4rpc0tRD8SimGwxHeexpbMV/O+PzR55ycnOKcpSwzsoEiK4Z8+4Pv4X3OP/7H/1+Oj+5w9859BoMhJ6cn/PN/9s+4e+cOd+7c4s6dW6zqFbPLS3KTMdg/wBjDcjlnOp1yenpGXdcsFgv5fL7g+HjChx9+yMnpGS9fvuSrR485//EXsS7THkUxkAi2wYB794756vEPsU0TjQ1RyotCaqXZZmtDjZI4yeK+ovvz3vrGZf+znxYYu270ZG/c4T2urgI+1177a4Jcu45/HeJmV79uut+r+rUNqr3quO12k3f5qzzP22vs+FvRTye8qae8ugVC2OX8chVI3EiTkYzH1vK7pn+997LLQ/HrtF3vaPP6X+9aLbnUv15felwHlrJhKfWO733f75f8AoD3bpMo6h3bkVSpkx7vpR6vAJY98Kj9T2tOC7CJOLdZn0CmhBwYUF2dge33ses974oy+6a21137/ffRfqL63wHRDr2KXMe50LuFQqEz06Zqbj3fvayhQTng+OiIy7Nzgs5orKOpagpdgkrp/QMBw8d/9TGZMnzvex/yC7/wPS5mMxarOXVTY70ly3ISqGqtZzZbMDv7mEE5YG8yZX9vj/3pHr/zd/82v7H+dWaXM549e8Z//4//B/75P/v/MJqMefOtt/nN3/wt3n7zbZq6xobAnTt3+Dt/54gf/MUP+OzHX1A/fc5oNOJidkHVrLC+kV5aMDpHK09QvvMq19sgU5IfcRDVq99PO997ttyVf9vrKFKx6p+G+P96Z0b9Tm32LHZejoiYgeAHvt2Lu+/kOruGYFvm7nQW4HXmd69/W/v964xVkn19Ozp9HiIsopS+tn/b17qxj308ZOPzq393H21K9ivg6tUtY6svSWa6Foe5emyvf1v32KW/fNPaarmWEgtFjg/RGZ8M42OGo3wzi5RSkslB6hQ5AZY9BKKDs3FQAnXc35SQAN5bvG5wysbaOdDYBlsngimmu23JAd/a5aEXGpzIRB1rIPRJDyABoIDuyPy2Ho6O5IwEnHbrVLVyLhE6iUzq12eSpltSByDVZAo64CJGaHZJo2gwddiI9KsF7nsZreQxtrNymUgqpXvLZxLllIioWFeqzX4lOLzWnTxTSgIhhIgyGxll0lj15csm+XL1J/VzW4ZsrK3QK2NC2JQTvcNagsjZNstVd06XNtGFAPiY/aR3XvvjW4zDORfLt4TWtu0TSR3u4Emkmg99Mo2W/PIxmE4gcOmPQgJ+lBIcRSnwjcdHMrbdKVqir1+6Kz1jzJAWOgSz04w7x8LQ5ugOSTy2RwdCW16I3jWSjZ7QVqUUmUplRjYd/TtysKdXxWMEP4v4f9jcQ1LWL5KTdsKVWj4jrdu4SURiSit1o977ihR525tsu8ZiLksBGAVgkpestdT1yIyWnyyRD6rNhQw6hjHH4QwuPkZn9DRNI2yu6l6TNhIq3jSWZt2Q5zmXZ6cc3TrknXfeZL6sWK+XvPPO23zr/Q94+vQlpydn+ABFOeDw1jFn5+dkZUFTeRpryYyhadY459Fakec5GtM+i4qMTyCxpzIIWit2NR8CKgma+AJJSgApzFL+NhhcpC7wEqKKBHe1BFU79lpefhKaJtetwtQRS9IvnWeolJs5kyiFoBQG0wqG4CHYgLcO7ZVEMjUCsAUlaQLF+8BiraPxnsYJ0dKlyIvSNQSiE4QIIQU43cvvKPd0IYY4hqgZtuEtcZH4EAHTTcVO5mLcc9pJ3h2TFn33gdSnMlqj4s7mQwDnCd4SjCFLALaC0Mtd2THrIXo0bK6HTmhKX5X3YJ2MmUpZFlwsYOfxBHRj29BYbTIymVQEH2uVWCeAqA/SP+clfV2Uhmk9pT26Zbs3NrsuwqkzgENvc9sELpSCTMXUkDGCqdvfFVLXKgBZVBA60LiLIElKX7y/TNFN5b2HAvje+0wFzdO9Sc//mgr7z1u7d+9BTH9VYXSBJ3BxPuNytmC1qpjPlqxXFc4GsjKjLEdSKw5NWQyZTPfY3z/gu9/9Hh+8/x3uP3iDo+NbjEajWHcpruXaUjdCVqXw8C6CU23MlX4LIZBr0+UBBsAJ0WTjPNTdvOzm2TZ4sPm3s6olKtLx1lU9b5XQpetTuo0Iku/iXNWaTCdPpVwEaJIpIaRgQ+oiplRD5EHd1C3hYIwooe+//z7vv/8+3nuq1YqPP/6YP/vTH/BXf/kp//pf/j7aBP727/w2H3zwbe7fv8/f/TsfMBpO+eKLL3ny6ClPnzzl6dOnzOfnnJ+fs1qX3Llzi9FowHB4QJbl5HlBXdcil4PUj6pr8YYtyxKFwtYNs9kMnSmyQjMaDYR4NmZjLVfVGq11TH845Nbt+4zHE6x1+FAzKMesVgsybajWFRcXF9TVktVqwcnJC4jvKS8MdtnE8+DZsxfYxiKeSIG9vT0+//QzDg/2yDPDaDTizp07PHr0iNWqomk8dSMkTyKetc4oS8Pe/j6j0VCIa2vJi0w85QIMBgVaLxiWJaPBAEKD1hnHx7dpakknpw1MpiOaRxUXlxconfPheMp0eshw/oxldU7TWJIPQX+G6QRCxDETojzqHSrNpU6Oaq1xwUu9LKO5mJ2zXC6ZLeYoBePxiNv3jkEZnjw94fx8xScff8Hf/bu/i9KG1XIFvmJ/b8JydslqMUMFz63jY4L3PHnyCK01+zESbLlcxrR8hv39Q5rGUq1rTk7O+PijT3DBM5svmS+WzOdzdGZ4+PAhd+/e5ejokOl0zOHhAQRPY2uCqgnKorOMoGTP3RiR3q+h/e6bZ5T32zY583XAnxbMYic28hOTA/8h2ranG7w+QHbdnvC6JNP2db7OPv/6YPXrN6mbBXRuL10f2f0u09GbiaU226uf7ycb768zbv05fN38Uyl1N1fTJ17X63Zfv6GfV/vSAYPJEax/zZ3nbIHgr9sk7XM/pYsXw6ntQLRDrEdnmdRHiAWFbdQRAgk9CFszYvu51LU6zl+312+7CGOJyuiBMqFLVKhuXJ1yPds0FJnk4PUxStw6y3Q85vDwkDfffAt75z4vX5xyfn6BXVasFmtUkPqTJnrR7w2nPPrsES8fv+Qv//QH/O5/+rs8vPsWAVjVa87OT7G2kbXhxYFJqYD1NWezE85mL1FaszeZcnBwyGQ84Vvvv8v/9f/2f+H09JTPf/wFH/3wI/7Rf/V/5+DgiO9890Peffddbt++i1KKX/yVX+Thm2/z6IsnfP/P/pTxcExZltS2YrGciee39eKca1Sr/KitLT+NS59sVexeX5qOfA+k5OWvfImvPuam0+Mr3eiy2nzPQrTs1lVe7+7XVd/7ydtNV9t21FDy4X8A+7aPg/Sv3xsrpXoy8Zr739CtvqzbJJdet2/XS/qNDiSw7DXbNxUr2G7rxRpXO1wZ8E7BQDZdlUcndW1AS00cryLeaIREUcagdC7lHpQjaC8RTd6TNYZcaYLxeCOywHiNTcNupZ5T0C7WKnJ462iaBh8Jfoikh1O9mrwdTgVcCWAQfLiLWpK5EUurxBZCIDcB0Btpp1sSii54YOM839eJOkIq9cOpzb1IkeDGLjrHu362pX60TeimceqLpiWOVAQxtTLpyqgY2SRZSgwKwWv7uJ3WsQ6TShmyTEswieO62YHVX9VN+lhh+ls+6+yCbV1mc43FCCTvI88QrhybxmKbdAj0opbonOQTdiSYot2YMy7WpHdOIphcULEeoicFtHQlW3xLPHVp+ELX5/Zzh8eDimPREzu+rdfs0CisgwjWY1SvFI3afLIrTSJINj/a0HtDJLmuEkrXNZ/ScPVtlYjf9cc9bOHn2/p9cJFq6OHDSgknA5FzUBIsEDnbreftnllriVTr+dFdaTenyKObdF16HlGmAgEioCjgXKo1ITmNTSYEk6RgUm0+SQmRlNBeo0GbDJQwlelJ0v2M2UzJZeuGTOm2qLJzjs+/+JwXJ0/Z2z/kW9/+LgOrmEz3GI6m7O8f8+zZcy4v5yzmC1arBQf7e+APeP78Kcv5nLfefouPP/oRRIFW1w1FJmpWDzsH1XuBAfm+J0w0iqBNBDb7irMQLYltTFh6zO7UXltkj0YpJ3M6GTgqzXERLjoy4MH0oj10jADRoDKFyaTmkoqrop0kStIZEUE3SROh8UqAuI5Jj+OupRddOrTtxSRElAjhENPrAV5FYFIJ40I0ElpyQULakndZGzXUEk6bM7ZjZmPfQlSSW0f00L4TIHruS58kmi4y/aqXv7THLxsUnq4oXe/G7dijY5EqJf1LY+99wHknO1MjniF1E8VHCKANxgS0doi3gqeJ1HXrneE8RmkZQ2dls1YxbWCcS/2NMQGhfTC/P1ZpTLSWuZBy2qbPlZINyySCqT1HHs+1EsPjvaxFr0MknZK0URteBwAhRia245gixnqGTepp8OK9oHs6Zd+I1DG14zel7U330SZjdjljtaw4Pzvj8vKSF89f8vLlKYvFAp3n3D2+xd27d3nr7bd58PANDg+P29pLe3sHHB/dohyOKMuSshy0cjul/0xkbH9bM9pIurbQkU2p8KJs/J6maVAuJV0F61zrVSNzwm/KNEL0xEkeR9cAcmTUTRdRohSYzERgSuZWn1SB0Cplcn50XmhJZokb1UmpDAEVhGwuyxIV0/s558izjCamRfNBvLcaW7WRUUZpvvWtb3Gwf5/Ly0suL8+lFtbykj/4g++j1PcZjya89dY73L59jzcevsm7736bi/NTZrNzLmcXrFZLrK2xtibPc7LMkJm0dnugnZJIYIC6rlmt1tR1TaFz6lrqHY3HY1KKwBBE1qxWK3k3WlMORuzvH7ROCPhAVQlZt1ytWS6WrNcV6+UKHxoUPqbhMzTJAy3KxtVyTV1XDIdDBgOpDbVYLFit1lhrGY0kRVuWZYRQYa2laXz0npL3YTJDOSwZjoaYPBMPHS07qzESlet8w3Q85mD/gMl4QFUtWiI0pc5Yzues1yuMMQyHQ0w2wBipSVQUkjZPlNDe7Osp//RIbvkuhZZLoe0sz/Au0Limre1l8hxCYD6fEwJUVSV1sDLFsloDmr/6wQ/58qsXvHx5wtHhbVmD0ylaDTg4OGBxcclyvuD5s2eM1kueP5eIt8FgQJZlDIoBK7Mk04ZBUXDnzh0+/uhjpvv7DAZDlsslz1++4HJ2KdGLWgp53r59m9FoSAi08wQluldQMZ9yrLmlgiNENa8dAtXtPSA6ShvV9XPetkGJbQ+wXf9un7dpLIieEQ+69p6yvv3GuTf1absfu8CU/v6/C6h9VdsmbjYM658haL5NRF0Hyu96jpv6+Kp7xhN232vj368xfiECrz0nJxE1m84V1/XnSoR2X13a8b53jd11c/G633cSgT29a9c1X0Votcds4sAbTevkIRmvpTfXlU/Wfdh+vyE6zm0a0Nt9UyFFrSbiy6GCJQR6oIWPKZ5pHbpqK38XRUlelORFAbE2ZfKoDQiY1K/xl9bv9vzdtT53jeFfA6Kv0/pj1ltPEehRPZv7uomnY1rfdGBm8lhr2VGt18wuZvz6r/0a+kNDva5ZzGY8f/qMF8+ecX52zmI2Y7Va01SSfm61WLFarPjH//3/yNvvvsM7773Lgzfe4K2H77JcLlkul1R1LVHwYUlQLiWQJ9eKRbXAnlnmi0uG5YDD/UOO9vcZvf8+92/d4f13v8Wjx0+YnZ/x5396yf7hER9890MmkwnHt24xKfcYjsb8yZ//CcvVQnAVrbhcSu1HHxzWN9DPFMOu9K8Re/BXC7lvHif2awJB2yu+Any87tjXI8XZeJ3bYqUV5+3dojzYoMA2ZdiGTGnnUdenvi272ZfX22N2HbVrzf8ke+mrHTc6HTcd3yeBNq4Rld0NknHHPnUTsb95XQjhprnAdUuzvVN/Dbe2EK9n8l8nb6/ty895Wy5WZJnUA3bWSzTSACKSglIerzwqC6ADQQm+IhmqDBlB0rJrL07pXhE8lC4XmWI0Oktp3hq0UdjGiqOGUuKU2FhsY2kINFacz/sp40LosuT09S1UF+PS1QP3CMfVe4+h07nauZtwqp5skPM7zMFoA1IxL967y9aiIpnVRlIpgfF0z2FdYE8h11oQ36eU/FejgVIESNIHUcQ0dk10jk19E0C/JcSiU4NR21FPuq3BJFiwJlP5FgFlIl4er53AXq6uiw3Sr8XvosbV6nRX9bL+QHflC+TTjUCI0BFM/XMlNCFFq3lCP4dA8C2ZtItgSuSdV7qNiOv3xcdaU/1nDL1rd8+dvou/p6v0zLe09TkC2kbMU3cBJaksAykFYPCpkFEccr0pyPp7WouD+vh9Zz+0OPM1EjCEAC7ETG8RWwsIar2hX6b3LnNFwP249wcf9WC6yDvtu3eebBqdAmRC5Hi2bbYQ9wC5zk2B+zcSTAmQ709mr+QhA6lDkNKRKSTFVopeEiZWUubpCNajhMkOQTzJtVfgo5GuIuAcczhqVBvpQHyYJholovx7VucVl/OG2cIznr7kjQcPMNoR3JrpaIq5d4cyHzAohixXE/EAqteo7AKvK7LhhMn+EXVV0UQgL9ce35soSYlpCU4lL8v7CFQFBdrEFyyLHIgEWQJEM1l8Ki6O0IFc/QkZCG2hPAUC2uq4iONECMrHAmSdZJWaTgqvZYIE42WiaBfJSd0VtIskQNAKFdMEtki/EsZfWPFUe6ed5ijiohITTBZLuzDTJpCK6qW5ER/Sp+Jh0fAMKnqPxwkvq6Wdf52u3DPevWp5HkJSimSjAEVIBFpQyUxtox90zHGqlABwrfGqaMHxEMdZKYWKtepU3HRaRpwgLHg7JwLBS55ZHQvcyTGaYCzGh7iWHEq79kYhkW/OY7Rur6OCjHOIG5sPAevAZFm7sakQujRQdOPQ1txSiSzMWi8H6ISRVsJAy+OmsQCCbsdExfUn14nFuJWKwWcSp9Xm7Fab+b/7v6sQ2g2s/351JJJa8iEK2Otyav88N1MMKYqSugno/JL5Ys2zF6ecXy5A57z1zvu889673Ll7lzt37nDv/n3u3rvH3t4+o9GI4XDEYDAky3IJg41EDCHgXM9zJdD+3RnvgeD8RnrFbmPuCCbaYp5CqipFuy8k1rd97UrFMO++QhW39ai4iPzTcWOPe4iiI5SCrKIU4dReV2uyrNjY+NrvMYBECspsSntPIpxkcqX6RlhEvgDeF1R1FyEFiv2DQyaTW9jGsq5WnJy84MmTrzg5OWG+mLNcrfnxjz/n7GzG8fExt27dYn864fjWEVW9Zr0WAGI2u9gYc4n0Ua0SLfJFx888VWMxyctaGbzvUhBa18i45BnrqsEHQ1GU7E2OmE4OETzNAxZ0oCgylrNL1usVdVVRVRVZpqLCK84eKobOJnN9tV7RNI7hUJFlOUVRUNUV88Ulq/U+070hw1GJyQ1BSdrEgG5rSyqtyPOM0bCkLIVkl/74KFMlote5wMHhAeWwRGcav/b4oBhPx1zOF1RVxZdffcVyucQHS1nmDEdjMl2Q6ym5kTlvG4ckt03KcoxaVWnOJSXMI6kKaEGHVC8RRSwq6rFNg2tD9C3eQ1EWFE3BbF4xGu7z+ewlpy/PcM4yGhUMBxnFIMMozdHxbVbLmtlyjXr+EnNxgtKKuqkxWdYWta3qhqaRaMLJZMrnn39BORyBAussi8Wc9Xot600rTCwiaq2LpJNjNjvD+wqlouIa+vs88nlULtO+vGE2hKS4fnPadSTATwIGXTXBpO0CPbZBnpv686rvbgJZvs51Xg3OdNEEycBXqv/Z7uttP9+riTsSekUyAFX8onf7OH/D5mBf27q0ERvX2tBFtlaE6nRD2p50R4pQUVvXuDp23Tj1x6O9Aqr33xYwTaDEVl9ufli18T7ElFLtd12Hul9C3OMFCEgp5eilkxHdUqV6salv0RDTKbIY0eNS+vC0PxF6Xs3eoYi2hkr7jMJqSZKeaU2eZWTGiF3XWvqyj7SpTqJxnGwJ7zzBORQxjYwKZDTybF5qQDhvaZp13GskW0BTNZKNYTghjCZoNSEvM9FhSbf2187v6wDYXcckIKtnBX0jWucj2E3m/pqi93UCHdtzd8nhEMAn7aQvP3aMapCUyCB2V5rHznlWqzVnZ2es1mse3n9IkRXUVcXx0TH3793j4uyMi4sLLs7OWSzn1HVNVVWs12s+/ewzLmaXnF9ecHp2xoM3HjIejynLEWU5orEN86pL1xwIBKWxPkBd45zUwgwe9iZTyqLk3oO73Lp1i+n+lGfPXzKfL/C+4enTR4xGI/b3Djk4POLd4dtcLs55/uwZFxcXkm7fB9ZNReMaFGCDbWVdss5ltKKcSXZnf/hb+03+08FvIt5azAO66PCerSzp/6UeQ3plW2KxJRC2X3wPr5IV0psnG79t9DFsfLexD2xAFZ1duimj2ZCTqQO79qTtOfg6vuYJt+k/R/+s19MvFK3A2Lr2T6ILtOurNfLp7aPxu/TCe+Ozcf10CbUjpi3p2f3XFM+6HjTdfCeo3eN7g1rUO+br6UE/b61aVTTGig1kZT/s9Hkfnc4kK46KQLLYPSZGUETMT+Vo7dDeolwNZYYOFUZZMt1gdIMxDVlusdZjG4/Ja5qqwTYWXdc4QDUNwbuYgCdKI+Xo10Rr6/PEdy/HddE0UjKkT3ILZpf0uZSRSK4GhA5bTCSLUgrn9NaCj9dSqjvWxXsq8Fqi2/szKJFZfdvdaL3hpJec5bv+QKvrJRJJp7FOeEgKuuj63OFtsb5SrGmfnP5FXyrb50vYh0RAdef1SxS0GmTsYxovH3H0JMtbmZzkbEjnhG6MtW6j09KP3ljxgeB9GzAaNr8RrCe+624uSM0u17+uF0d372ImmxDwiBNu2tuTANvQNZLtmxiUJEuT4ytaJld0wuyDv+kpWvd6p/BG4X38CZFLajfI9hHonlRHzBs6nLyv60eMJc7z4LfGvC+LCTGqPnTBG1HWyl6cMHbJhqWiXaLiXq/absb/aY04YYHqko8RtOjWvj+eiXDykg1MplPKMOdlHBUYDdvOBv12I8FUZMXGRFZKYYx0qO1JCwwGNJ4iM2RG6iiZGNKVodDxDQajpWYGAdBkSqGzLJFm0qwXmFAHiexQChsCJitZrWvq2uGDAh3ImaJrWKwsJ6d/yD/83/yn2GqOc5bjozvcvvUmpR6y3ofaK07PZ8xfPMfqCS5znC8dd9/8FrOzCy7PL6jqCxS1EBRBwE9jMqx3ktZPBXQsiOdCqvOh22NFUCvAk+cZ3lsUoMlROtBgSey+9743v+V/LnqxCwAXX34IBC0TN4FoUucokn4xP2rQ0j+nQZlIXqq0KrJIKHiJ8FEeqXEqKfFCil/VWlK5tWGbMTwzGpYEJ7lY09ah2ikgayaSYSaShVr1GNCWeA5SaMypGLInIbTB0eaRVtF+1zK8Msd8F8KqlUIFHaNj4o3RrdKrYqRbVwhP/laamKJOFqv3YLXCey3jGLuo0eg2gkgIGWHKI7WSVrASLt6kxe0DzkITAhkeqxsyLZ4ebQ7TxBpGUoxY64i4kRmjcLYGPFpBmcscKKH11gcBpfvRSVmWtd4peRajtpJgSURAFODCzPe8upRu+5cEkAKMVnhj8D5IRJwTqWIbj8XjYnilMirKUxFmLrj4jjohqGKUFkEMv1znG4XsgtK44GSjuUkw/Ry22htUMKhiSDneo/aak4sFwQx4+PYH/L3f/fv8g3/wDzg4OKAoC1CKOhqtOipMthEDtigKISyRcbe26vLUeql504UaB0IC5lsDpsvL23llgzEadKw5oAwkhaHdyDuNQmmFswEbbJyfnZLTL9boSR4ptP2Ffji3RLvked7mHJY0c/VGWr0uN66RcHQTo2giqKVdIrgUOl4HJbXiVFwzWmcMh0MBAmzDOkb/ZDnyUwwZDB/w3Q+/g1KK5XLJo0eP+OM//mP++Pt/yHq9Zm9vym//9t/iV37lVzi+fYfRaEhZDri8vIjRtJcs5nOq5QplHCHYSHpoXAg0MbWoyUtGZYnWiqIYYHROVdXU9ZrGrnHKYgrDuvagx0yG+9y69ZC96THz+RxrpVbRcDjkYG/E6fMnNPUK21QE7xiUe11qgBBE5riVyHYfmC+XNI3HOUBJSjyP5ezyJfuXAw6PR4ynA/KBianYHEqbdh+Tfhv2JiVFJsR6CJaghIgPIcd5qbFx+94d0J5107BqKib5kAdv3udiPufxo6f8+7/4CxaLGVU1ZzAccbA/wagBOccU2ZQiL1mvGpQKIpeRzSMkj50ox+VZPcm7LdmlPkiaGaUheC8GW1Xhg41FtB3aZHi1R1GPuTireP/995mMzhkNzjg+tIxGAZPVuLAmoDi6c49HT0+5WFpm6xMad84v/dIvcXz7mEE5YDAcUjeWl6fnXC5WWA/jYcliucRa8bgzmcxf5xqck+crioLT05eMygGZ0RRlwYuTL6ndJZ4KhWySKqQaZoGAJURPrFblVKJDCNHZjc/Pe9sFPlwXFbLTy3frWOiGbtuBYvv464CPrwOQXAeEXfdcu+6x61l33IkNqCjJ9VbeQjIOb7rOdSTTrqZNkv3pnN6/HXJIt5f0ersNBkawrN2Sephd3zZMhl8LyGwTBf2FoYgGYtIfuytskFA75kjXp767XzJso4dsvE7yJKfXz24uqtY4bZ+gBRN6AE7SuZOjXPo2GfD41hvSxWhlrRRERzgBE2N6GZeyKkhfg7XkWmO8EERGa2rbUNmauq5Yr+c4u8LWK1xTY5sajRKnEJ2jVIYyGevMkpuMcTmg3JswLEu8dQTnpGA5Hm06pyanEXDDeoK1BOugaSiVoSwKijwjNxC8BWqUtqAsy/ocHyOX1nVDtWpo1mD8EU4D5QCjJAOFi/qpUqKjduALG2lfdpGo23UMuu+6yj7Xz/6fsxa4IhsSiLV12MZf/bHbTLOjWjDsKnm6td48qNCtCWd9tJsCy9Ua6074t3/w+/yt3zTcPr5FlhnuP3zA+9/5NkYpmrri9PSUR19+wen5OS9fvuTJkyecXVzw7MUzvnzyFb//R3/A22+9y6//+m/wwQcfcHR0JPb4XLGu1tjGYp0F76QedXSaanzg+ckJ57MZ0/GYvf19DqZ7fPAL3+G7v/QhVVXz7Olz/tW//Fc0dcO9Nx/w/vc+ZG9vn9/67V/nR3/5EZ99/DlnL8852N/j5ekpK7vCqZKlXwi+YFLVZAFoO2hLIBuX1vKGXCDhc1KfIp6lo5OaCuKvqnrDnlLCE9RmTYorgNPV/Um1N43YQn82RNndLb7euap3SNicUWrrPgkc7Zgv/ROtv25u9c4OW3vDVmsdgne0GwmQTpnogGESIN+/RvvbVh+3932inZ/+6J0V54H3CdOL82XX/hVCmzGm/+wJPwgJFO0NVXrHfV27e8iw8feumr29p73m893tdY/7eWl1bQmhoTIVdV0RC1ngfYMLGQUZWSHRSgB4j7cBrcR5MURsSmeGzAVyHAUNRV6x8itqXVGbmjxvqAtH4zzWeZz1NLVlvVph65q6qqmCQtmu/l0ILspt39oc8u5d23/B+qTWeVqyIn58BNhp9REQ9cfh8W7LWcsJQdXXh/vOp6EloXT7eX+teCW6p1IKw+a1vd1M+Re8kp9ICPiol3VORPH3RCCQ+mVavEHFviYUuSWMss2gDknLlo7RZOpmgillodpYBq0HvdpYeiEQsVy/Iec6U6aLEodOx9nOXtS7IiF4gul/vhnNpJSK5TAcKRLIuYRHxT65mHrNp1IggjEAsd4X7Xji0l6lojOTaQkUcaL1EgCQ9DDn0cTzQpeuUaMlugdxgvUavDO4iL0r001GFVKEfsQue88qBFNK4xfnDMl2KNAhZXoibqpR9iqJhkqBEcGHNm0jJqW2ay8Zgw3SdaPemt6vT9aEHK+VYMc1jhSb0tZpTDEPQeE0hIiTp4NSRF8vzAbBppOT8vXtRoIpz/Odm2HKdShvhji540OoRC6Jl7iEYsY6QFrhY38MCh8UDtBGvKz7k1bSvMWHJC2k6A0WAk0jYeGrMCfTmiI3qMbz3/w3/yN5Zrh965j/5D/5bY6PA3sHA/Z1TiBn/2BEOdDs74+xTcPh/h4ff/RD9g4O2D/cY7U6xK5mrFc1dS3F1IkkQGtu+EDjfcyZKS0EJ6RQ8KAyiqLANmCyHBE2yUswFqKPBJMNsWBeqsWkjGh5qjMqheF1rfBIE7b3Rkj7O7pnf6qonBAN62S3plzNmm4Cag3at0XmQ0z9VhRFjDhDUhBFBtmlRZXs3XTfoEjp4dLGYZRCq6x9FqVSLajNJ7kiqgJ4FRczyXDfobcFZHwB6ISsSSkatYrgdCSa0mk+RfJEz45eJ5ROqR99W8DQGIMK4LQIpo6cSULQUtedR3zuhIzLTCZroE1TJ/1MKQSdFZDdaE2R5yzma8BT5BlFkdE0Fq0VFxcXhABFUbQpz4wOZEbAxHaO9FJLJq/Rtp5YBCREKIkXvekNqOiIkqrRaSkKlykpyqdDwBgfN7IM5cTb1BMI1nUgVAIyWwcU1a55dCKqU9rCnvEZQkt4+nCT+v7z1148e44PHm0kv+6HH36X3/37f5979+9H41XCor334gWZ1lJIBkisjeUb7KqWjdqLbBYZ1ilbiaxJocqp/lAnb2QT6Rv4IQRM3IlCYIMU6p+bfvddwmXZ+LaMhHQfZVSPTNq8VnqmNLet9TSNw/t1+12/9ZXGlO4zy/JISEWCKsswWRZTuwWyuJbkvmuUkjp8eW4oykmbaqX/fHku72K6N+b2nWO+8933WS6XPH78mE8//ZQf/eiv+JM//WPu3LnDG2+8wbe+9S3u3r3LwzcfkOdvo4DFxYKXL1/SNALKnZ+f8/jxY4bDYUw/J+nf6lreZdM0ZJlhuV4zWywJvsEYxcXFjNFoyr0793lw9wGLxYKyLNuUatPplOl0ymKxwDnLweE+uTmmrmvm8zlNI4TkcDzChhwXHFVVUy1qvvryc7LsHQaDAfv7Uw4Pj2iqFZcXcxaLinv33uDkdM5i7ri8bKgri8JIarwyYzweMB6XhCDEh8nEQ946JwWta1GIDvb2cdahdWBQFHjvefTllywuZxitmE6nLFdnFIW8S2KE7+HhIS/nE7JZ0b7/VDNKjNZ2ZmyAXckTTP6VzySdEoQGlssl4PHBUts1xiiKckReSArAPM+x1vLixUuMNvzDf/i/5YMPPuDk5DkXFxco4MmTJ9y5dZu6sgyGBd/57m9w+/Zt7t4+IctyppM9PvnkY87OpMZTlmXs7+9L9GGAw6MjPvzwQ3784y9oYuqAtA5msxnckznx6NELJntCyhMiWQRonUVHhNCG9/fXV1qb3zRvz5vadUTN173G/78BHNf15+Zn7cnvHddK+t3XvefPrO2KXNhqKd2Z4tXvJBEAuz7f/uTrtj6xtpugDJ2R+kqyM6ASULTjPu312r+TZ+PWU6iU/jpFLfW8fq2kmTNaUpLOL2fitKZBBY82gRBqlssVs4tzLs/POD8/Zb6YUdVLtLLUqxm5DpS5oSxyVAhYGwhBvN+yvKTSou8NypLD/QOO9w6wTdXaXVmRs394QDkYSPS+VjS2wlY1BkVhMqbjAQOTSfqPsMZbS/C2tT/ldWnqxlLZQO0N5BmjwZjB+IBytEdWDnDEGqcmiyf5NlX0TW/8JsL6r2Xrq1u3ijcn6O6IsG4t3ERohxC2bPMg80lLhPgq1tZ8640HaGUZDoe8fPEEFRxlUTAYlAyHJb/6a7+AzozAKj7gfOCLL77k2fMXvHh5wrNnL/in//R/4t/9u3/HW2+9zS//yq/w3vtvUhwdR50yUNVrlvMFq9VSHMKslfnhPbPZjPnljMco3nrzHYbDIXlW8ODBQ/4P/8f/Ey9evOTjzz7jX/zzf8V7b7/L++9+mw+/9yHvvPUOP/zLH/LRRx9x7/4dluslJxenKBTzeoH1VharNuJ4iqSP7GhsxU2z2sgLEDq0D0aq6Pwd/07Lq7P72yN3vOGffl/9ustpoxdKddFaP0n7X2BLv0pU7zyKn2ZsN/TiGJWb1tf2PnSd08TmcVwZqy4d1vVg5JU9MWzPoe5+f902WxVTeSqtaKzFeU/VVAzWIsdGkyHF0JA5I5lgdUDnkVzRWkBkrTF5Tp6lGsWeuliTlQV1U1HbhqZpaLyjsZLlwTmpGZ2bHNs01EUN3qGDOEbXCupqHWvgbuJ2XQq10OJSkQoA6AgEuroyoc0aFSOYeuZ/iyHESI6Ucg5o0563LbjW7tuoz6SIaXwlRd/GTPMd3tDhEwnLAyI50a1Z1Z7XYm5KbfwuuuVmZhatJa2Z4BjEZFCbQR5WpSAD3crFllhSyVm2c7Do+tvpw7q3Fn3wuNDVL0pETL9dxXe2nIJVSpsWB6QlmDavs7FLBN/+K/WXVBznmP0wqBiIlPCkvjNyGjvBthJB0jTinJlqjAbrY6plIxHtTkqxWNsR5s45imIQ32ckr0wmaQBdkKwrJmb+wQnuqQMmJKIyQ7dORGkmKxyePpEqjq5Ni1NvbmjyPPJdyl4lD6ZMSqe4uR84J9FIQcL9Yoawbs9ubQ4iphtLIoSIBadgjiS0JRtZ5CoIkVRL72nrPb6mrfyKFHnCWqWLyQuQMDkhbj0aAfBTITJtYt0bJX9nmZHUBcaAVliVFBUljDOe3GSorAPaUVDkeSt4QgKEgibLDZlzWOdw1rJez1AEMp0TnGZ/PMXWisePz/mf/t//kvnfWvHg4QMm0ylFUWIw3D6cMBkUBDRv3H+Df/f7/4ajoz0m0xHjYspptSYbGcrJCILn4vwcWzeSukzJ4GY6GSIprZNC6SD5MnXyF9Ion4kHSVwIaYL4mAfZOt9GA/kgYJBEAIrw7S9s7z06KAm19BCiIPEIu2t8ojlVO9l9kDREJuaJ1JEJ8iCEGJ4QHF45ump5EpIXguQsl/DE1HdISR0T6x1kZ2jHw4Vk3Mkk9UpLiiSfPKUlvJaUIs9tFZvrRqoljpKSr7VMoOQLqHqRFN47glayUJIQ1xJ5oXuF8wyqS2FA2gBE4IiXl9RwktWNCBOfFGmZ+zoofCIBicvTOcDHPK5KvDCdJmvrP6mY3jTuuJGZayop8q6Vpq4aqddKYGXXLJeBwmRkuWrHt2mWDAZDnAvkOaAUmclijZ3IKutuk1I69DaoPsiaigO2pgKt52b88SQyWTQEiYTKMNriIzGhfKRHkzeADMyGzaFViCGakXyL3vktix43axfnt4+ec9+U9ujRl9y7d5/7bzzgzbfeIstyysEAVEqJJXVW0mab6vXQEkzyp07pNRWST9nEiL22cHL8Pg5vqo3W3yx2/d4ZEmlNpBpI6b9iwKU9AnrKRgLPUmrO0H3mVUDrXj5flTTRdK7804ZPxw8TaCgyKuXqFVZNEVP1WEtVVe2zuBBloNZkJmM4HFMMyrZYppBQmqapybKMPM/jmHYEXKqD41xM+xPX2WAw4M033+TevXv88i//Mi9fvuTFixesViu+/PJLnj9/zu3bt5lMJoxGI473DiiKe/G5pb/vv/9+e+2mabi4uOD87IKiyBmNR0ynI5paiDYVIwDLYsTdOw+YTvalr5lhvljQOEtWFgxGQ16+fEnVVBKlA6zX6zaKLfXdWqkhEIJDa8ViueSjT37IeFLy4P4DhsMBh/t7nJw0KJUzGEwhKO7cfsjjR2cE/xJrLXlpGAwKxtMh070BeaFobCN7gdY0jSiw3jmaxlFXnsOjfZJHzGBQUpiM73//+xhdUpZD6vWauqolxZEXz7m6rhmOp4zGEwblCK0ve4aEeA+JXNv2skpOCtGw1irqMJ1Snjy2fPB4B9poqqrBZA1N7VgtK/7tv/19CHB8fMzZ2RknJyd8+cUXrNdLgvdcnF0wHu9HL0GJ2j4/v8SYnLIYAPDixQl1XZNlOcPhkCwrGI8mLBYrTl6ecnp63hKeohfJXHvw4AF5mbdFUV+evMQ7F/UyWRepUGyqpdatuU7xF4Pgr412eL0xuO6YndEzr2jXeRzv+qwPAv007SYw/JpepqN2f7vVr2253zdCXp/ketWef7PH3PY1t5+vD55tjPEuKmkbPPsaQN5ugPzqdyHEdMtpzNpaBVfHcNc9ZA9Mcm8TON44qw/8adE7NQIutftocGSIU0q02LHrNUVmcNpjvaWulizPX3L58gWXpy+5PH3B8vIC2yzZ3xtx62CPW8d7TEeHDDIoC6kvl+mMqqpxTmy/EDSX6zVNY6Pz3oIwr8gUlCYjHxTkZU6ma3xdEapYzLmuMMEzKEum5ZiDYYlya5qqxtkGvNSh0MOSPCsgyzD1gOW8oQkZIc8ZjEbkkyOyYozOhqhsgI0OX8FH0C0orIdcB3YkhbrxvW8Qitw8/39e26ufdwuUfvUVO/tCXU25tg1yh9BzeFPitewQJ8EsNzjX8Gd//ifMZmd88MH75EYDjmW1YrX2XFwqzs6ekRc5ZTlgPB4xHI156+37PHzrDaz1XF7OWa8bbC31SJxz/NW//3MhjuZzlsslSsHh4SHjsdRFzfOC0WiIt048g7VGmYwvHz1mMBgxnUw5Oj5GBTg6vs0vTw947/0PuTg946OPP+Fo/4DD/QN+4Ze/SzHQPH76lPqlRKufvbxgMB6htDgKeecJOkMnp1bXyNi0UY2bEXUhhE3xq8KVcd7knFRM5x6iHbItM5NNKTpZJ5/CpvxVfTuid2r6R3WfXSXct+TpRl+v35dvmp/X77O9fWSnO8JG13+qtr1nXd9+hrqbAnbsj/1xvm7PV/HcZGO+ut+bbfexW/vZjvf5TZOru1pr4ypQjZIo4iqjHBasxwNcsIzVAOMMOtZoL8hxSsqMoCX7TFkoMpVJGjQ0WudoXZDpksxU1Lohc5ZMSxSTazwhN6iQ43RNrnOUczGNmNji1jX4xsX0fLR6SugRR4mYUKSojITnRbKIlGUhOepDiyPQyYIUAaMJG2Ryfz53UYHxnqGHy6qImUacUvW0wpDYpISBK0W/rnwIvkcw9WSU6wiRTaxN8NeODIhp7bQSzi+toTRm8TStFFkkxXSbdq9PNiWMTvVSosYxjdFUglvo3lh04+e3nWpUfw3GtMTycFcI/O6dBFLtno31qzdlR/fupK4VQaJ2XIpecpCi7kIIOLfGx3raMnYe51OkuQSshJTu0MUx1xmrZRWzfWVkaILOY3+84PLOonwWbeiMPDPYRpxlvfI4FdA6kJmADpE+0krS1KbxCSr2NWHcGhVi2RzVKyMTc7dJiqhELpo4lqrbJmm5STk04bbQuhRoUpQc8SfaDjEjfqRp2vclc0aCfIKJGD0xc0QbuCLBLkSMRKeUlfF622Tnq9qNBFNHLnXj2BbZVMlIIbKmKWJJJkDqs9GSG9tIpTIB4lXoFld8GcIyCssqoIqR9xbvJ+npJFe3ywPWBUwjqRu8D1jnwWvWlQgzYxXezfnhjz7m5ekLptMJe3t7vP/Bh5hBzmgwwTnFixdPOT46ZDQZkBdSG2EwmXBxcUZoxBuusjXjyZBqtcY1VsDVHuAqYJUUppexEEGSmRJNBjSgUn7kHmkUEvEY4o8neCF9eoNDAnUJEsapkBetfazVQ0zfFgI+GCm34JSEu6sgeRIjQWeSwEqCHCkAGFIUlE7vtpvocRXEL2O4oPKooGOfO+A38hCiusZ1p5X0QxZBvGcqzusjO50WE0kIphZDDlXXjU01sru3CPjIBMVn6zwE0vXT+d1PAtm6Qm5BQv/pCEWt09oXr0sfRJzIpiR9cD4aQQGcUr1+hTgnVMswp3lN0HgrafE8nuB8NGhlwzVa0QSHC8SoE4lmK0pZi94FXEzZaJ2LafHaJyN5LkitN93OHaUEONetsE7rOtDlyBPB7WLRvraejpbCgka3UlM2CbqQ4aRGJKUh1VNr/42bvVa9dxg/86RUI9fLpp+3NhgMePjwDe7fv8d4PKIoSqq6IbRhwRa2UrAArVHQbTt95T6QPJNFoYpKUDvvN71S4KoSv3GvSFyjtkRDsjpV36CMPuFJ4Qid8qXSZySfDb3xrjf7INcwLaiQ+tnla/DeY0wiQh0purCfik8U1i7Hr/OO5XLBupaoJWMMZVmSZXn7d1EUsf5TImJVuwZ3GV15LrWKyrJkOBy2kUPee1arFYvFAmst6/Ua7UJ3fSOpLvcO9tv+WmsphwN0JI3zPGNQ5IzHUykoXa9ZVw2D4Zijo1sQNM76VkEOSITLyekp52dn1HWNdx6Lo6prVqsVRMClaWohoFLdCSUay/NnTzg/f8jx0SFKwWA4JM8LFIbgNWUxpKqspKx1MhZZphmOCkajgqIU0EZpH5XLgLWeIsukcKwG8EwmE3QiQlwgaKmBpIscgqeq1qCEZKwbS900YkhoTVkMKMsRuq2B2Ptp2Wu6ObNllHQkfPIgS6l4EpEb9wcU3gXqpqGqKi4uLplMpuRFwcnJKYu5vGfbCKmZzgtB6pfNLucUxQDXWOpKIseePn1GXVuKooSgefz4iUTbZTnVuuLJk6eEAHmW0zQ2RvNpxuNJu/5GoyGzl7Xs3r1F5JzvQE616f3bekf9LMGJ/8jbdQTATaDGTcTPTcr3LlBkF3jzOte6qb0O+HLzMZtj0pe/u/q26xm+Xt+3gMer3Uh3aufzTwpiXSGPWkO6iwLc/O7mdh0huL1fb49R67jXPtn1z9X3SOwfs3ns9vuRzzrAoAdeEJ3Wol6nW+OYVgd1rkYDq+WC2eKCy7MTZi+e4asFvlpRGsv4oGRvPOX28T63jva4dTRFhwpshcZitKMwBiYDMdrR1I3jYCnpfVys/4jSaG3I8oK8KMnyTPTqmPEhhIDX4hiVZzDQDaqeg/MY79GxNq1XFmcV1nssmlUTUMWIIh+g8yGqGKHLCUoXBJW1urpvazzI4IgTjWvHdCegva2P9b5P9t43sqhobNu63OZ3V5d2AqquftP9vVNGbB+dInljmmQXxJFTBU/AoDPDxeUZX3wpOuMv/sKHOGtxtiZ4h1awruZSGyzPmS8KBsMx5WBEOZC5tH8w4ViXbWrq9WrNaq0ZD4csJxMWiwWr1QqjFLa2BB9o6gbbNORFSVHIPDcxem5d1/jZHOsDo9GI0WjMdDBmPFEUppAogbrm9OyE/b0p9x/ekzT3RtM4y+Onz5ldLMjLgqwQoFgFBy2wBwKA6XY0e6MabYRkT0cwK/5H7DOSKt9aGskcj+jBDlm0/Z52vdtr3+KW3f/Ko1/5SQc2t59cf71tO2vHpa8l/7fPv6FtypMd9772POnIrhoY205Vu9oVedaekqIRrtljFBtDq9LBP+O2DVCnflwnb6/08xvSUtRGBHdQKmCdxvpGShUYhc4UeZmR5QbICHkSvhoVYircECOZydBKgHZNJrWZVA5UKGVRODQOG5yQFiHDqQyjMvxAUtw622BdQ12v8c6igutwZCI6cOU9driFIqbTCwieGeuat/vDjtfczYM4ZztjL/6zCYonJ/yuhTZipl0bhA7IT5hUe710LC1+1jn7RvsPHyMDU1dcTx/oR+P4iA9qfD9gJGKoSW9TJB6hy8SR6jOlMWjB/9YkTOuzI6F0JLqkq1s1uftj1/avf53eOrsOL1IuzsXeCk6Zs1TnqtXhoEjKQSdkhndIesEenhW8OPdGlEPqIjmpqSy6rODutrFy74hZVivJjqLaelZaotOT4z0FmkIcMNCC2TvflQRRPkIirnsfLsREYwkT0z3xqdp/U4rqNlqrHQx5BlqcWHf4a8rOkNaKDy2RGOI71glHa8dPgRc+IfhAkIyA8X7d3JA02HEXbuuRq65UT7smu3ngOxhdsondYB9vtxsJJolAkSiQNFHaWtFpYImRHyqyqzF6yUQmVjyDBShHSTQSPggwH38krZcm5WqUVEaJjYsPCKgg6fdyD9YFsrohM7nUJfIChq/rGmOyWIMGfvz5Ix4//orxuOT27du88/bbOK/Z2z9C6YzPfvwx7733FtZZAd6qFfvHR1wu51K8EsiKjPFoBN5Tx4XQF4ZpsognfIz8UppMFxuEUQo9a6dYnBjOh+ihL2xpe912/Duhm4RXMgjTAvR4dAhoH+sbxWAmY5IA1OgYRaVJheaEWEr/E0EWWjKm2w0iyaMDIf6e7ipeBbKAkiDUqZ/ySvEhbh6uI9aci3RNinxKuR4j6aCTMhyneYqu2gbKIvoXhX8k6Yjpv0K3iHpxRh1QEnPvqdDVnBHl08szxjmvlUR80VNM25R9St5Me+/WqIwhjLGfac2EeNtUvix4hAnHiqJuxfOMEMgyAxFgRoO3nuC9RGw4KbTmVAArdL9SlqJIuUi9bEQByWMa/yeho1H4mkzS/iU4wcex0MQxiJXSnENlHuV9G2lltAZj4jRxUihRS8oVFYWfREOpKBd64bsxF7ZWXZqFNNg+EUxtHYZvRjs6OuT+g/sxTZYUxl4tl5LSzRgBglSn6HTg1LYR18mkpADJcV3dt+12dZPoRSvRKVxaSerOnZ7cauuPuLGptg+0a1S+052BmvYWuVnvYp3So3XWPlOSf+1a1GBM0sok/7Qoi4lgkvP6RSRBPL+8lRR0WuuYhi5FLUkKyrIsSeH2JqYvTCRT34sjRc+kn+l0ymQiKfZWq5UUll6taBoBGGgcw9GIwaAgy3NQirIsJUVinlOUJZPpHqPxtE3RiY/ODSjm8xnL5ZyjozscHx9xeXHBycuTzgNJKaqqYj5fMJ/PaKzFO/GyrWopWp3nGUrBcrWgsQ1ZTFPrvRgDi8VcUrs0NXghOoq8xJhcIntUxosXp8wuF5GEVhRlxnBUMhjmZBn40MQIykjsOY8utKRMzTUuh9FwSLNe4xqH8w21twzKkszIO7dNE9dAwDZWco4jxHeelwyHI4zpqTIppzFp14xzEd0iIp3XW6eUdyloXXT4kPO8D2RG/m1qK+/Q2hZcWS5X2MZSlgOcbXCNxecFmclw1rNeVTx//pKyHLJcLFmtVsxmM549e0FTWxQZdTXnyZOnGGMYDAY453n+/IWkR1UGycnceQE77ym1YTwdo05UdHdK65k2tWRyjtjQRqMhlIinqzLkm936hu915MB1x/ys+3Aj4f8a5/fbTcbALs/w7rur4xB/u/FaNxF1233sCKxOpWuPg75ltqEDvs49tp9p17N0hmx8rtZQTh14/bbr+fv9uOr99+q1dwWoD9376v7tO3d0e2gLyvQeqwU8ov4ttQpNmxIWpKZu0zTYes3p2XNOzp5z+vwZfjnj1t6I/YMR0+EB+8OM+7cPOToYMx2XDEvFxckTVpdzmmopaaLLIaPJFJNlKGWonWIvg6YxUs/BI3aGNug8J8sKdCb1Rq3Xkp4bBT5rgRWFw67nhBS9qTSSyNzRWGi8Y+0N1gzIxmOywQRTjPCmwKsM51XU3aMFrUKvFhdtxoEWp+q9qVetw433cs1a/nlum2u0+31z7enWHr4K+PcGvj3+ilTYat3kDqRUSQKg+J5zVkpFbasVL14+Z7Va8ObD+5RFhhQCdnjlsU2Nc5pQyX5pdEExGDIcjhkOx4xHe4yHU7KoF43GJVrtSVrqpmG1XnN2dsZsNqNumlb/rJsGkxcoHVM2m5zcZFjrWdUVi9Wag0OPygqGuiTPSo6Pb5MZw6OvPuf89CWr9Zy3336H++oueVEQUHz11TOePH2Oa2AwMpjCEHTMDBIBt87+7YY69P8Tha+o61E/6MnAZEWnLOg96btzHux+P6+3Fl51TOs4t3GLPnnU6+DGpfoDIKv6pv3vddrGvN7u00/RdjlsXO3f1ZR2u9qrj+l/d8PYd5BLiwGmSdNiKzvP35x4m3dTV07prrX9+VV5+k2SrdutbprO3o5GiXVgvW3tsizLGPicEHK0MZFIUbEOUMJktID8sR6xNjlG+UgwFUCOpkEHh8GildguhhqrG6zKYn0bj3U1ja1ZrxY0tkb5nuN0T3/saott7QMKwd+J9gtSHkC26S56qK9PdWu3w/wS/tDXIdvj2UqjDi1m0l8nfpdMCKF3bPdvepL02ZaQjPqA2pjWLTqoiGSfil2V873qr39wuJYsUEl2RVxmU+fsrY8AShkhWJS8824MxaH06iP2n7sfgUUPx+6t2956DdjWvlSq+5z2707vDkERnKQYxCu8UzFFnkGHzvGBYLBV55AkRFSIEboSYJBlBet1gzZGSCUVaGoAHzP6mFhvGlzwKBMYDgYYSupIblk0rlFkWoiroEB5HeHuXso7yfbcTlqV+tm9WNq6Z1ydCxC699yWxUnXi7MinSaTo9Xr29NiBwVLDoKxuyA1rJSKJVIQjkYLDutMmoJB9AJUW5Yk4Sado48cF0JMj9sSYmmOcGO7kWDKMhMzC/Y2XxKA3g2WiSCG1kjqK6XIjMFkki3caEOKDDR0YDcxlZyK4ZNG96KXEAXUa4lOCkGMDGM0RQ7OZayNJtOleCUpWNcVxsiLsSGwrD3L2jPINd4bymLJH/7hH1LXa37lV3+VDz78Lr/yK9+iHE748ssnPH32knVV8+Z773Bw65A7t25xtL/HX/75n/Bnf/R9Jnv76KlifnmJtZaiKAjB4bxFmYDJdVTIROhZZ1EhIygBPW3wWGcjCRKwXvIiOytF81IanEBX40obJQXrte8mZCRnVNwg0sTVSksKPe/xNiNXkKkgpFV6i0FMx5SD0wUhLMTDy0SiyUeSQYHRknOSLirA2VTAr7VFY82cOCEVhCwK0eR9INXTokGbvMJjbSBoi6CmPKImTvCu+FxUbUOv/lffAyAJWPo5R68qYvH/Ml5aJ6xbvP+Dj8SKpDwEjYpkTyCQKSFAQl+QxwWXPCytDzFQS+5tY87tlo4NIUZyqfjalMyXkCqtyQAKE+/xzmJMwd50n5OTl6zXa4qiYLFYMRqNMAGMgaA1Kqa8kodzYOU9GqUxaEmLpkxb0D7lJk0eBcHQzhOlnUTMkOohiaURvERqpI1da03mDVZZITe3FO2UDzbPYm0c1RGIGbSbVqpv5rUiJS/8mWnp/xG00XjIixfPqKoV4/GYPM+ZTEYRzG7QJhPjKQEXbObBTTnfaZWmrpBgek/p9z7AdT3wxpXPO89RtfMcoCU3+16mWol3xk5gcEd/tn+UDm2dqC4iqUfVK3pRRgal/NVjQyI4XBw/KAeDGI4d16611HW98WyLxaIX6Sf9TO8n1XmSAtKuJaWEEOucJcqy5I033sBay2KxYDabYZ3j5enL9vvJZNJGviilMCZjMBgyGo0iqZMRcNwGHj58i6auWFcrnj9/ynK55JPqI5rmOXVt0SZnXTWs10IkNXWNRwyOVIxVqRDrP3ka35BlGY2tI3ndgFIcH91mOtkn0xnL1YLgoSgGDAYj8rzg9PScH/7VR7x48YIQPFmmGU8GjCcFg4FGadn30pwJQSKxtM7IVI4Z5YwGY4rM4DNNcIGmsVTrhvFoD6nXoVDa0ISMzOR4VOx3TfAVWZYzGk4pixHz+SVad9G/Srm4BmKUJruLVYaQ1obIqqzQuEoI/yzL436tsY3Up8rzQmpaWc/x8THfeu89Dg+PyBdSb2Q8HDGfLRkORlxezLm4vODRk3N+8Bd/1RKZ6/WappE58+WXn3B2dkaWZRwcHMQ5LN5al5eXrGOO9TyX6KavvvqKtx++QXkwpiwLRuMBi9UM73WbujKRqu0CaWd9TxfoffZNabuJkt0AxbZse9Xf/WtdRxBtf98/5qY+vA6AtKtfm/247vzr5fnVa1z/3P1jrttfrgOCkuNR25fNDWhnf24a41e1XX1pdcZeP7adKa71WFe7x/C1gFQ6Z4kEjVw3N9t+b0VnpuM6oq5/37Dxb5SOKCDPy7j3CchgtJIaCniCtyxnZ/zwB3/J2flT1utLjHf82vc+4Jfe/zYP7x5z62DCwIAONTpYmnrJi2dfcfr0EYvzU5pqCcGhjo7IcJisxGQlR4dHUJTU1kpNPutorKd2gaAsRilyDSrTVJWndlKXSZy2BJjXWY7XitW6Zr2uqK2j9hpMTj7aIxuMGQz30IMDagq8znEYGg/K6FYaymhEACyI86O8EN2OV9JrE9jxOu+1m0sd6PVNAUL7IP8uQrrTDekt+T7weN314lX7OM4GqdDdM+ls1jWgu1qz1jeCM5QleMdyvea/+0f/T/6L//w/4/BgD60y1qsZJs9a+80YgwuWdbVgXa84Oz+BYBgMhuxN9hiPxoxGEw4ODiR1rXbkpeb49gG37hyi20h4HWs5AOhYJDvDuUDdWBpraRrP5WLJ2eWM6WjKraM73L59S1LtB4s2gY9/9EMg8Oab7/D22/vsT48YFnv8q9/7dzx9+pyLl5ccHh+gyyw6fgrK5NFd/eRAR6j26jSKJRF1Njrv5hYfi9NatfI34dvX7w+75/3X1zs6lUZtf9L9vnWrZH/fdP/X2Vp37s/XXPXrrPKr8uTr7vNX9/bdugQ7j2mv85qvQ7EB/21d95qnTyclIP/Ket5l779aJ4NX63E/722xXPbws2hPW2ispW4s3ltQMLIDhm5AiPJMKUOWa1Su0CYTEDlWytA6JyNDGUWuA5m25Kqh0jXWiJyqbUPIA5VZ0zQVtVmjgCzTOG+xrma1nrNuVmCVBBa0pBC0+kj7TrfmsI59aSeL3tD9JGJl9xxJWGUr+3xy8E/Pl87t5EiEKHt6ZdiYl33CJukOoXWw375/d6AA+YHEpaXju9WbCC9FTDGTvuiXmWptVxd8JG42sZN4Sivr+vWK2rpPqnvudtl71z7AFacoIObp2y1Xr9OHcW0fiZlKrurrgj+Cxts4Pi4T/NPL994RHa4DwRtWS7HBrY2OEwG0zlp7dzjIsY2SjFBKxfpKQxrn8I2QLrowFHnJopK00ONyjA4lwQaWqyV1PUMbxXiSk+WBvIBCS4Yyco3KPeLKRCR9nOALGol8oj+vVO+nt9+0XwnGneo2tT+tjq+Qoi4yHgkPV4E2hX9wECy4JuBtJJfiu89iKRKTxTIxWRZxEUjkVzvnPdGRq9cF1c11Qoetu9CyQjfK3JsjmGRaiJqx4cYSbxlCB+j79H3KDyk5ChWRPOgNqlO9fJuamI4MjN6cx0oHlA9t1nWvAln0tPMBBnVBsBlOJ+JBwCUfBJQNXlHmJfOVY1UtuLhc8+TpC95//yH//s//hKfPvuT973yAs2tuHU6YjIacnh9wuVqCUnz8yae8fP6Mzz/5hL/5G7/J+ekpZycnrOuKqlpzfLQvpkntyHKDd5ZyWFIWJThZOkpJ7Y9EQDjr2rghZ4U8a2pP4yTFmdRUSpFOAeUhI3rSxdCgoDy+8XESKIIOaGOikSQGolEOiyMnJ1c5OhjwGqc8Bo1RGSoWrnNBPLZRQjA5HDbYNjWFdZbGO6yTlEHWxwWfZiGggtR78BHgDtbHCKboVeFDjEqJyl6Q0P6UOk5rTaZNjP6iNaJDO9cSwdVtINteQ2qHEARatrZbOyreZ3uT6QExNkg9pyDLOjhQWktaPHoKUqp5E6SArPZaUnHFDSt4390jpI0uRvjE91oUkvNe1pFHK6mnlIDs05MTfuGXvkc5KJkv5i0YLin5HN4lg6pAB48KHuPFa08H8JE0E1IxpgtzCo9BZQFaBVx1mqMRclkDxnuymC4qi1EQCigkRAHvo6dr8FjvYy2q+E60xihNplNBPCGkjZJNQPcEsQK81m2CyG9Se/78OY8fP2Z/f5/79+9zdDSjKIeSRiPPUXhQpgMaewSL1FtRbbQOvc+7vLrd54n8SEpY/+9NY0d1a5EEWvtWWdkG0lRvLQMQUupTZI71FJLump2yl257PUB6FVxsFcm+RhcJJlFMuu+892TetyPhnCfPuz5JDSI2yCylFNbadmystcxms42xmk6nLdHUNE37nOk8IYQXKKUYDAYURUG1WpHn+UbqvDzPGY/HlOWAoihZLJaSUi4XZ4aiKNBaU5QDirJkNJ1ydHiMtQ0PHjzgW99+n08//ZTHjx8zny9ZLJas1yuyzFDVNdVqRVNV1E3dRhgqJfPBWsuqWuG9pNmc7u/zwQcfcnBwhHOB9apmNpsxm80oipLLixl/+Id/zOXlJQFPnmuKQcZ0r6Qc6OjoEYtKBkkvp1AUWcl0skdTOwpTcPvoNnVdcXl2ynx2yWq5wDWWX/zFuwzKIVVd8/zlc1wki6wPrNc1i+WCo4NjBuWEyfiQvb1DLmcn+OBa/aSdc9oApouWbY3geFxMfqoi821tTdoTqqoiyzNR2vBMspLf/u2/RfAZZ2cXjIYD3njwBm+//RbVahG9oyz/8n/+1/zSL/0iz54+Z7Vc8fDth/yb3/s3XFxcsFwuAc39+4cURcF6vWa5XHL//n3m8znn5+dMphPe//a3uby85PTsrJ178/mc9957L9ZzyNEKLi8v8TSABb+7Hkv6PbSA53b7ZkjcbYDipwUkXod0+Q/VXvue0ZC5/ssO5LrpeV4XWN/Vfpbjs4vo+7r92kUu/axbf++6bv/a3SfVghtXDP7eZ0pvrnCiXq3ULsA03rdNwSGfOO+jzqko8gLXrAneMptfcPryGV9+/hm3bx3z3v1vszc07I9HPLhzxNF4QKmhvjjjxekL5rNzVosZdb0E33D6/BGr5ZxMB/bGQwiGTOcMB2Mx+CtHmeWUZYnxjrCuWa5nrKtIBpiMutKxjo24ivoAeTlAZwW19SxmFS/PzqkdFIMB5XBKMTpgMJ5iygleFTQhYxEynCqBDJQiKMkl0pEbvrNPoid3qgcQXndefQOBzZtaV2RcWtIXVQp9IQ5Z8oje0vNa/bKVW2pji7qJcE/EUmouxEwK8XPvPUVRgHXimOclLdHv/Zs/4DsffIu3336L6cFtFvMZOpNo9cY5SS3jHcaANga8x/k1J6cLTk8VWVZgigGD4ZDJZMxkMmE8GUsRdRuwvhYMwAWJ0DO6rScRVGBUjlAonPMslusWL3j6/Cmz2QV37x5xfPuYwahktVrzp3/0ff7d7/0hx4e3ePedDwgOvvX2eyinefTkMRcn5+zf2qMclaA9jVtLhIFykTQKbcr9buy3bGo6LSnZvCq+QhVBNhUU7prp/3oE+9dr7Yy4cmKfcLl6k2u3wB4BvzmnXl3v72fe+l2/YUva7OcNz92/dFsk/oZ7t99FrCat2/5625wm/4u0byKRdF1br9cxs4ZunRzT+7LeCTaqYup0j+xtQeqMl0MlKcGMRoc8RjJlBJuBytFZJgEDeaDQjtKIQ0j3Y6n0iipbUZsCnOgSdlDTNBWr8Zz1ekHt7EYkUJsyrP+ZgHjtcymlYtaWNHc3MQqvQyeLduhJ6XelxIk77fuCSeorqyXQxxE6HSn99Gsype+7+yZSKTkLxT4kv994SggJj+w+D7EshVw71gGmv8bTWNFip+kebS3h9mG27T5oi/KgN/bXND6J7dqQ/6rf7dB+cJ39tL0fa+07bBcp/7GZPSfWgErlUVDoUIAXUsm6AM4L3usDtracn8+wjes54YpNnxUluckw2lDmJcPCRKdgmTsvX74UR92BlCSomzXKaYbZHh5FvYRxMWJcZrgqsJjPKAY5Z/MFRakZTQoKk1GqnEwrtPYoVeNowFucdugskGkjm0ysed7NFdN73ymzSn8WdRhEO6H7ry8EQkgZf3rrIxBrnQnGEmzA2YBrAs5GO8B5Qi7zK8ulH12Zh67kk7y7mApQSbBQykC2q72uc9+NBNNmwS8V+Y3+0IS2cwEkHVxXAqclEZTSvYGRglldR2UCt/EvSrx0EsinIvurVSBFp+kITud5hs0D3jXUtaSmkSgiDSFgvSdHSTox53He41F88egZL05OuHV2xu1bdxgMao6P7nAwGTAoDNXJS44O9tkfT9ifTDnYO0CbnKqxmDzn3W+9y8XFKQqLUprhKMdZS3ABYwQotcGiFHhX42kkaMV7fEiEkyiaTRM99xoR1iKjeqkJESNHmwT+e0LMf0oEZUMArYIAtV5S51mrcAhJooym8VKUPigt9JVSaA8upIgqEeKeGNGUfiJp1M9Y1sqkXt2dlrVPcyFKUiW7A0F1DK14aEtqOBNJpizLJIItkozSId/dJ6g4H023OW0IrN5E7/U1bWrBC3sdiHkoW0pFBILWOnKjMZ1YBOYTQKq1jikG0hP3YMp460xrlIlGkZeixAHaGlOJJSYStillnG2aLm2cVmSZIssl6q8sc77z4XektstwiHVeUlahIpEFAfF+k7R34sViY00UjGrrpvngcanwnJfQUhV0fGzpi6fbtANCklqdUoRpfKYpfI7XMfdhkMJ/mdLUwWG8EFDxhhHAltDMAGQq1miL11Nx103ecEaJ2RL0dV5nP5+tqlZ4H7i8vKBpGj799FNGwwmHR0fs7e8xGAy4desOeVmilHhmtGByIIYMX/USSQSSfJbu1ilrsKk0XPVKScRPV3wypRLbVCg2PWSkX5sKzfUeL5tE1hXyeMc520pk75vWkuw8X0I7Fj56CAXEeI9XEEU0ekj1AQrJ19u0RFYikPqRUU1TtzVv0lgvlxL5ZIzGOduOvVKSNrYoCpRS5HmOtZbG2ZimtcIFz7qqUcrgnKVRqpWpeZ53ZFyU+VlZcHzrDuPJlLt37/P4yRPeevSIL774nB/+6AecvjyNtS4CQRnyLGe9WgvBG2sOrWOhWBVDkUejEZPxBO8D8/mc2WzG2dkZJydnzC6XXF4sePToMdbKeGS5ZjweUJYZ2gSJuG1dtpLSK9HK49GIpV8zHU14+623UICzDevVisVsjgYuzs6xE0tdN5yfnXN875gAomCGhnVVUdkanRuGwyl7kwOKvKRuaroYtWQkE/ePEJXOEPvWN7i7deO9iz8hyv4MlOHg4JBvf/vb/I2/8Zv8yff/AqUMR0eHHB4eRO96CyictSwXMz79+FPm8wVKK5aLFcGDs64N8V8uV6xXa2wj5OJoNOLy8pK9/T3u3rvHvXv3hESK5CWIcjiZTKIHYiDPM+q6IstDNGCSAaa7eQLtGCh11Uj467a7bRut220bRN0A/1+heL/q2q9zDehI8OvO6f5OOt628ZnWCWLEvKJfPw3JtH3+z4rkuek6NxlCP+1z3HSd6wDz/r+7zm/3QC9meXu9re939j2EXjqrrTFJ6GqALu+GVOUMxqCCpATDeU6eP+PkxRMuzl5wtD/hvbff4HAQGBtHYTRDHKdPH7O4PGd2fk61XnF+dsJytcA1DUWuGJaKPB8yHQ+5dXzIvbt3GQ1HZHmJ0hnrdY0NirquWa7WXM5mzBaXeB/Iy4LBYMiwGDMajfBB4byiso6TiyXLekbjJJWJz/co98YUwyFZOYRyKkAXJZ4crzOcM3hySRWtxJINvhHHvNaw9q2xndDoDXDpBkKDm97JFhj7TZG9G/phSjeeavnQ0zO310WsLxGVNBLITejsLCDawhGD6BGmrTxr9UmFyUxbX1cydIidKy9bo4ymHGRUjeWzzx9xdj7j1vExd+7eYn//kDzL8N5RN+vohNR5trfYBx7ra6zVuLVn3VScX16Q5xmj4YjhcERZDsiLnCworJVIceccWZZsZd2WC5hORpIO3SHprpqKlycvmYzHlEXJd7/7i3z/D/6EH3/2JZ/86As++uHnrFcNWhmqumE0GHBytmC9XFMUGWVeUuYl63pN5RcxKX43Hqg0vqrFldKo+tClFt6cz73aTL13c/0edH3bJuCvnKK6+6n2700p98qltbUWN9vVLwS87Z+0Q19MNZ5vunR7vevH4apc6I/D60cvX3+97rqqHcCt626dIk4O/b/7L7m7T//dKaXa8bmiS/Ttz59CDL6ujvVNaY3kACMEgzERRzEmOpMEmjqwWgoJpVIdbWUki4R2OBMIObFGe4bRBUoVaHIMkXRSiqAV3nicsy0+WNc1mcrJTEGmc5GPOMpiwHAwYjQcMx+U2KqKpR9cj2jobGigjaLc0Iei/ea5KhNEpvfm0sYijHtA+qtPjkLEm+WENF8TBi0qUrgiTxLWlm4Z2v90crDdF3pd2pSNiKxPGHn8rKeFt3sKCRNvEcf2ThHi6NFd22uX/tqTm3XXUHF/lL60z9HXWbdlerue067Q2ZtXZV9HXuiIHYfUj7SRKwMhI3gN3qBDhg8mkiMB13i8dRJVFgLOevAxIEGHWKYjo3GOsiwZDSTTSyBwcX4hJFRMDZkZxd07x+LYW9c8fy77ssmGZKYAYLVYs7c3IT8wZBjWqwWFKTCZJjSBl4/nDKYZo0lOOVKUo5xiLOVC0BawEr2kN9484tTU1X6Wf/3G2MqHXfp7yZMV5z7dnBI9KupSIFi2V/hETioNMTtamlsCdUjgQvCO0N/ce/M3zVNlom6WnL4NiFN56O2Hr99eSTCpCG6lRSBjlx6vPwujt4MPUv8nyE+mFP3iaorNIlGJjAohRowQozjyrLeAPaiksHaLwBhNnoE1tn0hieCSfN4SOWQjg+sDaJNxcjqPafY8j758yv37dxkPZmTKM8gyxsOc6WjAuBwwHAwYlkMef/kVxWDAYFgynQyo7JLF7JSyLBgPh1ycX2DylArQx38lfV7A9cRXXDDO43ygsR5rJUVFYz3WOwH+jJackUomiFZRzCgBSS0uzkcZSxNAeyP5KKNbUnAKZRzaO7SXMdJBo5WRyRTDD4MX0FV5J2mUvMN6j4uRVO1/g++liuinyUuTuhPWm9YZpHAurUxkeuPi10I4ZHmMXkrBD60yJ+xtiGSFKD2qU+wTgdSpnt1GEedgiupIY6i0xoX4dwApgtpFUajYDx3EINVatZtRIkP7dryK186CAqPxqjP0g3etA4FPcgRi4UBkwUshJgESYyhmWeYYozCZ5r333sEHWK5WVFUtRKlQ+1EQSKSKcw5rU1RYAv1j5FBI4xGjDZXHqFRXqUvR0hrLEaxQSgw0eQ5NyIyw3DoKTR+EwY8Po4OToslB1nHamKRgY2jJJZ1ywbabbOikiVHt+/imtNVyifeBuq5ZrdbM53MGgxGL5ZLp5RRjDFXVkBdFTKsBg8GA0Wgk9etUN89F0Y81znpKQ1orm2nj2DgmkSS7iKFEvqRw/OsIpnQeqZpgUvTULspQXflN9oRObekbLXKcao1h0sf9C8f7GZ1yTXcARlJuQwi4TKiINpVeFjbGIh2nTaph1aW+2069J/WtAsKtyvepXpNSqiWU+j95npPluUQEVmuapsGHINGAylEUA2xyRRFNI/YhKQCybowx5EVBUZbs7e0z2dvn+NYtbt2+zXg64aMf/ogff/YJM3cpRJiWWlI+OJwXZaauG0ym2yKYxhiKIkcpqKqa84tzLi4uOD+/4IIZ5+czzs4usTENpzaG4WgoodjKizKEjIlq54GmyHOKvKDSNWVZcvv4mMvzc5y1NHVNVVXkxvDi+fN4ioSFGyP1QaqqQVnNarWiqtcMc02RDxmNpuR5gXXiAdVTS+Q/rcKVFOkoy9MaoC9zkikRZM5Gr4fJdI/796RO2nK5wJiM4XBAOchFgYueytV6zWw+46uvvsQ5LzUaiidUVYW1kgpVKy0Fv53t0qjGPXEwHKK1YjabsVqt2mdRCsbjkTgQ2JqmzvHe9PSi+KP6Dx/3rXY+bxof3/T2Kk+sVxEufTm4C/i4zuPvZ9Vuut42Yb+L3Lg6FTph+rMiYF73mJ8EiLzu3G0P1te9/tc5btf9rjt3tzPEK67ZM93b6990D9L+tTUW8T9hA4Vod9sY2a5wjWW9uODJo684O3mGrRe8+/AOh3sj9kxD6dfgGlaXC548+pKXz55ydnKCMYZnz5+yXkvUxXg04PatPW4f7TOeHnJ4dIej4zviTOU8ddNQVTVeO5arJYvFgovLSxpbSWRmllGWBYNBCbWhqh21cyxWlpOLFcvGE0xBNhgynNyimOyRlSUqK3DZEBc0PhgCGZDhJQ5fnjokA12hYu2B6C/cycW0PygdCSl1RcXYOf475uQGfhvBmG9Ea0GQzmbvAL/NUejkUvo77lNbcqp/Vk9KdfsjfdAurXmJ5O+f2Mps1b0PbTK8bbi4nLNYrlgsqkhsasajUUx9nDMYDvDe4ZzFW0vAt/q42MSeYC11I05JGtqajU3TMBgMyLNS+kF0dgwhFu32rX04yEvRSwuNC4r1ymGtY7Vao9DsTw4ZlRNWi5qTl6c8f3aKt6O8HgABAABJREFUCorxeEI5GGCMosgzmqrB1o5BaRiUA5rKk1HhlKQwQilc1Nf60WKRc+rGOYJAodUvehO7Dwhv2QWbb6u/iq6evynXwhWdfnsOpC9u2n+3e3Fdu0pwbfZz+5k6OduzgZRqZ3t7/Cv2hRtbwhBu7PnVtr3X7HbcU6jeftDqkNvrjo3XG4/dtM3S+f113JFMuvuuvUD/l1e8s61H/yZhAq/brLXomBpbbM/4biLAZUNAVQ2r5VrsDBRaG/KsIMssee4kI5IHjcGoHK1zjMoxFGhlJNJSS5p+Z6zIQO/Rao3Rkr7caMO6WuF8TVEMKO2QwWBEUQ5YmyVOW1KaOqIZ1ummcNUyUb39YlN/DSFCUHEKtXN+A2lNOFwSZr35nr7f+izhhnTLZENwhN7cbe3Gns6V5EKnr6kr64eoT+jtdZXOT7b+9jnxMxVTure3JkKY/WMjYN9fan0dEtVb175HMkEMbNigqIT+6OnS/YRmiRzonlMTgtTBln4kOzTZ4RoVRDcjGILXeGckyrfxuMZja4dvHYQ9zoX2BWUmo8gLhsMhWhnefPNNjo9uMZ1MaZqax4+fMF/MWS4WXM5mTCYDvv3td9nb26Oq1nxcaqqqYlVB1SBEqa0ZljlaK8bDEa6ugZwsy0AhWdACuLqhWisGtWZPZ5RassoI1tuAliryMe8bKNpaWSEC4aGth5zGr6+LhO6jDflIu1+rnsOO14HoURvnWktLbc4raJ2rE56UytWko9r3rrpsLq1DbtuHzjGoD79d124kmLbBSa+E8EjKkczSgFbiIaS1ikEN4i3sogewj2GJqTcm1vpJCoML8nASDqmwwWIyqUGTiAxCSv/k8CTCQZFlUJYZSg1Qa81yvRKjQCvyrBBFECekjAtkRY6tPCFkzGeeP/3Tv+Jgb58X7gnzMmcyHXG4fxtnG1RQ5FoRnGO+mPHmm2+S5YovPv+Y+XrGxeKCW8UBw9EhL18+Zzzai+PmKMoCqT/hhHSLaYJSqGoqbNvUnqbxNE2gajx13VCUGSaX0MJMK6ldpAN4H0MNHVb7ZG2ilHjUG63RIgli6jGPsg6URaFxGkxQmOBwSssEdU6UWqcIzZqqacSbPlghmFRK6BdT6bXptkSMO5fSEgrAlloriIiv3sSIJW3IsyzW5ZGwXqMVWRZzXKqu5lISuDL3PDpobNyZQhChl2qqJEUsxLESMkW1kR2dUBeprFRM/6gUWXt8D2DWOka3urg/9TwL2sq/gRR2qgBlohJlNCrWWEphyQHaGlSJcE1zocgMmdZSYyPPWa+FTffekeeGB2/cw3vNbDZjPp+R5Zq6EXLJZBlGa+qqxjlH06h2xUu/JFzax3y2KtbEQkmUHTpFXURh0hvzNBZZTIWXjA4flJBHcVNyDSgv0UjGK2ycA6morUKiNlSQFJdttFbrfS1zyCSpEgkpvb0D/xy3y/MLqqqiKEvGU5EjzlpOT0548eIFF5cXfPrpj2maBq01o8mEd955h4cP32Q8GZHleXutBFjneaqF1Fc++6HptLJDCHvThtj3CaMUsQS0vwvRkiIMr6ZX2jZyWi+M1u6SzVPrFK57fWLE/pyEbpPbMArbU0W50tFLyxiuHtu7njGmJWdTS+SR9571ei37UmS+E9GRxlFr3ZJJQvDa9h1UsXaO957BYLBRsymNt8ifjKGWdIib/ZCC63IPReWc1HoyMb2kNoTg2veRrnd4dMRkMuGtt9/md37nd/ijP/oj/tF/9//gk48/4vTkBOsaxtMps8sLqromz404PARPlhtypWSemUCeG9Zrz4sXzzg9PWU+X+AcqIslzoIjkOXiTTQajUS2xOKaKo5DZiTqymjNZDTB6CwaCIrhaMDjLy6p66ojW0Lgq6++ZDAacnR8zNHRASEE5osls3mFyTwX8xnTvRWD0YgiHzAe71GWQ6r6UhTmNv10VH7p9iQfWnOgN8O6KDqZEw6tIYvkvVJQ5CXlYMDjx4/57LNP2d8/YH9/jxA8mdH4LMPZhqpaM7u4xDeeVE/p4vKSJhb6NsaQ5znee6p6jfOyr1bVmul0SgiBr756xKeffsKTJ4/wClysG/HgwQOWqwVaObS25KWjKHI8FeKIEwnICBpvGjfRc25rnX1d79ifx3YdYfGqsXmd77fl4/b1ryNHXvXZ9jVfp59XwaP+c6b0oaLb7+rbrnP7179uHHcDj6/X7/5527L/un5s9+mnBaZ2jduu62/3dbsf111vV/93fnbDOG7skRvnigHbx3kV8q91jtxIpgFvG774/DN+/OlH+GbN8eGEvUlJUy1Y+xXOrgiu4fzlCz7/7FNOXr5gMZ8xHk959PgJVV1jMsOR20ebwPHxEaPJlIPDW4wne6zXaxazc87PzlmvaxpjWK2WrFcr6qpiPB5yfHTIZDplMBgRUCxWMy4XKy5ma85nNWcrSz7aZzQ5ZHx4i8H0kFCUoA1OGRqdoVUeHUsQp6igJbU6QBAAQGkBQdodIGZYCEFqjipCTBPSA0bjXkJvTb+qibnRm6uvPOPnownA1P/7Ncbrhq+31/irHAKSo0hyCkL+amvCSs1MsWFbh3otDjY+wMvzC16enrO/v8/B/j6HR0ccHhzyzrtvkecZzjWslzNWS4lQVkgmh6RLt3qz0lRVLeAu4lR0sH/I/v4hw0ERMQrBB2SuSJR8mReijxjQmaEopyivWc4WXJ7PoFLcPrzDeDjhXF0SXKAclCgNja1RWnN0dMjZxQXrZUOROcZlgV0G8mGGURobndAciN3dkg691FOIw7NXCTZTdOxTH2HaLY+7Frb+3XztV8mhaP+r3de8af9M32/vBaF/nWQjb1376+0THQCY7pEUru2nNen7r3uPTazwNfrT9WUXKdb1wbfgdLLh0vu+aZ9uyaXuNcXrba/P3iMkYoD0PuP3vdvsuuXuz24ejG8iAWVtyviU6hKJw7AxBhWd9uvKAiucdYKrhkBmcjKTkemcXBeUA0eRScq83BRolQnJpPKWRAIku0OQCCatM5qsJLc1xuSs1kusW2N9TVlWDGP05jK7xDZG8LggWCakuSfPkQIkWmwiAcQqtPI8NYVgdP06y6m1mGFPF0o8Rx8bT/hHn3SlJY5690l37q2X9tvthd6SLZ2cEahDtSe2aXe3dcb0fXtMby63x0BylumvH8/WegnddWXJbV2P/rjL4LSPEN+DatPXRjwk7guqV/8zkX0q9reVy16yeXS6T0L3Yi1kMlTIxBnIgasC1cpia4ezXhxhA7hGouVkvmZAoCyHHB4ccv/uPe7cucNv/uZv8d5773Lnzl3quuKrrx7x+PEjPvroI37v936P23eO+Z2//Td59913yPOMP/uzP+Ojjz7iRx9/xaPHL5nNL8E7nlVzijynLAo0irpxDMqBRB/ne8wWFywuZsxma7LLgPMDjtSQYqTRMXOaD0sk+j3E54z7qYKUIQeVkRybAv1KnzLwpn1BKp6ruzXQm8PoQHAhRmTT6i9KqzYSCR3arGBBiV6LigRk2uR7rcX9THJilgCPLjJCdVxO25Hr240Ek/UORaqdoiXcTakItneTUWkJU3dBkSlobNq8FLUOZJmKnsygCOIN5NKGLACc0gnYkwdZrVYQFD4mrHTeoZUhxLQOOgS0geGkRK811kdQ1ZStcGmaBpMbDAK6oDKq2jIohjgMi1Xgiy9f8N/+t/+I733nXe7fO2J/f8wv/o07rGxNOZ4yGE053D/g3Xff4vGzx/z488/4/PEX/PqvfI/zs0Muzs744qsvGA6HzGaXlGUpz1etGI4HBG0ZDkeMBlMeP3nCqqpYV7UU9HSe9boWj76moW4k/7gPBpwYOi54CqOxdSP1JZQn6CBKpNFCMKDwVkggZbQYRj6gveSyrBtHrRsKU5DrjEwbMqXRQRNctMQ8KJ9jg6UJltpZqqamsZJq0BMkN3phqK2LUTQS2ZRaX1h3iyEC10pyZGYJxNbiFZFnhiwzGK3E4Au0OUmTeOyA8EChBQy11vXqy3QCznuPbWTdeB/wRtKJlXlGZiRyKxFLOhJDdQRpIZI+BOq6QSnTbl5iNIRe5IQIWR/EXV6nInBWPMO0khR0qU6GjcSZQt4lGrI8Z1DkBN9w9+5t9qZTyjJnNBkyHo/Z299nNB5zev6CO3cf4pVnWa1YrVZt1IKJNW5MLgB3qhHlPDgXsBpwAh45F9DatekINUDdpVEzxqCyfEMRNcYQrKfMM7zWWK1piBlUQyA4j9WKPDOsnUVbi1Yy5kZriY6LiG5mJKRUJ8HmkX4oE+FQuZ42YMw3S1GsqoqzszNMlrGuG4qiwIwznPOs1xVnJ+fM50shRbKMoix59OgxR0dHHBweMJ6MsdZydHSEMYbBYMD+/pSyLAlhCci7HI1GbZo1IZPyDUIptV1ecCGSyNa6jeO6YyHl0uxfT6Lm/JXrKaViWrFdwOCmMdbP35tIm/QMqWmtCUpSLKbW98TpG7Hp90TGpev0yaUQpH6ShD3LczrnOsAidERslmUtUZXOSzWgEmnUv6549qW+yL+DwWCjH7IuDSEIWauUomrWaCvkjOTSTfLPYExGnuc0jaRPNUYTDPz6r/8G3/3uh3z26af86ff/mP/XP/4f+OzHn6CCp8ilFkBeDsWRwFuWyzW37uQslhf4UHNxccGT50+kr+jo6AAoIcYPDvY4OJyQ5QZjPLgaryxaB4aDgqaxKAxFLundBoOS0XCI0ZrZxQV5YVgsZlTrFd57Zos1+/uHPH36jMvZjKPbRzSrFbP5nMWiJisUFxcXjIcnDAaa6bRkf++Aw4NbrOtLrKvwWDrtHojj7H301qWdYjK3e5FuJhPPZR9TpUqqQs/nn3+O94rf+dt/h9VqyWw2Y29vzMHBHkqlemaK8WTMt7/9Hp9//iXTyR7D4RjrAuv1ut0jm6bBuob1eg0EhsOSo6NDGmupqhV1rVryczge0USP6IcPHzIajSCI4j1fzKjrNZ41OvNkWfJ088n3iS60PSmGaWiuEsF/3V6vvQ6QsS3TdgFZu0j5Xdf/icCp3rWSZ9qr2kaaVczXut915NJP07av2U8JeB2wuOuzn7QvryLYriOEflJSq/O+pVuuW2TWdX1Lz5m2T51IlB7g1++tIpAZhcKyXi14+ugr/vSP/oDF5Ql3j/e5fTilwLM4e8G6WaDqJU215vL8hIvLM+aLS2bzOToz1K6mthUmGByeo6NjDg8P2d+fMp6U1PWKx4++5OmTJ5ycnmKdJ+QlRVEwHg25c+sud+/cZjQaY71jsVxzcnrJo2fnzNaO2meowT4P7tymnB6RDSeYcozNchySkcChaEKi1nXc+8Um1d71bGEBOpTK6Zzn4udKtwnoZWcVx5d23P3V992BSbvfjTK6A3z+Ws7uXqNfw5ns9cjqpBd1v6MEbHXBEVSQGgpS8R2ibdbWF/UCpJxdzjm9mOM++4r1es3f/V/9Dr/6q7/Km2++zWI+I7iG5XwRo5MbltUFINHzWmuss6igyXQmQFFQnJ2c8+LZKXleMBqNOTo64tbhMXlWCE7iA/Uq6gpFhs8gIxO9qRihncY4xf70iMlwj2FxTlVXWGt5/4MP8ARmsxlPnj/j4PCI89NzLm1gUk5o5pajoylOWRbNGh8aMhXEcTMCXAlIbDN8ENrVFNrR7Cz/bbLg67bX2Tden9Dd3GN3yuft30NnMXw9R4jX708/mb/ZfejX45Jeo/XtlM36J11Le4NKaZx2EFObrX3rvc9efxwCYWuMe7p4n3BqL9tBsK9ssf/ftJZq/WZZFrNmZDSNxfsgDtyZzLi6anDWYxsnqd4xBK/wVmFtIMsGFLok1x4yjclysfeCAh/3RU+szZ1Jnd2gycgxweBNYFROsa7C2opKFxS5ZIAalGOJTnGBEGysi6tRwROclOLAdjZ94ldanCBAG6oBLZGT2i6CqdWZ+ufIL5Cc7UI3H2WdXB3fNDWvbN+BHroQr7s1/bZXS2uJXSPLItLA9ppK+ObVe/SP25ajOpJlfRt4h2xN14iKo8QoqDZrVP+ZvfcY0zmfCS4rDrbpeyE5dCQ3IXjRx4zJUTpDkRGcZna5ZrWoqRYN1awhH4izhUKRZxl5llPZNcfHx9y5c5vRoGS1WvH22+/yne98h1//9V/n7t27HBwcELynqRv298a8+fABh4f/a5RSvHjxLDp2Nu06+S//y/89zlsWS8eXXz3ln/7Tf8r//C/+Gc+ePaGuKnAFZ2fnDMoJdV6TmwGT0QGKAXvTWwRVU/slT798gncZR7fGTA8GZJlnUX8uZFDEU0WOOVIkm3c+JmTTMu7RESdlBm7TYrdZ31T7DgIdWQQSmONj4I33UbeJGq1SslxNZlBZIGiPx0XNN2Jz4jlCh7Qn4qqbVi2xq1Imu00M7VV78o0EE3GCkoAxpKZScmBI9ctaXNGLCFCR4MBJBE0g1e+QnIwqstjtFhMBSPksMsjWR1ZV4b0MJlq3DJzODDnQePBao4uMzDqU0rEegtzXoAgpPYIyBKNw3lJbB1oxzDPW64ovvnzCarHkwf1bHH7+Kbfv3CM0S+bnKy6XNYv1kidPv8KHit/6rd+gzDVPnnzFcrXCh8DdB/f5/NPPMJmmGBQEBcv1CrSins+4uJhTDgecXJ5LbR6FEDguRmShZXEFQ107TGEwSqF8YLWucaEhKI/KoDA5QZkYAtspfSEEySWe5IkPOB0wLkgonZFweKMMmVKooEWB9CJQlIXGNtTOSqq84CS5n5JIJq8cPnqooyXqIMRixK2MigoEmjaPY6Y0RicyQWOULL7MSESTpEyTxHNJiLezI4GwkZja9hbtp6qS6DnfsrOKEFlgjY0bktEG8BiT4ePipb2GzLXk4eEjc75p1BOBShEGWQLSlSz2LJOJ7iPMvVxJ9JgQv4rGNZRlITWavKVuHLkOHB5MODw6IMs0D954wMOHD6maGmsdb7/9Dj/40edtnZThcCippGJ9Duccns6TxUQg3GqNUj4SYQGjIvmIizWOZL2ZVoAJ2LAN4BhjogEGhEzkTzSEvPZoFBZL3ioFtAX2iEWkuzGUdW3imGkV0+Yp6avKIoGsaFNPfBOac47Dw0NA0TQ1f/nxx/zyL/8Ko+GIosjbiIcsyxiUJcPhOJLJ4sVT1w11XfPFF1/ivWM0GnHv3h0ODg7Y29snz4tNJUBJBJL3dQt89yOVtg01pVSr5ofoVSHzIXTASbsuhYTaBZJ6nyJRu3R9/e+T99IGqBO/S3MrHadTsc54Gx1Tb4Y2eiOSN3QkTlubBlkT7eeIvGplTz/X7ZbC2h+XNP6ieJleAcVONvWJ8PQsLZDRAyOlLwlIpq27I6Mh3qY+WEm36YlpCoSgkyjivO2HeHdprHWSxnUy4Z13JUz8ww8/5L/+r/8rvv/Hf8zz588YDEryvKBuKgK6dQgAxXK55CRG0a3qShQYJcqnc479vQlvvvmQW3cOeP7yEYSmfS6JRhKQwhgdveUMtmo4Pjxkb7KH94G9vSkheBSSSnB+MWe5XmFsDTqw7/Y5P79ktVyzrhzGVlxeXjIanrK3N2I0zBkUI44PbnFx+YymXpE8gVMh0K5eXyJe+vMyArvx/ea5kdSErlubShuaRvSK7373u+ztT9nb2+c73/mAB/fvo5CaClpBnue88967fPnlI1brZXTG6M1TYyjLgiwfc3FxxmIxJxDIy4yizPFzSS+QZQZjFINByXwxZ7VacXl5zp07t1guZiyXC2bzBcvlkvHUkGWSFjgEqS8Gss5lT9rcw0K4fl5/E9oukuK6cbiO3LniUHPNOa8CzK4jl/rf7+r/67y36/rRJyz6323UTgnX96N/zqYTwuvPpe3jt69/3XNf94yvOvanJcBu6u+r7v3qi2+BF+r1wNJd/VPt9SRzA3iCl2jd9B2IHMI5FpeXPH38iL/4s+/z4uljHt475O6tAyaDjIvTZzRNRR5qcuXIjEFlhlt373BwuEddrajrmsAdfAgMBwMevHGft964xxv3bjEe5sxn55w8f87z58+5vLxktVxR2YbheMpkf8LtW0fcvXOHoixYrVZczBacXy64XNaQDRntDxnlI1S+RzY+QpdjvClogsE2iC6rY2poQlv8WEXg2BDtm4jb+JAcyRRBGXxLJqlITPWs+Ai6KLbezw3v4Mp6Cb319upL/Hy01nO5Zxv2wLyrx8d/t4tJsHst3bQeuuN7Y97DFlt7tS8PSTUGouWpVQ9VlOjrvcE+f/4XP6AoRxTliL3phMYq8kKR52MAyqqMenV0LHJ1rz8KgtRTLmK933XVcHJyzsuX5wzKAaPxmIP9A4ZDuV6No4lpkm1jyU3Gcr7gj/7NH/L7//r3uby4EI9rY5ivlrw8PePO3bvcfbDHbLnCNo43HrxBbnJsZblzdMzFy8eU44LpdIJ2a2bNKjoPi76amwwTQgR1UqJO+df3FoLvvZaoce98H69qou5vE0iRzkr2QHwdr7Nf99u1MnsLl/XcTGNs37db41eP2e7nxnV2XVMU0KsH9D9S3V/Xr6OrOkT/75udVNIz7d7rw9bm1H52RZnePr67bogIw853cE2TYx2vJJlCQiK/ec3amhAMKU17nu+QoVpJ1FGs/xoCzMoFOhLf2mSsV2syk+FDhmeIURmZyWRP9AqcFkwyGsZBedBgtNSZ8cBoMJUIJrvCuQo7WDEe7bEYzqnWNdW6RquUYt8n940Nx6HOeXQzmmjjedr/dO119KM+n5kuFAKxDMjWth8P7NLgdSclPSv0P9s4MXWws/u2M0e0eAnxITe3ra7PXF3rKXVve52Ep8cBa4kBEp7SPUN3pZiFJTpWtCJIdb3tZ6USDF9c2BNuIjWmmxg51z6oBIRgIiajJS0sBrzBWzg/uWR+WTOd7PHWt9/lF777i9y9c5fzi0sef/WITz/5lPv37/I3f/u3+ODb3+b+vftSs10pBoNhTFkbs4E1tiPtgmK1XLNcPMY5R91ULR9QFDnDYclyvqSxlnI45jsfvMfbb/2f+d/9w/+cjz/+iN/717/HP/kn/6TFMFeLJetlw3risc6hjGIwKjnYmxKA0+cnrOaOvQPL4fEeg+MjUI4QYgpd7TC5ONwnHEGCERQBL44sQWihjffeexchYlFpwoWkw6QscEahMyFhtVaQaYIWJ/24NFFGC38Q+eKkZ4VeNJrssV3t5uSYKsumi26We3fOCze1m1PkxQtIf3ZsTr1NVh43tAx3J/Blc9AmRi5oIhHQjWKAGA0TBUoSAkGIqBQEEYJHmeSNpGMqGCN1tDJDUJ686Og3rQxSEiounvgCnHcxcgcyHTBBcXG5JniNMQO+5z31eklBQOcZg9Kj84IH929RNw0mMzx78og8Lzk6Ogbvefb8GXv7MbVVrG2RQH9bS+hf3jRM9qZczuZUqzV101A3DucD1qU6U7GWivUJ3SQEJ4RNKlBEjJjRChITGl988LTnoRTaBSGFjEJ7IYw0HquU1GMi+vgHhbKexjmsc13UkgptRJFkkQjoTMywoBShlxszvUylaJlWncDpdtLSAbpRqVfp2vSulX5aVLsDOzpwuUtR1QK1QfqrvaSFM5G0cj6g8B0OrnwLICsd8FbAOB+B0yS8tsETHTeMWE+t7UdAUF8d2X0dkLR3RuOTJ5ELkBnyzMQ8qp5MB7793jscHEwZDXPKQcnx0QG3bh/hvGe1rlisFjx79oyqroR0CYG8KNr1mdZKAJwXQbipBBtMkHzyJho2QsK5+G+XM1TBBtGQwPC05oyhJZjwHu3j5hY8RgU8ptt8g0R8yfpOG1U3WdL4ayXCUKHaCCeZHz+ZwfIfYwvBY4zU41mvVsxml1IwczCMEUkljXWYTKIpZrNLIae9x+QZWZ4zHA4ZDodtpNLx8SFlWTIcStRSn/xIm0cIoY2O6St5O8G4KJz7aUB2HbtJmmwCm/2Q9j7BtDGPQzL0u0jZkFJzboEV6UdkghYZmsilHsnUfw4VtdP+v53nlNo4Vu61+Yy7ft9l0CWwdteP5ClO3tFpjLrnTWukT7rJOnLtXux8TKMHKJXJulES+WqM6VJUKklBWpQld+7c5fj4mL/3936X8XjKD/7qL/nii89Zr5fYGGllMk1VN7x4cULdrHn+7AXLxVoKbUJbKBYC3/rWO7zz7psMhhnPT79qw7BDAB/3Hh0MWot3nVYKZy3jgzEH+/sMByXPnryMecRTXaqCyWRK4yTl0mQy5vGzp9R1Q1M7rKkk3dJyzmKxYDoZsX8wYjrZZzTcY7laUDdVHOOY3rctztjbXBRSALO3f3XzQ75vQdsgxFFmch4/fox1juPjI+7eu4PJTPSSsuIIk2Xs7+/zrW+9R13XrNc1L16ed2lknUPSMxmWqwWoQBEJ5NVqhfcuplNMqXbk/eV5RlmWUo9tvWa5XKBMJbqVVgRcjLhKxGeIRmdUVOnNpd6/36S2iziH68dhe62/Su7tus/rXPemfu76+3X62/uUBApdd/8+qSVznivn3PRM7Tp5xXPf1NeflKjada3td7TretvPvQu4u65PX6d/r0NspR2vf0y/qO4GUfha90y6Nu273O6T8p7FYs6jr77g808/4csvPiPTgb3JkOEgA99QrSwhWJQS3bbMMg4O98lVwBAgWNarFffu3iLLMkajIYcH++xNhgyKjLpaM7tY8uLlM5arBcZopvtT9kzG4f4+B4eHTPemFLlhuVwyX6yZLdbMlg2LKmCGY4rhAaqYQD5BFVOCKQlKx1TNIdJCOs7yCLCE5GYSBzeNbkwF40Dsl6DYSM6b5kN7tc4gVb3vX7eJTXY1dfjPe2sx5HYCqhYg6U/FnbLv2j+2jrtRHm2evHu1ygJJKyp5cgv24qPt0kN1VGCxWvD46RMOvzjiux98wGAwwmcO72RvV1qIJXEqcRSZayPZZT+OTn0mE2zDeWonqeY9DU6tcCjKdS26fJlTFCWGDB003nlml5f84Ac/4MuvvsTVtrW3AM4vLhhPp2RlwXA4olpV5CanzAtcsOKZ3gTs2pLnlsPDfapzSfkhbi0p9Xk3/Bt7QOh5tff16vCzm9ch9FKsiZG7dbNNuf66pNO1BEt6xdBN3BvaNhG2/fn/j7z/erYky9I7sd8W7n7klSEzIkVUpajKyqpqge6qRjW6ATRADNCwwRjVE8ExkC8zL8NHGGl8Ic1m/oUxGgkzEuCQZvNAYnrGYBAkGmg2CmhVMkulFqHFVUe52IIPe293P+eeGxHZ3UMjKrdZxL33HPft27dc61trfetpPSGe4/vNPaaNaOivqfTdhszxPGfNdvml3zdPP+fDvRt1+/aCjXO0cxhMHb11jPpAZ/igHQsf12P7+WabO6UwGgk+H3tsKs6t05Emx8tUvA8MNZ6gxxgCvfZquULrDKU0WuesilXIz+41QgzJdYEUeUy3LUjGlk4GCdToAoEGcu8pshFFNiLPhmTZgDwbMixGIRdTvkLKFVJ2jB6dVaebV127e+t886XTWRIxyrTfX7weEuKY/u7Jcj2E/fzKi+/d4o9dG7sZff6cSQjnNvl5HUPvNlvfr+BcSThj0l3jk9N6RHRv53vv1O6j6Rkbawaizp6kINETmmI0TGxzMEy4mH4l1uY7LChhGMG5XAWnV6EITFAC27hA0Vg5FrMKb2EymnD92jW+/OUv8eKNF/Hec3x0zKeffsrh4QFvvfUmV69cZjqZtnqtlBJrLMvlKqYrsCFwQam2z30EwqVQGFNhIgMIiOhsJclzix4I9vd32dudsLe7gzOWhw8e8v3vvc1q1YSIYgGrchHwXq1QWmKbHOFzMjmmWTUcNxX1as6B8OSFRGc5Ks/wosI7gxCgUwqVpI8h4zbngrdGl5Ae0RuhxGrgowziXW8shQh5s3VgYcGneR+w3uAnHNeHBN/3nephbO0sPLd1bsyjdjo9n677VANTC7D7CCpH8CptMP21mwRxhwDnI1VRiKbxQqERMYIlcBwnOwgIHDLyLMbXjhMhGJfiPx/qAxsNHfHBSiGdQCgdBDcdwttFSMREYwOY6nz4JwUYDM5bvPVUwjFQGavKYW2NlAusscxOTpjsWib5lPFIsTeYcOXyHvPFirv37nF2esZkMqHINKap+c53/pivfPlNFosFq8UC5z15PmQxKzGNwTvP2dFjbr36GsuyCtFLTUNjHHVj4oGdcqWAtcGmLnSgYctyFaNPQqSOVBKhZBfl4btcVf0J4FIKXx/D9HAIH4B8LWRUzeJ0NoQ8GM5ivMNGSjihiF6BAulAZWFhhLCcACSmWZoED6m6qIdg+e5vSqGdPbUtgJakQ6X3rz1I2tdsN7MEwLXz1QfhOPFGhgUTfia6QW8TJ7dHiBSeKDDGIUUA40IeFdlG7QVDSHfACCmQERQOVvVwyHvhEEqT8j5pKSlyjbHhed45cq2RIhiewnpw/MIvvkW5WiCAnZ0Je/s7FIUOIcpK8v0fvM2dO7epqgohBdY6ikFMAtsHQIg5qbzHKYWPa8frkHPMSY+P+UmcFHhhScSVKh4xMh1a8axxziG06s6eCMJ76wI/vQPlQ7SEEl0kXUgZ5nAiRlfH2djJiZ4UWRLovgT4OCdbHvBnC/s/L6VuKhBh/Oq6RuCp65q6qVEyJL2WMlCfVXXFfLbACdjd3UVJxXA45PDwkBdeeIHxeMxwOKAoipBDqJefJyUc3iyd4SP83jcCtZ87FxMvdrSU2wxIqfTzOPWVmn5kzzbgLnjG9ZWTuL58EvDWDVjpvtCmYGTqmpR+OR/73kYIxfUtlUQlqstkgBLx4KYzQG2Clpuf99u1aWRqKfJQbY7CfrLdlOMuvau1rt0LIRrkWsNUADHaZyUBrDdmiZ5PSEGe5eR5Ti4KvvWXfoMrV69x88UX+ef//J/y3nvvhKgzKdEI5sslH338KWVZcnpySlk2hKpkq8DoTPDlN1/j8NIey9UMIQMQ6ROQ0kosEiUzMl2EnAR1RZHnTEYj8kzz6OFDnLUx751iOB6zt7fP2fyULM+Y7ExYliuqqqauQ/6Mui5ZLRfMZ3OWkwn7B1Mmk12mk13mizMWizlShgOkM1gmETztLR0PfVJAgiAWlZY4R5ra4yWMRmMGgyG/93u/x3w+ZzQeMp1OI92dpapqrGnQSlEUBW+88TplWfHo0RMePnoSDFDW0tEaChaLOUpJxuMR1llmszOGw1E7NxONZZ6HZKK7u7t471ksl5TliumOJs8zpHQ412CdiTQZyaPRRVpH0QIzvqcwfd7KRSDMn9Y4dFGd24wXT6vnsxpnntWm9dIJUU8zpCRwKYnWfa3ied75s7frT1eet5+eB3jc1hfbALjN75+3DZtnxda5siHjBsPQOnXL2nOf0qedlE1PjovP9ImaNUSVN8by6MF93nv3Z3z0wbucPHnIyzeusrszYpArnKnwwqE1aCXRWZBD9neGjHLFIJPkStI0FdYGvvqiyFFCYOoVpl6xXC2Zz85YlYHWeTgdM55MGU93ONwdk+UFiGCgPzo+ZdV4lpWjdpoGiR7soYb7yGKCUQOsGOBEYB/wgJA+xRwFJmYfd/IWR+qBNwRmAQdYH2jwvBC9mNbgdCjSGSHWx60/pufWQ++77dc+/5z5eSjduoL23T3rHrOpbGDG/a+7MTgPLIfvn92nCa9w67fSkpWJ9FyZIPA1IC8xazhTIbXk8dFD3n0v42B3lxs3XiTPcrwKspbSQcZ2kRZcSUlZhvySzoYIAmMNUmnwHi+izJUpvBCUjWH+5BipToPxdXeXSR7yVmqvcLVjMZ9z5/anzGYnKJEhhIzey5L5YsnR8QlCKYajMba2NHVDJiTDomB2ckauckzdUC9qrt98gbPlHIwnpIKKDrguYCUtowEx4j+tNdEBVemC1lC3xXDxjBFau687o3p1ed8CnanWZ52pqe52e+1No3N7vOiuaQHV55AJ+kD++ts8vfT3C1o8Lf4uxNrz22e3ekC3vrafw+nvzoluUx65sE1++/m3vqc97YU2WhJl7229cm4PlbHuuAf3Tt+Nd+tzJ0XJfg0j+rPJUv++lUBtHn4XQkRjtm3Xj1JdVLrwoWeNkSEvnAi5cZTSMcpE4L0EOWBQjMhkgdM60MQn3SECwoLg6A4CHfu70EOybEimh2R6QJ6FeoaDMUWxROsFziUMoUul0s3R/hynBfhTWZOp6fS0ENGT6tpW+nr7eu/18UZ8PzJDrH2/IV2FOuPG0d9HElK/vt7W14AQIj6qixCNx01b91rrY78IIVpsJKz/WIcPeZoBvPRr95w33var79aQbxuQnhHkRCLmScT/w5jTvnfAQVXsJxv/DudSYlZpSstq0VCXhqYyVKVlbzrlyqVLvPjCDW6+8AIvXL/Kwf4+SkhWZUlR5GSZjvR3Vcswo+OzhIDhYMBiscQJ2dL9J6zLe0ddB4YyIRzWeEpX472nKAqqsgrYus7I8ozD/UO++tbXKFc1dWn46c/exXuJVBllVWOMI9cDnGlYzOYY65gM91mtlixmcxanM4ywTHZyJtOcyX6GlNDEtApSCYz1GGsJZDvJkCF7h0+ko21lp3ZStHMReviKCLiPVwIXnf+lChCRUHFPFQJi9JJoH5WcXeI6S8/xnfN5N3fFRjv6c+fp++xTDUx1XcfcSyHiQSau4nSwuSREinaR0/vp2rwG0cKugkXRGxMMTCn5FEE5aD18fLCCWhsAchup93A2WOCkD4YVKUALhJboTDKaDDFlhVAR9K49A51hncPisUQeQt8go7GrNg3Ch6R2wmccndb8d//kn/KVr3yZq9cus7vaYTApGI3HLMoVq7JGectXvvwaT46O+eCDD3jw4D5//W/8dd597x0eHD3EWc8LL9xAyYKHj4/IMs3e4R4n77/P0fFjEJ7xZMRqVcXFLqLwGSaizvMW5IIwWYyziGjIsd6ic71+6Iuu/9LMC/tKOHmME3gCH3SIFHE4oVD9/AxNzBnSRi+FGSJE6CspQgRPpkEaiTAWYTzYbqxTkdFgJBCgone1B+cEUgTOVel0iE7Do3vUUGnStz89Adxu+c87BVApgXOiA8RxSC+w3ocwf6KCEemziGCwUroDHqMhxsYNMzjqW4JjSIyuUj7Mu5gfSEoNBEosokHLuUTFGOq2JtzrK4OXHpUL8rzAW8f+3g7jYcFqOePFm5eZzwuEEOwfHPDiSy/w+PEx9x8+5tPbd3n7Rz+hLNcPLO89k8mEqqpZLlcoleF9jWkMVgRg1EkVhQ3Vzi2jFMoFykIrHcY7vAw89QqFsz54HSR1S3RzKnSfispG4PgVUqIyHbz9TDCACOcxcsMIkATdJMWS+la0m5gQnhBNFbc0f94o8PNaPvnk45B3a2eX3b0dDhf7nJ4eU1UlWmchh5nKgJDf5/r1HX7zr/4Vrly5wngyYTAcolUWc8yEOpumAc4rFGnuW2tj5EXnAfVUr9CN77cJ8puGqn69fcWlb5xZe8a5+vrfRUGsZyw6B/akc6r3/HBNErKD4d57H+jm+vf2HMH6n5erJghLUrY0g/32JgNe+pnK5rv1DU3BuydZXsPaCgZt1xPAwdnz7+h7BrqUTDslJLcxd19/bKx3mFVDXdWBp1tJBoOCr37ta7z++ut861vf4h/8g/8jv/t7vxvyu+mck9M5q8UZ3oV8dKuVo25cz3BRc3Cwx85eRmVOODq7D6IEQUvjp4RGk+MRZHrAsBiTKcXRbI6zltVqxaOHD0B4iuGAxXxFtVqxv3fAqlyxWK2wOE5nMx4/PmI2n9MYkMqh8xWz7ITT0zHTyRhrDplO97h0cIXVasl8PqNuSqxtWgE/5ftKykkyzgdJv9uHtJIoKXEyOLaAR0rNpcuX2d/f57/8L/8PzBcL5vMFi1Uw9CDg9u07rJYLBoOcw4NLLBZLrly+wo0bBR99/An37t2jrsMYDIcDpBJUVRWoFbVid3fKZDLCe09ZVpyenAWqy+vXcN5xdnbGZLJDWdZ4F4Tk/f0dHh0dA2VwfIiOEUrGcPmoWAVFbdt+2l3zeS4XGYn+LGUbqPN8oNif/dnpma0ifgEoe87IhGTzyU9r32c1tPSvvxDE2zCirOMB/b1+4xmtGeH8M55mEDvXhtSMuC7WIos2oK/+5xeVVEdLD/RcetpFBsDz7V7r04D0tnl4PT2nD0dwwPNgTcPx8RO++8d/yAfv/Yzl7JTDvQmvvPwCVy/tMxlmFNKDr8HV5HlOkWfkWqGBnfGIyTAnV4LlPPSItZamXLIyhpMnT/C2RkrI85ybL76MznKKwYjBcEheDBBmSVXVNNZRNZ5lA7XPsXmGynKGckSxcwWvBzQio/Eah+rSIInoMuc8zpk20fFav/u+M2OAc2xS7EUHnhNBSoFF4JCpbyOw8rT126IdG+PikxLTH9XPCfDpW/BpY51vdl/EilsM3a9f5G0PoNvoum6b2LKH+OgE2fsuwdK0Y6kS51u8OejLvZEknP0SqRVV1aCE4vT0iOOjJ7z9/R/wy7/4y/zyL/4yL7/0Mvv7l5jNTlGywbgQxQSgc0EePa/TOqmqKji94mlskEODT6wkL0YAPD4+4+GTE7RUXDk45AsvvoTKMrJMB+9k4alNiZAKpQvyokB6wfHRKWVpeOutt1ieLlgs5timRu8IGlMynYwx3gSdrXTc2L/Ko9PHLMo5FhvE4MRt3Bu0zpEpdlaLPV0ENPmt47b29TP2zXPrJa6p1IRWV7ywFggAnu9u2NaODexqU9d57nOO82/UbRnx2/4z2peI7yqSV/uWd4+4bwKan+bUstmazbq2vk9vHQZHhHUHw233Xmzc2lJ5fAmJwPWv8xvX9cHErfVtyLGfb9E1yhQO70XEeeya3OOcavdhqWSbg8VaizGGuqpojME0LtCJOY/QOcO8QAuNQKHyLDwsst0E41JKD6FxeJTQmNxQNENyPaRQQ4waUGUjxsMJ5XhFWa4iZVkV14UEn9rr1uZ2MFYkED45Pm2fxx21vGiNbf310B4/vZ/r8lXCGfuTqX9vn11EtN9xrp6Ed51fI+3aikxQnWPp+lxPxoX2bIv7ZHdVX6JJVcTACw9iY21trvTO4BVrczbsFElobI9bT+uDK5I+SXBiTIwkUsY8wh1bTNNY8ryI0UsaJXIaV3N2sqBaNCgPkyLnrS+9yS/+wi/w1le+whtfvEVRFJiqxPhgFJXCUy5XrdOtVKEv9WgcHXcNeT7g7t0jyrIizwteeukVvDPUpomsVZLhMDiCppQiy+WS+/fvIyUMhgMODg7QKmO+WjKd7PKXf/Ov8M1v/Br/p3/wDzDGYazju9//AZ9+eoerV68jleLRoyd4BErkTMcFw2LKbDbjwYe3me02jHcrds40h1dzsuEQ60qqukLnGu9smycpOL8oiClL0hEQJ1Zvvm7mB0vnWXeeaB1Yu3BJ5wBEMOQC4RkhjdpaiiKX5KhoXOrP83Zu96CsdYe3p5+Nz4xgUnGxdJuVO7eA2t82TlcXO0m4YCEKkUo+cGuKEIESIl1i5EO0kIbQ8Uix42JuHUTI95NyQYkAiDfNAiE1g0FGrsZUQlEuVjQ+UNlJqVEETsjGNjgJQmZhAGJup6o2GCkwWuILzfFZyfff/il7n37KwcGUq9cOeeurX+byzgR2JYtVRdUEiojd6VepzZc4OTthOBpx9drV0EcKPvzwPa5cuYbWmrKumO5OuP/oAZnOw2GAY1muGAyGKClYlTXGO6Q32NrisOhcIrNOqFARHGxo1qiqfMx1E6iAgoAgCB3rfPCUChFONvCREwC0tIELQERgM9pdkhkHJxyupcoLHuRKCFASqQJll7CEyJgkq0vR8qATMxL5KFZY71HowOEqRLshChnzRqQttM3BlTZZFwxvURlM+Yfikgn3xj7SSqG0RmaaXAfwN9H1iWho6u3i+JikPQQHCIzpwniFC6B8iLRRZJkizzX9PC1JmWkjiKyn8RatM7RSNDZEK+xOdzk5esyggMuXp1y69CJldUaeC0ajEXt7E7SW3L5zm8dHZ8zmK6ra4sjwtrM6D0YThFAkD6qz+QyJwDoP0XPd6xQ1EfIxybjmQv4rQSZBZZE/13uUC8qUsLJdx957rHCBuk5Gqss4YtIFvkvvglEvIwov5w7dGGpMb2LF+qUIUnOgZvC9vDhP25l+/sqLL94gyzKMsZycHOF9+DkYDINR0gmyrGAwGvPmm2/yW7/1W+wdHIZIuUwjlaKuQvSh1hq8ayOVQhhxFz3Tp4LLspDfCbaMWR8oAVAS5T2aLKktkfbLQ5w7mwaYbfWc9/B9/n4KO1Uv+XyrEPXAuy08/uvv10UItX/HPcitGW/CZ+PxmHTYbv5zzkWPVbf2XimUO/VJMkCl/cclw4fo1mgAgzsDk4/nYNtnvmtjikwJ17kAjImGptEIpVu+YiEl2uYkhxBbWRbG4L0j0xohFTdefJH/9f/mf8s3/+Jf5N/822/zR3/0hxhrqE3g/W8aME6TDOdCCoosY2ev4MGTT1hV8zBnqeOWGuheQx4nhZaKQTGkKIaUqxWZUjjT0NTBAHT58mXu3r3LYDBgMJhQZCPG0ymHly8jNZimoaxrbEpm6T1NVbJaac7OzjgenXByMuPGzUscHl6lrEvmyzkPH92LRpUUNdTyx/YmRTez0neh34Py5bxkOJyyu3+ZohhS14b9gwOyPCfLM8qy5MGDh0ymIx49ekSeZVy+fAWlNAcHBygdqJ+cCbR3Wks8lqqu2N/f4/DwgKou2dmZ8pu/+Zvs7+9T1zXHxyd88P6H/Nf/9X+NJezZ+/uHlGWJc47BoKAYDNjd3eXxcfIsA61Vm8Q3cT2ff+d14OSzrL+fp7KugJ4Ha/59Ln2DfpKwtr3TeaNFWCOfxXD05waai/Xf13BL3/04b0hKcFUSPpMA0QMCnlG69+idgSKeC757po/P7Wi11kEC3ztLAm1bknrjnVv7qv/c88DEZ5qLEYS03rSgjUC0uUK991RlxcnRE370o+/zs5/+CCUsN29e5c3XX+Gla5cZZJ5hJhnmikwOKBdz8A5vahrrqalZKouvNFoJnGmC0co5GmMoyxKlNHuHB0xGIwaDAhv1NpXlSKWpTUO1WLJY1RgnQA9p1JjSFTg5hGyMzneoRIFDh6gloXFCkLyM296SwYGEdmySch31FQcu6jk94rz2/hTXJGI2JuljfJRwBPIftf68ND7p/qfNf9FqV58b4xL0QXXR+7nFwcFv65f1qL0OLIn7WcKgfQQW+3tElE+6j/rPD5HL7a7hVauXBPXNQmsA6Nacc0EW0DqwgXgRWC+UUvz4Jz/kvXd/xnAwYn/vgF/8xb/AtevXKQaDkGAbwaDI0Vq1oL1QkvHYYb2LlOYmRqp3jkEq04zHk8CD3DiWpwt+ePQ209GIxdmMvYN9Pvn4k2AoMkH/kipDZwVSBrn0zu3bjEZjSjxZpsM6HI/IlWKUKfJBxlAWnMyOORxMGeuMh8eP0JmgiQwjPu6JmzuQEN2qCFSCG+BPu+c9pfRF+D/FcZtg5/7wp8T2567tYVhrZY02ea1Z7X3PXy54iTRZgZQIrs+IsgZei81+/Oxl+7uer/PphqJnfx8vYq3De4PxNKeOhCG0a/tc6Y/J52ff/NMU7y3ei3AOOo8w8dyPeX77jo/SCqTtHDCNMdRNg01yn0wYrENFXdu7gBfqgY6Y00Z0TkxroIWkyEcM6jGDbESth1SqQIucoigYjyfUdcNsNsPatMf3afIB+hFLG/tJu4Y2v4tzLcpq647Yvftbg1Fymg71hL8TxZjvvHN6bVrDREU/KtKfW/bra29jH7zo3fBrH7d3e9rvkhzRrZiEY1ws556zUff+bpk0UgYMsdFOEekWfXpNixSaLCuALiVOlg1QMf+zdzAejakrx7JqqKuSallja3jp+st8+fU3+dVf/hXefOPLvHrrFs4aVsvgBNEs54GpQ+sQTGGC/WE2m3P79m3+zR/8a6TQPLh3D+88N27c5PXX32C1WvHhhx/x8ccfs7e3x3/8H/89dnf20FoFnJLgbO0xDIqC3b0pxtY8eXTE6dEZ0inYE5ycnWKdRWea4WjEf/a/+s94/4MPePDoIX/nf/gf8vf//t+nsSVf+8rX+V/8L/8e//v/3X+OWiqyLOSwvnH9Rbi7olzOOV5VzI9LqjLjpVuX0XmO9yuwFrWZT65PhS3SaHeaREg51J8258c7yMEgI+tYwss7TIw4Zk/nheobtPpGW1qa/f5cerZM+1QDUwrV2hSiE4bXvvy20tOZnHeJfQBkoOISIlHWiHWs30cLdMwd4KIRyCVO5DjbHdEDWQqEdwiXRW+5LOTTQSFR1E3TUqml9aNkMIo472Jki8RYh2tqEJ55abCUVHVDYxpu3niB2fEp0jqyPANjaZYlTbkAFaiC5osZ2SDHi5BgWwrJjRvXOD0+DeCY9wglWC4XDEeQ5wNGkyF1Y7DOIJAUg4LlquwGj16YdKemBAAsbab00hT59FmkCGz71CO8iPRKUaD2Pk4a39XtO8qgdpKLNNEdwdKSDIyEhH8xIa4Q0Uvad4p0SKwbDwxP224RI8k8dHSJUgbjUbt3+m4xpZeUArCxNWH8nA/M0ekg1VqhtSbTmizTIW+GVqh+fpU+sARRyQnJ63yau6nXRVpIIVm6busNYcMBWPbtHDNG4GwAfJ0Lbc9yFfJbGcvZ7AmHl3ZR2lHVMw72bzAaBW+A6XTCwcEuTdNQ5AMW8/vcu3ufprZYL1uBAcAYi80Ih7tUIXolUjA5Z/HpkJQhwbyUkZJPRn5Sr0CBFxIpDeGgDWtRKYeIHjECMNaRqQDaBCpDgdQabwMtoBfgnSSZ2C/aeDpjQs8HI42DS/WESKtOafl8lOnOlNPTE85OZ8xm85hbKcdYi1qtyLKCumlABMFgOBxijGlz7RhrI6Woxdq0HsKctjZ4gATjaw8sScYOd17x7ysH573cewKUi/NJXKCM+ajCt8ZmSAtMpFORTlhL8lQLIoru7+SJnww36Z7WyN7uGU8r3TutRxjF2qPxxknXCWAhTfiaYSnV0Tc0bRqfOu5914Ztt16gpHfwhIgg0yInqb7wjI5eZi1E2If1Grsg7lMe5y3CgfcyAC0u5OLJsryVEIQQVHUIFdc67D17B/v8yq9+gyvXrvLVr36Vn77zU97+/o+5ffsO89kKa0HpAiEdWSYYjTSTnREPH93Huoq6WeGxBOZMuXZ2ZXlOkefkWlFXjsPDgxAhZCxFnuO9DRE9QmONxCMDL3guEQqsX3emAE9dV8hSsljOmc/ncc1cZjLeZX/vEsenJ8xmZyyXZwQDk6eVknqSUgtS9YpzIUdClkmsEwyHQ7761teYz1fcvn2b4XDMyy/fYn/vAGcdq6piMhlzcHiJnemU69ev8+GHHzIaDJnPl6yWS3Z2p5yeneC8aj2yqqpiuVyAEOgsjENVVWQ6J8+CUbCuDcvFkq99/Wu8+uqrzM7mPHjwAGsaikERnQU0xvlIMxgANmc3IkjjzN8E/rxnbU5/3srWCJo/p+v/+wCUnwbabHvu5vXbjP1JsgRaB4/PUv4sc+fc+4huXrby34X7ev/curgN28bsnEGxVfJ7skvcK922SOo+frDx9+ZZ1OKLF+IA/fatt/lCw+fmmdxrc4rOTJSpAoGSKjguWEdT1yyXC44eP2Y6GXLj2mVuvnCFm9cvMVQOhQn6mTMhsnI6wTsL3qLwDHOBd5amdoE9QmuMdeR5zmCkmUyDGWc0KMgzjZIC4Wz7crZpWK0WzBdloKpTBUKPcC4Dhng1wqshRg4xMscSDEM+vaPs9BwflQMfPS970FAcUdHZGvt93epVRBnFxdqS5uNa3MdHRWpzria9eHNOrY/ZOkj7eTIydaW3pteKb3GE89/17xFr62ZzySWlrT3l0lrzbOnvHrifrm0r8d39iDU0LoF4xkYsw3rKqqRcVgzyAaNBiTOWd372U06Oj8nzDISIDoeE6GKpooNixnA0YjKZMN3ZYTQYsGyWvP/++zx8+AghBYOiYG9/n8P9Qw73DsmFxjZNdDKEa9ev8Sff+ROsD/KjaWq0FwiVhTezjtPjY9x4TKaD3rhYLrh24zpP7j2gKRsypZjkQ86OniAs5FJyMJzwZHaEKgIrhXU+RHKvD1voRdF1l+0P0DOm+HkjT0fP+tTrtoxkf0x7kNNTn3v+DE3zQXTA1sb16809v1/H1+jaIDj/xdrjAu7SPau7dFv/rZ3h7X8Xn21dmxOG0au/V+e6MSruq71rt+vxbF7UHX9R39sUIvrt2VbhubHrTycBfaeozfdev7nn9Ps5KSkPTtAHXdQvTMSLouPFWv/7ALh73+ZlXq0keT4nyzQh/5xlUAzJsyFKBAYVrTLyfEhH3+viM5PcFHIy5bogj/R4WuXBKKFzBoMBo9GILCsQYhXx3YihyTQfe3JpjPTx7Z7c4QPpfdd1l27++xaHTE6j/f4KenX6MOlAbR0JnIryZ7q2zdXoPa1VZkvpnF9Fi3l0eEYnj4RPEmbWf4fee27O5LWo0vOy7Kbsf76kc25dTl1b0rHmPkUqzuNtSG8TnPUD15p3YGLakZB+w9M0nvF4n8uXxkxGUw73LnPt0gvcvP4iL1y5zvUrV9FCUC5W2KamrlZgAtuOM+CtCSlxLAipKbIh+3uHXLl0jZ/97B2Ojk5YzBd88sltvve9t3HOBjaR+TzozJXh1q1bXLt2jb29PW7evMloPALvKL1FCM/hwR65zqlWFTrTeO8oqxWrchXWxZnkypWr7B/uMhgVNI3hP/lP/xO+/e1/S1WV3Llzm7/9t3+bb//bf8fp8QlSanbGUw73rnB8IinrOb5qWJx4jh5WTPcKivEO1i7JcnA0OGyL+UBnxHTtnEl7Xzui3RhGjEUIemswfJci2dpzJ45vP+5NxHju9KS+MTZhIq1NJs2VLbMJusi2beXpBqaUZLoPzNOtPdHbydsu2XLw9QEzISTCxfXpUmyLiBRrYcI6F6KLvA8OPNbHqKbwUBAO4SVGCrIsANvOO5TM8VKS5TlCaPCCyprIgCPAS1zjW+qYpEwKEZKGWR8Sbi5qixMSax2ZrqhLy/J0ibKewSBDaoWtFyhpA6+iAOMNw8EYKQXlasVitmQwzBGnhtVqxtmyZHd3NwCAAvIiZ78oWK0qFvMVQnjyIodV5E+VAiUkobOishi3m9a7XqQDvcexiohZl4h96OOkTflvRDis44YphQ+AoKADgJOskcBSPClkPtBv9pQzEegThXAIlwS32Le+UwRDaJOIBwbROCRiuB44H9P0Jko2klDrukUiAeta0NbFXCShr8JYpogMrWSbGF2rzsDUejnQez8XDGRChkxEvl3A4f1kBOZV5PcMnug6JnQNi1FKGek0wItAM+CdD7NbCQaDAFLfv3+P3b1r4A1ZLhiNcwYDxXg0YjIZobXiw4/vcHp6xunJjJOTGdaGdRJsA2HBNY1lOBThQM8K7MCxWJy1kQ1t0lWlUN7hvSSA0mGsbZotIhi+POHw0BqUCZ58PtIsCRuSRAZzRRzvdPD0DtO0nvqlBeDjbuWjZ5zwMSLR+47yJCr4KTH954kiDwknpyccHx1HykONyhog0IoWhUEpjbGW0wie7+ztI4QIlJYxkacQgYJDCIGSfeqv8N0mfVy/bAIlFyl4nQ9oGv4Q8bYNvFtTYPp6lohqodTxHtp13xkiu2ek7xCBAzjlNopVtfy8a8rNlhOxBRK97+Zw71snPEIYpO8oObfxrPcF282op7Q/9ftiM8KpEyqCUdB5i49h056wd4RNKu1DSZBo3zgKGLInJvgIBEbDgpOIaIAM8yjco5Sibur2+QiBsZZr16+zf7DPrVu3ePGll9ibXuJHb/+I999/n7t3b+OiV3yeZ0ynY7I8Z76YIYQFYWmFpDgGwgcBqCjymEMwnDuHB/t471kuV2gtGQxDImvThH3NmIa8KNC5wguLqTqqx2AQ9RjTYIykqkqWqxWLxYKqahgOh+xM99nfPeTk5AlltQTbBAG+TQYb+jAcT6KXoDoJaj4CQiGRvBCC/b19Tk8XPHlyzNe+/gu8/PLL4XzJC/b29rDOs7u3z+50Sp4XPHlyhL58JST8tpbLly8xm51FKtsQ9bZcLqmqitF4RFEUWGspywo1ymgaw3w+D+tVwI0XbvCVN7/Cn/zJd5mdzZDSMByplhLTxfUhfVgfzvaj9NKBLuIenBSrz5Mafr5sM9Zs/v00cOlpn10ETm175mc1VLVe/T0g6cK9uicXJnnxfHtbbZr+pnnOseAZ7Xzaez3t3vRdYjy46PuNpz3Xs3rxLM94fj8WqevTZ733RWOz7fPnNWBedI72Ltp+X++r9DwR9QYIyr93rqXFqauSa1cv84VbL3Pz+mWm44xmeYowPkTyECKfBplGycBBoPBkyqGwKEGIlFUavEVmOXlRkOkspmcNslxjDGlfNcZSNw2r5YLaeVRWIPUQpwqszEFN8GqIFQMaMrzIIrtFB4x0hsUuj1KbhDs+pw/DeJH2wXT2xxysMS9t+D3JF0Qss5sTfSB263g8c0zDs5/HOPzzXfp91oEofVD7/HXbq2nB/NidHcbRrZ0gc168+oOjXc8wdW7udHKBEFGfc+FnMNQ2jMdjLh9cZmc6ZTQcoaWgLgNw5r1vc5Z6AluDVsHwVI1GuLJGGIucTjk7OebT9z7gk08/Jc9yJtMJi70TuGnZGUyZTMaQ59RVTZblXL1+nb2DA46enFBXJuQYthZpDVmWBydaY6iqEiUKvApOe9PdKY9u38PWdcibYhyitrjaoArJwXiH+WKGIeAutI7Arl1+KUqQ9ue67L++m24M3YXrJuEG28vF60+sHQWbM6x/z0W6T9+4FZa+Z7P5z3Nmt/jCls/X/u7Bxkk++0z7whaM7VltC9f3VCO/flb1Afn0kD7oeFHZpjOmNb3Zlv7v6fntd93h29a3zTh8YTu6B7Kuof78l4CTBEBVIHCR9iLo+6KHvSbqNRGYkmRHASzqOtCjRwp0pGcy3qEoJihZIGVGlg3QOsP7DjZ2TsQ0BwFrkEKR65wiLyjqYGTKZI7WAZcrioIiL6JjrOnk0Y15JkRit4nv2OZrCvM0OGZebORJd633E92zfKf/tEC6bw//9So8vWdutDNimhcdMmt74cYZ1X/XtDY3cY+1RUs/TnRzhq/vn0+XNzcWmyDk2Op9Kvp1+NgY0f82Gi8FOGswdWK+0gwHU7546w2uXrnOlUtXeeHaTV689iL7030GukA4x4O7d1icnOJtg/AWpUBnirKuqOqG5arCWoXzEiE1TV0jfUa5qGkqx3y+4tGjRyzmZWRlCkavpjE8efK73Lr1ETdu3ODy5ct85StfCakkxiMGg5zReMTlK1cYjYYM8kHAXrwjLzSNkVRVxdnJjCzXTHd22Nmd8vjxEd/69W+xWCz58MNPuHfvPl/96td55513mZ2cslzMqauSYT6iysd4Y6mtwK4cp49rBBopM5zSjEYZjY3U1a1TcTfCnTvH2mYdL0rjmvCfeFcrYya9//yca/NfrumMAQN+2j4fnBDXJLa1Op4mCz/VwBRodtJiD8lhtewAL9WCfL3WRYCtT8MUPu7AZCF8jGgKCcGllGuAXGN95MJM/Noe42xUNGgnu5eCXGYILMbW5MOMxlmkDjmVGmMRWsWNQSCUx5armAwtefiH5ouYM8a6hkUd3kkLjWkEH77zCbtvvQZVhRlq9g52KDKY7u/itGZRN0x2RgzHQ2yRsypXfPDR+4wGmldvvYLD8sGnn6IyRTEsGIyHTHenTKc7PH50xMzPET4k1VRaUjfBqpoVWZuYK4HHXV+nvAqdh2UnG4RrbKQmxBMs0B4EydAAPnrWS+mDlyFbgGDipBchAkt62VIAeilCGK3wIRLGE8JMe0I+Lhx6wbmi0wbCmNiYLwQiBhrOSRENij6KCtFb30Pgr4wUUi6CxFoJZPKeyPPAtRkPV60VOstQMYw3HAZd3J1zHmtC8I0QiXLPIrVq+1RHWrm0kSkVowMEaJ1or8I4aZ2B0lhpI/gbQPT9g0MOL19isTxlMFTs7+6ytzNhMJAo7bl0aY9MD3hy9Jjf/d3f5cmTBcvShcigFI0gVNuvdR3ywuSDjCxGIZzNTgIViUu0LATFWcnw3lYADmvD/HZoPBbjQVuPtp7cCwQGZ0EpHzj74xqVyiOcj0B42BiElHhrg4a3sc8kY1fi+sUnOi8C+BwT4CkvUCIamwXxms+XV/3xyRF37t1hdjYjeB4FzveiGFLkA5bLFVmWY548YTqd8rOf/ZRf/42/TFVVLf0MIhhYm6bBGEPjHEVRtF5KmxR564b/dcV8mzduekb/NBJS9iKTtis9fbBrExAVbKfnO3evTIpkFw3UB0uTwUkQvWtg7XuI8qPvRSb13zNskgjhohEjUKp57yO9yfpB2o9Y6j+rzZ3Uo9g7V3wEK3rGKBcp3PpKcetVGBWDvpGqNSD6SMPkg3d6aEdYm1IqFBnWBFBRiGA0yXVB2AcsjTZk1kSath2yPGf/8IDf+qu/xV/5zb/GD37wNr/3e7/H//Uf/UMePXqApyYvCqZ7uxizRGoVhRkXsxck4CGMWZYphsMMrQXeNwhgf2+fu3fvcXp6ipSCt776Zc7O5tRNw2y+xBrBzt4eQnnKaoFZNL0xp5vLLhijylXJbDbn7HTGaHSJyXiHy4dXmS9OOTs7xtmGBhOV2A3FWYp4HiRPv9C3zroQJeoE8/mCT29/yv379/He8du//dsAPHr0gN3dXb7xjW/we//6XzMohjSN5c6dezx8+JCXX3ypHfLdnQlKKQ4vHeK858mTJ/zxH/8xWmfs7Oyyt7eHMYbdnX201iyXS+7evUtRFOxMp+zu7jIdT6nLkqPHRwxGkuFIUjc1dV3jcUi1Le9X/6+0xtPcDHLQ52mfhW5P2TT+PssYtHnNJgiyTdDeBoptMyBc1M6Lymcbs6dc26HvFxpTtoFrn+X5z/u+2+45X3pA1jOUIqAH5fGZ2/C0tjzN8LhtHvV/9o2Dm5897Zm9LzcXdmwE7edKq7XxdDbQl3jrsY3F1IZMaV55+QYv3rzOwd4E6Wt8Fa5VEvJcMygycJbhYMhokCG9xZqSUZGhddhrlosVXioa73HGYJwg1wrbVHhT422Dkh5rGqqqpKprjLPkO5fRxQQrC0qjqZ2CYoiXIyw5jSPy+Ad51ePAmZB4GoEXEtDh5HZBPsixdEaiqJuKcHen2yR9yXcOpC0MFNaDE5KU31D0xnfbPvG8c+p5jLQ/L+UiQ2n3efznI0D3XHW2v50zpq4/Iy2RPlq3vgsKESmR1p9wrr19pcY5yHRGYw3OOgbFkN/41m/wpTe+xMF+cPaStpP9hBBkSsd7Y8J05zk+PqVcrVjNZtx+/JjBYMDt27e599EnlLM5xe4uo6nm0Sd3MYuaDM1Xv/YWQqmYC1mgb97kG9/8i/zhH/4hDx+GCCTnPM40FMMR49EY7z3G1CyWS5SacHDpEsYHvbkqa2zd8OTeI9yqobElAwZcunoFg+HuySMa1wSWi7hieqO2to5Sf/Z78Zzn/Ubfr/3d9vJ54PWp97VnwPn6Ujuet6wZrCJbTlvPhi50sdGke/OnOjWI9OOCffxPWTblmvNlC0DeMzJtfrkOdm/ueU9pR7gBYM0RMLUhgaTrDjLdnPEkx+aNOeC7mbJZ59oefTGv0s9n8QFYbtNR+GBqSgakbj8K/emcwOJRSkRK+6B3LpfLgBs0NUjHeLRLno0RZAihyXRBnuUE0qdA+dnmY/MisnIEp7uhGWLMiNpMWOQjcptTm2BkGg6H5IscY5qIRYWSdC8hYuoU2Z/PotXbE6VYytn07O7p4xnnuo5uTkEf219fw93cC9d2cPv6N+ldWoSxNX6mc0m0xpr1+r3vGwjiM8X688Iqkecf2N9FN7CWddmyYwFp2yldGwHeb7+Qqg1KEEIgVNKTJcFRPTAnWVVTVTVCKCbjCV9646v8zb/xH/HSjZfZmeziDTSrhnJeMa8W1Ksl927fQQmD8A1SevJcMRjkzGYLHj0+4pNP7/Hw4TEnZ0uEUEilKKsS5yyLs4rlrMZUAmdAZQpnwDiLlIq6NLz7s/f54L2PyArND3/4Nrdu3eLq1StcunSJ6XTCzZs3uXb1GjvTXZCC0WjAjeE1qqpkNp/x3gdnVPWKvM4oiiHTnSknx6f8+q//Ji+/dJs/+IM/4vTkjC+/8SXqsuLdd9/l8eMH7E12KNQAl3ls48nJWJysMM2S5bJmeqDZOxhhbINzFSFHkm/tD8kZBYgOwXHieHp5kJLcFOdUwl3S32tGJpE21zbwpK2iPx+3lLRfpD9EiiYkzt1z0ZHny1MNTK0g0Tu4dBSYEli1liA+rbYLinWBc1hKGSjv4kGidEpOF/hzXcxX45yNnR7+2WT5EICSeOcpF0sKrRkUw2CgUZL5cokxMJnucbZYUOgca4PX3ni6T10uY6K5YKjQWqOzYDgxxoDKMV7h0NQ1vPvOx9jVjK+88QrjFw4x1QpdSFbLU5zO8Drj0qVLOKE5PjomK3K+8c1fYX78iDu3P2bn4Ap/93/+d3nw4CFNY3nn3ff42c9+ytWr19nf32U+X1BXBqUk3/zmN/nhD3/IYrmgripUJkK+H3xsX0Mucmy7KXhUok7z6aCVeOewtQl92cZ2Rt+ZaGByljZHiNca3QaldEQRa4pVdBPzJnh9yyjgSQnWQ7QetnMG7zuHAAEkerVojBAyWME9YXPAC6TvrLKuBRNDJJtzabMO/2Q0vGmVBUqlGFmUZVmkDlIhYbtSaJnCCWNIbmSQVj4Y9ZJxyRhDXddhvlrb0owAbURDKOEkConuRGsELIqCelXileLg0iH37j9gPj+jqkuWyxlvvPYFjp48pMjg4GDC/sGUUV5QVysePXzMR5/c41d+6Zf5f/3uv6OuZlS1QOkBUqo2MiXP82i4cWilw6Za1whU8FzzPlDXkYy6gYdeCLA2CXE9ektnsbZby845tDToSOdALtGuy+kDkCkZAO64CwmpkMohXAeyp/5smiZSRYT1JoUAHSK6hHHEgQRv0SoKA5+n6CXg29/+fVarKqxnpZAi9E8A0JcMh2Pm8zkIyY9+9CMePnzE2z/+KV/96ld54cYN9g8PKaIhKeX8Sd6TFxn84WmHy3lP7G0gS1IE+vf1DVj9z/vfxU+BnPVcZl3UrJAdh3S/rkTz1yrt/Ws8YNeFqvNAg++B7Okw7vdDMEK5aAQytu5dv/4+bTv8OgXhJtDfL957vE3JNaPB1QmC4NY5WiRBMAkRXUSfoIvXB3wwiFjXgBRtolaERGd5uMTR0rM4a9uImXTmee9orImUohrvFwyyMV/5ypt88Ytf4G/9rd/md//lv+CHb3+HBw/vMF88oawsuYpOID6B9CoAmXgyrRgMc4bDDCEtdWNYrVa8//77lGWNc5ZikDGbzViVK6q6xlpLUUxpaovOYbFY8M7774W+lRlShNwF3gePXdOEnB+np6ecnJwymY4YDjMO9g95crLLYDCgqhb4Zl2YT4JVO/atnJNoUEO+J9c4sizjxgs3WS4aPvrwNv/4H/8Of/Wv/mVeeOEF9vf3ODk54WD/gDt3bmONIc8yfvEXf5msGLCYzVgu5xw9ecTh4SGnZ2drhsLhcMDNmzd57bXXODw8RArNnTt3+PTT28zmC05mZ3z967+IM47333ufd995L+R0XC1YrTIyHQ20dN72zlm6OPmkTPz5ARn/vpf+2vysXsCb5Vmg8bMMD38ag0d/b/vTANbdc9c9urfV+TxGsD8vA2Wn9j6tdIry8xSJxImnGPtTbRtGoLVGbXv801r4nGNz0fma7u337bnrLjIypSb6YCDXWgf9gAAmVXXFbHbKg4f3ePToAYU2DDOP8pc43BuxtzOlWniEbRDOYeqG3Z0pRRayZggRKEObpmK+XLBcrqjqBqVD7j+pNIPBAI3H1CW+qfBNhamWSBWcErUKTgdLJMvKYJA0MkMOxliZY1AYL5E6j3uaIQA1wfkrxQl0bx/pcnHRKNQKE0kd2QAyaY1LmwOanJg94IV8XttHO0ab4/V5M973y7P6IgFtXbzBZ+ir3qUtGN2r12+MbWCT6C4KZ747v+e42J603nx6RgAq69KiZcbu/h6vfuFVvvGr38QaE4yszlGQQNsQVbxsli2lc3BylEhrOH30KERdlxVnJ2fcvn2bk+MTqrLk7MFD7HzBaDjkqL7Hv3n4kH/3b7/N17/+dS5fvcJoNMYYy1/4lV8hL4b89Cfv8O4771JVDR7ParUg04rXX3+dvZ1dPv74I1ZliPK+evUyznmKomBUFDRlRb0qqeol1tScjgpeunWDpatwyxmlawg9smV3TvjV5pj6//+QNvrA70Xa5DaDMSJGZm3MsW33/nmVvr71zL7bMhT993j63rMJmq9VsnGmuO3XbWtS2vuiziJ696Xv+iB3//Og7yUdJ1I5CUEfzlxrxlqUiW9/iAjIPs24+fNagk4RMFghEntQ1+cB2/FtDm7rHVKq9vt+LmHnDI6aTA8RZFgjwSkyNQi4gg+MC3meR9A3sY64qKtKlMzIsoKiyCmKHG0yVB2YRwaDAUVeUFUlTdOB3CI6k8iYyiHJ6QG3SvP6WfHo58u6cWm7vJqwA9/b79fOiqfWv0VM9D7O5zgOpPp6i7d3U6AkJs7ji0S78+0IbeuA/m4f6Mv2ERTp1dM3MsVwc3yE97q+764RMRUHTgGK+XzFalnhGsFX33qLv/SXfoMvfvFVrl+/wc0XblKVAqzAOcGwGJLjceUZP/jRD/kn/81/w3s/+zHXr+5zsD9lNCpompIHD+9xejZjtaqpGk+5tCxXBoRGqgxjaSPfQpCBR+sR3oYBUBHjtc5GQ5igqSzvv/chn35yB6nCvBqNhljr+PrXvsqXvvQ6165d5de+9WvYKD/mheStt77Ek5PTdg86OLjEw+YxWudcu3aDb34z4/jJEVcvX+H4+JgP3n+f+dkJy6NTDvYvMSxGKJlhpWM4nLJsznh4/5izpeXg6pTGhbQWEoeQMV2DiPKq3Tyt4knWM7BDkmv78yDOIwi4WLxAiHTheWWmb2DtxjrNI99bm/27nr881cBkiUaFCCIrFZNmiSCg+0j31j7Yxwgl1/fQC5bu0HJP4AiFlPNGeBBW4a3F2GhEsV1dIZLFdwAKafHaQBklBM5b6qZklIW8MsUA7Krkk09+wl/4C98ELzk6OuXOpzWmEcAIMFEZsVgT+beFJMs0SyPBCXIdNkmZCR4t4Hvv3+HBYs6XvvQSu3mO9JZmtaCxlqvTfR48OmKCZTgoAMXo8CbT8SXmy4YP373PbHbKcFRg6xpTLzg9vsNwOOLKlSGnZwsePbqN/VGFNSEHhHUOvMTbLNL8ubBteImsaOecl+DiRi+ERwmHrR2uljgrcU6B11hvcd7gvUEIhxYqgLFWgJWYwkUatqDECeVBBhqBlA9LetXOhziTIdJlhLaIYLjyqlsT3iOUxEU+ahnTB6YNzHmBNx4hFC56LngBXgWDpCNQV3kN1jhQILxE+EAjqKUgU4JMSQqtyJRASVDCxRS9wXAlCVZ3oUPiwlC3w4gGkQkaL0HqYLwUHkODEMGbUyvIFORCkAmB9ioYNAn+MgpPpiUKC1JBljHIJXv7OZOpZrWsmZ8ecWlvzFdef4kbNy5x9coBk4FimBesVgZpNTvFFX74w3vM5jm1HSAGcOOVKzy4fYo3BrynMYEb33hDoXIynWFOapT2mLpBuDrYYGNkl3QxwXEEAIiRVVgRcy6IkOTRh5w+Ao/UDis80oZcKaYOtHvSB4AAQUtRiHUhH5MH4z21tdTWYryncS78nmhSkhEUh/USqyTWC6QHIWU0gMV5/zlSzmdHc1SkfhOOEDnmwboQfSG9A0IUR4Pj+JHj9//Vv+BP/uDfMB6N2ds/4Iuvvco3vvFrXL16lfF4gs4HNKaOYHw4lIfDEVVVdcvXC6TQYSx9FEwEEA0fYQ0H4Uv4vte46MlJvXDdZBzq/+sB+iIq2yFPj8RL3xOCQun+diSu2GQcBt/mmArAgsNZj7VJaArJut2GQahVcNoDayO6qSdcdgLz9givbT+fBRSe+1wFelXlNd7LaLz2sR0+Grf67lSBnjSJ2J5Ad+S9x8tEkaBpjMG6MK7OORqzapO8eu+wLhiR0nhAANwHeYGpaoT1qDw4DBhXI4QkVxk3rl3nP/gbv823vvWXuHPnE97+0ff45//v/w5BiadCiBqpLM6FPIZSCrJcMsiHaDnC1Y5yuWQ2PyXL89Yzqirh7LikUFOmoxzpS7xXVFWFLgboPENqgSxqMlthsMEL1xR4O44OAXPm84InTx5TFBl7+1MGw4xhMSJTBVrmKFljG5sGBbxAOIEWMlDSijDuCAOiQWqHdgKkZpAXrMolzjv2Dw/4C7/6q+zs7rO7dwmhJO++/xHXr1xFCEXTVJi64s7tjxgNJYeHY/YPhsznC5arOT98+8esyhKtcz748COs9ZEab8ViccajR4/54MOPuHfvfnimc+SDAWVVcf/RQ47Pjjg8POTkdEFtV6zqGcaX0QMKnA1rWOAJ3lHBo1/4wJFNVAA7C2VaW3wuyjbD+bZykRK6zXv5aYaANeBoyzWf1UCzDbS90EmgvSkut54yIVg3gD8LQNu6lz7jume9w1PbnH5fx3nbD571mBZYIRgn1pV5EZV+34Gh/bNhs3Kx9ddnluftI9H+68C5BBQlwC6ITtGRoa9ZnqskrH1nbIxwDflKw7lpWTYr5qsZs8UMoRSnZzMe3n+ItAa7nHLlYEImQ94kLYI+YUyNlQEEdAKkyLCEPKBNWUNjkF4irAFhWVUVTb3ENSW+qfG2RnjPdP+QbDJFD0cYFEerKQYNMgc5xOkxNQrjPVZYPMmhKY2TxHvVe//UBzbKGR4vezJKBC3lWifFc5Z1fX19SBLA3Grv7Rhu9wrujXk3yK1i7ntWKr8G9Pwcl0THGmdfmJodsNWetwmc6+1N65hHBM/wyOTg1x+3tDx6QyWRWNcluU85D9PDZASvrVVptdHLZB7bFz+LQI2Peov0HtPUnJ2teO/dFW++djNQh9tATbySA6SQ5FlBkQ/JspxM5ajoMGaNxRnBalXx+PERJycnlKslVjiycQF5eN8HJ49Rc413GcYojDV8/N4nDIcFxUCjVMjbOhgOUWLJ/n7O2dzgDDhnmZVzPvz0E379W7/O+HQfc6IwVpIVOxTKI7xjoCHXGa7MkLJANNA8LrGjihezq4zzEY8WJ5z5mlpbbOcWTOY8OqjiCASLTEKiP08jFvGeME4CL1LkoGjHT7TjS6SsTDlZ+zpB/7xcmxxRdtm+pvrzKOmcG9XFmZV+6+kG8X6xtsb7ukOQsVObOl0ngsm+c9JdL50RpNvfI13SGqBLTy5b11NEqL6TP3zvyy2t3TwrUjRLu/5EeuPQsmSw7e2U6a2683Lz/Enn1cbZlAxmol2o/b2w3+f90Y5zIrVjTdcKcm2Qb2Wre+IDxX+KyP58GZlUTweXIAJOGxyLu4hRGdmBrAtYjLMxd5oTKCWwzuBlwHOEsDxRD1BCYW2DsRU6AysMTgiQOSrLiInAAxgtA37ovUNrSaY02hdoJmRijBYVWlQMi4JBoSlLMI3DtjlTRGuM7wzanSMo0I51mCUyUsvH4rsonCRXJ8Nb0u+7vFGdnBCqj3m/VTrbod2mekeEIKVx6O0a0ZlvDV6Is7uVM9I5190VdLK4JjxdgIrzLh5HadX5OKfDWBofo7tS22LEZYBkOhykdaANfwaZpC9jRkNkwFcJuCqBMsvH/UznGueCI2djG4o8w1Twyis3eeHyS7x0/Qv86i/9Gl98+YsM8yHeOMxji2hgMV9yenrK3Tt3efvtH/HJJ59w9/Yd7t65w2q54Hh2RpFnZHmGUpLFYkFZlhjjQi+HgF+kDPNAyDB3Xcz5rZRAqhTt6LEuyBguYiNER1fpPI0tYx/C6WxFked8/wc/5r33PqIoco5P5ty8eZPpzpTRaMDe3h65GGCdxZQ1lZ4zGgZ2Mp3BjZuXuX//U/YvvcDrX36ds8UZ3/3udzB1w0l9QkHGsCjQHkZqzFAdMGoGPHl8n09/esqVF6dMpxPOqgfkA4EL5q12f5cQ2b88Kk6cFJjho0OxVLJNX2S8RSkZU8/4dj4Eg5PsjXq/hPEXKR9RkllJ85y0uwbsD0i0lEqmHFBP11+famBqD7F4SIRWxsm+Lnt3h1J8VjouO/Fh49XiIeBjpwYjhm8NGd77EPHkI1iY6IN6i10pAkWXCBR6ta3QSqM0ZJkgzyVNU3J2umCxqJlMp9x65TXu33vAyckpi8USaxve/PLrCBwiUqp9eOcR5XKFBxoLl/YuUVbHPHh8gvU1B5emjKaXybVikGVkWpJLj3INk2IAMqNuHCcnc/K8oDAS4WuOnjzmsjpAScGgyBkNB+wf7JIPBugHj3nw8CHL1Zzp9BBRNayqGoQMiUUlCBV+OtsDypKhWciYZyl4k9sGvJVYEww+AMY5jLN4bOBUV13+qkBLLmKEGSCCJ7SURANfO2MjRUXXhKTrhUR9YWMISeAiSNtO7SjY9BLV9Td+Y1NYYIgICu9MsPC28062k0B40CgyqdBCoKNhSQsCP7wALUJ+JhUTHqYIipD7S2J9IHfCg5MCpEIoGajbhIoRXqCEbS3kgpATS4lAEailRGuBFIGiwPvkBQBKSAbDIVhBtSoZFpq93TF70xGTYU6RhTDjctXw+NGMDz444u69Y/J8xLW9XYqxJh+DVAph41g5R6ZiZAIuHrIevEMIj4zKkvBJ6OjRsaS17MO4SgRIH40HHmNMsKrHo00KiUn9Bm0eMHzyDnW4SIMXoigcJq5b41wAC7zHuNA+7z3Jt175Vu0LBkCfgrXj4dibZz/3pUU7wjgppWNkSTA0NE0NPnzexAN0uVrgnCfLcsajMU+OHnF2esqVy1fYPzjg4OASe/t7jMfjwFErQ9SZ7M2BBAL09aC+oaW7LPHV9/ZyEaPgBDGPWxdx1M6X1gsp3JfWXxJ6vTDrgt5an8Q5s2Z8Ye04SUBPd68jRcr1n5uu67ffbcyv/t99z671Jp2PjNo8YDef3XZXCzavfUrgMw4nZndNiKBp6xYgnGjB0bSIgpAYuK/DGQBS67adiRpPa70V/E7jpZRqKS2bpgnGKxsoP1NU6JWrV7ly9QqXLh2yu7dLWa/4+JOf8eToHrPFEcaULaWRUsmDLQAuVVOzXJaUZUld1zFPh8Aax2y2YDSckKmM4UBiHQwGg7Yv8lyTF4qqdihtURpwYQ47a2mamrJcMZudcXIyDMGQjIKjQwR2cITcRC4Z4zplHnwHQonATd751UgODg85PjlhuVqGiE7CfjyeTJBS8PDRQ7TO2D84oCqXzM9OGQ4LBMEbUAhBMcip6wbnLMvFEmPnrFYlBwd71HXN3bt3cc4wm804PjlmNp9xenYSqUklTYwyUzqATUpLlJZYHwTuLhOX6I1vnDetdpOEtXYWdD8ulhF/rsrTjD2ftTzr3uc1ZvXb86x2bX7+tPoTQNafF89qY78d24xpz/sem97Un7WI9meqczNS9vnq8SmnZq+Nrba/cZaI9T+7d9nou3Nj0Pvsz+IUE5rWQmbtU1uQsbdO2+/OtSMphRv9L2gVc6kUWZExHA1RWOq6YTFfcKZhkguGuUQGPySEgKZpEM7SyHB/3WR4Y6jrGJluHa4xIMB6R9XUwbHBNUjnkIRIe0RghWicovSSmgFOaBAZiByEbvOypijjcx2d8i5EhXTdy30jSqXt13Vox6+hPed7slVz46A87xy+yEgrxOdkc+2VNd0+jksLMrPtuOnJJulnD1AQ3qPiXtbaFjewh1SPcSnpfa/uxHkWcQUpI2ASKb/bCPUoewkhgwOQDFTDWqngcKoCKCPxZEpSV3NyqaKc6kD5CA42ONfQmBwtc3JdoJVGIMiLjJ29XZCCnd1dPC5QTskgvxnT0EQDmTOSpoLGNFTlEmsrrGtwrma5XIQclOWK5WpOWa7wLtAXKWdYrmbcu3+XLMvY293BNoGRY7K7y+LkhLPlgixGW3mpEQSGi3plyEYZu8MdUJL5k3sBBxBh+QkhcdYQFcCwVnx/JfbkigjWtIYXxBr9XEd31UourMtm4bP1NbidfvEpUype67bs3b6Vo/1au7edmOls7J0ja1d2J213tGzBvi44izf3LaBnZOrVLM7X2p2T28s2ZwffWqvWYwjP9UXvVf25d95syPb3Tf28Zny6oK2p38LWsW1PPXd0k069br/+08t1/74VQadTb3NkWYv86cl3LkAtLfaHJxiYEIjKMJ+dURTDFvubjCegcvJ8RJYNyIshUmZRp0/zsttHwxgoArOORssMrTLyLKcoMoo8o2kUwtjE49F7j/4bpvcAH3Pm+ZbpqLdA/Pb9oI8P+LVr4hnRW19BNuhN+Bbg7E3dNR0+YBSh7axd5xPe2U7WTqrtZrlYm8sBaU3rr2vHhgjTk+u6zSosL9/bU32/Ctq9o70/bbp+rV4ZjX3ee+om6Nsi+SQSKJTHwzHXrlzllZduMcrHnD4540n5hNnJjKPHR5yezjk7PePo6Ii7d+/y4ccf8fjx45gruQJCeoxlWSFEP7WDa43tKarHA9bbmOalx94gZctylk6fRAPXpiqAEJ3luj4MRkfD48dHPOEIrRX/9tt/wC/8YsV4PMaYmldffZXRZMRgOCTPc1bLRZjveLwQKK04ONxHSHjxxRtBF3eWRw/vc3T0mKaqUXi8FQz0ACEkyhaMs31mTxZcvnZAoTIyMUD4kCNaJGrWmG5GiOTk3XN4SHNHJAwjmSV993daf4Iwm+LPMFfT3t+bT0nu6c3Mi2Tn9f+ffQY/1cDUgoGJCauVDNa3985I4NcaLkQXOknsqBACuR6dEKiC4qYXKZ2Sgcm1RqYg0Li4AWgdKO2yTIUB8MFLX8rQyXmecfnKZe7evcPtT++TZQNuvfI6v/RLX+dP/vj7QKDTQ3h+9Vd+BRMTgWdZhpE/5ujRY5qqZJBJXnz5JT56f8ZiVsFRzZ27D7h6bY/BcMxwMEJIwbJcMcgyiuEQqXLmq4pPZscUxZAsG3B4acKPfnLMXjNgkGcc7O2zd7DLCy+8AFJSljWDgWY0GbK7vwOnc8qmxguBtQZkMBwIGQB9GTlQu4mnwAusBW88WIm3YTMIuTksjTM434W8O0FYtCIJ2QJhk/eWwNqw0FsHsDipnQcRhTWVJmHcQKUMBiApFd66EL7og+dTK9iQhITOKOm8xTuHdCECQhJAUxk3PB/lE916NwQDk/IKLWQwMLUHU/Q2k4keL4R3ypiMsAv/CwtOehdyDklJCKzzIWpEBINjpomgaQrlDmOhpELJEPWW5wpjK6w1ISeOcFibYxvBZDjCD6ApSnbGA5QMifGsMchBwXJlOJ2VfPzJA77z3XfIxofsX7nCtRevMd4d8v5H7/SiQgJVXwIenXNUMVmic0GBQAUFwHmPilEvfWoyn4D79nCTpKgJay1NL/pDSkljOmA71OBwUsX17VqarWRoMsm45BzGOowLkUwhtCJ4lDjvcSp6S/jQj0FG6YxL3n1OvD2BvMhj0r9wcOZFTmMagNZQYK0lywqcD/2tsgwhBNYKFss577zzM370o7cZDkccHFzipZdf4a233uLatWvs7OwwGoXQ9p2dHYTSiGhAVcqH8Oe0fuI+ngTS8LuP3hKdZy6wZqSQQkfDqgp7K1HsvxAAda0gsO2MSiBTyleUDrVtx1mXE8nio9AB5xP7bvNA3jQm9T/f9FS+SIDd9rPfN+vXA9Gg63wXiZT69WJwNgnh9N4t/CGjsKy1Dk4X+HZdAi1tS3ofqcKaU0q1/1If1E2DaRqEqhkMhnhR4IjUjVJx+fIlLl0+4Mq1A/7lv/yn/ORnP+CTT9/n8ZMHbRi61jlFHvKHeTxVXbGqVq1yrmSkgIxGFTxk2YCiyBAqZ2dnh1U1wzQh4irQngajSpaJgHYQ9jxjGqqqYrFYcHp6ilIChKUqQwRWOrOUynCu7gRNHzSsztvNRi+hLq+UQPDKrS9w+84jzmYzjLF88MEHHB4eorVmMCjItKZpGnamE4R3LOUZ+/v71PWK5XKJxzMcjSmKgt3dXVariqPjE4QQXL/+Ao2p+OSTj7l3704wrClNVdccHx/HiFIR53fIqbZcLsmLjMFg0EW6+W6+9eTLKK71FSRxbj6vK1k//+WzGJk+i4HksxitLgJ8nscgle55nms3XTSep40XGc6fx2i0zSh1UT395z2zXf0qNi7Z7MvN/uzXfZEytK1NF9X/vGO0rd6tz+q+oY+NXWywWAeRXJTnRa/uQEPeb3P4qTPNaDJmb3+fajFH2hohBHVds1gKZjMBowIKhcwEUguqqqR2FbgmOGZJiRICrMUZg28MxjQ4wFjDslygFORKoJWi0AV5PkBExztjayokItcIkeFFF1Wf5I70e0JIWoenjT4L3sQX9+3mnO07Vmz28bY1ieh8qS8ak3PzO90X50rSdz/LvPn5KOtAYSfDpXFIn7dXxNviPOjCLsPcdg4naOc6G2OPSE5ytnWoaeloe8+z1oagRtEH81yHc4iQazfPc7TSgU5uNGQ0GDHINVrJzolRgs4EeIUzHqkaQGC9oalXuJVACc1oMGZQDCmyAYOR5ur1K1y/cT3md9hBqozBcIRUiqqsECrI9sZYqsoEuayumJ+dMpudMl+c8eD+Pe7cvU11NqOqDU1jIhWWJHMWXM3PfvJDXv3C6+xMJjRVg3CGYjrl0fExD58coaVkZzhGAVkE9FbWUnjFcDIi3xvw6fE9mkBL0u4xJu4DLTW+d/QdR9M25npwlPQCL0Q7zOdJpOWaYSa5tfY3/OdfP2ndprMszbVnrcFutfv+/O1hW33dJ93jIy7d7VkX1L5xTzeH+7vM5p6y3XDQr3NTz2rP8N51z+P80O6XT7lmazVt89exwW11fxYnjO3nZ2rI+pO6fT1FlXw+yjY69s0zqJN9OnnIOIeMGQpSTzoXV10D+BWnp2c4L0BIptN9pB4xKBZkWUGWFehhhhI6GgOCQ501Dms7HDdhvkrJ1llxUBQUg4La5HhvWx0lNptkCOmvOd86NYv1iU1PhvR+Y873vw/b1Pnpd8F8bSuJ50L8fYsEsLUuEfe6dRnkopW1RfbYWEvB8EvMe5XoywJ+K9Zq8rQeqO3NYbGk/bvv9NL6fcTHqYgrNE1DWVnGowwlFEJ6MBKJQokMZ2E+m/O9736PxemSxdmCs6NTHtx/wO1P73J2dsZisWC1WiHUel5sIYLTqzGm50gdJT8heuMeI5D9+Y7v4zXe+14Uc0/GaNOyJAfoRLNnccaCdzin+c53vstwNAQE9+/f4+jomJsvv8hLL73EweEBq8WqNaZa5zFNw8svv8Tduw+4cuUyL750k9FoyE9/8iN+8P3v8/jBYwSK+WyBFsMgZwjP/sElHpyeYUuHsIqBHmP9PLbZgQjYsfQ+Osd6rAg4UbAExzxYMqxT19pkkvzsCG760ehJOo3TfEpzI/YP6+dhO0U3ML7zczPW6Hv78ZbyVAOTUp1lXCLaRbZZYTAQhH+p4QiwPk3k+LK+C/fqv5GxgTe7S3beVeyjR7oxJgBn3gfavi5hEDoLm1eaONY2MbJdUNY1V69foakdH334Hv/Ff/Gfc/nyFd588y1+/S99izfffJN/+A//L9y78wmr1QIhJYghL710k2/8yi/x1ptfZn93zD/7Jw0fvGdYLU/49M4RBwePkDJnPBYh94wQ3HzhKmVtqCrDqFB88eWb/OgnP2E0GXH95g3eePUFHj055fDwkGIw5OGjxwyKgu9+97vcf/iQyXjA66++wmxRkw8UgzpnVdXoHJAe4xpsVZEXkkxn0ekg9G3VlIBCkaN1jmksxhqEC7lvGlOHkLq4eUih8C54FgAx95QizxXWGDw2JuoNAKUnREjVpiaTGSnKxCOCkcqlhe7I9BATaQelTPRPG/NFRBHSgYwLK3wpSFRdss3z0+0tGhX8z30IMZUEbuvgJ5H+0UUySZBKoGVnmQ/vDzbuwdJKtIQmnh7Cw6AIB5/AIYWjGORkmSTPdbjXGpQSFEVGXmRkmcTXNaPRiEU5p6xXmJkAm7M3PsQOxhTCc+PKAUfHD/AHE4rBAKkLbt99wO3bCxZ1xkuvfYWXv/Aa9x5/yrI8ZVEec3Z8GmnNJEprVFyTuc5x1rBaLpifBm93lWuc8TTeIVzKJRPXM5LgLSdb6T4Bl0KEqCvnbKQZ0e1B4FQPeI+Hk1dBcAiGXRsjCSzWWKz1NMZR1Q1VHZLQ13Udc1/1DH/WYp1CShcia6TvCBJ8b0P5HBStcow3JBqHoiiYzWZrB7H3nqapsDbMA4clhWcjAtBkbEVdCx4+usf9h3f5/ve/GwH6nMFgyN7eAePJlFdu3eLGjRtcvXqVF19+iel02ibt9h6yLG8jWqxz5Pmwlcz6IFbfc2qbMtBGnvaAviR4JiTc9SSHzbrWDVAd8HkeJPdtLqG2/gvKswDJlJuodXTo5xnsCYvbFLqn5V7q9wqsO1OkOjfzV3URVL2gZSEDl7Y+3/a2DSIYUJKBafM6FaMS+8alVJxzNNYincdjqJslUmpGw0ng3SYYJm+9/EX+7v/s73H33m1+/NO3+Z3f+X/wox9/l729HQaDkDcuHwxYLZYY26AzyQuXXuL69Rd48viI2dmMuq6pVqfMZjOGozG7ewfcunWDxlTB0GUayqqiqiqKokDJnFJYTA0eG6IjLVR1yWI5ZzQeslwVZLnCWs94OKGZVkgJi3KB99A0JuxDUcnPsgznNNYKyrJECY1SAwaFQKoBf+fv/I/4nd/5Jxwfzbn/5C7/6l/9K46OgufTCzeuc3R8zCAvyDNNVVWsViuUypCiChFPIoxJXdfMZuGdi7wA4Jvf/CZPnjzkk08/piyXLBYLrHXMz2YtFWSeh6ipxWLJ7U/v8uU336AYOFRmODs9DYZnHSKLa2NQSoc8fSbktNoc374A/3kuTzM4fJayDaS+CMT6rMan57nnzwpc/2n64XkNLX8e/ds+k4RhbSBLz/n8Z7V3EwDbNpbP884X9c2FnxPfS6yrgJtPedrc6tcrRERnNjRyKSV5MWB//xBJAJRPH9+nWc2ZL0tyBYuBRmKpSofEkAmHaSqkM+ADTQo4BkUe6EWtZXF6Ai46IGQKnSkOJjvsjIeMBgMGxZBMDyidZGGgsoJGZKAKPBlOSBwq5FpF4oME3+5T4bWC/phQpz6AnV71eSKFthlJnzZHW9W8l3z5IlnnorIpr3xeSnfORPCE1NcBSOgnX28NSaK3CLxvZcf2igRCpZFJYx6vD8YhFfACIpOGCJSRrfOLlJSLJTpTjEYDdnamHB4eMp2OGY/HjEcjptMpRVG0BsIsC+CSa4KMibP4pkEARaYRApyVeKpAQx6LVhq8RPiGxhuqcgYo5suaPB9STIZ84Y03KCuLFyI6QmqMjbKcAqGizGyhqQ22CY58TbVisZizKpfMZmf85Edv8+OfvM3d27c5PT7m+KjhYO+Qn/zoO+zu7HHr5S8w1J5/850/4d6DBzRNgxaaQRbWcq4UwzznJW/50qVX0UWOo+L1L3yRtz/4SUulVJsaoSR1ysnsPJpEf7deZAt+JZA23rPNo2XdWkDaENv1v3XNJXxpvZI0jbo9xNNFPaw/dBNgSyK3ECGasmPhSecCWwwYF+0H4sJr1g1Lovf7U/ajrftW2O8vOi/6917kLOHbvTXVKGK122WDpxuZtrf7aY4e24HL9b3ax30/hSP4tqUiLBIEUuqWQePzVjrjWvfZpnFp/TsbHBx781nKQBsqlMKaGi9OaRpD01jywRgvdWu8906iZAFSo0VIrVDWDVVdUpuqzb0dciWH+aWUoigKhqMRVb3CmBrjDFgbHQq2rdHuc+8vWmfxnXrv3enQ4R3dNuOS3/x1fRLLtP+0x8wF+1Y619JHHTrffirERe/WZ4SSGzJib42T9kK3BsR38Yb9ttmuOaI7JmW6TcaX8j46Vgi89XhncSJgpUpKLu2OMI3FGo8wYBrB61/8MuNslw/f+YR/9o//JatZTbM0mNpg6gZn1uUdpRTI82u+LMs1vCfgIV1fee9xMe98kvu2Fb9hVEx9p7RGZ1nAGrXG42KqiPCQ0WCEFJLFYsbJyRn/+l/9fxgMQm6x3/md/5aXXn6Z3/jLv8HXv/41lFIc1ccMRiOkCvnqR6Mxk8kI7y1NXfGFWy9z48Yhy+WMK5eu8OYbX+O/+j//3ylXNo6Ox3DKcLTD4/szluWS/WsD9neus6pOgAYhLatyTkpv76UAlYNzwZnDJxw7yUPhX4p+9vE53UQTHX6epmjPTtM/l30CvwkR3H05d9NB63nL0w1MEcAShOeKNsysD1Z1Czi9UBIKE1elaDskTOi1iZasjzGfi2g3kmhcogPalIgWOt8tWudNzNuiIn1NMEAFqj3PdDrCGgHekA9zDi/t0TQ13/ved/jhD3/AdDoFPMtyRZZnXL18ha/9wq+yv7+LUpJ333+XH//oB0gsb37tl7h8uEehHf/6X/4TMj3k+vUDppOMTDtmJydIJRHO05QlVy8d4t+4xcnshOPHn/L1r77G/YfHeCdpasdyMEAieO21Vzm4dMCjJ495/Pge1268TFZkCAXl4xWrukJlIkQvCYtQMkRcybBzWOtRaPAa1wiWZYNvwJlgIFEKdqdDTk9nwTNKKpwLXlqNaXBSBK7V2uB9oJkTQFnVqExig5tSoGkTga4nU8GTyzdNSCAfD3xjXJhVUuCsbxOWee9baj0hZaRmkwEkdBalReAAVQKhg+ek1oGmoC85ZU4FRTPSZikCXYESdMYlkUTaoAgIKaKN0xN2045OEE94d9cljvM+REplWYF1Nc5aMqViv7RxV9imRo8KlPDgLQd7u5TVimy4Q20tyzPQDMlVzv7BHq+9fA2lSt584zVUrqlLi3WebHAAmSIbWfbHBcU4Z8dM0JnEGMMHH9RIqUGAVEHZyfOMV155hdnslNu3FygtqVarQG/nQw4tUoSRpaWeVFn0PvUCj+0dxF0CyCYqfn3A2mYW4zIsBu/zkNQ5rmlrGoy17XOs81TWURlLbR2NC2z61scDznmMtxgJ0nmkDMYtlQB2Oo/Vz0upTUNT163gvFytqOu69fwJ4wNKK/IiGItWqxXWNoGb3toQWSgsq/IMIVSYv1LSNA1SViyXJfNlhVKPeOfd9+Me69nd22F/f48rVy/zwo0bfOELt3jhhZvs7e0xGU8YD4KQoTMdI0Q7kKVvCEnGkvR7v1yEr3jXxDUX51tUapLM5lsufyIoAck403queB/pVV17llwE6PQVj0Qf11dI+u1Pv6f3Td8/7YC9KAqq3x/9vltX+FL96R07b5+gIHfG2WSI6kcenXsOrBkX1gBKz/r1W8A57w3LVQnAcDAMCkSlyHROUQxQXuOc4vLlm3xz9zJvvPYWv/Pf/j95++3v0lRLDg72ME1NWVYsV0u8dVy5cp3JZIeqbDCNoa5rBoM8ADkC8kyzszPl/sP7LMoZs/ks0HZKhbV1S5erC40NyRqxDsoy8D1PJhOm0wkIwc7OLkI6hA7e/KuqRsoarSMdoGmiQdy2Y5LnOYIBTe0YDsfcfPELHB5e5vDwCkXxAXXVoHPDZDJhf3+f/b09HhQDDg/3sa7h8eNHvP/++5SrOZNxHiL6VAB282zAlSuXsdby+PERX3r9Dfb2djm8tMfO7pRvf/v3o7GrIXmkDoox9+7d5/79B5ydnbFcLnnnnXf4whevs7tXUNc1WIdpYoRtnMfBsBiMkX0vbh/H/XO2vV5YthkPtgH5f57GqGcK6Akc693zLMNVuu7/F+Uiw8tF1z1P25/n+1hZ2Kt6U3gbaNZee0GbNp/5WQ0GF7V5mxFpc6/f1m+b8yvRSkvOn7et4w/rzhm9SoF1evIElEupkJMJWsmYh0Vw/PgBrlrFKIoxO3sjBpkgExaFpSqXYGqcqanrirIpW+9KfDAsDSchymMwKNCZZHd3ymg4IFcZUmQ4cpxVIDRSK5TMqOQQFwmZHQpLFv/u8ryGo1C0MmFQP9cB4e4zwTpYc/H8/FONd/r5Ge79vJbzgHEv9iyeQ4GGfVO+6gP5Xb97ujTlyUQh0nc+1SGjDGVbinbnAn2sljFPhrFYa/i1b36Tl1+8xmQ8RCqJlqp9rhCRRSPKWW0bbLg3sSt4F+h7k14rpUQoHXRW73He4lyIKFJShzWjgl4stGO2OmV1v+Llsy9QDHZwPkQsOWqkCjKRtzHi3INHkg0L8pHCNpa8GLKzdylENs1OOdg/5Ou/+AscHz3h3t07fP9PvstPf/JThvmAQZazWpzx6PEDyDU+z6iahtqHPCyZVDRKYxD87PYdzkzF4eEOl67s8eobX+R0OePBk4fM6yV5pjACjLM4GfR1bWynprcYUcJp4sptAbDum/B11CHaudMb5YTTbplXawaWLXMv+fD79MSnLNtN54J+8Qmh9ZvXdnN1Hf/sP2jzof2/t7d/vWyJTtk8c84ZrjaYF3pnx+Y5I9u6ZCt0JLh2W72ij7Zf0PYWzGzbG2vb0KHWdaTOka6rRXR/+9ieCORvnsFBj9PRQHveae7nuaz3b9dn50bmAiC++zrmLJIyYkUa53ygNJud8vjxA/I85PwGgXeB2sx7R5blCAF1U1FVJZUpqZsKY2uMtzHHc9Jlg4N8ludkRU5ucqqqCkxKbQMjfrc511oH9O1lfU5tymr92tb7ChK1afirF9T1GUoC6Dv3IHHBvtO1y61P+ZiqpQU8etd2NoPeOhRprfZeK25Vcu2e/muH+0RcqAIRopJ0JOyLeQczkbE8XaFEznAwZW/vEl94+XVeuPoiv/97/4Yfv/1TymVJLguqRYVrPPgwdzpnZR91bRdEdxmcPBLVfNqndEvr71qco8MmRIwCd2v7WpJpu74I+4K1IYI5GZYS/V5VllRlGUL2vEeOFFrpMNdVhpQZq1XD0dEJSgnKVcX9+w/4g3/3h/ytv/W3MM6ys7PDzs4O4/GYd++8w97ePs55mrphMBgyPRjw9V/6OstZxbUrN7n+8k3u3r4b1pCCsc8plzWL2nA6h5OzkuurXbxy6ByKgSLTQ5SyCOFxwmNUGEwXI4WdN729OWBmSoTgAS9SJF83V9YGf+18S/tuCh7qdItNHaatbushevFCeQZFXrdRCcK4dOHpohe1kg7y9UUbvkt0ZKGZCQjrA3ppEiahc12AXG9ToEwKuRe8Ujjr0TojyzStkUrEOeSCddYKh8oEo1FBpjOq0lCWFWW5xJi6pd7xKE7Pzvjed7/DeDTEOsNyteThg3u89NJNPr37gKPjEwaZZDK9wuOjJVplKHY4OBiQKUXdVOAs41FBuTxjPMrxjFDL4GW8vzOmrj2lrNmbjpifnTDdmaC1xNqGH//sHUaTHcraYk1Jnku8kAgdFC4psmiJN5GyML4sAh+ClYJC5gUDnYfrhGWgM5YhaRUpnE7JYGgJh7NASElT13iZ8gkFIVqprD10BEGwcjbQnwnncU2DF12iwXY8Q4KjGHYbAFMhQmLQQAcm2w2RGGmUckuoLHjoq2jtSlNYx5zNPk4O2RqZQOBiAKFMAYMhgZmzUX6KEXWRUgjvY+SoxFsfQ/jDHLTWMCg0QkiskOhMMRhkmKYK1HYSxuMRSoqQBNFYBgPNarlCDzMG+ZBsqtkp9hkNCybjIVcuT7D2LACvzlMbgbEZZe1Ylg1OSPYOdtjd3+HTex+wWi2p6xpTW6wLNFeBGjEAoQ8e3KMqV1gTkjbqTGLqGmdMUPx7647oiyW8w7e5XfqCaMj50q4zKQONXQQQnA+UlWHz8ihnSQGYNlHj2USz56iMobKWJuZhalyoK3RvBECcQAgXaRBDxKQUrg0B/jyVprE0xkZcRTCfLwJFqA851aQMc1NG6o7hcEBZLkkhsQKPdU0ITbchQbZzLngkuWBUldKBDDnjPDAYFFy6fIlXvvAye3s7XLp8yNWrV7h8+TJFkeGco6xKvPOYxqGauH2QhPruvEpGnvT7RV5vaa6lkigR+//WlUh6ig/QByBczLDhkxdWaluPMLhXOo+MUIfWWfse3UYkIs2fjO92nu99E5S8KE/TswDrzX5JY98Kp8LRz5/mPSilY2Rx8jCRsY3hnRMdTxdW3ikV7bj4tBeLKLS13DDhGuexzuJtjY8CaN1UYT4pjTENxlkyE6JlhcgYFBnXrg35rb/yN7n5wovcufMxjx/eYT57grEC64KHlDWex4+OsNYilcZ70Foxne4ymUzZ3d1B6yBMzudzTk9OWcwXkWs57BF5IWmsp2lqvA0h+0IEqt2qKinLFXVVMxhMmYx3qZuasiw5OT3uYYRByA4AUTCKO+tCRK/XKCXY27/Ma699mbt37vPkyRGL+RIhBS+//DJf//rXuXb9Gvv7+9y69UqgxCtXKCGoq4oHD+5zkoex0ZlmZ3ePPAse0SGiUKO0ZLmYs3+wz/7+Pnt7ezSNwbklyaNMa818vgA8q9UqAlZhXoa8D5EuFxPnbvDk7HNOdwp8BHnSPIigSZj+nw+Pz4uA5acZDfrfX2QQeFbZvG8TYEnfJcNBD2MLy7hVHDu5uO/9t1nXufdOaJtIe0LcC9tXDZ8LeR506P3V/t+HMPzG92y7Iz5LtGBdty/Frad91+ct3Y693t41ff05Kr5oLJ/HCHHuPtFRqvXHefNse26HhfQKIv7ifWQu2OpL280lQl8nudt7j5AqPk+R5QMm0x2ackldrmhkcOpCSrTOGI0KxgOFxrFaZri6wpkGY2oGpgp5Pp3FW8t4ULCzM2YwyMnykAO3iECUFBqPpjaKxmUYMqzIMORYkeOEiFL8uiSfPJXbGdY/33v9G3SH8zPhaYBx//OLZJX+deeMgxfMlXZt83xz5+e6xA0rQlZx6rYrPl5Dlzy6uzH8344P3dBuLGXP+nwP+kz4wgvX3iIIU6RpDEWe8+qtW3zp9dcZD2TrNNiuWtc5KAkfnCo9EdwREhnlcVzwrnZWBP3L+6C/qA6D6Ote3gbgVogMvGBQJPC25N13f8YbX/4qQulgNI5ntLU2UsoFmh8lfJCjYh+pTCGALM+Y7Owyno7YWe2ws7PL7u4+uzv7vPjSKzy4c4+zk1Pe/+gDTmankf4vY7HweOGprcELibUOi2B3OuKsbFg9eMLR2QydF0yHe6yGFdZ6VqZCSdn1vwsU/N1e25Opk7zl26+6/Vl088CL9RnQdzBs8aaNdfess1iIrq+eVvr3hl/7KFc8t7zYEJHEBb+v/32h8wNPlzOSbN/pTBvvtXZu9NbKlrIpc5x7ru/Oiv47byvp/vUqwioLMmXbHNb34/W/++3q2u77dryucRvv1Y5R7CMhZEin0DMuBQruz0dRUtAlp4941pbxC13s2+vaD6OhXyYjfNQPZdqHnKFuKuaLM05Oj8iLIUplKFVQLEfI6MwqpKBpSqqmpDYldbOirEucC/kZhZSt0V5JFfP75i2LRmAKOe8cumbUbM/1br5vnvXd/enc7kcR9e4D/Nqc7FNyppNrvWxbG+28by8Ke35/kZxf6uunXvvY9F2UIxFEOvjuXdO50q+zwz5C+7au8xid0p6j7Zna6YUha4UK7FBOUOgh9dLhURgF7/3kI9794Sd8/NEnLE5XWONw1AF3FjLcJ0TUUzvqfyVVi9kC51hhbD/tS2yLDJ7nsYkiYtDncZ0k5yeH2yzLKIoi4KUqOCsFJ2tJlufoLMOYQCnb1AZrHUoqylUFhHQRTV2zWpVUVU1dN3x779+yt7/H3t4eBwcHHF46pGpqTF1TNw2NMehMMxyMeOW1V5idLKlLy1//7b/Od7/zHT7++CMePX6IFQ1eCLzP8Y1gORMcPXTsX95F6IamXpEPPF6C8w02ySIETD7llA0ylW/ngZdxYvs0f4AoV4vICBaCCjz4Xs5Jgi6BEGs+xlvlVyE2p36rk15Unmpg6hZ1nMA+CQzx5zlhO1zYcWR2FulOaPBrB5H30fiwmdCVzlzVBgC2AFn02Hau57keaMvaBUYQWkKy7uD9r7MwgQWBYqjWDdZ6lqsFw+EQ7z3L5ZLbH99lMBzQ2IbGNGS55ujklCdHRygEk8GAl65f4tHjGZPhCH19jGkcoyyjdiXeWgaDnPnsiCwfMB4USOlZrZZooZGZBJ9R5BIvBYM8YzAIHgA//NGPgsGiqbGmZjTI8dg0P0CE6CUpCJ5TQiCFRqBCJJcF4UJoZ65CPg4pPePBgKqoaazHeYEXIR2akDIkMhXRk9BYnIyeYI0PgpUINu6+2GdNiPbJpATnAw2dylAqo4pj450PzHc+cUj6diMInug+5ryQIWIpU2itUJlE62AFl7Etab7rhJvGQyfR4knCAmlJ8ETLNNnO4y4ypi9OhfnkXZhvSgRBsrERuBceJQVZpskyhW3CApVCURQ5UgXFpa4blstgEFJFSOyqC8nlS/t4a9BaMCgKlNphMBjSWHBCUNc5ddOgsoLxsGDvcIoXlpOTE46OT6jLGtO4uFSDQKW1Zn9/n/v3bmNMBc7hXDBOeOdw1rRgdcozBakPUxiqIOUu2wZ+OOdaA4dqDR2+lfd06xUfkkc7G+iZjA1rsmwaamtpIsWaiXRraSNLSnjiQZdCIL2P9H8b+8/noBgbvHyEFzTG0BjTGtqc8y09KMS53QKBkQbRW5zt+GxBgPM0dQUonA/7wGQn54UXboQIjIMDXrn1El989QuMJ0PG4yHj8SjkoTMBkDbG4I0Pc0ZY1rh7NwS6fiRrN/96u7jvjFCQ5sCmUPi0IqLy2gmUfaAtKBppj3q651/wmjlPDXdOJmvfYXv7kiC0rqRueBBuvF8yFq29x8Ya7Le3awNr0Uvd/WzUvQFspuenv+OZGda5QCnXKvvJOBXWf9Ma2xLdgdYZztq4nh2DQiIij0umB7zx+lc42D/g44/e4+23v8N77yxxVtDUDmccxniOjo8pijxExnqBVJq9/X2mkynD0Sjk48NT1zXL5ZKyKnHYEMEXaXulbBDCRUDG45zEOUNZhrxHZVkyHA4pBgVFPiLPR2iVt3ubJ+QMkFJgEygd84Dgg8J0cHCFL3zxNT755Db37z+kqiqmkym3bt3irbfeYm93lyzLuHz5EkWeYesSrRWDIsdaw+npiroukUoF43E8nQK9qmIwKKjrCilgPB6zv3/AbDanqppW0M6yPBjvTUNZVnH/z4LeYcOaV0pG8KoDRdr5tqY/bXj1rQEBFyAKP2flacaYzTX6tAiIZxmNn/a8i9pwzviQnsX5sUyGppaqZ22LughpIspg568RSWRn3aC+FSf3ScER7d8XTZ/UrCTDtUBzakt8uBCCdXbs897W/TrXn/30uSvENqig++6pAOVznUvrbeuAHNq+2or+bZkX28r6Ml1/l21z1BOcuNIj+meRi7KBVJrhaEw1ntKUS0rhka7B+hjpLjWDwZBcBopoqzXeGJy3jLzBuTrk+TSGQit2pyOyXKJUoPUCH8/iYDgyPhiYGnIakUcDk8Ing7hPRqUUp9TTLX37X/uevv++aYLFP55n3J5lVFrrclibY+eA4t6969vtxWv7572c2y/jf359o6JDu/o/ep7s3TKiXV0JO6CbIp2059uov/5+6KNBaFAUvPrFL3Ll8iXqxQnOVCQnmqASBcNSJ4t1TnGB+i7Or+iQ2eqWcW+TTmOdCXR8SiJEz4HK+cDkhSfTijzz1LXl408+4tLVq4wnU1SWh7M/UUsh8T6wRQipcDYYzhQKpVWI4haCYpgjRB5o5VXGcDjh8uVrvHD9Ju/89Ke8/957fPjBezx4/AChRhQqUOJZFwBkYwM1lhPglKZ0sFjUnM2WDIo73Lh5mVyOGOoaUwYadKHCarXORuCqY6vZmAztcCQJZf0sS+fdxpm05bdt5WlrKqzfoO0/136e8I7N9Sq2t6Kr7vz6fppR5yL5Iny0va7N+y/6bts1FxuX+rJFJ3ekP59lEOtuXtv54ho9/87rj94495JOlPRXIsXm5ru3/SORQiJ6xqXwT0ZHq89HkaLf/72fm0Pdyld9nTD+3ZMRElQX7OjhF2sNZbngbHbKYDBG64I8HzIoRiiZkZkA4BtbtQamxpTUTY31AZtSMtCuCSEQUoU8wDHSRCkVcdy456ZltzbPN+efX4Ogzzttnl+f4To6LB7fyh3rV3XXdr9fsE9tBeNj+7bsGq1cfe6rzagRH9dEr1JBf6lu9FPEzuLyOd+unrOpaD9qcRSZcDiCgckZEFZhSsuqbrCLOU8en3Ly5Ky7t4HGG7RU0VkkYJTWGdL4tDI2qd+3B5okesvkXBH0/C6CGHleVg9Yso+RUYHdZTgctgYm7z2rqkIIwWA4RCnV1l9XNaY2IU2LVtRVhZCCLA9RTdY6msZy/OSY73/v+7zwwgvs7e9xeHjI2dkZk8mE8XBEYwMTS5YpBocZewd76Kzg0YMjfuWbv4wuwMqKo9lDRtMRi+UK0DgrsSvP7MSzdzBGxhht52zoWxFHzHpQMiY4iR2fsOwYRNBKVfH3ECwQAz6QgKKzy9Tt2PRxqFRzbwq1EyzpMGtzygM9fHlbeYaBybJ2eAgREoqlBekhRKH0w1vDhHC4uEl1HthdPiZISc5Tcb3Grx2YAoQPBoR+hjZvI2BtoSpDjoY8zxgMCjy0BiulJEY6XGMiyJNRFDmDwQDvYT5fcHZ20lpUjTEMVKB7WJYe4w3Xrl/nvfc/YDgYMRmNsQ18bB/i6gWvfeFVXnvtq/zge7+P2dWBQkxY6qok05JqtUBnBdPhlE8//hl5NmBv/xA9LLh7Z86vfuOb3L1/n+FkzOuvv8ZPfvITXnnlZe49eEjT1AxHU1ZlCQTvZKEkrvRkWYg+cs6jpCbTA1Zlg60NmBAyJ7xgUgzZ2ZmyuzslFwXHZ2eRKkjRGEOeB29tCMKu8DIIrx68FYzHYxblCqQnywvKFApvPcSxHWQDxsMxo9GEwXDEh5/eDoYpCAI2QNowkgEhGpgClZciH2bkhURrhdZBSVUq1dEJY9oQAHU8OIESoKPRUHjQBJBZRQ5RiGnRxKbwFv/uzUMZP5TCI9A0TQ1YdCYYDoeUy1kEpjVaK5qmYToYI/DU5YqToxPG4xFa5LgGynLO6BVFuShpmhXz+ZzDS1MaA4iCLMvRJkeImjfe+DLFaIAVhj/4wz/kwaMjFrMl1jiEkIxGQ5qmQQjB3t4eX/7yl5mdHTOfh7w91jbUVYlwBqkS93XYoITsmKSd84Fn1XuQrK25BC5DR8XVB8KCMTfEy2i7vl6tDzmXgge+o6xramOCgSkaTKy1rZArCYbDZECUEoTxbDNgfB6KsRYhFM47jAnjXGS67Z+USyfQ5vX3U9+C/8YajG3wPghzQkpWizk6H2IsZJngxo0b/I//J/9TvvjFL3J46ZDBsAAcFkNVrlguF8xmMyaTHZQK0R1N3QAy0ILEHEcpP1P6vU8rl8YtCY6yB373SzBcr/+9yZ0drumE5dYjlqSMdL+rGN3n+vduee6mcANhrvXne/9eKc/Xke5JP58FVp//fv3azVxM/e82DUzbPLbCuvVtH7aePq1U1yE44X7XGvus7fowjav3HkfT0gdKGRK2J+cA4QzOxqhjFKDJc4dWkkuHL3Dp4DKvv/oa/+gfzXhw7wGzWfCA1/mAxbJmtQqRvs5DnhdMp2NGo0BXs1zOcdbGtnaeN0IEb2KLRUpPXkicUsGL2DZU9ZKzs+AMMBpNAMnO3g6NASEytC7IdEFVL3Au5BlcmQasIM+GaF1QVxaBZjTa5eq1G7z26pf47nf/MQ/uPyTPC27cfJFbt17hlVsvUZclTx6foqTC2YbT0xOkFFy//gJ1teTevdssV3Pq1QIE1LWhrgPXeJbl3Lp1i/F4EmQRYDrdwRjLfLZERuV5Op0yGo149OgRJycngYJKB2+/qjYYWwdPZumiIuiCsC8I4qiHQBzbAdPdOZjm0ednr30e4xJwbo09ra4+GLXNmPSs+89/wTlwp4eWRkUiOWb1P/fnlNbPAmg/Faj7U363CWpdZMiJvxE13t5cXQeuREpWvKXPn9aGC5/5jP5JZ0zXgouftQnotX9FI9gaBNSTOVNkd7+OvoPA2jskT0W2z7FWfmvPjCAjrBljCGdaPhwx3d1FOMNCSVazY8qyYb5cMcglw0IjCxmiZjOPkDpQWGdgbY1pakxTkUmB1IrOY1VijAUZPUhlgfGaymXUIsdQ0MgC46K+KAJ/vE36ZNeL8VzyrdkJOmW3/cu3n7b98qx5fxHo2+9X7zvnJ7/2hPOlP6b9+p8PoP35LL4FL8PP9vO1q0SkMvPnh7LdBMKPc5l2fJIHOyNuK7Olz72LZ2+NlpKdyZirl69QVxWmWYFrUIlJI8pDkmgk9RLnGhCBQk4pj2mxDN2esUqqkENWKJTRkb4+TGXnurygQdFRNE1gyFAysBE8enyfP/qjP+KVW7e4cvUaw9EwvIcE5xW2cQjp8VJGOr5A+ZfLPDiiSY3KBjgPOs9ROmMwHlOXFd57/sLeLl9843U++ugD/t23f5/7tx+TOcfhZMTZbEFlHdDgRdDxHj5+wv7eAYNiTCYl9x7MmJ2t2D+YMBruoAea0/qUTHqMB5OYP7YYRtbWbBqzBEqJzlHBJ5Ssf12vrgSXbStPO6uDa2w4UMP2Ip9xHpzXG/pnRX+dn3cI637GLb/92f++BYLTu6/tFesOlgk4fi75rHfAJPylXUr++c7KC6u+YK9sW7rh+BfW8sXPWzcKRGyvBfk71+Ck+22TzwL9WDIqaQTR4IRCiM+PgSl0YR/o7SJHk0y1Jkn6wNYQ7w5LUVici5hPrME5h3QCJwHvqKqSs7MTtMoBgVaaPB8gpCTPByEKydUYu6IyJY2pMaYJeogQ0dk9jm00AiqpkEIjZdPSoLXv1NNP0rpw0DtmN07lZMi4QLZfM1B5cV7vifO2k5vSw9Le9HSZfqvM/4wjf+1Z7Tt1nwV5txvX/kj29xARwLzWpODanHjdvhpoal23rmKNIQ+XI8+KYIrwCm/ArCyL41NsnXGyPKFaPkG4DGEDZhzmUcCjvO0CPZTq8kgJ0TlVWhs2danEGibU3/+26VTtWu//vYE9JrwyyzJGo9HaNY8fP2ZvLxiGDg4OuHv3bsivaD2r5YpHjx4FGr26bgMnEtVfkGUdtz+5zcnRCdPdKTu7O+zt7XH58iVGkyF5nmGamof354ipI9MDpNJcvnqZ0WDAr/36N3h0dI+fvvMD3nzrS/zxH30P0wQmKWsElYBq7pmMR4wnQ54s5khpGIzCerHLJjBxiZAGZo2atTdtkgOrS/PcSZzQ7Rikf22c3kY/ujipElocssqsy6+bcq1YO6/Ol2dHMK1xSqbJ35WwuUm87wAMH4XKZDFPE0cIEDKBWnbLIeXXru+XsDG5mLcndk67v4gWBFzE5J1K6/ic4IWd5xqtNHXtWK5maFUgUVRVydWrV5nP5yH6RCrqVc39B3fReUY+GHBycsJwPGFnugvO88m9+1w7OGCg4F/87rf5/vd/wG//B7/JLCYZ19qxWi7IhwOWy5LVag5oXrz2Ip98chszbLh89Rp/7Tdf4qNPP0E4i68rFidH/O2/+T/g0ZMT9qc7vPTCTd597yNGesBwNEJnOR5PpUcYXyGVQqucPBsxHE15ZB+yNAuKQcaXXv0iw7xgPBwxGU/Z2ztAKcW//v3f4/0P3mM4yhlO99uxqJuGplmAl2ROMihy9g4vc3x8TE6OkAolc+arMy5dOsDUNd46Lu/uc/z4CYe7lxiPx9TGcmnvgOOzGcZVIARFlrF0NgCVSiIkgX810+hckQ80g0FGXgR6jWSIlCosqH7JQsBU2Ca9R4lwSCkhUVHA0DGsMm2iKaF9EjL7cy0ACIJM6Rj9ETz7p9Mh8/kZzltA471lVa7wzjEYFEynU46Pj/E+grFOsL93SFmWZLJgNBwxyhVQcXAwZjLZYW/3gN29KSezM4wRCJmxd3CJL+Q7DCdj7j96wB//8R/xne98j8XMBOBXCPJcUjUN4Lnx4k3++m/9Vf6r/9s/QmJxzlDXJVprjAlRGTIaAyBuED3BI0S7RA8WR49SK9GM9TYcFzzVjPNxA7doa7HeoYxqNy4XAW5jHcbaEH5qbaCxMsELoGk28z1F45J17aG4ngem58X4OSjGWZSSOBeiFfI8x0YDsvceY4KCbK3BmIbVakWWZVhrOqNdplGE8F9jHF4YRsMJp7MFv/7rf5m//R/+R/zFb/0Gg+EEIRXWWWazBY0LocEIj9IZQ6lpmmAsjLGBJPCov26SASn9nUpfCBBRcfRwzggV4CVBL1Y73L/2O2vfJYoNT+dEkK4Ic767NhlHUjv6Qk2f+/+cMLNx8G7mdLpIgE339Y1F/Wv6//p9tk2Z7c7Mrj0XgbUhd1x4ptZ6ra5NoaBvqNo0EAoR6F6MCRE2CB0VEUuWh3xwytYhn4BUrOyKqqpROkfrItYJUgYq2t39K/y9v/ef8u03vsw/+2f/lPffe4fXX3+LcmW4f/8uq7IkzwLIUtc1o9E45harkDLseauqQkqFzoZ4b1phcjzJODmeB+UF1a6bslxxfHyMMWHfu3z1CsUgxyMYDqY4X2FdHaKxsoy6rnFCBMHKhX3wr/+1v8n16zd48cVX2Ns9ZDQcB8oIqRgOBgjvyaTg3pOHnJ2dceXKZaTIsc6xWi05PTsO0dLSk2mNEJ5BXtBUhkFeICI9xPHxMaPRgPn8jMVywaeffspPf/oz5rNlMMBFJe/u3fuU5QohYFUuGDeBHlMqGXIX4kOeKiGiU0XI5aCU6CjP1vb2+MHntDwPyHIRSL0VhP7vHTg+B62GZz/j+c8Dsj/PdZ+13s1rn8cAJISgz/KQ3q19Xl9n3wJ2bb7L8wJp3vvnWgnphPKIrXmP/ixzYNOA8Tw1Pe39RO8av2Zc6vdncFzZ2Tsgi17E5WLO2eyIXEKRKYZFTibzSG9i8ATGACkFxnQyo7EhT0NRqJjbqXNwMU5QGc+sgaXXWFXg9AiRjTC1Q/ZwHN+CytveZx2ICWPe+/25eu2zlVbH7LXjol7/0xq1fn7LU86azU4U0FLq+T6AuK3GsEn08EfwEtHz5O2e48F6RJQxqrLkydER777/Dgf7+9jyEdasQiSwM+3cxXtczM+ptI5GCfAxd6+QIWpbyODcJUXM+GsdAz+lKHJ0plFaIYRnNBoxHk/IsgK8wlrD3TsP+PiTO3z8yW2OTpdY55nu7LK3f8CVK1e5ev06169fYzAaI3UW9CXhyTKF1hIloCiKQFelM1aNAq8C4CsCeDvZm6AKSV2VDHaG7BxMuPXqS3z39/6Ed378M27fucPO5QPO5nMq66mdoW4MyJyzszOaYshoMGKUD7FW8OTRkkGhuHRlh+t7Ix4f3wdv0FlGKbY7kaUh6yT8HnPImvkp/R4zx4nOSVKIaHLYAIQvkpsvKkIkusaLz/XOLhHkx3MYVa+l58HhhF2sG4mCXr35+fb2dU9ZL5ssCc8sYv0PwfOfiU/b57orRO/3MF5d/V2+tf4+fUHjwpVrtgLR2/O7+sPP9Ldq9TsVqbWEUCipo9Hi80H5HMq2tbQePZPm/TZsFRJ7R9ABk2N2uM9HEDnoImW55Pj0cchpUzUIoTC2YTQMzCcIj/EV1pVYX2Kp8T7kl25MgzEOa0PeeOdE3LvTWAbwfAsLWmhLb46cNzh236V1uW47Sn93hqVN21Iyaodz2vfmYzIyPWNVbDNubYxDuDA86GJZ4HnXeW99AMJHR4k0Zq3hP34mAuKy0XORFSQ6bxqQaJrKcXaywK4UtnS4WiKtwjWeXBeYpsF7R5EV0fnZkwxcxhqyTLXOqhCCBbRuOcxavKKPzXSOsl2u7O6a8IjO4TX882IdK0lsK3kemD/m8zmZUi0F/WQy4fr16wGraCyzbMaTJ0+oYpRTloW0CXVdI7yMOZoNCM/Z2ZzlcsXRkyOKPOOH3rK3t8dLL79Inmd8/PHHTA+GSLUiz4ZMpwcoL1FkvPnam/A3HPsHe9z98A7HRzOWqxpvGzIx5cGnd7l27XW++uU3/r/s/cmzJUt23ov9vImI3Z8uT3Y3M29Xt3oAJFEA+B7EBiQFiY8mjTSRSWYymUaSmUZP0vBNNJf+CEmDZzQNHsXGDBQJAiQBgkABYBWq6tbt83bZnXa30XijgbtHxN7nnLy3CuSTVJdudjLP2TsaDw/35Wt9a61v8c//zdsc7I2omyXW1gxEgbWuN2ckzpsw3lL23qkkBeoEkzH+nliCIFAHf8E+sOv4a2fQjnPpy7SXOpi8SMLFt531XnRRk6KLNAgdgFR2NjxMZ8BJT/SU2uAM8qKNxPfRm94H/VqQruecSgB4H5jzniiQPHWk9KnrBuoahGBQhCgHIYPyKGRQzKzxGNMwGBSsVmu8DyB6oAGSIBTWOdarFavViul0xmq5IMty7t27x8WLU/y4QKmM80XFf/dP/wW/9J3XuXNnj9msIMuGLGMmQFU2LBclw/GIvck+5ari6adPOT4+Zjqaosolq9WSy4tTvv2dX0ILBTKjqi2m8ty+dY/5fIlUmul0yk/ffYejW3cCh2Tj2J8coXXG8N4D9mdTvvn1N8FaPn/8MbPJhHt374FXnJ+f8c3XX+dgOuKjxx+icSitkUWOY4hrDA9fecBkNKbQOQp47CSbqqYyDcZ6vvP1b3JweMDi4hJT13zja2+RC0W1KWmMwXnP/v4Rf/7DH1A3DRJPNixQFS1doQBGwyFaS3Su0JkiUwotI21fVMYkxJTNTkRrLXBYHC4o+yiSp1yIoGwopaJjJU3TsAiTcZIycdKiIRpBQiQwOdApBkpFRZZp5vMFVVUjBdS1ZLlcI6Wmrk3ktB4wGAwRQjEoCmbTKYdH98gz2NubkWU5ta05ny8ZDveoDTQG6qbk4HCPTV2zWMw5fXFGtW5oGt+uEWMsKoM333yT8XjE7/zO71BVJYM8pIBaF7KYApgYMsMQIUpVIAOHa1t3qctscL6jLUuODKUCeBzq/HmwBukCv7gLCxBlPYln1vngoLSRUs8YS2OCc8I0TXBc1g2msZHGKdzexfpdnTKZqDNTevQXq7m/SM1729YqE1JgXEMmBtFZFCgPaxeAf4XHC4dyIbstOXCsjZGSEQRKVCHDwZAHD17hW9/8BkoFp3qq7SCkREYHajAEA92lUj2kj/COgzNJ9frcB4M6BTeBCj7qZWl7EyI5pHpGYpyXfXCt7xRqnTYtqNA5TZKzsjPcthW2XSq5UMNMbn0fnuN6irpwu+2Ikd3j++fsOqf617jO6ZS+g6uZST46F3evlyK8OqfwdvaT99ufpTHo97er47PdfLuGTVtzLVGEKqUQUgSefhucH94Fir3MhfXf1A3D0QghHNYolBLMpgd873u/yf7+MR998D7LxVnIKJI540nG4f4Mazdk+aAFR54+e4b18OLkhNPTM4qhJteiHZfwnIK80DQ+1E/SmcJ7i7XB+WqMD5FxumAyHTEYZIyGE6xbU9UDysrQNFWUOYraWHKd841vfJPf/u3/McfHdxgOxzgnmE6nbDYly+UC5yyzvTHOGcbjEUJ4hkXBxcUFpqlpmkCVenFxwd/9e3+XTz55zMcfP+b05ILpdMrx8R02ZcWzZ8/45JOPqaoNUkrqpmI+n7PZbJgvFuAl08ksGmQ2OnwbslwxHA7IsgwpQ+0DLRVKZjEgwEUqwZRR4FrdKRlYYb2EuPEEEv8s2MUvUrvOYXudIb7r6O2fc5Pjd9fx8aXBZdETvFztQ7hH3/hq0ZftvtE3mF9+75uCvfp/9+Xlds+6+1x3vZcBG+l63ntU1OVS8EHn1EnUxrQbzu4zXSdz8X6LCuS6+6YmbzCcroyaCBrLTc/av/buXLkOBBXJSOzLb/hCI3D3mrvzSyRjvadLdUF9Xb0Mi2AwHMOeZbOcc7aZU1tLWTdsyppBFoBtbQ0KF6g6pGr3dqWi7i4smdboTCKxZHqA8xprNY0RGDRO5jiRY0UWAhGizp7QA9kaw/E5fFePU+ysg9YmFJEC5ArA9MVjdtN7SUD01jG9/z3BcX9dsMhN9/iZwOFfiLarv4ut3zvd7SoQeOXsFvijm89RV43TmKTtpjdnYw1KETEGZy0qUzSm4e233+aXf/mXka4Cb0A4vHDUTQ2pjrMLc66xvbkgJT6u15QJk5y4znu8c1R1jSq7iGGlswDCGkdTW6rGIGUOZBgnuXX7PrfuZuh8yGg4ZjyZsrd/wP7hIaPxLOg1Mug9jakx1uKdpalLpJToyHKAlIyGE0ajMXmeo1VOVWm0khRFRqYFWaxr/L1f+zWOD2/x3rvv8eGHHzDIFOu6YV1VLMoSrzwIh2kqlsZic0u+t0cmFc55lvOK0UwzyKYoV9G4Bqmba+ZAV8A+Abbtuo3vSvQAT0+SBbS4T7vnJIB3ZxndBIZdewx9yterx+7u72HuxGP7OpLoZaOK69Z2l3mUjun3o38cbNN8hdZRL/bP27UjrlzP7/7Znbf7uN39+ntoOm973W4787mxCWQPT6E3Bmnh7siEXkaJTFmEEDEdSbLrBD1nkej2jZQBE4IZdFeDSchIZ/lVaWnAOyu6m6HhM4nH7cyz/hyFbdtRGBszUUSoeW49yCAL67pm6RcY6xgNRyAcTTNmMBggJHhpsL6J2UwVjamomgpjopOpsdg2QCXYIlIEyryQeePax+n667colPutvwavokZia06+bBsWcZO5fo7Huu3i6nrpX1dEfWXr/r0Vta1ZRP19t6/XXD/tkyJ+3r27uMbp8IPwEqKjJqFrrcCS3cxocRqP8JaiGCFQNBvPZuVYz8FvHL4BrAArkV5gmhCI7wkMXwkbEoIYgNEfj75eer0u3Or/KmsDlnexC+NCrXZcQDgD8XKoSd4PXDbGMBgMWC6XmMia5Jzj9MULVosFWmvWMTjbu0DD35gKJTTJQZX6lphcUt17bz2ND3hcVQZq3T/8t3/IJx9/zGw25dnTZxwdTjk6OkaOJWu3RM8KhsMBbzx8ndlwzKZc8Vt/42/y+7//r/no4iMKnaGoWC4WPP7gMcOp4/VHb/H52ftIrSmyjEJCVVUxMyn6ZJzCS4H0AaP2QkRGGh9LxTis93hh2vH2cX5777a2g+v02P5++rJAxC/Sa18qhQOAn9Q3cJGqzqe50tm1IXWRSMFFB2aEzyJdXjScvQvOBpfSeK8xZvsteTA7gKR/cPgsOBjSREt1SUIamlJZ4GT1Cu8dSmWEAtke6bcHUQoJyoMQOOtw1oaaKE0dAFxrGRYD8jzDEaLz7Krm9HzBeDKirGvu37/F1958heqsQskcpUCpBmscg8GI1WpDua44eXGGyhQ6F2RSUjtHJuFwNsGjKRvHw7t3OT2bMy1GaJ0znk7YLBboYRGU1sahhEZ5xWhQcDjd53C2x2RQ4NYbiqxglOXgJQsctw/22JsUzMYFF8tLpM7QeYFUGcOs4PbRIYN8QC4zlJBUtyrmqxWNs8hM8+jBA3SmcWXNxjqkFxwdHLLOVqxWa9abDXuTKQOdI4cjikygsoxRcUhZVzjv0HmgKRSxpkamNcNBgSfUeEn7ZHgNKriGfKRRJNCrBZ1PRONDdPNUKlLEBYBv68L0Rfw2QCJliJoQUkQ+25D5JgRkmWY4HOC8ZbVakmWaPA+CMM9z8kwH+iitmc32ARgMAqh5fHyMMWvG0zFaZRjjWW9qpnsjnHAYb0A6vGj46PGHvPfu+5yeXNLU0I+ecs4xm80QQrCYL/j8s8/CcwuwLsxNKRMUE6MvZFSQO/dN51vyvq2plFgnfdo/nSdRK6XoVx0VPekkzgVh70xc7z45NmyXwdSY6GCyGGMx0QEl6TYcR6TabKu/7q79Psj2i9+8d9hQ3TeMu/OB8s6YnnPHt+9OeDDWhWK70WBz1vZWggg8utEJsV6vOD875ejWbZwPkQ4+1iwSEEGjMOahgK+PdByhCSGiwhn+TnRy/c0pbcZbzozOzLlecUv7SH8TE1Gep/UoBMr7+LlowcDWbEnnpHv0DLq+gpOcOElp6T/DrpOm/39rZMKVvem6trsxXwdI9xXnNDapD/2+7FIGdteMe1xblLoD3napCrfvHc7r9yX93mYz+RDBa2yoz4eWgXPfh2ymVl1ONAOAciGxWiqBtxajdZCVWcbh4W2+/a0hx0d3+NF/+PdI9QFZNiQAEBqEDpG4WcgCWq03lFVNVdVBDsYMpQ52DjWUtFY45fHWRznvQj2ApsZaQVEEQEQQ6hblRY71a+pmhbUN1sTri1hEW2mms3329vY4ODhCSMXz5yd88MEHZFmgxFks59R1xZOnT3DOoqRkOBpycXFO09TUdUVdV2zKNUURKHuzLMN7z2AwIM9zTFzPVVWxXq9xzlI3NcYELmfvfNx3hqxWq1bR7RZQ4rZO780S6umFeeodHUiaFP34T5oS3Z74EsTgF7C9bP1+aQfQDcdet95e5gS58dpEM0J0cuK6c68GW111avjesS8D4V5mROwek657nVHfifOr97rpHq0MagPa+khIjAAVP5s2sOUE6xu4V/SML9fafYZdAK53jOjAjD6zSfskXzD3rnMOvuz4636//tjwBFuwh5CtzJBSkxcDJtMZlycFVVOz3lSs8owigyKTyBhokGyxdF8RayhpnZNpTa4VQliE1FRWYryksWBQeJnhpMYisV70gJLQP5lw+TQCUUZd51xKIK/f2vCviRa+pl1nPPcGahuF2kWsdi5/3Xt4mTP1q9K2x2AbxOx+f/k1OiAs6kjtF5HxwO+8jrhoEhCf1myyJKRUWB9qQF4u5tw6yEPEc10h8Dib7hX16oghpN746BDpd1CIlI3vQXmcbLDegw91D7SLkdZSkw0HDKcFw8GE4WiGygqk0mg9IMuH5PmAPC/IB0PyYkSW5XgZqIqts9imIVAbW5p60NK+u0jB15iaqpZ4LFYZGiS51uQ6RwpBpjMGxQgOJA/fEGSDAav1kvOzk1D3WAXqy9LWIWAFi7OeuirZbHJEkaO1xnlJVTpENkBLjfc1+OUWkOi8jbprxHzwrbOY3nvpIaYxkzN9Ht5vYhTxW+/7uonjb/i9d69WpgheluDSyeJ2N9tSoFK9UtE7/uq9+7bDdf2K9vqVRxE7/1/tW2ebpyN7z3fDuX3sLK2nL27d9bbB9P69e0/lu2N3MZfuZNE7r/tcStnSugqRMpLiT2/NBRA46OwqUaxJhRQqsuyoli7rK9PEzi+tPdjLKkw6CTfrrts/kdXChTrxpMyiWMuuoUYIweX8FKWhaSYMR4NgJ2mPx+K8xboG65o2UNYYi0uVTnwI/BZCQf99x+C3vm0afsTW3LvafDKKtvaZLXWSzk4Kn4v2GPw1ziXRLX3xkqV5neqw1a/eb1u+oV19gl09sVthnf9oW/70dkquOINFeuaAd7jYAYFos3FxNpahCXJ9szSslw1NCb4GaWWolhNxJ9/uqF3GUYepRnpG33+OrkOpwMF1AXnXtSuBeT2MIzl9+tiF977NXkp6npSSzWZDWZYIEbKTAtNLd56UsaY8nlRHMGAHIs4B0dZIDw6vkOH86SefUm42zGZTLi4vePzeXQZqQKGG1HaDHdSUzlHonDvHd1gsLph8e8B7P/0Jz558SmMMpipp6pqT56e8947n23/tNbQcI0SDwGJd2WIUqS8IB84nptm272GrStncEcuN4y+FwJF8OteP/ctsxJ+nvdTBlNLbQj2AoFzlQncKW5rMkb0ugZ9pA+sLLBuj6ULJJo/Qsn1ZNi5sGSVBC5ABSRC0wGBfQYn3kSI4FpTSVHXZClZTW5blEqUytM7QOg8OJynRKlCJreqKoihomkA1pbRqlcq0UVlr2azXoYhdU1NuVrz64DXqumbTNOAcmSr44KOnXMwXGC/49ne/w2xWU5aLEOWd5ayWa5TSaJ1TVxtePDuhbioevfYKs8mMvekUjGFvOqOuHcI2PLh9i2pZ8sqt2xSDIR7B0WTG46efA4G/9PPPniKkQ0uoVxs++/BTfv17v8JrDx9RlxVYy7DI2RsVSAXFcMZ3vvU13v3wAywSpXOEyri1f8BquQRjQQpG4xkP773C5XKB0IrJbMpgOKQxFctcUy4dZ89fMM0HjEdjvPWcn54xm+2zP5khJkMGhWRVbrh39y6n5+fUpmY4GlE2JdYZtNYx42fGulzgrY0bZIholD6Q5HnnY+HTqCT6CKVH7l4fhZoQITUzKSvOmVYohnmiY/2hbtdJdW5CLarwe1WVeO/I84zJdIxSivn8guFwxGw6ZhgLxo1Hw2AYI9jfP2A6neJ8TVGEbLO6UaFYcp4DitX6AoRGKI/UHqE9l4sz/viP/5if/vRjlkuLaVSkCoQkNI5v3eL58+ds1isyHUBXIQKlVVVVDAsFPmQcpM1QKBGFkMALjw8hoiF11XtszFwK5ePC+BlrwXaOBSm7dUaMNjUuHNOubR/A8VRvyRhDUyfniIvOq7CupYp0EgmA2ZJvIioR1wPkv8jNY2PQSaeUl1UVNvX4zkKgcydTG2PwvawcZ31b2DAYZzJmORree/cd/s2/+X2Ob99lPJ2hsgyE6FKYtW4NVaEkgfoR8IkeUcRCnOE9aq3b6JC0KaVNP/0OHRd+2hxpHzGpKaJV4NKzijjXouurp+CF6NFEfyB2PpNSxGKP22O7C8L2P++nZO86XLr/txXd/vcvfaf+OiW5/7N9vNmpUxYcemrLqILkiHJb1HjEsWoVvnTveI/0btO5/WdInxtj2utZa3E+8PcK5wNdorThjSX5IgI9X9NUoaaAyijLFUY1ZDrDuTw4YPKC2eyA4WCEa0reefdDGuNYreacnl9ydDihGIxASsrNGmMsJydnCBFqAAodHOmoqDH7AOwoJVAanAXjQqSOs7FGnNbkg4LhcMxwGOo7DUcZUgWOcGtrmrrCuSZEz2mFznKs83z25CmD4RQhFJ988gm/+7u/y+uvv85wVDCfXzKbTfjJT37M3mzKrVtHFEXGsMg5P60pqzLyjnt++tOfsljMKcuynWPL5YKmMRRFAYSsus0mZHl6TywWmjEajsjznM+fvSDPQ9p+nmVY11DXFc7pBFFQNxVS+h7NRNjaRMpg9Ul57gy365ynX8X2s+wxu8fuRjzfdL0vjKy+ck7K9I3BIjec+0X3be/Rk3//0dqOM2TrKzpD+boxuhGIT2qGECRK1mhOhT2QzpC92p1rHOp46O0VPgGE7dzfNrRSP/vft4DAz6CKtDiET/2+2uvrDOzdeycnyk3Pd9N1iLZTio4NWE7npklGNxBAIO8RUjMaT8mLIeVizdwZMgFaw/5kSJ5LhEpzPlAcOxcCvayx6GGgRc20QEiH9WAaqI2nsmCFxskMJxROSJwQiCtAkGjnfRrIvr3XRegmkLU/l7bH4zrD+cZx6w665vh433i4S9/5l6+n9L7SOIv/FGvw/w/adXO2rwPB7pj0f++HrPd0w/Bn56AIF21/b2tQiqAzBSCtC2Y1znNyesrde69SZALn5xhPqHMUZYRUgshK04GH8doisjyEwC7X5vQLAUY7nAUhNErmaD1kUMzY3z/i8PA29+89ZDLZI89HoW6ZkHgnQGik1IDEOI8xYf07LMbXUS/sjY73KCGwzmCamqresN4sCPadxRDkj6lLGp2TqSzUalY553bN5OiIrx3scX55zg//bIHOAoWRsTXl2WXQT6TESLBNzXJ+jpzOyPMpWTagaUq0zpBZTi4KZF11+C4B/AoJSZ5EI4/sOwnTmCZAL4DYPrke2m2rN0+uzJVt/Ty9g6vNJ5y1u3cCWm9YjtdFbyfbuh+8cP3pN83t7WO6Z2Dr95fqZGnSt+eI1na6sTdbQdQ7xwi2HDhdJ64BiPsn9eRfWletrCTOA58AaNmd19p725SKOmYgKZko00SbkSTSChMdFiiFjDVhI71adEqFmr/h56vShAq4iYgeBRexzOCAVrQZ19fqYB1uu6VriuBIklKCj/iQ83jjkMIjZbA/54tzPIayWjDaDBmOClSugg0uY7CsD9eysXyCcx7hJQKNFIHS0Ae+IqSQOBHxh+gM6tvK20ELYe1vbzHb9nUKHkdsr7PkwO6cT/39nqh79QWu2P6vt4z651+93vbvHZadajsHXbc9rL+cd95VfDqk8OyyqsSKOVGeJv0xjY9v9Vvp0zPKUGsnYnoS8EZwcbakXFjqlcc1AqzGOxXGKs6ThEOlToqES4WDIr63G+ojomPsaghQp9v5KP+2bYbEPNN3JIVx7xxc6e9Q5qTDwYwJGHOVsLSYodRPRAkqmiNgj309LWLKCFych0qooPNGVqfVcoO1oT5yVVX89Cc/5c6tO8zGe3gLplpzebZhMBownowZj0bcOd7njTce8ezZZ3z86WdUlUUKxWrZ8Onjc27dP2Z2+z6VWVDXc4zboFVGmi5hekUsx5ngZIr+lVDShYCDkWqthYkeCK5cXGtXWSXSmgn6/TZbRf8Y6C+L3YW13V6ewRT/8Ti8BC0kwaboMj0QoTiri1HFDt9F/XiC0tAzoFJxOW9BCBcTGIInzsdoIOc7kywJqN3WejG9amu8jMcDMp1TFDlZHgDQFy9eYGzwoEvZoGTGeBgiiq1zOG8RImSdNE2ko9Ihsl3gydGMpgMWi0VY2ALKqubt937C/fuvcLB3yCAbcn52xsVyw+XylKfPznj33ff5v/5f/s/88R//AWVdoqRgsbwk00M+/+wp5+eXjMdTtNYIl3Pr4C4PH96jbjbkeUZTGMqsYrWq+K3f/B5ZNqDcNFxeLvnud36Z3/3DP2Sx2mAaT7OqKFcbpANqR72qePLJM0xVMZ2M2D8cU61X3L81YzwdsS43vP3jH/Jf/Ob/gIvlhrOLOefnl9zZ3+Pjy0tmkxnT8R4IjRhL7t+7z2K14MmzJ6wuL/lf/C//55yfnfH8yTP2p/uU6zXj0YTLyznSeWYH+/yV73ybd979ER999C6DwYDDb3ydVx8+QGWaxho++OgDNlXFreMj7t27i1Awn19weXlBudmExRyncQK1MyRKBkDU4gLkILMAKrpQFN7bMtAH4bqJ74NAdgKET/RQsufb9WR5hnMGY+ogjPAUg4L9gxkHB/t88MEHCCE4ODjg8GCf5JCqyjUHBwccHx/z8ccfc+f4FhaPziSDQY73IaMnyzTj8Zj79+9yenZOVozwEj7+7BMuVyUnF3OWG0PVSIpiFEBQ0yCFYH824/0P3g9cp97RKGI0qUYJSaE1Jycv2JuFrADvXZcSG51nHt8t6FTBLS5gl9ZYrIXTd+gqpRAqbELOuUBtl86LdJmmiTRO1mJdyFpqrMFYEzMiXAfU0LcJr1vXtBEuPwP29wvQPH2Duq0Z5uPcjpzF6b2kSC/nIMuymJ3TU6zj5ZrGkhUD3nn3Xd57/33+/Z/8Mf+r//X/hq9/45scHd2iyHOq2rZ8uWkDHwxych0AaWsbGmPxvlPeq6oGiJl8Wbs5JVq3KxuYoN0ztqLvpAjFw3vGipDJULgaibZbVymBZV3it8N5c+3GmPaM/nfXZftcT2cXnalxjK68vWuusXudPki2C7Ls9q1TKoPiaG13bJvR0mu7AJaSEu96e7ELC8s7E5XB7T60CqiUZFkWI1WTAhyDTRL9mg41hJIjz8bsxfbZfXgHzpt4viT3IZP49a99g//t/+5/z//zH/5D/uAP/g2ffPqcV199SFVZzs9fcHLyjGcvnnNycoIXEp2FHyUUTrhu3ggRlUOBUtA0YZycF4gIaEzGM46OjhgMCgZFzsH+jOksj0aHZ70ugSxmSnmMdKyWJf/69/8tRT7CWsc/+kf/iM8++4z/w//xvybPM95//12ePf+cFy+eMRzklGXJe++9x95kihBQ1xVlueHhw4f87r/6V7z++iP29/Y5eXHJ22+/zb17r5BlOVVVcXl5GfcaaJqGk7MzNuuK4XCCznKUyvAO5vN5cJANc6r1ivF4jJSE+muE7KWudkAPzHd+28i4Yoz95/Zl2n8MUPg6B0v6/Mpalv377RqS1193N5PiqrPlRsjq2uv9LI63v0xLfU3reRe47z9fUFtEaxPcBOL1ZVqbARoE3s/0XKlfLSV4lJu7iyjdx/su+75vJKcgi+sYXvrX+0895v1RasfIemwENL3KyAYjFpen1Ms1dbUBb8izHEXgbpcqIxc5eZ4jfE1d1WRaI0WgFy83DusNDsnGKCqTYbxG6AL0AIfGRcddsrG6KOvtWXrTaHi/qy2l016+Vn6mseqtoUQN/fNc4z+3rl3nSH3J0Vc+ael+EpjXO6pzSAQa36Q3hkwmH2smEdkvBO+89y6emtdefcDdO/d4/uwJSIXSAiVAYMCYq33QgcpJKNlmxCddVSqJVyZkZzsJZAwH++By7t55wO3b97h16y4eQVVVWGMifTtYU2FdoHsMoHpwNjkBiBA8CxLXuFj/pAo6mQ86nfOCYbFPlncBVtYYXGOoa0vjPVJYtJDs370daLLrmt/+n/4DGlPx8Yfvw+UFt4+PWCwWbBYXDEdT9sZ71DJYytasKTcCMxnw6ptvcnJ+Sm0qhMw4nh1zMb/AWoMUkiIfUrsyiraek/bKa/UhAFGIHmNa0BmT7hver9h2EvXe+/Zc2kKRrz02hSxcbV9yvfr+r9fvQe33N+z72/fb2U/czeLGe9GOaf86Hc63zdqw3Y8OBAdJi5+3oHnfEdVumde0q+N3U9BG+GXHwSTC+xW9d6uVRsZ5HuyQ8LeMGbLJNmltPiI2Eany2nNkWj9fnRpMQoIzJuIDElTM+vKxTvGNNY2SA6f7O9HqCgcQg5GtA+GQXgYadUx70nLV4CipmoJNVTAsBwxGQ7I8Q2mJjHI4lU0IGKvDeYlSGXk2xDpDbepI3W7j3it39onklJHtXO7P6cTU4uOk7vbvDn9o8ScR1lFyOoneMuwybLq10gW29Fdqf133xzQA9J2dmm7enSO2+tKzyVoR2eUk3tSE7OtKaV/t98W3/0uZal3b1qGEkBSRWUOKsC8qCi5OL7Abj7AKLQsQoe53yorx3kR9eDdo6ipe0uttf3Be8lS+XdOptXtrzzHUD2puz+wJqhQ03TSBLl8phU/YinPILfadVOsvMIGESyZjOpb7ickMSmbhXs7hLagiw/tQkqeqAt3+J48/5dPXPmEynXB85zbn58/4/NkTZvt73OY2xjRYxvzqb/wa04N9/vE//mesSsd4eogsMqyyPH/ecP+NN8jsks3mFGdGlNUGsCAc3pvAgqJl8Lm4Juge3gUWiCQrPbgYqC28wJsu+ad9M6Lvn3nJq4ErY560sZe1lzqYjAuRKMKDDFh+KLIdveKt2Sp7K8T1OP+jWeUjRZ7z4W8pZawrIjpnlbhaRyL9TnzJHUVOB0B7k+rxeMpSxOLkDc458iLjzp07rFYrqqqmqW24goAiz1DjnNlsxrOnp9R1GYuVxRpN1oaintayXq+5ffsW682Kuq6YjHOcF5ydnbJabhgNJ0iRkeshUubUrubxZ2f81/+n/4b/6u//NtPpLS4unjCazrCN49btI4QU/OTH73D//iN+8qN3+fD9jznY3+OX/8q3uXf/EIljoGG4n+H9knq1oqk82nnOnz/ntVcecHJ6yovnz5nmiv3hISen5ywvFzSbGoxgOi7IlcQNMxaXzykywTC3HIyH/Npf+S7Vcsnp0xcsVxuE80xGQ/ZGQ5qy5HRV0jSOW7fvMBrkjPKMOwcH/Mqv/BLzF8/YLFeYas0P3n+PN994i/v37nD7+JCm3vDRRx8hveeVO8cc7g2YTKf8yi9/l9U6RKePRiP+yi//Msv1kqouQ3S8cGANwliWXrJaLYOihQiFhX3IJKtM3SkzXgZjQqiYZRcU9KaORecIxn2XqSCiwyU4qjqQ1aG1xGMYjQe88uAujx9/yHQ6wnvL5eUFeZ4zHOQc7O8xHA5Yr5ccHOyxlAbvG+pqxVtfe526WTOaFkxnY3Qm2S9mONfgnWO1WCL1iNVqiSgbNsbyzjuPefv9xzx5Pqdx4KVoHaK51mRKMr+4RM+maB2LWgrBoFAo6SmNoapKxuNhEJAyKBwtNtwuU4FIxRXxwZmbwMhEdRXHteMhlVt/9yN8BUkh8VEJCeB7onVrmmYr2gD6APv1ymly+nrv8ZGq66vSJpMCEzP0wqYXQSnrcVbgpQuRPn3jxlus7RwANkYcpQivUD9MsNmsooIl+fM//z4f/jcf8uprr/H1b3yLX//1/4LvfPeXOTo6YjgYEVLhg4OgriucbXDOkhc5UmqsDZkuyanV0qo5t8VfCx2NXtffpPB1TkyPbhWItu87f/edJ1tGULyct44mzTPhSLQlV/eQbYdK6v9Nzqi0oTZN3f7dL1wJ3dp42TX6fU8/6RrbwHCsmxbHRim5FUmyu57a68oU3RscbV1EEa0SLdMNRJCjgs7u6L+3LUXN0zkeDfG9haxZSdbbtwW0WVEO5wyWMIeta3DO4LxGy4xsOEZlGX/nt/9H3Ll/n3/7+/+K6WyPqi755NPPef/9d7HWUTYNm3KD1IIDNUNlQWFEuNaIdBaEDvcWlQMfICgvwOIwtgEC3dxgMKAoCg4nk1DMWwjKTcX5+Tmj4TA4tZ3k6dPn/PXfeMDFxQU//ek7/M7v/A737t/l9u3b5HnGfH7O+fkLZtMZ4/GI8XgU6jPOFxRFqCF1dn7Oi5Nnoa7i5WXrKD04OOTych7em5Ss12vm83mo0ZfnrXMPYFOWVHWg0hsMBqEGnnMMBgNG4yFSVtEYdD1x2sns+Ga3YO2kUIep0DmCWyPoK9CuW6twFdz/ecDhL7ruTVkMV8Cg9tzrPr3+2tfJmZ+n3QT8/lzX25Epff3hZ73mFqa208WXvTvR/nv9+G1lxbA9P67rX8DmUq2JqzXyAo7a6Urt/+06u+H5rtk/vqhdJ7Pb/vj+cWzJCN87JwT2BXAuz0fM9m9Rb5as555NteJ8sWI0WiJG4AcCL0FpgXchwjjoGgH89jFbPlMZjQ+KqBMaKzMakWNcIFgNPwaFuLImbnpu3wMntjPZZHqs8Kn78jpj0kZeFqyRdNCOhmSnT/yca+Mr1LblFHSGiXvJmHafpfmcAA0JLS20EF3UdjpP67y164QK9ZeEECHj31u0lEzGM548PWW9rrg4X/Gdb3+TerPCuwZvDVhDYyqaug70ckWGkhKZZSitw89urVApsLIkz4Y4J7FGYg1kOuPsfI73GePRHkprBC5mH4U+BV05jIuzIWvDAw6FExpJzNKQIDOFloMeMOwihbChbDbUZciizvOMg739UP/aOYxxDLKclTUMJ0OELfj0k09ZrDfMlyWrVU2mNPduv8KLkxNMVbGx59y+fQ8hJHVjg1N5s2B+dsKDu3dprOXs/JT55SVHkwNqU7f1VjJd4IQFJF6oEHCkuozUYH8GsNPHHxeNVykcSrhuLogu8l1tAYvh+bu5dQ2wSQKV0/fbOk8Phr6iC10nl6XkpdqS9wmo9Ft96qvu6RF2nUXCx9pDiLbOV1ovu30TyGtkj4hj1WVi0NP7wr1Fdyxdrd6tZ+gB4h1AvH1eyjp4GcgYEZiu775v03VrRyWHkgj1lASy1fPDsaqj0JMhgC5lLaXMfSF0W5/pqySTDw73WK021HUowyH689qFYH0lda9cxMv1C+89rjEgPbZVHkSozSYlwgmEEwEb8JbNqsE0G6pKU5YDxs2IYliQ5QVKZyGj1Ed2jFh3W4kMJDjtUTZHygyoEEKilcYSmG+cCP0XPrFX9YnS2x4DPb0SwhoQKSMjHCWUaEtCbMuDnu/D92wjkdZQYvIJ2tN1Q9d3KG35UbZqivf72513raOkJ+92j/Wt86u7dtCPXBt6kTCQVIvbeYuIWAte4BqLUIo8G4SsHCepN55cCazWOKtoKgeNj/XsY1C/SJR4URz0RcTLVK+kkl5jD6WWmKQC5NE5GBO2dd2aTph9OsY5R13Xrb2fMpgaAjvTlcCz1CXRlRlQSrbj2jKCRPalgCWHfgScuXP4D4dDFss1f/6DH/DZs885ONpnsj9l7+AAXWhW6xXGGgbjUaxzaliVFuSIb33ne2SDIfNyicsMzz6/YDQdMiheYeNGzGaSxfICY9Z4X6N0jfMVnhowwU8jIy7rHI1xKJ2hhW4xLqUUIZ3AkJxnrh2D6+2PXVtKeN/q3nEnfams/QKKvJjqjEDi0DrVYQjpVs4RIwziJiNS4VXaydYBYzGCVog2ys8lZ5RIXL3XF0Lv9mDRm6BdUStE8NCa2iALibOOxofo7fF4zGw2C0W6Fyu0LkKB1lhMbjgcs7c/Jct0cEJFL7uP5zsXoqE25QbwaK2w1pAXOU3jsc6wWq8QaCajITq+ZJzgs89P+cEPf8qrj25zcDCmqiwWi9CCYphzcLjH+fk5g3xMtbGUa8Nk/DHr5SV37u4xnQ4CpRqCPJsyGQ0Rg4KBlkwGBfVoQDkquMgE3lsKrbBS0VSWi7MFWgpePD9hvTzj3u0JWjR4V4FT7E/3eX664O6tI+aDNRcXl2TC8+DuHU5PL1itSiajCfPzc0wVsoImwyG3DvYpioyD6ZSD2QQtBQf7U8aTAaZR7O+NyZRHK8XR0SsUowLTNNy+dcT5uaKsagbDAbapOTrYjwXRL7HO8dqDR2SvZVxcXPCDH/wQKRSmCbyt1likDzPRx81HILHGBAM5bjxaq2Q1gohpwgT+TLwA55Fye5OQBB7uBE5LGYR1Xmg8lrKsybRCq7CtOVvjXE1Tb5DSk2mBVlBXSx4+fIQuFFmuKYoMpSS28bFeluX5s2d8/uQZy43hclnxwcdPeP58QVnZsNhVEBDB4KCtY+SbGilzQmRK2ADLsoyZefHpo/IVJQFOxLTnmK4aai55vHCtgZaERSz/026wYW07iHlkcb/tKa39TfX6zIxrgY9uRW+t8OTgSvKijab5irTRZICzPVqgGBFsjI1FMcNm5lwS/JF6BU9wNIVaV8YGmgGHjOmwwZANkSDQVA0XF6f4jzyLxYLPP/ucH/zgBzx69CrHt25zdOsWx8fHHB4ekGcaryUunm8i7YiO9Hq7zsPddOVd8KiN6JZdRBq94oopIrTv8Og4f4lzrqdMtn93WUdCEKhOduZf6tPuj+0pHantRskEZ5Bvr5HabmRN/1lvmv99R+1uc+7q9XfveQWAScomkb1e9NbRNVST192/P+bhvADOSO97YyqQQqFVyJoUhI0+OJwI9CetwekIHNwq0nFarDNYJ9Fe0xjL0a1jvv2dX0IKwTs/+SGrzYLFas18uWI4GES6QINDUJsG3XOkBEAl3k8GJVBnElPHgBYfHNTr9YrFYk6e54zGI0Cidc5sdkhjDOv1hvWqpq5rRsMRo9EYIRT379/j6dPnPH78GCklDx484PnzZygpmM8vcdbinOXZs2dsNhtefy1nvd4gpWK2t8+tW8f82Z99n/uvPGC2NyVRd9R1DYRaT0p3EdbJ0K7roH/k+RCBbPWQ/f19rG0wpiYvspiVluhQk0MxGTf9OhFfDLaGc746xviXaS9TmHejuL5M2z3ni5w4V7P2xc7vf7l98edxpvWf4csC67sy5qaxu0kebl0rBbPt9Pm687YCEnpgy5dt1zkA+4Z/16cd2MDvRnX2zr/yTr/cuP88x/teP1NYXtvTKKJd+zgy6nUCoTXj6QxTHaOVYLMQGNdwuVghnQCnEEpQZCKADgTwXMagLa1DHRcpfWBZdhLvFM7pQHsjUhhE6Ihge1+88i63UNiulk56hgRY9N/z7ni9bH78ZVr/qkHmvryJnf9/0dv1zvb0W9ITtvXCnaO31rhIYF/vCh0iSHuddHwHzIegNSW7oDkbATNvLPP5Cu+eMhwU3Ll1xHCQo/IcU1d4XMjOkwKlYyS11kilt+p5dj8gUCHI1smOgaNx1E3JhT3jMYo3v/YmEMI/hLc42+CxtFqcD7RUIPBCASZm+MTIQR/WkJAqUr0LvFfB8SoHKBkwCucsi/WKTCkyrciHeagd3QhsY7mYX/BH//6P+ODxY87PLzBVwyDzCAeZyvDG44xlvZxzeHBErmO9NSyu3EBdc3xwwN2jA/7dv/sUPRgxGe/hpeP08pRGWFzU8ZEBKxGtnpjeVYyIbJ1MYQwkDinCmOw68VX77uNMcR3omSaZ7/3TzoQedtTase1so3VY7s5Dv73YQ8/TDdLcbe/r4/vzrczv5mPfjrlmHxFBn26dK5FOnp7DqT2OMJc72bezN6bPW528XW3t9+2V+yBx6t8WKL6tf4S/gpft2kyLPlYntvvc7c2S/ruVonMwhedKDtVUg6mXwRRr84pUQzj+3zmjvloOptnBXnhfa6g2VcARupfY2YK4LZwltO25431QDlySqdbSd9gJwDuBd7FuOT4wKdQW5wzeu5BRhcNYR5aFWrnIri6UVjkhME5gnUOgEbHchxeJsl4EHC5hHiLZ34l3yAesyyW9Etp5voM3iN5cFjLiYD0Kt+4YOl0oyZyEe8mERRDmdcIlWjmQLra9nyV9Jdnm26O9JYLa/vcPaPXXWLPS94/ZeuY+NB4Zg2Tv+j5ey/u4fygymSNR2FpQbwwXpytM5fGBKClEmMZ3kWSMT332nczsd73/KCnIPei/V3WfftBQ59ALJ6V3to0xJcwlrnkpsbbDlLzvnEb9DOamabaC1dO7kbHOYnK8StVhGKH2X1dzXEjRBnCnfcJaF6n4wnVsrAX94uSMxXrF4NkzRpMh0719Xnnlgvv35zg8b7/9LlXd8OTJM1arNYdHB5ycnCJUzqapkQOJwWBqj8oFlRlweDTDGY+pNVAjhMH7NYgahME7SyARt3gX1iK+o2EUkclERBnQAcDdntSNT/jginMpHvizSNaXU+Qlb2+6MaLl6nRpA0X2fve9zIluY3Xexwgb8FIie0Chcz5oDM6TClJtbQ5xou1u/u1aapVP0RX6tgEgNwbG4xGj0SjQOpU1RVHgXFB2aAQuswwGOUJAlmvKTU3TLAMgS6DkyDLNplyTZQqlQvHOPMvItaRpHHXVYK1hIzxZpshUMLyc9/zwR++y3qz41jdfpSor8kKClOSDnOM7x7z/3qdILM4amtrz4fufsVye4/1dpDigNmu0UuSjCcMiQ8sR0kPmPLmGIhPkmWezKdEKtFLUlWFZbxgOczarinNV8fD+t5iNRzhrEN4wzBUSy+HhMZnOWC+XDDPN0d4+1bqkqQxHh/s8e/4O9WbNZDJhOirA1BzfPUZpRWUOmO1NaGqDzkBJxdHRjNEg1FU6vnub2eE+52fnzCZThIdNVeK85/z8IlDNDaDMN2wqw8HsgKOjI/ZnB3zy4acIKVjOV1SuBimRIoCV3iYHIBjjUDIsLRHpuQK3Owjh2+zsBEhDX+GLapoE0zRkhUIIT9OUFLlmUKSUSIu3jsl4RpZJpPQUucT7mkEuGQ4UeQ7lZsX+bIDQGi8FmY4zSEqMc6xXFZ9++jlPn73gxemKk/M1z07XrGpHYyNFgAhR6UppXGOpmyAojKkp8pg1EGd/WW6wNnjojQ3Ke9Q7gUAJKDvJELKN6EW9C9XSUnoi6OA68D8pI+32ImIkB0kZJ+nYbfRBtzr7SnXKyugt6xY76An+3pb1ZSJ4f5HaYJB1m1lUkp21rcPbNjLKtOBokrGYaT+DKKXPWi9D9I9NEeMxywQR6rlIRblZ8+knH/PRhx/wox/9iPv3H/DgwQMePXzEo1df5bXXX2c8HlEUOUWRMRqNcGiU0mRZ1jlg6Cty20bO1k/UrgS0NZMCPZ6KxwfFQUnVTqzgKOjPpbQnJgdTtzm6qCggoiJ4jYMJEqCfHJmdg6lrPtQN811ES39P2qXn21JGd9rNDtbOedS97yCv2qCJnWvsOm3Tv1vGZW/Pvc7J279fC4pFAy3sazFKzNmoLHU1l6QKkekhUzQe60QLGEjhSNky7b3pakVZazBSoF2oMTAYDLn/ygNGoxHPnnzK5eKMuglUe0LJWAPKBzDBexpryLKo6ROyqkLkfJguWitME7OlCbSc6/WKi8sLhsMBk8koKJEyYzLZAwRV2fDixTlVeUaeD9nbO0DrLBYJNeR5xhtvvM5kMmGxmOOdZbVc4pxjuVxSVRWr5Zq7x3fwDnSecevomPLV1/m93/89/vp/+b0A1K431KXj2bMX5HlBloUI6OSghBCBVZZloJikc/Z575lMJpTlGmNrlFY0pibTLnKsJ2W8k7etbMVfAQB253M3v74aBvkX7Su7xunLrvHzOJpedt/OiXHtETf29do1/gV96D/Dl3Wa/Tx7ct+w/KIx7TsJOmdb34i9WtOpv076571sbHbv0R63e47o9WhnfLblMB3AeI1x1r/fy5yLX3Z8X+aoaoH1KBPasffRNtsJO02BKp5AIzYcTxD2CC09SjjK5RmLdUkmgvwvBjmhbqdDCYnONLjk5NfkOlAdBkBF4lE4JC4xUMQx1YAl0bXsjC1beE0HQiRp1iFD7dFbx18zTru6yc88k/sIVHvv7T73u7Z1Xx92VtFq0r/47frgnt23dHWNhvd0jQO9B6YllScO7ZW1lqKd+zZGAowCaNVgjEXiMU3DYjHn888+Y386ZjScoDOFc5LMK7JMtdcSQiK1Ijllt/qUuukc1jQtoCdweNuAd5TG8ayquX0c6jYKGdZR0FnDvu3w4FzMdpF4YdtVbFt9L2AIAo0QCh8DfqQQiFgiwDpHWW5Yr5ZYJfBkyExQGou3ntViwWefPuZPv/8nnDw7wVQGjQKnUIAUGVp5jG1YzudMx6F+RJaHIEfR1FTzOfn+PneObnE0ntJUDcPplGJc4Ixh0axDBoIErwgZTD3gFkSQRzI6mUhOJhAEwGzXfoBAmHNTwMa1+nIyExJVe5hoV+aNF9fv6UmmA51nPt5DCNHaQqmmx1X9N8mpYLN0Ing7cCFk3wSwXUUKRkRyzMhoNwUdOIH+YWxSVGm6lGjnevg77o2kc7efvU/r2o5du1dcb9uIFBR+BaoT7e9bekXsZ3spIbu/hUChY0ZSvCdpnQUmju65rtqVXWZTuma3r30V2mxvGsoR4HDWUJUW7wJOm2RHoJ+DYCfsXECA6GWMhEXiI6bmopMpCFwlCM4lG+aVEqH2s/cRJ/MEW1JE2joH3gXZE2S2CsHTIgUvKkAhYg265AQLmFJwaONdCIpuweiwjpIIEVLE5+3tLCLK32v26aRZht/7elt3vcQk0uqAqbY5PbYfn67CzjbQs69S3bbYpzZbMGEhW2trWzf7QiUliTaRdL7e+SI5FVJ/ImWTC2tLyYxcFzSNpVw1LC9qzl8sMZVARDr9dhx76y3VTveOzuF2fdfaJ0qPvKUTJFkr2psQDdpub00it62TTRx7ScreShlGQZYKtmRqvExT123tpb68Ts+W6kpppSN9frdWOvwyUAWGMQmyxruwPwUcLiQDSAGrdcl6U8L5JTpTZMULzk4XvHh+gZSS56fPAcF6U7Jartjft3z80Yd4kaGynNHehGKkqYzFCk/lJdPxiKYc0dQ+6NSRnUXIDKEMXpjwP4agWSucrYPeGbfXULKgn+0ruuXUe2vimveVXtPOK2zH46b28gwmHzaSNvKgZ/S1/4su06fb1IOX2Ple5hJdloKNXOv0NuV0RSE8EtkaEuHenXHRGmK9jTkBK0WRgwfbhCLbxWDQbnJaK4pBhpIxSts5qqZkuVpSbgJIL4RCacnh4SFapKJiIfp6UBYBZPJw69YtyrJmMBhhGkupKpwTnJ2eMhwOGI+HoUimljw7XfD85C/44Q9/xLe//Sbf+e6bDMYDpNasy5rXXn+DTz56ynq9YjyccHJ6CaJitTznyZMJv/V3/jqDXILPYnE9w2J+QoNmszpnOT+lyODifE5ZOuoGmkZQ1hb3zDIaCmZTwUcfPubv/K1fx9Rr8J5BoRgNFOV6zmo+x9YVrzy8x8V8jWua4IgSkCkZHDimZjm/4NPH7/Pg/i20LNBDza3jN/jgow8xds14NOJb33yDt3/4fY4OZgFcW67QUjIdDbl1dERZVTx79ozlfMF0OGZvMmM4GHB2dsb777zPs8kzsizjwSsPWSwWrOYbMp0zHhU45zi5eIGzHryNvJdhcwzzJKQBNnUdFZw0SX1P9vZrnYQF5mxDlkmGg4xMCZp6wyv3bzObjRkMhngH77zzHt/8tb8WoyosWQbOlKH4sQAhLLcOjvj48Tsc377H3uEhpl5irUWrEefnc95++0M+f/aCZWUpG0fdCNYbj/MFnhpPqKkhlER4iTcOR4hqcjbUG8kyjRSghMQ2NeDI8xxpHXWz7jY8EddmT3Q4EZVe4UGKSJNHD2yPQjdSTSXhuRWhJz2SkDotHEHhIESthnooImYXdIptt+H2U3r7kia+KNH9fJUikEJzrVITxsYiFRQyODqTwVBVwXjVWqOUpK4bmiZQKtamCUaqMzFKpyuM2DSh1sv+/iF1XWOaBikVo8EQ15T89Cc/4J2f/gVSSuaXSw5uHXHnzh0ePnzId7/7Xb73ve9x7/4jprO9tuhi6+CKdG+DwaClfuvXTlLRobRbTynpUKngYqJqFIj2unYni23XedLpm2mee3yvXtGWU+Ya50s/8yiB/SHqQ12Zg7vr4SYHTrpX+n/XGL4J0BVCEVLQW8G1dU6/uGUawFZx7AGU6dibDO+wH+qkTvQi/wjjLWQMLgnzKRi7oSCrSJEvLTgU+4GMGVP94qXh0JTG7nHoXDOaTPEmZIreOr7Nb/6Nv8X5/+sUpTKyvEBqhXEGY2t0XjCdTlhsLvDeoVSQh01TI1oKxlDUE2IxbAQITVluuLw8p8hz8rzg4HCfQTFiMCjI8xHWCl68OGd+uabc1CwXa+7fv88Pf/gD/vbf/i1+8zf/S/7wD/+I/8f/7f/ON976OsY2NE3JYnHJJ598wnQ6ZX9vH2Mcd+7cxVrLwf4B0+mE8XjMN7/5baytuDi/ZDxc8eLFKev1Bu9hMAx0vlprqrrCbMJ+NhwOsYQMrEQl7GK1caVlXPM1RQZaRzoBIQEb3+3VedPzZbaK9fYx2/Qtv8jtZaDzTcd90bW+rBPjpmvf5KC/4a70UZ3+eVcN1u37Xed0+bLOpZ+13eTYvu67tn/pmC0w//pjb3LyfZHz74ve89bfCenYue7PN2ZJ/7n+vJc5nvr3/XJOqA7M9y2QQqv/xguS6OVCgHBwRhfZgPFsDxkpq025ptwsaFwGsSaGVll0QEX7TApU/BFChIAYLzBOYBw0DurUl5g9rwQgZcjb8G4LrBCAj8+dxFLrFBIpJ6u/T3a1WvrjuTvfdoHVLxrLK+smfPgFY9/1Nz1LOtm/5P3/orVd9oFu3V53dH9cruos4XeXUMOtedLhyP133S/Y7clUFp1OvrWdALzdkBcZB/sTHty/i5Yea0oMElzDaJhhXQMQM45ddBqFyZroGH3v3t6VhAwWC94isOSZROks6FBS8u/+7e/z5ptvcHB0wHg6ZjQctnqL94Het2pi4JNo8MKGwEqfQDWJlhlSZcQ8KDwqMFx4ifcCJSXT6ZjpdERZLlmtFjz/7CnrxZyhyHj62RPefvsdnn72GZtNjfQKrwpMBsPhCNM4pPRoBOVmyeMPP+CNN15nf29CrjPqTc3m7IRPyw2rFy/4+3/rt/jv/sk/5vzzZ+wfH/LWq2/w2ekzam9ocBgsQofAoYRWtZnW6UVKFUhGIDiX/HUUpKKtyJCcES08tqPrd0wYQU5429OJpdiSrd0tRCpP1LVI7+Gj/Nzagzwt/pXqDYNrbZpAWx/7kqRx1NehA3CllIQsDhVrEak4X5JzqV+LJGb4RJo4SPZ5V+uoL2Z2A9u2gjB8HMGt4vaEAPcrizVlUZAKl/TO6WyW3QCQ7txeUB3bGUwKFWggZXA0BufWNt1d51Tb6VV8dpkccV8h5xLAZDbBOBMzVgSONabq6Lucdzi7K0/Tb52eEMD3IGNUAtCcCzSXNjHgBDtPOYl3Yc6mOBGkoMFQlzbIrVYGg0rZaCI4OKT0BGdq+FEyQ+kcZ3yg+RPJjgzryboOHI9PEHovO3ngvUS0Dt7umIQ79SDj9vN2KSaxIENtddmTD23QDglkj7rJVv3mHu5Gt64dvg3C7OZxOKZPEdzHBfr2ffeiIn5OKk+RzPDeOuxuDNBm1AgERa5pKk+hMzJVoMSAQTbm8vQFZ8+XLM5rhJNoobA+BJcKIdBKYkyDpNs3AzDv6T92z28WtLMb1JyeNhpwQ7E9NgGXFN2WEDx+bfKIMQaPb/Gk/piF5JKQuVtVGVmWMRgOY1LM1Q5Z49o9XOkucLppmvieuuuKToEGIdpAf9dzMhnTIDSRYi/IsM3aUNeGj1ZPePzhM5QSNLYOGF3g5efjj95D6RGT2T6Ht25zZ28PPdDUTcOmrikry+rUUG0Uda1oDBhboXNinTONUpAXIdM6LwTFQFJWF3hfoiQIFRxtYXvTO/Ms6PG076Grdd1ibP09Iw6FICE/N+u0L3UwVbUJqadChhRzaQgxAq4t2N7Vo+gUxORYsjbyaDrXW+udQOsrBt2TynZz60d7XdnqRJ9uKXxW1zVZFiaWEKHw3eXlZfw7gGp5niEqg1IeqzxKycDR2DiauqGua2ydCuT5WDQr0iYhMMZxdnbJ/v4ee9MJSiqctZRlxeX5U6TI8M5wuaipm1BvSAvFctXwp3/2HtYJXn31Hvv7E/b2Fd5esH80Y7XYUFcl4+GIxapita5ZrtYI/oS//Td/g+FIo7Ugyxx37k04OVshKIGSfOCZTAsqs6ZxMJ4NWJ+sEJmmMob5wpC/tsd6XbM/HaEkrFfnPHp4j+dnC56/KNms5gzzjEtvKAYZWal4/vw59+7dY35xgak3lMuG48Nv4+o1aijJ8hzTzHn06C51E6K0vC15+PA2H73/HjIbk432WSwWzGb7MZMsZLBlOqcqS/I8RyPwxrJeLNmf7nN8eMwrd3M+//wJ1aqmrCq0zhiPxpT1hvl8SW1NmGNNqA+ilURLyWq5Ic/Ujr0ZhZqAsEmprU1BeIc1lvWyBumQ0jIZ32d/bxILstcc7E/49JMPmUyHHB3t8cq9+zx+/A7eBrrD8XjErcMJQkyCo0qW1I1lPJzywx+9x4cfPePJ03Py8QEnZ0959mLBfNmg5JCq8i3VgXOePNNs1mVw+KjgVBoUIftkUAwoioznzz4LzrSmYbHcYMwGmREL9om26HuMQ2npk72OSqWTaKfw3mCc6xxRXiCVQGtJpjVZpslyFdaYiMa8kKiwVLHRsedt3EiVRHqFbOQWeN8H8Nu30gNEu80/Rl5If3XR/wI35+vAhStS9gJboEuSkUqm9OdgqEnlyJUkI2fgM1KEhrVgmtaFwHQyYzwac3Z2xnq5DNQ2eNarBXmWMRzkWGcxtubuvSMODo6o65If//gv+P73v89/+9/+Q4bjKUUxYDgccvfuXe7fv8+jR4949OgRX3vzzbCWtaYfWbZdR+mazBopQop9AsPplLc+TV1fEUt1gXbBxlSglB1nS2q79w5Ouh2n1zVtlw6ln359XV2k3XtvK0FXJ/XVvnaGsxCp2LG7qhTsbvodo+6199i9t4rGqfOxfpqzW+MuM0WmMlQ0bk1jo/Ouu4YzNmZOBvmFCPU8QqZb3lLLABhrOL+8RGcblFBkSjPIct5465u8+vqbPD95ymo9x7oa76PDVYbsTaUkUoVIPOcsSuugbMsAk3pPUBCtj2nzwbgvyzWX83OyXDOdjcnznOPjY4bDAbeP73P/3iV/+Id/TKYlRTGkqipef+NVfvd3/yU/+fHb/PhHP+HevXu88dYbnJ68aDONpJRcns/Znx7wyv0HTCYzAMpyzfMXz1nMV5y8OGO9mdPUDffvPeQP/uAPQEjqpmZTbiJ174az83Mu55dUVcXB/jGL5Zr1ZoW1YY6dnp8hROBOFtKi9T4ipsX7RMkrOoC+XSsu6Vnp/ae51ZsXhKjpny3x/T+31L7IufQyQPlGR0Vng910ZW7aHK9zaF/Xry9yxPz30Xb76kSLIb+0tfIpypVdR0L7zH/JZ7vx3UrRRrLLHm2R9x0l81UD7v87rdtRkr6bzMJewF5c/8JLHA4hNFLn6MEAPRgxlJLhKCMf5EiV0TQOoV2oGWkMk+EY7yzlpgkgfiaRqkDlOVrkaDlAkCGEjj0I1GBN7E5L15f6mvba9OkXqYK+n7XZ/9jvHNYDcXqf/6daDylf6cs7Bn8xW7cuoy2yMxTbQ37dOAU0w4luryPgz3Rg+q4ulCLNu2sqKcE7NpuK/f09/vr3fpXjw1lwjEpHU2/A11jjkAQdmrg6miZF94dwYBEpnTOl0Tprg3TybEiRDwCNdQJrBKbxWNNgTENjLPPFOf/kn/1ThsMhx7dvc3R8i+FgSF4MUDLDekFdG5TU6FyQ5SnAKNQWFiLYhPlgRJbl6CxD6xydD5EqR6hgR+A8zloGeUah99kbT9jsH/L4Rz/lg7ff4Sf/4Yd4Z7B1jXESpzxKKoZ5jtCxXkNjaZylaWoef/YJF5cXHO7tsz/eQ2tPbRynqzV/ev6CoXEh6GddcvnsjKODI5b1hto7vBKUpkFkXdaiEJ1diiA4lRMoi2+Jfq9zMO3qvn3Zn2yEvi7rfXQwRWEihNhyMvWvT6QTas9TYSKF+rjba9makIXmhQ2U8s7hvUXJcHyg63YIEhU3W/M/OYpUpF2UkSpMSrkVyCciQB9skWRTqe67nrOmy14K9+vXarnumOsSBrcdTDvZta2qnxwA/bG7KVKp51CMz91fs5rEjJDoIaFzFnXHpeC1ru5W0iESsN4B7F+VNpmMEMKTZxlZVoAXLNhgm8C8A7Sv+qodkCyELlA/BBFKUCLgOli8d3hlAYXHgld4H+zgQOcoQhYIUEuLp8EajzOBTUo7hUrZn2icCOxDzglCbSCN9BqpLCpSfUnvcdZhjQPl8d6228N1eLAg2dm9LI0b0mzarL7eVAnl4ERwmKk4W31HXZ+cRslZJSVtyYLtNd2tMxkVWrnr0N5aDR2jyZa8Si+uvXbrVWo7nHxfYe0l9CS+RyXJ8gwlFLYyjIox0hfgNMbAO+9/yPyioVl5RKOYTGcsFpdIIYJTIofRIGe9NljjQmJI/769ge2JcVoR2sqI1OJ7iV+m95XW9FZdpPR/qp4jINT5DGV7+jJ+d38QQlBVG5wzDAYDvB+y2WximQminCFmvQW/wGAwREpJ0zRYW7c4T8KZnHNIrWJf4x4gwNo6ZuCGeWO8x5q0fwhUNsE0ad5aEB6V6fD8ItQx1VrT1EvOT1ZcXrzg9Nln3Dq+zXA4Qqgc5yWVUJi6RACFGCC9o1mUGGGjHiRZby4ZjDOGY8Vo4hmMxzhgY9Z4UaMyUIlWss0m9QFbiM/j2rfYY4XgahM9O+dl7aUOJu/jph+9iC4UZtm6ifWWTuMLadwpeyl5/1Ivk1Hjt9KMiR7CboJdMQyuPFx8KCkQbdHvEK0fwL8UuRuut1gsgBDZHwDQgN6GjJdABWZNiDRRKtA5WGdbmsIQXeQJlA+eqrZcnF/iG8P+3ozpZIISjl/9q7/EZ5894eziAqQmH4ypGovxoIWkrg3vf/CMxbLk3r0j3nzjIaNJw4E1FIVmtdhw9uKE4aAIzisx4JPHZ/z+v/5TfvVXf4l7928hpGVdnjIaTzk8mNE0G9abkpOTc/YPpuzLIY0pGE0PcFawWc0p13PeefcxBxPN66/d5mB/hNKCvBAc39qjrErW6zWffvyY2cEt7t6+TZYPeXZyjnEGRyhaqYTn+dPPeXD/GGdyTONZNxVqEIqpCTyZEBzsjXg2UJBlFMMhSilWq1VLXdA0hnpTcn56DkATMy+GgyGb9ZrlYsmDhw948uRJ8J7HdOrBYMSrr77O2dkpp6dnnJ6c4aUgz3OEB2dNG/WdBJdULUdemAPRKZmKDabaJXVdoTPJsMjZ398PtHmmoa4qqqrmjddf5dbxIXkm8a7m008/xLuKwWDMbDpgOh2S6TiP/QbfbLAVbJzm7GzO2fmCi3lJc3nGRx+/oKwdzms8NcKDQgZhojI26w1V0wACpTV6WKBEcChYZ6hrizGGpq6p6yrW5sgxvozhX8Gr7PurRwhQPgr+qNxrhbQ2RJbIWAhOhPT8tKa6aI4Adqd0y8QF7vGtfBV0DgWpVMhD9Gw5GvrrOwluSBlm2yv9q6QndoUFIxDkEhjSRW0lnum0twvpCAxzst0FOkUFjA5Gzv37D/jGW9/kwYOHfPrJp3z0/kc8e/aUy8sLjKnxXuJsyHAKkUsWpQSTfIRSisvLBcPhtJXbeZ7z6quv8t3vfpd79+5xdHjIZDKhruueEhUiXpLhLZLBEus4peZELwrIhw3aRyvM09sL2v/DfuGd7+a3pzUcgyuG2IerE6gP+iZO3V0H6C4N3k0R0Lt71suApK3Pt1CwXt9asCR9nrJ1w1qTKBC+je7uOxS87xxd/b64KOf69w/1uCIliQeiYykdk55f6aKrXeBBikSxmTKPo+Id+61EqAkQjGXdRld6l4I1oPYNDoHC4lWgWcqHmre+/nWePP2Yjz/5gLqB8WTEahPAndrUKA3GNqRIZq0UxkSaOBnoQLNMBoPFCKwJfbM2gCObzZrFYsF6tcEeeLQaUOQKrQZ871d/jcv5OdY21LXh9PSMk5MTLi7OaUzNr/3arzEZj1ku5ozHkzDPjI3jGGrlzecLFoslP3n7R/zRH/0hXkjOLi4YjQqUhp/+9KeB/jGCCVp76rrm/Pyc1WqFc47BYMRyuYxLRLR6UVhXDkTI6OuiOD3OW2QqKi3ElXedrtOPwkvGQYKcr1chfzHbTUDydY7bL7rGde0mmXOdw3v32Hb9RjDgZf1oKWroECu/c6/+/a46o6/vwxc5p36elmbelx03z9Ux+qK+XHuc7650nbPvJudb+u66senvSQJaA3f3TfXPT2DB9jP2+nhNP+QNfe0srf6X3X/tPTv3Binjor/aAzS4MydEoDuXQiB1RpYPQqFuwjupG0tZCZQ3WO2R3gUn98ASyvVagrCXUGQkuzGBJC1oQMiCd+0zdrBIN5Ki3ee2nd+7tJ/dukq74svmytb76+3vu/t656SkA8H7TYgrc7q9Ru/cXeP1q+houi4w5suOg4hOpPBH0CESNWw7kfvrT0iEB2MCqBNsEhWokqIuNB6N+PXv/Tr3707Itcc0Nc5aMhnpc6zBYrGNQWUhy1jprMMvPHgvcNaxrtaYxmBNoPcNdSEcIftCg9BYE+j6N5uK8/M5p+cXWOuZTKaUNkQpz/YOGI0m5PkgYi0erT2Z1KA1wyJQ64Y55aJuE5xOxnqyDLxQaE/MfNFIH4KDvRPgQ+bhYDLmjz7/fU5enNI0hmFeUGcNTe3wrqExG2qTo2MGjc4lxegYYw3VZsPlakVdGcb3R6hsEBwDxuE2JaMswwmJsiCdJ0MxLsZo76icpSjy4DZqhZjvlVSgXWth9Oi7I1r8SAhixoLofdWB40nnFSIUpJeiyzDwwm+t63AJ0VunPupQHYWST44mfLgWnuRE8R5QIu4BqcaNb99PKvmQ9NAtUNYn5pPgrNRKI5VCoRCio8hLtHHBHteB3USolipPShWp9bpgiz5lXshM6ZwwCSTvBoHgUGBbNrlkV6U91G+PXevspQvmbe3Xa2x5RNqP+sK0/5mgq52U+tr/myu/9+V2t+95ws721cliGo6HOGLJCOtYrwZUVUMVqTZdqr0Uj0+2eLINiXXN47ekPVZ4idc+5G1GG1ThSHWTA7NOtNW9wKsYuCICKG9jRp/Fk3mN0qG8SKi1JGNgY3J4hRUvhQQV7cbI3OClx8sOBwnz0NFGUUPEQ+LHIj5DO9Vkd1DbttdCax7JzqZPld0Szd02oB61ld69vO90ilbf7GUvdRhYT/9gW3dJ83p3+fSdTt71M4mibuUFXkY80wch6a3DOIcXAiVzrAm2uak9l+cLlpcNucqY7s3ImSCkoFytybJAQddUFcaUtBk8QsSgxfB9GBvXUWz23sW2ktpZmtuf9XWu7WftP3O/CSHwUrayKWHKqaWsJmvD/p9lGUWRAR5jLM7YNkBZ6wytNVoHGdsPSAC6wGe6RJaOPg+0zjCi92RC4LUEpRFCo0WgfhRatvuJ1pq6rvFOgQhrIlS9CBnSztUsFud4b5lMZoxGU4bjGbIuMasVzlmkCkHZ1aZGaolUIetMi33qdU21abg8Lzm8PWA8naKzIUIZdBZYrqBpdegw38L7bPXynuIaHE/p7ziX0/sWaQ3drMu9nCLPhokhpEc4j8GGE0RIfQwe3ERPEH4S6LTrhRXxvFYZ6HmW0zOkhZbSNdv3xvb0FKKLfOmKfsXFGQ1uKYNn0nrTpoZBoOuRUkbvtMC49IyglQAvQWuEFaE4uXdIJXEelA79sNZQVw1r1gzznMmwANdweHSLui6x3nJydokqRsGL7wO3sBIZL04WbMqSTVkxmYyYDDOG4wFKBsqgxaXEGEtTg8kUHs97737Go0cP2T+Ykuc5ZX3JZDxlb28MHLNcrXny/BTjNELnjPMpyIYin1CuxyzOc9ar53z66VOOj8Yc7A2R0lOWK5BDhsOCvdmUs08+x6FABR7nvMipmoYUmam1ChFPtqExFVZanLc4EwSiBBprMWZDngnQCiVVKHz2/DmDwRClNcaEKPCU8eC8o6xKrLGUm5LlcslqtabICzayQkrJaBRqaWmvqKo6RnhlPH3yJMwJGXh8rW1aoe2cbyNMBZG20QWag1TYDUBJz/7ePnWzYVAU3LlzTF2X5LnGuwD+j8ZDbh/fQmBYrS65uNgwmxSMRgXDYc6g0EgZDAzhS6wxVBs4+XzB0yfPOTtfsNo0nM3XLJY1HoVQHu/rMP8ZIFAI56kqgxU+OA8UoW6Z8FGpDJmBdV1TV1UQeK3C4KLCLsMm0xN+aTMVyRfRhgv3N8TecfF3RBd9ETIKRLf+HSGdVYS6VNIHRURKGVOX09iL6EARrbIKXfRHUNB9+96+ik2kNIyo2LfKemtu2fBepYjAmY/jTtQzBM67mHreyUTvHA8fPeDb3/kWX3/rG7z66FXu37nPf/gPf8aHH35A09R4LNbZIKWFwJgqUJBFo0UpjVaaR48ece/+fe7du8e3vvUtHj16xGw2Y1AUvdTitK58pCxIqlNsO4Cnl9v0KGGTj9FCsLWfpHXcKSD9EYxKgY9EJtcAiteBrH3Fr/99vz5OX9HZVXr6EZNfBFK310hKYDqWa47dUcjSGhMxaqy/rtNY7ILDndHdGee0zxtSuHfB3L4yrHVQzLzzbSHlpEjvjkM7dqm+VtznrXGBH5iwZzcYnBVIJE46pJAMcsHde/e4d/8++/v7nJxW5EWOw4JwWGfjfn1VNvgEpaZ3poJcchF/D8qmiU6mDZtNGSicrEdJyXy+5Fd+5a/y8ccf8vHHH6GUYjGfI4DxeMzBwT5CCC4vLtisNwGsIjhtMp1R5AVKZSwWgQ71xYsT3nn3XfYPDnj+4gXT6RhvLU+fPkOmotyETNWq2lCWJcY0sfaSp24anEv6VfDcm8YgpAtBANhW8Q3vNijFKimBokvbvzr/woglXatfyPmLnCpfpfZFjof+cS+TM7vX+9J72xUD7aWdfenXN4G71wHqNznfrr3mF9znajdv/u4mp9ZN19wy4F9yrZ0OXLEhburL7nvd7hOQQEnXvddd0G73vP79hRBX+nNTn64Y2FzdL7bfW9o4077r2/OgZ0f1ANl2PJE4Z1AiOMHzvEDrnMYanDcY47EuAFkxGQUlU+2GFCgUfk9BRTI61bGdMtru4z2QeHsei63fr2zz/a/b89IX18+JL1p71839/jy/uh+3kNDW+v7PUvRq6+tVYai2gbr0a/d993d/Wflop3d2Sx/c2fqP1gEf8e5QsNuhlWIyGfHo4SOGeoO3ZRewIyXGEoHRUOvXWEMt66gLikgfFHQqZwOeYJpQ08nYkP1nrI36msZ7RVUZyrqhKg1lWVMMC6aTPSazPWZ7+xweHDGbHTIcjcmyHETAAIRQSK3QmUYXRaQBjvqmtdjoGAt00jWNsVFvy8njjxAaLTO0ypBC4SxcnF2yWKwi7Xqoo+ZdE+WZxXvLYDBkMAxsBZPZlGfPnvH0yRMWl3Oa0nB+ccHecIzONBkC5WvGRUFpLKYx+MZia4MeFDjpMTEjwtHLWmrB2/CSfGvLhI/6jqRkl0JHidXNk219N5RZEAgpIzNHp3cHoL0HeCb9eevfEFAZREo6Nl4bTwjoC6C6QHb1R1sHTKIYCk6mZB9syzgVnynYHlplISgz1jhNsjM5j6QUSJkFhpCtGky6nZudTOocTGFe30RzFEHDllWok4Nuy35ImVfdOCaK0i44IcnPeCVxnUztyecWpIyOsXa/ivtXD1O8zm6DvrOh31IfvyKcz8AgBnibxlAXOYPhgHJT41x0IjWdncSWjE3v2OF7DrmWMtdHVproXOq22DDvRaQMxYtY9zysDy9DGQaX9AIBThikic5T6UDqIEN9qjeXHIoBu3JbVOw9jKov6EW3pDy+JyOSPUx3rN/6pf2im1vx6xZLjnZuOq07ZUv/6s7vO3H7P3KLIi/pj6L3GG1Lz3LFXtjV97rxItW2xEOLx4X1lPZT5yFTGommqSybVc1qscFbwWw249bsIfvje4Dh9vEBo1GGkp6qWmNMw+nJJavVhrKs2KwbUqBFev6+htY6H+R2n9PjvcRC2Hnml9thaSBusllCtqmlrmuGwyGZzkJZERn21kRBmmhIrY11omNyQtJpfdIfZJo7nc6MAJUF+ati4KgfaQajMZkukEJRZHnYBazBWYuUiqpqqEuLtckhZvEYnGuwrkZJhVIeMOANyhnspkbUdXLDIgwoJ5Eu7OvWSvJiSO1KjK+wRrGah4DbfJiRD7LIpK/wYg6iHwyeApmvjPaV93Ct3fUSpfelDqbGGJyTeKVAJYdToOCSQpCKpHdCIAFXXWdb3CMphRGcYWujF61ASC+2T0uUJhNxQ0Z0C1SrENXtXIoeahBCoFTGYFCw2diW5k4IGbM9BuH6+ACwOo8WCqkkCkc2HARAqg7gT54NsI42Gt9bj/KyLaS5WkjAsF7NefDKPfb29zn793/KZr1C6yF4gfECNShYLees1xuWqxVNveZXf/XbDAeSkSrItMDb2zz7/IzlusK5jDu3b/Hs+Yd89tkJ+wdjxrMjGltibcV4PGQ0GrIpG04uLnn86XNMs+Hg8JgXJwtee+1NtFSsLo/57EPBsxdPWG1eiSC/5fT0OSqb4q1iOp3yrGl4++23mewfMZzsMSgGNMa2XMhZpjk42MN5Q1Wt0EKTDQdUtiLPc/CezUDLAv4AAQAASURBVHrJ2dlzMgU+1og5eREyjsaTCXkxaN/dYDjgYHRAlmV89ulnzOcLhsMhernkyWef8dZbb/GTn/wUEBweHjIcjjlflCgpmU1mPHjlEc+fvaBpLEWeMxoVnJ+fBrovG6iUQuRR2i0iUCpixH+cfk7Aa6+9yvPnnzMcZbxy/y5nZyfs701DDSYPp6enFJnCWkOmBPv7U24djckzwaDI0LG4sRICbxuaqmIxr/mTP36fDz+/ZFUKGl/w7OQCqYZY56NBYrHOI20O1mOMxzQONQCpJEIJGmsYaRUjmgIIsF6vMU1JpiVZpinLNSgbOE0lyD6AnZR22aX9AnjhOoU+nhe/ARLVZbhOm82kwvqzFpKjQykBKIxJkWMpCsSDD46pUDslGeNRsNm0tKPA9oJr8/W/Ci2OZWsQSxUwrDYymKB00UVvBEBddsq8t0GxjpzdSmVgBY8ePuCNN97ga197izdf/xpvvPoGQoQCx+vVivV62dZ5EUIEztflnI3c4LykKAqklPzGb/wGv/4bv87XvvYWWms2mw3ee6q6pirLUNyTmObtQpZRWINBKQszYhshkpmI8zps2MFg9ijRqXHJEbmr3F0dwhB9kRxMfQqlXWBVCBGjV/TW99c5krYi+1wC09j6rKOKZeu+u+enjdyn/ezK83TAS7/vXVO9a0aFJ61XF87rHx+cDTKMZ0o1hKCYRnmYHBIqgYLxfXipsMZE5ahXcLlndEslW2VSiOA4AvDOYXwyRDub0SgXaoUhyZQG7yi0YG//gFdeecgrDx7x/MVTlFLMZlM8lqrZYK2P2XtBLoW6Tp1iJFqq3FQQNBUGDjQLpjHUdcN6XbJel4xGJaaxPH78Mb/1d/4m3luePn3CaDSiKktmsxlSSrIs49133+Htn7yBsZaq3KCkxBFqjo3HY4bDEfP5nP39fYajEQjBo0eP+PTTT4N81gphO+d8cMYa6rpunX3OGaqyQmYZ5aZGoBgMR2gpWK0WSO9DersI2bZuICLIEd6hVLJTuGM9M9F73XHTJ+laySZJoMvLVP//3K43diAZtuLKZ1ta9w3n7jpWbnSo0Ht96YNrrnEFbY0fBhCgf6Ft8OcmkKbft3hwB+DuHNUec+M4JRkgtiTcdUd/kaNettlb1/X2Brl7ba+uf/6XOQy7KFYf+OJ3ja/ezbbvHx39X3C/m3a3LSdWf1H33msaX0QACNM7Cv9352z1yjvwsZh8C7QrtM4hL1BKU/rgWPJIlMrIc0GmPFp6MpWCMGKtPilxAqTWKHSorWEj7VFCa9qI+f4TR3Bq66HD99088agWVfLtIQKXVM0bx/bLOJmub1ejibfmR9zDr732V1ikbgF39NfkDj1he/zuJz27JIkvIWK9D9GttfZqncz13oUak5EiLq0DKSVFkXNwcMBkNMJXa6yzwWZrbcRQ+9N7GwIhqw1VXcfAD4cxXTZwqEeWx9oiYR6oLGcwKKL+IanqQDtd1w1SK+6/co833voGt27dCRHK4ynT6R6DwRilQ50zaz1luaFuklM3PJczJgb6xPolUuBccDIZa6gWS6xpyPOcYTFiNJqSyYLpKDibpMiZX16yXG6oygbrAO/JtI7s5yHoJtOSyXTE7du3uXvvHq+8+iq//3u/x/OTFxhn8Q18/OmnHE33mQwmDEZDVGPIB0OqxYJ6U5JtSlityZVGaBXpmGVX3yi+1GCDxkyFWBtYiNCXVp7FN9sBuL1X3k6WqPekU3xwAske1bqXu3o9JILg7u+d5jsdPdy+02kDIL1Dty8EuzRxfXaBbm6rdn7L6IwMmFQIzmprL4mu7lIAQ1Mtm8gUIhXbDqXkbOrutcNM31uL4QGF32FhIOS0tMFzKQPex0wV7/EYOpqxnjYgkg3vd+6TBmyrJzf8/RLEkp7uAi3YfVWf+eoI36IoqOqKLNdkRc5oNKKuTHAuxDIS3gV7KSmSacw6qHbLKIhBngJhRS8BSCJEyBgJUjXMNe9FWMIyjLuKrA44S6J2t94EOSB1wILaEg7B3sfLOPdDDTm/S0cpAr2eFCJkPyVbhv57D/F71u/uOz5m3mztLj19Kj1+sJE7iePasWrxayFaFqAAtUiI2HN//rbZSrKrwUTCoYPSEOdvFF2Rdu7KrG2XVRec7TzRzhZJKLXvs+27E2itgnfJCfASKTQX8yWreUm9sUyGY16595CvvfpLvHrv60Gvyz17e0PyXNCYDZeXl/zgBz/iww8/5rNPn1FuziA6F0OL2UxRPsSn336AiHX43kd9Hb3ttwjPl56zHff+1Xo2UPp++5i+fHdUVUhQyGLNcqkCK5SSKmiczmOdpapqjKlb3ChlQInwiFvYpQy0KXgJRZFTFAMGgwGDwQi5P+To1jGDwQi8ZH9vhlaCuirZlJsQOELG/GJDWTaAItNhrKsy+ASKgcYZHxxgCJpyQ7nZhDpRWoesZC8Q2SDUYRQSYwSZKBAqp1AOqT2r9Tmr9ZpiJBiMFaOxZjTeB1niqXvrI4Zh+DgZE1rXex/dnhsCU8Mcju/12hT/0F7qYKIicCbp6ABSCutCKp6N+7lzPnAYA0FjcfG+XS2RdiIRU+pEWLYidXzL0A5vNEV99Km1QvB+iLRXEUDCGUgy0IdIZylBKlC5ZJQPWa8XOO/IMkXdVJh1FTiLZc4wDxE2dRViHqSUOO3JiwxZWsTGYqoSH+mEhA+ZPIGrEfy6Bl3wK7/yHebn52w2DbPxmP/ZP/gf8v/+F/+cujzBiIJGTaiqGq80SE1VexYfX7I0P+HX/9p3uHN4QJHVKHJM3bBYlNR2wbzUOKn5wV+8z/nlgnLzbb7+1huUpx+z9hYvJaV3vP7qlL2JZzkvKdefk62fUJ/mjG/d5fD+jKOj73D6YoyRmpPzFZORBiM4vnWIFznDYs36l9/go3/zZ1y+OGO6lrz++lssLx5TqHGI0hGCJ88/Z++oQWaDkNbtC8Y+Q1YSZx2uqvjaK0dU5SFP547PzjZUjaGqHYWR5LlCKs/T00/RYyimGcf7d/mVX/1Vvv9H3wdrKPDcmRVQv+DXv/uQ5ari9GyBXTu+++qUs72Cpyclnz6ruHP3V7BNybAQTEcKJTSL1TwowgIEDVmugwA3isYKqsYhRY1SBp2Byif88Cd/yl/9a9/h9TcesL83YTiGarNivVqjlOJwX7MuP0Mpy3gquH3nAOkVWiryLCfPMrytWS8XrO2Mi6XkvU8+5s9+eoKTEzaV5+JyxXLjGE0ETgYnjXVBaaurGkGDiLVJaBy5kGRSoKUhHxQI61it15ydnQaAVUgq07CpG4T0IQMvFsj0sZaq1iFyrN1EFThvcBaEk0jvcEkRtx7hbPje+ZihKCK4G9KbibQLUnuccijvwTS4ukY6GbKWhIjZXyk1VFxxGFtrMX476yN4/GKeM1c3l1/kJu0w/CIC/7AXDu9jYUsR0JMQZaTi/0EeeSEihadDa4HKRKS9AyEdw/E+x3deYTq7hZQjnDM0znD/wT2+tfoGdVXx0UefhaiKuqS2JTr3LNcnZHqIEDlQ8Pd+6+/x9/+r3+b49jGLxZKmCXM1RdnlRYGJGUwQFC+PazNGlQ5bjbG+dUS10XI950xSepve2LSQZFv4le75o2LTzRSHkBYh9BZoGxzkoT5f4jYP0SPbRmfXh77R2O9vp4i394/H9EHAbWO1A7laUK/VLrfnQRtJ0rPZ2jnS5yj2vjVavUubvMAYS1EUuFicWuswDv26Ud57rGu26kclh1s/stjVdQA0egphoBBQCNU50bYNWI93Dabfv55WqFWGs2WQMVqh5IRlKRiJPe49+C6/+muef/1v/33g6tcl+BrlKpQY4FwWu+Axfh3rkBXgg3wXOWgavDC4xuJq8GIPZwpMJdjMG+q9inK1ZJmHlPT3P3ibf/bP/jF1U4doJK04ffECIWC9XrFZXfC3/sbf5PnTj1ktVywWS/ZmU9brNZPJmPF4hNbwxhuv8v0//T6ffPwem+UZvtmQecfrDx9y795dpJT87r/8ParKoHXOZDRkNpthDOT5hKquebZ5hm8kkqA04mWoVaUzZMxgMnXNZDQFeYalZjAoqGsdog4FSGxnJHkf9oHIzd0ZktvvC2z8+cVv10ZgsW3wXPf3y1sydnvX+8v0j2jW+huuk6yBZP1sfbfb394VfDIaBGCvPOtNIHzPprvyjJ3R+MXjtG3g33xMupL3Yafrv69+DEzbL7HdrxbM+wL9of+Od+tD3nhO//47z+y9x9IHwDoAZCvLJc7Bm2jwXtb8db+LhFbEueM9iATBiAjqp83Gb+09ggiouwAb5NGuclgar6kcNFYgshGDwZDp/oRhUSEpwRsaa6gNDNQQj8IhybVGoNDOkvuaAVCjKMmxQuOlpCZDOhO7L3rvKoEV6eECoCXTc4aBaoFQACvUjdDkS1bD9uc3zJX+XNw6fsvq3r5uWsN95pCvki4LdAt1S8dJDs3uO6ESqOkjvRHtCeFXH4E9Tz9LIux13cJPe5sg1CSwtgzHyvBpAv21Kjjcn1E3JeVyQbW5pG7WVNUF3jUhoMY4JBnOirbuhJIKlSkGo+AoSXgAUqN1CPRS0dTK9AhvBjRNRuMFf/WXvs79B3cZT0egLJPJmOFoDDGjqGnAOklTOZwzWOeQUpHniiLTKJ/FLBmLcw3ONzgapNQ4Bi09lvWCprGBytqF+kiff/YR1jZ4YzFVzacfP8ZrwezWEQZBtS6h2VBojRaSQudgoZqvWOcLlsWQz4zl/OkzzGqNMJbGWlarij/60Q958Mo5X3/rTV69XbAs12zMkqa22OUYrQWmWuNygRqAGisq4xB6gBA5gcVQhTkgQlCadSBUHgBMYdu5ELa8IDej+yK++G4yBed/mGMizal2ZmzXCmptj2ijBrnYtwF6s8p3dyDaYN3fcR4L0TqD2j77HtiaAPW4b6eMh67GUnKaRiA96dli29GkRO9YsR0YAAkqTAwWSUfvnmXX6NhyuEXnZTjKhXEWvqVG96Jbu7ItjtK/bhqT7bq2vmfn99d3vwmhW0dX78wrfW0/3r5B74wvo6/9YjWZQzaQaCPRNeRDwaDRGKexTuOcprYh+wFHqGnUztEE8PcsBAFWxc9cyCgSToASWBvWWAjjrHG+A+UDxqOhUQiV4X2GEHlYYyY4Rr2U+MKhsjrIZmGxtsI6gxAaJSReapzdhDUrHEI5vG9AFyB1cOhYB86EOk24WJrFhqyp+AztfkHIaiSUSCM+OGm2C1Rk3kirtTeX02bT0zGd6NZxcEophO3VBAu7Q0jCUHk8N+pkIgVhx+zNNKUjawVSYE0qcJHeSWAt8qT9zGKxrePKew9S45wn0wWDwYjFxQrph2SywFvBydM587On0ECGZm+4z//k7/8D/tbf+JscHx0yLHIGRcZoNMDjYj3uhtPzc8pyQVkvuFyfcrH2VE3VsmwIF50d1rfJnt75GEwc9U5PyJZVsnWEQSTzcOHtSa3xtu5UquhQc0nPiumtgkAfHV5JqBNtYokVIcOerHUIzHfeYa1juVkDPga6K0b5gHW1xiID400TGFaEVqE/1pCJQAeYZGtgGJFkgwGqKEJ90tEIkeeMphOGkzFCalRjWC4d8/mC2jg+fTYHIciLguFwQJbnKCXJDzV5xFxsbfF+j6ouWa2WvDh7xsXFOdbUSGfJ60DJn4LbBB12FdiFMnSeIe0AVWgylTMcDHjl4ddxyrGuVsxXcz5/cs7du4ccHNxDqSWbcgFyAypijhFZFGQRuxVt5pYXBrABK06viECvh7+5jvkX1GDq6H9Ez2YLG300qKzHpyghD8KLXvR5EluC1jMpgtG15W3ttX7kU7eRCnaN4dRCWSiB1BLnLDrP8T7QNZ2fnzMcDcizAV6Eot94i84UwoNtDI2xjIZTlJTYJkQWOxe8/6PhkNFwxGqzoWksdRNqICgpKdcbhPDUOJarJY8fP2ZUFKhBgW0My+WS3/qt3+LP//TPeHG+JtWft8IFIWg9SMHTJ2f8+3/357z1xkN++TtvIUTJZDoFFJt1xXIx5/DwkOXynM8+e4LAYL3l7h7kucQjaKoS6wRFpsn2ZpiRYrMJGScvnj3l008/Y7o35f7dV7h/d5/pWNFsLjk4OqQxNUpLJuMh+rnkrTe+xuOPnvLixTMuL5c8fPgq63VNlmfcuXPM0WFUEpzAGc9ms2I8PGCxWlM3AdTMBiOePHvC2UXDYm64vDxnUAw42Nvn1vEtDo5mHJ/f4snzp3z4wSd88vELpNecn80Z5AqJ5fHjkkcPbzMc5HgvWG9qvNU4Z8kySZ5r6uaSwTDDact4mLE3G2DsEVkuma/mbKoVTdNwsDfj/HxOWRoQAWA2TRno76RkkOfM9mZMpxO8tZycPCfPMg4P9smyDLzlxfPPGRb7jEYjlATbNIzGwxApIEO9ES80Qip+/Bfv8Bc/fcqTpyeUtcWLmqoC4zzTyZTKWKqmwTiHzjRCSLIiwzSW1XKFqWoGwyxGi2bIyPNsrSDLco6Ojnjn3RcoJcgySZblNKaKm1RYU1JqdCZQOglqHyin2nUZ15mUSOVaXdH7QEMRMhPk1trrZx8FMCMK/F69pqCWaEDRN8p3wfFw3QZEiO4PII+lH+j1VTLK4zZGC1Z6ANn+Hd5ZUISSE9FFozxTCiEVja2xCVAWCqUGfPPr3+a1V9/k+NZdRoMxm82KarNhvQ4yrRgMmEzGCMooox3OlpSrEpOBUkFW/8mffJ+//jd+I0RJZXlHGWIM1vtoEOfRgdHVVZpMZu27t9aiVFRuo6HRZftEqNta8L41jlwo4LMdIdTqwmls+kZXMN60zsjzvJ2bKQqwP59T3b7OcIk5VgnA8qlfXdbSdjZUt0cmB8512VDpc4jHy7BX7YLdXbQWLQXRdcBtn44v0CCEPQUPUuhAUdIDMpVSLegqpbzi+EnOpTTGPiqEqcDl1jztgdHp/44eSeyMn8cYs9XfytVU9QohPVme4b1kNNzHGMNsNuXNN9/krbe+znsffD+AJT4ALkr7WLC2S8kPtfQinYcLc1BKhdbJUJI4Y7CuxtiKxlQsFnM25Yrq+Yanz58wmUx456fv05ga5w11XXFr/wilFHXdcHFxwWw24+nTz1ksF6zXG4SQzBdzDg6PcM7x4sUL7t27xz/9p/+Ejz76gG984xv83b/7d5lfnqNUN7bHx7f5/POnQZ9SgX613JTsHxxy6/gYgeTTz5+AELEOXucclUqhtSLPIcslxCimxLziXAzAEUGOiD6K3J9GItEIix6gsus6+MVtN+0pfUd0al8E+LeRuz1svD23h3zetIu97Pq7mY3XXuPa068e2d2n27+vdSTd0J/dNb9z0vXn3NBFn4TqNW1XZrbn7zrC2Iaeuqn982Wp/Cx6RrJbdjO2rrvrrnOpf43r7v2y/m/Ny/7del1PQXz9z72Phn+SBVtgo28N+JaVgij3bRAsWmfoPCfLNFJJTGPYuA1a1dGd5MmzIgC/zrUAgM4yrM+oUIgm6XdBbllESyN2zWNsP3Nv37zyvsNB6eCgv3L92NI7dvdeP5OeGRCSK9lS4sp1Opn6VdJjU5NtVjO9AReBSgkCcNjqP50+Fc7ZXhNCiBBwlWjCfS+TMr73dm4IME1DluUE/CroHlIo8J6yqvjo8WMePHhAtbrA1CusqbDWgG/ieww1kBCCPMsQIsPj8NKF4u9KI2JEvZCyreOQ6RB4o+UUKUYU2T6vvfotDg5vkRcaqTyWhrrZUG6WIBTeK6TMqau6Z7sJmtIgVKDjNc5HYDHooY5ATS+ch0g9LpFoERxdOldoobDGM3ltSF3WXFxc8OTzz5kd3WF8cJtvfOc72Mbw4x/+mB9+/8/wtaFpDKv5Em8t8yzj+fNnvPPO2xRFzsXlJeuyjLqYJhsKVtWaDz7+iPPLc8qvP+Lo4JBsMCMrFM4pTk4vociwymEzz/237mO8w7igXwpZ0Kt0ghcCrTTGJifMtsOh1aF3giq2MpLSHtLTQXevsWXH9qWJV3QZSt0xrf++tTU6W6Qza1NGUapZ2s7Q69d/D7u+3sHUOav6zqvkYAoXuIbau7fguu8SzfpOP3wy+327/jqqPwkiRvGLANaGe/r4WRr7q4+2Pa6w5bjb6UWLBSQ6mV7fw/eO5FjcGr7U975z6efY+38R2nA4iLVmHXXe0BQNed6Q5wZTBOrOrGpwNtRFCjba9ru7Onb+qv3Zw4PTOV64tu4NpD1b4mINtMSO4YxDSI9XHtFE21QRnJbBk9mer4TCqSwkD3gRMnakxPnoNBU+UOt7Ao+mTbpPaCmcplviwa6X7Wzvvuv2kf4a7z5sHQyiN2/TnE33ic6mpNr2cevWkdSqMh39f6uPuXhnQXxG0eEbcewSVmGMx0VmihA8CEplCC9xxtIYg69LhtkQRcZmUVKua4STPHrlVW4fHvPg7it842tf59f+yq8ym0wZ5BotwdiaxtRAYJ6xpkbiODrY59GDV8DD4cEtnjx9weXlks26xDRpf43PTXBKGGu68RMSoULNrRaPsNsYRKCmo6MAjfqTJ5UTCE62NA5SgJaKpikjlX+4VpZpGufQMbPU+1hfMfoFjDEsmjVKxdzVXvaNd6GWsVQSEx16SgbWJq0UuhgwGI8ZjMeMp1Nmh0cMJmMm0xmT2R7j2ZRJNkJIhbGOTVUzGo2YLxfMl/PARKIhODsTe4wnG+YQmYLGoynHx3eYL+eARQkYosizjEwrvHPUVc1qMefy4pKmqQI9pjWs1+eIUuIX4E89o4spg3HBw1cf8dZrX+PF6XN+/PaPGRcDRtMRzlZoFQSp8wSsxYOM1FIipRkKCBaCD5MuftaO3UvE7pdzMHnfcnI612UehdRf3xoWqRsIESZcv7iaSKnuYZG38Z6it6jT76JbqKnt7tG+/1mrpCZgLgiixoTim0IrisGAosg5eXESnCPOhVxKNN65UDtGhOLhzjscru3DaDhicDjk5DQU5AZBkef4ONhNYzg7O2N8/z5N02DqCikdw9GAh48eUYzmPH2xYrleIqTH+AAIOiNpgMWi4cXzOZ/OnnM4yxkUgW5OK8l6XVOWFc4Kqsrx7MUFHz5+wu1ffjUW92oo8pzVaoNpQibWZh2p/8ioq4ayajg83Of87JLjwxlyOsQLibGWplpg7RKP4nC2xycfPceZBmsbFotLhFZInWO9ZL0xDFaeu3en1FWJKTeMByM2q4rz0ws2ZYUXUIwnlI1hvphzeVGyP5swmx6RZRmmqViv1izmK9armqoyGLPGGyiXK/amAzKZU8qakxfPGY+H5PmQw4M9Tk8WCGK0WCaDwl7WTKcjCi0wpmE2myKUY9OsmS8bnDOMRzMuL9Y4G7LdLB58SNfNdc5oOOCN119jOpmQZxlFUZDnikEeip0KFOJ4nyJXKBH2tMBtrYNDRUis9WzWJatNzen5nOcvzrm4XGH9kKqpqZoQ9WatB6FCTY0IYltrwuZvghM0H+TRQAtrRSkdsxIMm3LDfD4ny7IgqOLGFrztSeEMdHpaKWI9PIR3bSSSiDth8E6HrCR8iCCjV1Kt3Z99yibcBUA6JbrFxkUyLrc1UCkjhVNvQYfNwrWRAmlD/qqAnf3mo/NP4FuFPCiBMRYkGRbhZSJkoOrEewSB0izENoQoDqVyppM9vv71b3H3zn0m42mgGPOe5XLJxdk5l5eXkY82Q2kTqNGMBBFkYgggsHgX6MP+5b/8F5xdnPCtb36LO3fvhehL69rC4N5FmYnEC09RFK3jBcIcCIpEKOIZniuUEE/Pm6yuBFA450D2ow/b39q5lvjKQ52vjjoiFW9MBloCMpJlFX7d3STFFeVbxP2rD0BfF/TwMrBwG7gOTribsin62VNXP+/25f5Peh4hREvXJ6Ro9+CbQM40Vi39a1Rs+99/WYCsc3q5tpBm0zSdk8n54ATHhAxjF+ZB0zQIaoaDAZPJhFdfe4133/8++EDJJKWIymkyjCzJARj+DzzeSmmUDBnWQoLxBusEyhmMrdmUazblkMY0DLKC0WjEa6+9zovnpzjnImWfpKoqyrJkPr/EGMNqtaKsStbrNcvlitFohHWO1WrJxeUll4sF4+mE09MzlssVe3thrc0XS7SS5HmGkIK6sVR1gzEhWMB7wXy+YDAaUwyG8Z3FiEERxnE8HoEITjJrDVp2hkyYq8ks6kAN3yIAyUjvv6RwXsI/t03/r0brO3t325cBKbbO762Z+G280H+Ejv5HbNvOs2to/a7Ih+73MNV6xvYO3c9u25KDXA8E9eXKjU6Va57hiiHQu+d1QWh+55jd9kXv+8r3QrwMVfuZW38s+u/oZXPzJnnc7g99J0uiJEv3AbxITuYYRIFoM07iVhKBAB109ixktjrnMNagsAgczjcI58iHoQajbMHP0GQCPL3vPZtosauX7Svt/OiNy3Vj0oYbfMEruWkvvu6Y7fmbZnD8v2+vXtPn3tW+9L75i9jaZxe9JbsF6slteZTsfnbGP60NIXH9Oi89J1OLe8fzpVJBP/bd+wpgUTCGlqsVJ6enDHTQk6wH50ONZBEBQCVVDF6NGfMi0LsJBUqr6FTKWmozpVTI0lcSJYdMRocc7N/j7r076CxklFtv8N7gvaWxibJKAYGuLgF0xnpMHfRxIpOBkDKs27h2XVy7xJrCCkmmMnKVoaREosgygc8KinyEzgZkxRATqbBxjouzc9abFVKrkMXYeIy1eGOwxgABHJVKUTcNSikG4xHD0RjbWM7OL6iqmhfnp7z7gWR+u2J/ts9kOKXIQrDler1hUa1Y2w2zO1P0eBTeg5BY70O2WdSHiZjS1mTptSAHtumXtmRC1Od3ddibZPz18tS3Nn0SKi1wuuVg2t6KWrtDqDSJWznRyr2tjnYYV+dc6rKVOifWzrlR77u6D24fe9XZfd3x/sonfcNf+pCnEhxZvrfteXZpwq+M9VY22I5uEf9p6c084ERce2kv3O1/p/N2/8Zrp7Xw/2tK139PLc8K8txQ5A1VkaPzjCzT5LnGNBlNY9BaBdxRpL2sSxIQ0ePRf6Xd2ui9d+c6lML3mDh6x0spEdbhhEMK11KrexEyQES8jzMiyGwZACfpRTBffACyldAgPC7uDVJKlJfgbVtXTYgYUCMjnmw9RNw2dGp7LXgZvk/OqHYFCGiVErbt3c62757zuiA0EfHtdH6LxUnbnrv9f1+OJczBt9dpx9wHPcwai/d9fYroaBEIKbG1Q/gg9xWaPBsgXMZ0OODe4ZTvfOu73D64w62DIw73Dri1f8j+/j64kAHmRHIehlpEzgVq/CLT3Dk+oq4rvPPUteH89JwyU/g8w2pPXdaE4gRhE7YRg099RLiAVceAVeccSku6KNqd1hvrVJ897uwdxgChNrNUdPIh5I5J0WVKpe87TEcgVUxySewsCYuSyX4GkQVaPWImqNKBflLlGi88ZV0iF5csVkuW8zmDszOyPOfw4A7Oh/JCdWO4dXzMxeU5q82Kqt7gMTRNhRSBhS3TOePxLGJoEp2HwOjBYAAi6NC5lMHBlCmcadisljS2Qq7DmsQanG8iy0kYO+c8ZrVhsV5zogq0k+xP9/jWa9/EyBNMtWaY72G5pGlqkCLQW7tehnkECES7JSQ8yXXyua+HXdNe7mAibALeBw5umeobJE0uToAQ7RZtLwREUFHh26JjROMG0eMGv8bg7W+6cHWBx+dsN/Fusw0/zoW6EMHYSXWjHAMkg2IUCm86giPOESab7SaalgIbBYRxFu8dg8GIvb09yrLCNg1NYxkMBjhvsSak1S/mC5rbJqSrmwbvGrRWHB0eovWIunqGbdZUrgYRqTSsB5lhjebsfMO7733Kr3znEVpJhqOcLAt1VC7Ol0ilQXqW65rPn5yxfushRZ4hlGY4UJSbDThDUxtWqxrTVIDCuqAoZlJxMb/k8nJJkQeqlE1V0ZQVVdlgGs/xvftsFpeYukRLkANNbSp0keOt53KxxruGN792RFNtsE3NbLTH/GLF/HLJutzgBYy8iGn0K1bLJQ+//oCjwzssFmuapmG9XPL82SmbqqGsDFVlaaoGW5UUGkY5+EJzdnbC0dE++wcZk/GQ05NTvC/CHJIeZKBzGw73kd6yWS2Z7Q+Yqgn6VIaFA0wmM5Q8xbvgAHPOMiwGaC3RSjOdDLl75xitPEWuOTqYoXWYJEKEukp7k6Mwf6ODNdMZAtl61BtjmC/WnJyccXG5YVM5jFNYC5vKYKzGiywo6sUAqXRL+1HXG0QUnkJ6BqMCb0yc0oFSLMsyNpua1XrN6dkZk/EgFnsPhekC9hJT6SN1mZI6Cpwez3KMUHIizH2RogWiYh7q3XS8930QOziaXXju/gbZLwIZmxRdkq/o/Z3kCkJgRHBEu14RxH77atnniQ6iF4Xciu7oOoqRlYLoxJORHztuvpJAqRWyGQfcvnWXb37j2xzfus2wGOJdcGbO55ecnp5wfnZGVZWkyLekaCqlETJmWvpAn7WYX/B7/+pfcnb2HNPU5HnGbHrQUjEoHSgyhQ/yWIgQ/dkViw11cQKlqibIaodSeajT5IMyK6LCJOL+IuL1nXfRAAMRN8PgXOqyOzpHierA86hMtn6lqGR473sKdV9h7P8kha//Trp2HRDSXcdf+T59Dik6cffz7tzdGdB+vutY6n2eWsufHSO+gkOmvUrIdqJnFMdxS46tLWPhmufa6k+qj9WOs2+dS8aEOkN1XceaeB6JQmchhT2AmMHpiK/Is4y8yHn9ja/h/nmATbQOmTp13YTaK6IzbgM1YJ/igaAQRh5/6wzOC6xvaGxDVW2obUXVVIwmQw4PDxmP9ig3DU1Tk2WaoshYrdacn5+x2QR61Pl8TlmWwfFUlWRZhpSS5WrFxeUlVd1QVhXGWJrGsNlUnJyc8f77HzIZDxlPxjjvuLycU1V1iDSsLN5LmuiES04tKWV8rvBseZ5hncJWHmOboK9EmmC8jHM4AR+9OUzPKGpn0vXvMQ4cX4WW1t1NDtfr2k1AcYpiZGu1+s6w/Rn69TKHz03r72dtnTF88zPFO7K1mfdkwJcdp77TZPf+L2u7zqmftX0RqN9/jmsdFj/jWL/sfn3w4cs6sv6yUdgdwBf/pp/BtA3B/X/Y+69m27LsvhP7TbPcdsef602aysxyBFAAqwA0ye4mKELsfmiF3tQRaioUeqD0MdSfQK3o1kt/ADH4oBdJREsttkSATRAoAAWifKU31x+37TLT6GHOZfY5597MLJAKsZIrY+e5e++1l5lrmjH+/zH+ww+7LQN7TUYZZDRpmtHUCQLb1Y5LRBSlsQZvDS4LxZCl7jOErbU4GSNQW0BocAWyBXKuaZsh6Npu7pr26fbx23318zY3eC5DoHJIZHV+Z2ynIbg53MLa0/+7uwzEls3wRfrAr9I25AHa+caLoZRx+3wjgNnJGYnetR+AfUKIPl1k0HFFf7ju360scGtHyThPh+ANj2kMz54/59bRKNQfUhZ8ipQOfMjK00phrevATakUKpEICSqR0VbIIhAaFAOk1DgtUDJlMp2xv39AXuRY6zC2wZhQ+8B7E+s8gfcCZwUiqmAAWOdCvSUr8dLgZI3wKpJsIZLf2PBbIVQglwQkBPn+FgZKdRokK1NNMZ5ycHSD2ljAsFos2KzWzBfzEFHe+mux8Z0xnZ3lTJDPSfOc2WzGjVu3wrV+8CEnZ2ds1ms+efKCVVlzdFBztO853MtIspx6OWd+fsbZ+pzjFwfcGt/HR0UO50K9bOfDuQShHkZQaJCR6Lm8LkI3i12aE7o9W3WHS/u0Y7D1B9x147GrUr9NEIW5QtLWOwqu0uDauvnqKrF0/Roheqyr/W+AY7Wg6PZPW4UQGBI07bn8pc9eug3acNuX6LG2dl67PI/1zXp1Xfet0yXYnpMH+7RjfnhuIQTeWSSuB+aFvHyIwRw8+MK3foj7itJLkCQ5SWJi1lJNklZBDj7VJI0mqUOGpXMgrcdLh/cK79ugYeI47HKuw/+jP9itXbajBLvyJVL2+wsEVobxG56jRcaaTSHjIPjcLqqstEEuxLEkvAgEmI91nLDgZStTBS5aEoOsIAAhY/EA7wNpHbEoL0L2iwxFdCIZFbLleo++zdzr+38L7Ldb16WvfNJuYmv9GfrNUtp+bevmh9YH6aiNGGwe7ilUOOprxAfcJGLUMpaQ8IAL2I+M0oRpkpMnBUU2JtE5thFMxzPu33vAf/L7/wn7swMm4zFSCJqyoi6rkGnUIv3OYqzHmgbvQr2/LEk4PtwnSoVwcX7O4mKHLE1pmoBZzRcryvUG0wQsstyE7PQ2QwcC5iO86AJN01SH0htiu2Xb+RARsxq7dgk+bvcEHBjhSZUeyPxLrAsBJs7akPmmE4SP9+RDgIJONI0x4EOQvxAxKDX2SescSZaQ5lnod0KELDGlsN5iyg1mvWJ+cUFZN0GmTmusdewf3sZYi3UeIRW3793l4uIcj0UocLZmuZqjE02e5UzGM/JsjDPhOask2AF5WsQayiIYU1F/1zmHFVA7Qx1VWRpT0zR1SCgQoR0UEhpHVVc8++QJzbLmrXfe4ev33+H9Fz9i2VjyrGBVlTizQmkVaJtOBrX3a8PY7P41eA6SDvt9yfZKgqmFLiFmItoAODrXO2lttHIHIkvRFXzzHakk+hS6QT2Llzl4vXF/zYVHELRftGVXwE0nGU2UaQtpbUlIxfOe05Mznj1+yo0bN6g2NSgQKhiGWZLibCgGHrKeakDimqAxjvd89smKw8MjDvYOODk94+zsDCk8ZSlY1w2Ntbz37rs8fHCf6XTM6fNnPH70hNViSZ6OuXu8z3gkeO+j95FSkqqEplHgUzYbaKqSzXqDVoY3Hx4zHqUURUqiUpTKcF5Q1TXrck1pFN//85/wzlv3eOONO8CScZYxyibs72iODhWnZws+/ewp2AaN4MXTR3z3t3+Hd9/7GR988B5vvXOP/Z2M6XTCZOzYrDd8/MFPKQqBkoYsU3zt69/kF+9+wPGNu2idUG02zJcrFvOa6WhMURQYkzCfPyPJFLujCUorknzC0+eneNswyhR7uyNm04zZdESSFOTFlCdPT1kuzzEV2BpM5ciTBAhFUaUQTKcFq+U51tQkaUGReeqqpjKSstywXF4wm92krmuwDdZZzs5OmMxylAKlglRcUYywzlM3DUkaimseHh2xvJizXKw53LvL088+5fjGAaN8QlVuSCca70uEtwjlSURGqouoVR9k6bwzsc85yrJhsWj4//zRn/H0XFHblMYpVmuDI8EJhfECj6asmrD4bUmHRak5odhs1qSxIKLWIUJuvdmwXq8RQnB8fMxqtcA6FyTKrCFJgza4Ehopgga+cyGNFAFaRqfJNbQWtpQySptKVLvWawc2SJNZbxFeBE1w56IktkQMIpiH4/g62fXOFRyABu1vtBAYKZHeIxSINvsyWtCXo6R+pTcxkI5rbScvImEDbavKSMZJIQKp087F1pGoBC01zjXMprt8451v8vW33mFvZwdB6Ffr5ZzTk+ecnT1jvjhhvani/GnCyztC2S4VF8pQ68v7hpMXT/mX//KCn/7kJ7zzztf5R//of8udO3fJ8wJjLCTELLy4MHlIdRL1fANApVWQvAyLvaLICppYQNl7D9J160pr4EqpQnFDKYN+bZqidJSj6BygvvgyqK4wbQvUh23o2LRtehV0bM/dg3V2qy9e5zBeBsSu2+dap+zSZ0M5OdpL9Nv7t/u05xhK/bWSBMNrMo2nrRFloyMWAJGW5FFb9w9ckfwbfr9NbvW67cPMJWNM96rruiPBg+EUpFCUSrrbtNZgbMNolPHd736P//q/jiSql1TlBusMSsUoIxEIfu9dKMEoIM1TqqoJUjd4kkTgsoTKC2zMYPJyhJRwcXGG95bxeIKSRSzSWZBlGVIKnj1+xGq1RinB3t4eAGVZIgQURcZ8uWA8nhItQHZ2drh58zZV01A1Bofkw48+4aOPPgn1Foqc1WrJo0ePGY2mZHkGCJz1fPMb30InCavNmrP5RQxIcigVpFyXqyXr9RIhDVJCXVfBuVOhFkCIatNbAijeWawI7dfaX1sdagDQ9dDMV8M9v45Yehl5cnk8fz5APASY+/9/0et61fxx3fm3QZtXX+fnES+fc3G/VO+47vpeRaR8kecAEQx4yRz8smN/ke1l8/r2ybfb4mXterlfvWw9+DLEw6uIzuExr+5wyZfy/vquOZgXQhaIJs1zmiZHuhpHQ13XaG9AGfA2SH20AF9kxj2euiwxWuJcGtYa4WOmQji+SsLcFW/gC7XBy/rF0KYcfvd5bXudD3rds3ppv7iEAG8FedADtOKaa/9V34ZN1trznRl7CbITXTfoAe4hKRoASnrsYLBqdedgMN9IiTVBJjjYyTrK64Y9daL5+JNPyJKbHOzvUIxn1OUabB1qGAoPwgUbpQ3WS1LG4zFagxAOZJBFFohQj8IFQMw2HqFdCFJJzhiP9oLMOkEiSkpBvQn1ofBB4jfRSaiZ6YOtrZXANhZnG7w3OGosgsZ4qtpSVo66DsFZo2JCkRVkWYrWGd6GDKtEJ2T5CI8GKXEiSE1pDalvUNaxv7PL7Zu32JwvKRdBTl4KidCCxpoI8IWMgFGRo6VkZzLhN3/913n42uv8v/7Z/8C7777L0ydPaSrByXzJclPy4vSMW0dz7t9/QN2s8b5GioaTZ5/w9b/xJsuqYrFaocZjvJChPXHR/4BE5xFYvE4xY/DsL5EdPrBGwT5uwetLtnNr+zv/kvEvI+AdswX6dVx0AVQyWlvbVxYzp2LGR0v4tBkgrSJD2LazF3pi6aofsX1xAczzQ9I1Hm947u3fbLfblUMO2mDb7+kDxnyU4Pa4QRte9c3bOldd0NlLznfduaX3tNB6uFR55ZJftr4Pfaav2jwLoHRGkliS1JJlDXleU2Ub6jpBN00olZBIdBwPzoOwAutEN76BMOlesm9a/65dq4X3OBnm496PJmAWCoyAjmBCIuKYVlr0QckWLC4kKigiWaRijwsgkNQaLWNNNhn6h1UK58I8JvAgAxYXAildCCx0IZDRO99BKkqGa3HOI73ESx9LRviuz4bg1vbF1uLSW0XEthh+GtqtJX7lQN5SSoGTdY/tEMobiAjMt1KfgrCmCEEIahCtTRXGxGZdkaY53oVAdiE1QoR+L7wg8wUPHj5kb+eQo8Mb3Dy6TblqWJwvmU52ODg4pF41PFu/YJ7N0bFGb5FnCCWxvsE1NU1TkTsVrlJ4lBLgDTuTEVoeMc5z9nd3+M1fLzHB9MMhePb8hI8//oSnT5/y/Plzzs7OWC0t1jisczQ2lHURSnQS/WVTo5S6ItwpRU/OJVr3gUWAJQk1t1zoI0ooGhdIonYeTSJ5JKREC42XAmsblFbgg2JSYw3WWrQMfbILNGjnfiVxEqwU5KOcLM/RScL5+Zz1xQW2NvGCHDrLqGNwfp7nfPT+T0Fp8tGY/YMjhG/rGzu01Ki0oK4rUp2Q6wwtJOvFEq1StE6wwMV6FWodKQFSYlGYporqJQZTb1ht1qzKDeVmRVOuqdZr8AItVbRZNHk2Yne2F8omLBve/dc/xy0NszsHFNMRp2eP8S4hTyc4Vliz6cZ8X/My1HoScrAW+n7daeuiv2x7JcEEvRxG7wz1NRdaebx2kEgESvsuCMTLQFxrISGyukq2zoAYnAPwnjaSY3vzbDnugg6Ybweycw7jHGnUr/U+aPy29r9INKkKKW5nJ3OEh4O9faaTKavFikRKLI5iNGV/74DT+ZynT0MdHqk0F+cXGAeffvJpBOcE5XpDnudBZi1JqKowsX388cdMxiPu3L7J/PyMsqqpNxXSeiY7I16/f5NHz55zPr9ApTtsyg2JynAS8IYXJwvu3t4jSQElkCrl+Hifk/MFlTXofAwq56PPHuGdwZqGt9+6hXAS6xpqU1OVIJVjb3eCVms2q5oi0/zJH/8xOk/Z2Tsky3e59+AOm+UZZrOiyAUPXj8kyVPu3rvH8+dL/vBf/L8ZTSfk2RF5LsE2fPbkOf/qT0u+8xvf4muv32Nx8YK9G0dcnD/BupIkyzk8nFGVtxBCslhXvPHaDarS4bxguTznvXd/zsX5C/CSuq5ZrTbs7ezi7YLj4z1eu3/Eaw+OWCyecnBwgFYJZW158uQ552ewKB1n85K6MtRpxaa2YA2pcjy4f4fSLjg42AMJm3VNWZZYa0Ox09ry9jtv8+zJU5wxHOxPePjwBnt7B+zsTFHKU23mSGHwskYKQ6IgVj5EixThwZQlqAA81gbOLkr++//hX/HsqWFlU0ojqRpF1RhkkmCcZFNbKmODJEErC4Drah2FiKagR3pwcEiSKKSS7OxMWVwsqcqSqq5QSlGWJT5mfkip0CqNOuMh4j+UsunrrigVDi6FRktPW8STmOUslUQjMEictx1Q4ONC1hINyqotzd0QYaFRygWd5pgSPYwUDwtvH7HaXpMQAmFsN8+0JPQwsumrsl13q528TWvaDIxo60x4rlLjBwus94I8GbG/e8iDe/eZjEcI7zBNzWY158njTzg7f0pdr3CupKnXeKextuod2ihLJyRoJM4ZLJ48TfGm4unjTzh5/pQf/9Vfce/uPd544w1+4ze/w727D7hz5w6TyRSldCCdfEj9TZQI70V/nQDr9QpilJSUIUI0SI/0WT5K9eRk+3nv4ESwIhRFCEaPr6OBdpVAGjpR1m7XQfJthM0VsMp2VtBWRC1sXVf72XUSUpfP/TKCqT9nHCeRQBv+/vKa3P++xbxELLgqun21DpE+3sSo8kFbbhNIbX97uVPaAmeOQFLbSCx55zBN05GJnfMoZT9nyGApWOtpakutDErXSG9ZrwXg2Ns74Fvf/DU+/uQXrNYneC8oiiyk2A/A5aa2KKWRAuq6DJFESYLzDmMsDotKEprKoYG79+5xcvqc45s3KMYT8nyMaTyvPXydRCdUZcn3v/8nrNdrsjQjSXSQs/MOrRO831DVwTB2xPT1NGU0HvPjn/yMFydnWOfJ8zGrTc2Nm3cpyzXrTY1UKWk2ojEOLyxZXpDlKbPdPR4/ecynn37Cer3m8PCYo8NjkiSlqipenDwPdQe1JM0UxgaJHREj4drn1Zvhg2cWDaCvDn30xbeXBTh92U2I7QjfePT227/28b/I9nlr5eWsjH+b1zE833XXMdzvVcRL/MGVFhwo+H7pPn0ZkH7Zd8PProc3r17rX5fc+jextXO69318rmylljogKEb/tr9hAFQGRDFkETgXwfYA0EtjuuzkohiRSA2uxjkDBFA7yzLyNAkEt3N4O3CshcAOSAYZAe8OJH7FfXVt/Dn7fV7bvIpM/lLH+oL7/f92Fvh3YRu2eVdkErhkT0HHIAT7ysfMZBkUJCK5J17xCJMkCc+4tUGiDBwEQqeuaz57/IT54oKDvX3efPM1MDWm2WBNjZIWfAj0CNK7CXlWEIKNGjyh6LX3EmeJUfFQO4sSjqaqODs55fT5Bd/4xjfIco2SirJaIwUoFeR/lUzROsU0jtV6TbleUdcGkJjGsmk2bMwKpTKSbESRj9ndnzCe7pJno05avakNq03JYrEgUYo0zdBJirE+1qiQGOMRSjJ2hp//+Mf8+ff/jPd/8jM2izXeWFKdUIwmJEKyWlzESHYXCoxbj8CwODnhL//kX3Hn+AajRJFKgTUNaTYGYamaGrMIATw6FehEkSSWsRQ8ffwBd2/9zxBZypPTEz749DFWBgIMKdqgfOo6qK8EkFpdQ/gG0IvBOhLIpSjDjO3IprbftbV8fASIPb1/0PbMINHVSwQ5IVAdrBYRLtFmevVZR/16JwbnE1s+nXNXSdcWqO5rmvfX2trl7eVIKQIw7i5LawtauW08V4PJB5PmVTK9/XuNX9KRSdGOjw+n9UXo8AsuHbOd1K8nfPq1v30GfY20VsUlbNeDlpf9pjDE+2DCr6Klq3VOmgafJ6goNGyKFUm9IakjuaRVCKJXgeR29vOPe93mfcgKEo7QB4TE2u1+YH20FTqFCQg2SAxahBi4LBBWtAmLoAAhY3kVkATVpj7YIJALXe5RtD2ECD6mca2An43jWSB9q9BDV7erlfVSIhAkXvTyvVeDma5uYaxe8rVav1T6GEgQFYIijdX9lqDMQcSp21uz9MS0MzaQS1GdYjSasFlXCCFJk4LGejAObwTjfMybr73D7/2Hv8fps3M2y4rnn7zg9NkF3gteuDPedR9gG8e9B3dItCZJNaMi5+atG+R5SqIcibRBWi5LyLRCd8HvhkwnjLOU/PCA/b3dkD0rFY4g57pYrvn13/gWm03JarXh7OKcTz8+4fnzE87OzpkvFjx58oTFYoExBq0UpmkCyRfnEqlkDNawPTbBsMhOCJJomjrWRQzrjnNN5AA82IY0V6SpRiiFJ2Cp4MiKHPAY01BtNqHNfQhYzWOmUmUaUCHDaVPXqCzh3msPuP/gAQf7+1ycz/nJj3/Mi+fPaeqGVCikUCgRZfm8I/ElDsFsVnDv3iGL5RmjIshU1tUG2wjyJKUoCtIkRSDYrFekScPGORpTY5xBSBfqMCuN1znlKsjtayXQCvJCs7e3yyZNKFcaATRVA17QWIfdrKnKhroOwdvOevIsw7uKYjMh29UkiQhZgcaGgBkhEFrSNC4qJbkYhBzLqHTMa6jp1+G5v2wGUzd0BpM59AtRV3+pBYYBjEdoEYAkHxjm7SWnBeXiyPKEbKdujmq54HahuzTERb+oi/bmYiRQXdsOyA72RmggZ8LqrmSQGtMyFKdfr5ZkaUK5KmO6Ws7e7hTjLOtVQVnVNCbol6YqxSOwPhQuT5Ig/eO9Q6igydw0FQJN0xjOL+bkWU6WJWhA28A8HuxOSdOEF+cLPn18SqLHeG8wzoN1zJcbnjw7w/spe7MRSSIYT/MgI6Ylp+dLkIJiPGW+qvjgo0fcv3uDUTaiMhXeN9jEInVCkefkWcaJmLOaL0DlrFcr1psNq9WKG0e7pJF4MNZQmRXjccr88QVNveK7v/Ut3n3/A8rlCePimPv3btKUG6y11I2gdgnj3UPwF7CS0ECSSPJE4puSPBUIlbFZnlMUY54+e86z5+e8eHHG+dkJ69JTG1BSo5KwAhweTLh9e5/Dgwn4c6rNnI2DpvHU5ZL9gzdYPHrBanUOKOraUm9qlHeoVDCfz0nHktt37nBwdMQvfvYuF2dn4AyjIiXNE+bzE+pmRaoTxkXC/u6Y2TQP0oHeYpVAq4FcAqBxSBzSByJEKkHtapbrkucnSz7+5JQnT5esNwmLxrFsaurKo/Mxde1pbB/TaF1PLoUUZRdrjIQMjdl0Eo3MBK0VF+fnLBehDkjThAl1NBpRVSVNU8esAUfidSBrTdSnVSEyAxUmhJCsFDRdibJfLejb1kxzzuKkiBmxPhSTFbH4oBcxgsCFMUdbKK+V1uul8FpyoHPwpLx2DEspkV5GmS6NlK4jjb9Sm2zn1R7saQ0j733HoQTN3SCp4axFJzK0m1AoFZ5/lmWM8iJIZBjHerWkqioW83NW6wtMU2FMRdNUVPUaXIa1DWCRMXpGtQ6OBNe4cCwb+pr0nlSnLC5e8IlrWC0vePb0MTrJmM12uHHjBq+//gbvfP0bHB/fJC9GKB3mxbIM2aHBP/RIEUgCpVTsI74jJAJYFhpjCII5Y7E2Ojv0JE/rbLkoCefaFOvYxF0dIN/LKXTpv2IAwnGJ8BOiu4YhmXSZZILe2b1MIl33vt2ui8zu1zdiqrm7lqC6TA61a157jU3Uzu+OKcOKfDlSsr+G4Vrfv98GIbe+At/L4oW5wW+N+zYbqt0nTZMAHshQt0CIUEhTquDYOg//8e/9ff7gD9a8+4sz0izHmFUkuQPAIJBInRDsERvnnBh9ZCLB5DxVZTg+used26/x4MFrPHz4Gkka+lbTNCiZkihNudlwcXGOkIIbN2+RpSlCBLC1rmumsxkhfd6Tphmn5xd87a23eefr73B8fMwf/MH/g6qqAMlqtWa1WnLr1i2EDJmDm3KNTnJ0kkZSTAOSurFsNiVlWSOk4uDwkHv371NVFe+//z5SiuAQjBLyQrEpLY2pSRIf2zQ4M65L949OYBtcFHt5/4wH/e4lIMCv8vYq4qP9/pWkxzVbPzbiPt3PBx7kv+VteN2vJpvCdV0357zs/ZftHZfnJtgmBy4TUZczUToAeXCMIWnlhwdtj7c1d/f9XQzONySsPNfcM1ef8xW87iXk2XXz+Rch9L5Qv3rJ+5f9tiU9gzQMW21z2Z8Ky2vwucLsIDpbw/lQH6WqQwBAKlsQNdQaUTpFoBFIlOzneN+uszLYoVJ4lAhFtqXwXQR+F+kuYu1eru9rW9lCg2c5aIjuNXyulwmla/vZpXa8/NmwD2433MvX7+2LjzjRV2eKBS7ZT8D1DdCOE+K63gL5cdyJgXSzbINU42/8AM6/9Cz6jJBoy8aaDEHdQZAoSZ7nSGqcg8Vqwwfvf8zx4S55GohSaBDehbVaJmiVDGwvF+2UUPdCEL5XKiNVHtN4lvML6uoCaxR1WbJ/sMNonJFk4eKlkGw2F6zWJWlS4ByxXmWgYY0J0vxZMWVW3IgZ1kVnN/hGUJu65YRjo0vy0Ti0g5SoNKVIMrTSsXC6JEkzfvRHf8TPf/hjPvvwYwqdokYC7UUohi4V0kGRFTilcdZgaDBNA85QLlc8+fQR/88/+AOen5xwcXGBJvw2PJOQGVDbmqcnz5hMCpJUggx+w09/9Fc8/Nob3D46JM1yfv7RpxjncBYcEimS6FsGuy7UVxHdPBZIHd8+7G7+agmltr6pb5mZ1n/CdxJg7XvvB5JL7dQysJFaAK2V7wr1XVRHgoq2H4p2jmgfhBz0/6FtMez3PakUJK1be3lb5aOFWHsZqN5u733qnvhqT7dlC8QvrqxRPq4HHZ7X1qfxgwDY9jvbgfvhOP13/T3199fuc3nUt6Rv+xxCIKBDEGTTO//sit3UZ5+1Nm7/uupTfZU2IRVCaZROSJKENEtI0gSdaKSWQR1HgzR0vqGL2Tq0hCn9nB293evP1a2PEJxx3+G3XohIpEZVK+EQzgU5UKnwwuFtqOsV6IPtLEC6UgkS4R1OKIT3HaakpMaqNAZdhvUgdN84FwvXrSPEMSlcJJbavjHAU9r7actItDu0Y9l3/+8bpxvX7tL7tm1EK+PXfRgJMjl4hQvs7Bp8vCcRauC19ywFOIFtTPjeeZrK4J1ilE/52jtf4+G9B+zN9shEwUg3pKMc6RWpLfj440+RQpGlKWqkWV2scBiapqYqN/zwh57pbMrd20fcu3PE3s4OSVLQ1n8Pa6doGy2+Ai5qG4P1AqSiGGU0tqZuJGmWcOPmMfcfvMPz5yc8evSY995/D5UoPvr4I1bLVZjLVFtnOwRKBozAs5X92DGC4RlbZxCqDy6WKgSSBHWT0PabcoPUApoQwOSJ0rgq9GzpBVLHcxmHSjS7B3vs7e+xLks2VUlV19y4fQOpNM4Y5udnHOzvMZuMeOutN/nam68zHY85PjjCNEFKsNxsePfddzlZn7JYrXCu4dmLz0iTAuuqoP7mDI2xUSUtlKaoq4amNrTBwNabLuPQexNLTEjqqgxBKVKGDDRJVyvRujrWSiRIAwqHVx6nGjbVEqkFUsOyqnh0UqOdZlZOuHPnEEGD1mEsOUKWdKIE1m1nJ/Z9vO3Lg77/CjfnlQTT5ehoCIthGzHQEkwy1jzollfnEc4jZZ8F0a4XYjCw6cd8V8CzvfB2IQkmy7YmdriesL+NzgwEyRkZazaEhSs4M975MHkh0UIxLvKwWFrHeFqwni/xTuFtgzEV4LhxfMSmrFiuNvGsisaGvECRJBRFQVVVhOiRhEYKKh+0J41zLFcb8jzDOB/kyXSUVlOC3dkYhODJ0xdIDVUT9c2tY7G2nJ4vGRcp4zwjSzxCOkajBOtH1CZk4mRaU9UNZ+crHj0+4fX7h7FoWIzc9gJBQlMlpInirN6QFJrVasWmbLiYz/ngw0fcuTFDS0dtDI1vSNKMNIXJOGFn54D5xQsm44xEQFNVZFkRpI1ERll7dnZG4Ct8XOTSLEPg2KwWKOGYjQus2aBkhpQNShmyTFKWK4zRJDonzXJCfVTJeJQyKhKktOSZoioDA4sLMm/jyRQpz3EOimKEsSGLQxEWzPV6A0nKbHfGaDQi0YqqqlBKMJnkTGYTVpsl0JDnObOdEeNxSpqCFCEqLUlCyq2SwfFVPkQ7hDRug/cyJDQ5w2q94umzF3z40RNWa2ianLpxNMaBTEBqjGswLpAHIWqnX76sdSETKYIBAkGqg5am9w5rPOWmZL1ZYa0JgGOiqesq/DauZmEsQhvWZ0XQwnXdgtsSwbFOk4z1lITvFkMR65fEuvFxUgchZchW6IBkh4vD10VDI4D5/diW/UDvPrsM3nWAvYj1dESbUdE7kl+VzXev1tzrt4gJDpxvEZ1mS6IT0jRHq+B4WutD9oVO8BbqqqbxhrJcs1zO2WxWNE1F09Tx1SC8jAUYo9waIf0Y0WoaO7SSGNMghUNoiRJB1rAqV5y8MKzXS8qyQQjJweEhn332KRcX59y+c4/Zzi7j8SQUB7aeLCtI0hStNUmi0FHDVioZ5VZDbR7i3O3ctvNgncPaGP0iLq1TuKjp3pKe4Xct+RIctT5aqHu1v4+ShFux8924EVdecAn89H5wHrY+fyUg+JLvAqnhsM52BVO7764QVW1P2ia8hBB9tNCle7scETj891DW43IU+ec6eK0TLvqo+uDkBgeiJRWFFJ390F6WtY5vffPX+NM/+Ze8L3+OlJK6XkTAMuzrLAilwIcIpVYCkM4wCnUSlCo4Pr7F7Tv3yEfjUJsgpKTSNCYWyLQYU+O9DVIwqWY8nYB3LBYLJpMJRZEzmYzZ2dlhU9acns+5ffsODx48BCH5wQ/+kqaxSKVYbyrSRFEUY0ajcSDIThx5YUmSDO+DDJ73sCkrqrrBOk+ShDGRF3l85iGKKdGKPM8YjVKsK9maLWL7Myi4O3SWPAM765ou5vGD/b9a28sA/FeNx6u/2+7z279r5/Krc/oXuZZXkdAv265bY7c/8/0lveJ3n3utXwbM6Y35zz3nkEy4TJhttckXu9Rrzzn82x73i9z7sC2/DJj1qmN/0eMMz/lFiKauzaIxt7WH7//RP5rYLqKtWRBJJx+lpYXBixB4opRCqyC/rKQPflesm+i87/Tv27oqITPdRbCotRvbi9jOUutGyqUhc639yPbz7G9rm2i6rs0+97vh8V6yfR5Je3lN/KLj61dta2/7uvbc9uu3HnjvH3TkkuqkWlpoKhx4ME/S4wctwaxVrP0pJEoGFZUkSRBeIXCYxnBxMWd/b4oQCqWC9HSoZSs7+8Rag/Mm9OVWss8HtRTnDdYIrDDUlacsHVUFkpxnT59QVStGowyVQmNqrPWUVUNdG8bjHaRKAniUJGTFmCwRFKMJo9GM0WiHLEuDTe9ixpJtBtkswUeTSqFlsPWUVKR5xjgfoYRCieAzpEnGk0ePePH0GU1VMZtOmdsFRieYiOcoJKlOQEq8VVipqD3U1uCahtV8zs9++hMaY2Odah+ynARdTQ3rLBeLeagp7BOSxKOE4hc/+TlplnNPZygkwoK3YD0heCcJ0eitgJWImEr/gK/JMhgSTAOSSUSAsSNQiCFpHeAsO1yqw589ne8pRJCjE37geQm6Ohciftfat/06tX1tl/t6//nQRh+uK9s2RAuV+Vhvt83o6NeDwWQp++vsD9HnAbQ+QucrDOx451pyLhBMriOYXCSYegKqlTLbJpiGc7GP2NiwLYZz4tBvCPWug6vpuxo5w2Zo8cZ2YeiI3u5ZDgP4+GptQtDK0kklUYlGJwqVqAAuqyhRpyQiZjAJSVSC8lFijIgPte3X982hPzm0I70POC+ELCDvPHTybg4vXMh6Ex4fMaNunheCWGWtm7PDOIvzGYT5edB/pBJoZKhXJxOEt4EIdTZkUsdxG/W1OttGQMCgt3CEFjsIl9NbI+G7Nkhnq4m32jx+OPhhhyMMMTRCG3fSeAi6L9tta7j7AdYjuiBZYi0pqTR5PuPG0Q3u33rA7eM7KBQXJws2ixLbOHCCel1jyrBW4QRSWeYXFzgsdVOyXi/ZlCumO1OUaJiONHmaMC4yhJQxmBlSpQYGme+kkJsmJkUIhVcafJCMzYqUohhxcHSP8XRGkqUs1ks25YazizOss6HUR9en4tzVGoZ9mhm+dVQG41rKtpZjIDaTVDErZugkENRl1eClQ8skyMynGhmxBmssTawHXRQj8ixlMh5z4+YR0+mMxXLBYrlkvdlw89YtNmWJsYYiTdmZjMmSlOOjA7I0Y3dnh+OjI1arFeVmw/n5OReLM1ZPLtDpFOeDdG5R5IE4NJa69mzKCqVCKQpjXChbsd5EjMbivCVJJEmucM7gnEXig+2hFFZIGhExk3a8aE+aC5yWOEeQkbSR4MWhE4lORMRM1liifaNnJMIhpMULS5AnDYkOUnRd8dK6NfQXBj7lS7ZXEkwyFr0aLgRDwM+1RbyUjJNT6BSBYHLhRmWIXAtja9tBkh0DfdVQ94NJz9NrNw4XVmstjQ18uJYq/m6w+LgAkOs0CRE8MUpnMhqBD8bQ/s6M8+fPqTcrzp3BNhW10/z6r/86zsPJ6RnvffAxy9Wa+XKBMY7JbMZsNot1JUI7lNWaJEloyk3oTNJQ1oa6KhlpTzJJODg+5PTsjCTLKTLN7iSn8cRBH+qU1KuK+TK8xqOGLE3YbBakecFspyAbFXz40WesfU0qBY0R/Nmf/YTDne8yGoeFJFOCurZUVYm1NQILwlDWK+bLC1brhiwd8Sd/8kO+91tvsbeTIHEkeYYUggf3b9PUlsePnvL1d15jNjvm8eMz/vVf/ohivMfX3n6dJJ+wWFekhWJUpCAypIa8mNHUDRfnJ2SjCbuzMUmi8L7i+HCX2XTGzs6SH/zVu+zu7ZEXM9KswJkNiU5Q2tE0a+bzJYkSFLMJzkJZ2TDduDDZpknGwXjGyVlJno+R3uCaDXjLerVhvVyTpEFqS2sYjTPSNGH/cI/nLxqaasn+3pjbdw4pigQhGpyrURKKPOh2JkqFOAsfpUa8DX3KO2rXYL3i/GLBk6enfPb4FOOnNC7IKCSpRyUp88Ua6wK4a73HONtlaljrqOsNqVYBIHTgDTR1zXQywTaGTV0ilaIxDUpLsjRjNBrxk5/8BK01WmkSrfrFiG1nO2iagpBgbYzyF31NNOQQtIlRUjKA+O3cLr3DuyAjiRD4oU5s3Odq6v42MNRGobTX147lsEO4TqUU0rayl1+tiKQrCVvt4huNve227TN28mzEZDwhTVOa2uBckEOTQlJuDKt5WLw2mxWLxYLVcsFmU1JVNU1jcMYjhMM0Fu9DgWIvLVIqrDVRuz442oF4DWnBVbVhOt2JBpAl0QKRJ6xWG54+ecTp6Snf//6fUoxG7O7tc+P4Fl97++scHh5z69ZtDg+PODw8ROsspgL3ES3QrzfOXq1L5ITsnMU24qXL8MHisYNmbI8nBsdpf9ODi9vAldgCOKGXk+uvbXA9lzKLbIxCGjqdl/vyMKNvCFq2+7XjyTmHiZrB3jp0zPi57phCMMgE275OY01Hrg3rIF63tW0kxLZ5IOJJhg7p5eN09+VcSEEfgERCBDlNrTVpJBitDedyvpU+EDSN5caN2xzsH1MUU6r6HI/o+rX3Ams83kU5hajFbZpYLwxBmuaMJ/tMx8fcvHGHPB9zcb7i6dNHfPMbbzOdjMN4WCypNzXj8Yj9g12qesUnjz5jOp0ihGS1XPH666/jvWc8HiGV5Af/+q/YPZ/z8MFDDg6P+eCjj/jLH/4ozMVpjheKh6+9yeHRTUZFjmka0izn/HyBtY6yqlivVjjvWS2WVHXIMlNKslwuubi4wDlPMSqoKocyijTLKIqcstJBAkA2HTnU9pP232EeD0V8gS1Hyfu+f9N++1WqdTfYXgbYt5+9jIzYfs+VfYbH3AZKxEvH7mXwfHju4W8+D9S+fF+ft4Ze3velvxHDa6dF9z/3Wobn8Vxty+G9yetIhFcQA1/0vl61zxclli7v/2Xa9mXH+zLby8jG659VD763BHMLfrjotL+UPvHQytSEousCYxqMsHitSNKUNE3ItCORwYFtfN0FBuFDnQAvRLBpZYjOle37NhjADh3UfuuCiV/Rv17ari/597CtPu/5XSaw4g9fer5hn37Z+H3V+X5Vt86lEC0oEYqTD/36K6Clj7DS4HMhg0y4ECEMP/gS0ZZobbfB/Boy8NxWu6c6wRkbbSMBzpEkmiTWK7WmYTIZk2UZQoDr9KN67MN5R9PUeG/QWqCVQitF4wybsqTaGKrSUNVLtCpQaoTWI/IsQSUJ6+Uq1D69OOH56QvKyjCZzDg8uMGNWwVZoZlMCqazHQ6Pb7Az20UgMY2kqSVN7WiqBkkIdsySBK0EjiCvZH2Ifq6rJkima02eZUFWRxCA4Fjo/PTFi5CVPZ0ym804fXEWamAaE2yVfISWQfZHKo3KBVWSslwtKasS4yyu8tTWYJzFOI80Cp0F6ScXr6epK9KNxnuLTSVJrvnw3U9wJJycrXE6o5EJVqiQLWktXhKiwkXMXhJRUurK1o+1Tu3Chej6Ld/R96SJj8CYd72/5Qc+x6D39v0v+lkB8A72qxdhDguZFj251O7bZon0Y8Fvy8pfP2IGYP7g3KK90JD50TNiQ9B/YL9dK1e0TTB57wdZHT2eN8z+8kTVBPr2C37NtgzhELAXXV2eQR1eMcAkBq/2s/b8oY7Z9jX6FuEcYAzDNr3sFw6Jq1eBnr9qm40+svPBN5ZaorRCaYHSAhQoLZHaI41HKI/SbY0wN1jf4hwNA/nay5hD+2yg7bPeC0RbCzqu77Q1XBwggh8v8FjpA+ki2vpDYW6VQqB8xNuECOSmkJHHkWEcKIFOejl2QQi2t7YOddutwogKK02XQOC9jfZQnANFpC0i1yNUN9oZ3u1lcumKHapebssGP5dYhEIHdTEELtasCTZOHANRXrDFL7qaQFF61dSGIh/hjSFNc3Zmu9zcv8+bb3wN21g+++gJ0gvKRYUpDZtVyWK+Yr0qmUymUTWmYl2usN6Spook1ehUo2Sw8zbrNS9enKBkkHsr8oxMa1KtSIu0az8lQdpAmQkRMIWqDskFUmmm0wyVJGRpTsimHbG3v8/x8THPnj7l+PgIIdo6wiL23UBeexGkF330Y2U7v/mOZkIpYoCHjAEeIcP4rbffYDwZdbbYpirZ2dljNtthMp1S14HUWi5XARdOEh48eMj9B3e5ceOQyWTC2dkZ52dnrNYBvz86OuL58+c0TUOWZTx8+JDRaAQRy5RKorRkvqiZL885uzghHSUslxfcf/Aah4c3yLKCdVmhlGa9WXF2ccaLFyV5PsU7R13VSKVYbVYonSAB6y3GN/hGIJUgST2jLJY0UKHf9Eo8hPVZKvA5JtaeCnZWyFQbjTOk8igtmU6LUCZGa7JxTlY0CAXrzRrrKrwwaA3EHMOQUdhn4/o4Xlvqr52cXxWK9eoMJghamd1NtQNhuGCExVrK1kkMsgqyq9V0vZZqK8EEIRq5j3K+Cvr5MBNu/b4F4KRoU4jbWi5xgIvAGdd1zSTPg0EmJUf7exR5ysH+HtPxiOVizvHRPk1dkyaa2c6UVSX58KMPWC5XbNYle7u7jMcjdnb3WJcVF/MFi8USY21MaXQUWU6aBX3npqlYrZcUm4osy7l1e5+Ht3f4kz/5Pq+99jq7O3vBWBCKZydnFFXDumpYlw22Vjx6coK3FiUlh0d7IXrENiRSMh3lfOPt1/iLP/8zTGXIdIqva3763mfcvTthby9lPNIsFufgC/b3puzuHVDbGnTO2XxOebahKuHZk+coDL/2a2/y7W+/zkjXrNbLMKGONJPpXaSa8tlnF+gk47XX3+H0dMXTJ09ZLs85PNrh3r1DtBRMxofYekW19qhcko9yxtMR4yJjtVqCsHz88SNOTheUtWKzWnB0eI/JZEJWjJhOD1lePGJU5EgJZ6cn5IlkZ7qLc56mLGmqmp9/9EM+/PQFLy42yHxN1UiWTYPGMc413/7mN7j78A7vf/g+z54/5e/8rb/N//hH/5z9Ozep6opHn33M+cUJN44P+M53vsV3f+vX2BltqOoV1lYIaQmEvMPZULNICYkxllRZUCBimugHHz3mf/zjn/HZkw2LVUbVaC4WJSJPcEqGukm1oY7ZIe0wbJoqONveIrwjSzNwIUskzzKm0zHWhDoyWoXaKePxCKUU6/Wan//852Hwao13nqqqyYs0ZjQFGbswNm2I9IiyB0L1hQE9bTHUmMbu6PSe2wncESYyY0IKp4oYQSLUJUNxG4xrDdh2LEfku5tUwrhVIcPRe6RvpQEsQV/bXAum/epvLeEm2geBkL4zsoLTErVxDWiRcfP4Dnt7e6RpymKxIM9zhBCMih3mF0H7djweU1UbLs7P+fDDD/nkk4+5uLigrgNIrVWCtcExTbICcBhT4XyQvsmzjLKsUNoiZHgms2mB901M64WLC4sUmsY0gUBIUlSSMJkUNHXJe+//nD//8z9DJim///v/gL/5W99lZ2fKZt1mwcpOTq0FzNtCnFrrK/3L2p5E2iJUWurpiiMzaOXB2hII1779hejrF7Wb91fBo+GxnXPdGOnB/ktg1SWQ8vJ3l++vPYYxwfFv71cPjrUFxAyOF5xZi8chtcB6EyJgWr3zSxJ//f1sO9tX2u2a71rwZXjPQ0m+Jp6vv1cZn2eIWNUqSMMURQF46qYmTwukSHj9jbf5+JMP+Zd//N8z3YkSjdjgeOgUb1vhbgia/SCkwlrQ6Yh/+F/8b/ijP/xzPv74KYIzfud3/hZ37tzFuoqTs3PmZ2fkWcF8eYGQjoNij7fefIOdvQOSRDGejPiN7/wGSZKxXC54cfoJz1+84Ic//CG/+x/8bQ6Oj/jgow/5r/6r/yO379zhP/qP/i5ff/sd7t+/z+HhIUf7e+EZ2oayKdmsKx4/fsKnn37GL37xC/7pP/2/89FHH+JxaB2IwaOjG5RlhXOOIi949uwR3jXM547GrFFKdk48HZHaBvgAnUNvu2ciZfscw/MNBuKXB7l/VbfL88RwjHwxIujl61RY/16KUX/uNbX/fhm59Crg+osSKJ93fsQ1veWXWZq932qIy9d23X38de7hZcd81efbwW3Xn/dzybhL53jV9f9bIR46gobY3v3z62VpelhFtkWwY2BEqO8YbTKVoHQGfoP1FvCUmwqdS3QqSLTCyiCtvNnUhGxnhSASAVLhhCJpYGUMPlTs7q7lsl/X38PgusXnd7fr2lEM/nYw6Cv603D1a8GKvgz3Sy6Tl9upl8fwX6cf/7u6ta771jwpXj4HDLdg86pOPluoBIXogmja4u2XjyOE6GxGay0IT5IHQE3FzBOtBKvlKd7BeDTl29/+BsvFCULYUMuWUHvImDoeL2Q9O29YLEs2mzXL5RJrPWlSkCY5aZpzON1Bipwsm5JlU7QcYb3i6bOnPH3ylA8//pD9o2O++ze/x+0799k/OGa2s8fO7h5SK6yzAQirYv0zqUnzHJwBDPjwMm5D3dRBXs6HbOfVasNsukeeFyRJijIWEaXZnXWYqsYqgfWW5WbN06dPOf2r89BoDmxjqMpQx2mS5RRJSp4kFFJjnSPJMlCS1WZFVddYQsCkMQ5tKtAK55pQQ8IGbHm5mrNeBfskSTU37tzClAnLc0MyG7FxBiddkOTEsVkvsLYOALAUL1njXlJUvFOzGdRR9b7PXJB9QGQLjIdkgpdnsHY2dswgEMJEKXcZfFh0iAbvbOoQPOo7Aii8WrwK/JUpb+vcwgQQkyFgvV3jFcQVe6IPaLlqz1wh5i+RPb3PEWXwOvIm+mAdwRQIygACb9eDDY/lcjZUP+bbcw9Joe19r/oeWy+33QeGkuF9I3w1azEZ6zHGhoDQti6RDhk/UgW5LZkIZE3MZoqYbasi2Wq4Sh9BoDjmoIvz2MqSI+x/+TkOn7EQ4dX3jxA0LGWPDXnnEAGoxaGQ0oVx72QguJRAyjTKp0t0DEps5wPrgsy/MRWNKWnMCutKbFNhTE3dVFjvUQiciOGLTQetxKHZr/iBfx5aR9eTS3Tf9Xbg1TEajyqS9vDxR232tg8Zl3i8DRleWI+3gFMIFCoShqN8wq2jPfb3DjjYO8SXCeuLElPVeOvIkpzlfMn89CLgc0lKWa1xzlKWFVVVkWQpk1HBeDomz1OUFjx79oQHd+9xfLzPzmyM1glVGY5ZK0WiFEhFonQszSDJihxpLF5oVOoZIVBJGmp/OYeNGW1CCtIsZba7w/0H97iYn7NcXjCdjimKBzx79oyyLIE+CxcReYF27vO2yx71BJWzUZLQNA3OWpQS7OxO+PrXv8bb77zF7du30WmCA7IsR6kEYz0nJ6eBZFutWa/WCCG5desWs50peZGFjPxEk6UJpmkQQlBtSm7t74VyE6MRk8kElKSsKlwMvq0qR+MbpvtTilmBKjR/7/jvc/PmTcaTCa2CVFmtOTs/5eQ05+hGwf17t1ivQ+ZSWW74o39+xtHRMWkessfSVPP0+WOapkYpy2wSSkIEdaEQRCNEGE9CKKRSUWIw7YJohPQkiWA0zjG2xJgKKQXGRHUruaIyKxIB1pcgHFrLOKcSVedaJSrfkkExewy8bNfZl0xKcXt1DabWH4yAsXeBibaXZIvCIhFOqLyMIJMnLEN0xV0FIUpFKRVqzsTBqZTqWGki8W2HUbfhJCGzwW9HLkgpoqMSwDjfFgEVQV7p+GCfnemMLNFIKdiZzpiMc7QIRcLu3L7B3myMcybON4J1o7hYrlhiWW8WPH76GKEylM5C3QgpOTo6Yl2WrFYrlssl8+USrRXeGawNxUEvlivu7+9TWcuHn33GwfENPvjoUw73N8xmM0ZZymw6opgIlpsKf7ag8ga8Z7mpefLsnOOjfdTRGKlU0FfVYKzl/v17XJwt2CxLkmTED3/8Ljs7X+fgYELTlCRasNmUWC/w0pCOE3SakaSSyTjn9s03+ODdD/nZzz4kSTU3b97gjdsFozTF0QQgT3q8NwhpOTt/wY9+9CFKjbhx6yZQISh59EnGzjRlUoygSDH1GotnvDMm0Toset4zPz/n/PyMqjIUo0P29/dYrVesNg0gkdJy58aUJ4+fsroQFKmhONpnOV+wWm5YLjcc3bjN3r7hw0dPaEzJ8e6Uk9Mluzu7ZApS4ZhNphwdHPHJp5+wnC95+vgxDx/e4/Bgn5OTFzx7+injIue3v/tbfO3N++R5u1jVSGVQygZtTxcAfG/ANMFpthhMU1FWFWeLij/9/k84PXNUdU7ZaBabGpEXlKah3DRUdY0xLo6DlukNsQzBGHBkaYo3Fh0n9DZryrtQdFUnGmssp/MTqqqkroLDk2VZAOaFQCcJic4G0mABRhQySudZhxVRgq9dMDtEMqi/uoFUHpIYQaA6FtsRjQ8HVrrwK8+WYTH0Ia2LReMiOGA7w6U1alrjdyiHJ+OYVigpBpGEv/qbUlnIjrPBUGwdZCGjk42MRL7sgJtxPmY62WF3d5+iyBmNRrS62XjBxfkpjx99wv7BPmW54vHjT3nv/Z9xfn5CWa7w3pIXGc540iyBGGVqrQkLVqxzZGyD0ipmIhq8a1A6C4EBvs/EAxmlcSyrlUfpkhvHx4HZxINw/M73vsvf/lu/y2uvv4HAs16XpGkS+nbToJMkGJ3t4iMEaZpGAif03aYxIFxYTFWIIrTGdEhSGwU7DFoIhmCrfxwO3YL6rWN4bWADvVN0HcnUvrri6v4qgXT588vGaAuEDJ21EDluqOu6c06VUqHGkPddLbU2MrfVTE+0RihBWRqcDZJtxpitY19HvPWkRXt9V0FU6/poq8tORXtfw+yt4b23BKIQeuu8bV2mUCsqOCBVVaF1wje/+WuU5Yqf/+yvUOmaxqyiQ2HIshFeJV1Gq9Z5rINoOTjY5/U33+KN19/iL/78Xb7znYccHd4iSTK++Y23+dGPfsBqOUdpRZ6n3Lp5k9VqyZOnT7l7+zaL+Zz9gwNu3bzDd37z1/nFz3/Khx9/xJMnTzg7P0NJzenpKT/4wQ/wSN75+jf5z/6z/zn7e/tBCjIvYrZVtG/SlCQvyLOa8XjKgwev81u/+V2+973f5r/77/4pP/jBX/Dxxx/RmJrz+ZzVcoE1IdM1TbIu2ksg2NvbB0LUlxAmPhdJz+GF59j259aB1zoUGg1zjYKWxO1IqJeANr9i23CcXt7a9mrb7EqEPVz57dCf/FxCYeCjXyaV27+fR0Zc9/4KgPSSzftAwPOS83weAN6Cc0BnK1+eQ4Z/L8+D7WddnVTYam+k7I57+bq/zLV+kXa47njbz/XzyYBX9aP275clFb4IYXXdttWfIvgTBTTaHwNtVG2b+xjW19ZmEBEYEC5EDA+DO3rHM4BWYc0CK4jBDz5IPUdpJSV1F4gVwCaBlioAyWLIf22PmWv7ZXfbESDm6ngZBplcabcv0Y6X21Rcc4DrgkWu6+fX2RL/xsnE/7/dLj/HOPl1nGKLCPit/YVoJelibVGpwlpGAN2l1KFvCdH176G0duvXCBFqEyqVBJxBghJhXyUkWZZx9uIZO7MRrz+8j8CRZRpvPcIb8CEALtRFajC2pq7LmMUU7iVN81DDMcmCb56kjAqJVCO0SpFCUJmK99//mMVyidKa733vd3n9zbe4e+8h48kOSVogVahP6poGh0NpTV8fqME4izU1AoP3BucM1lR4Z9EqKErY2jBONBkWyg3lcsV6Feolq6j+UpUVFxfnnJ2fsVwtWaxW2ACXYWI2klOCqq5wQlB7R42FZIxPNfWmoWwajAepVACbmmCLlJsljoSkUOS5wmEwDpxrEEIjRMpyVeGfniLzEaIYUUhFLcBLEepGeINQDVJYrJfY64gkDwEvGAYtxbmvW6CuZrb09m3bFYPv6wbHuHKqbm6KPpeHVsEhkJ4SLbNLdr3q+2dHjrXzQejnrR+zTYTEK2l9lCHnRD83thnR7UwvhvtG/3ubdAmvFsfzMKhV1a69ISOpxeB6jM12NqL1wU5v53iG/k974kGbdWt7u964nqjqSSDAtwF5l0mz4X49MXj1mUYCMZ7nq7gZU4c1X4R2MKYJ+JKwCA1JqhCKII+nCSoxxmOFAxnJo5ZkavstQ99Z9Fgw7VjZ9l8v18wOWXUW6AMOZcSjhA3n9orOQpHx+CEewIMC6SUKjRQJSmq0zJlNd0jTLBAOtqGq15T1iqpaUVYpnoq6XlNHHLJXyon9RNl4j1GCv4PCQm0fZy+NnW7zPXZGC030NsdwPmp9XeccTuposwQ7xpg6qgeB8xZrHMrJWEM7kCPVpkILxSgfc3DziIcP3mBxsUAgaTaOo9kh1hgqI2lMjakNk9EE6Qg1/Bzs7u5QNzXKCZSDsloxnmQoCd5Z6soym04xTch6SpUm1TlrGfBY62BTNtTGopQky1LyPARRKJ0gnUBaB16idUKajvBCYp1nsylZr9es1huWyyXL5ZK93Smvv/6A+XyX9XKFVo7z8zlNXeO8R6cpq9UaUzcxO80jhaKp6tA/lGSUa9brmum04Ohwn4cP7/Nr3/4W3/72Nzk4OmQ0HmGMYVPVIELmfVnWCBxaSsajgiLPKYqc8XhElmuUAmsqMi04OtgNtgSSclPijOnOnWhJWVekicB4T21KvACt49CRkmKSc5TvslptePToEU+ePePm7VskqcJ5Q55pHBnWllT1grrZgHDce3DE/uE+OkmRUnJ4tM/8z5+RGIVSAisaLCaeR4Q1QvR17wVQW0i0wrc1AlvJymqJ9xbvAt6slARCxpj1YJug+oMHY3yQhI31Gjt7KmJ3XVaiaNewq1be5e3VBBPR+WjXj+teXAWq2gHYvpzzOBnS/7ZA6cGi3oHe7aJ5yXnr1qPLi8iW0x7rRniPb+slhQtAK8W4KCjyjFQprK0p1xWbVLK/t8OoyDCm4fz8nNI6JqOM0egWx8eHvPveR8wXa6p6g3ECj6ZSDbUxMYrIstlsQlRV9EgCcGZYrtYIFEVSMxvPqGrLalWGgnU+RMgVaUrdWPCO8XhMKSXONVws1nz08SOm4wekaUKeBv5SS9jb3SVNRqyLDfOzOauy4WJZslxWjEdBbkQpR+MqjLFMpiMmswMOD8+wjcDbOgBZvuazRy/4wV/+HF3ucHA8QyUhvEEliuVyTmNXWL/CujVV3bBejhA+p1SGjz/8kDdeu026NyLPNFk2xjRLRpOcct0wny8Yj0dUVcV4NEJpj04L3nzjTd794CnLxQLvJbPpiNVyjXBgK0mym6GkZrNasdmsaeqGarNGyYS93SmlkZSbDVpJslSxOx1xuDvh/v17bFYbTGXQQmGahnt3buCcQSs4OtxHacm9uzfZ3RmhpcNbg8AihEXEwRbSDre7mTGG2hjOF2veff8xz082rMsRtUmoraJ2DimDod6CsUIKTFOHGirRMdFadYPDWYOQmjTRZGlKnqWMihzvHFVZs1wsEUJEucMQ1ZYkmq7mSLy2pmnQySCTw3lkl3EYsprwl4xa0RqvgzHbDu324xhx4fFE/BnZpgkOxnhv5LfzgAtarq4f5oJtIzHML37rGFKExdZdiZj51d4O9o44vzjHuYqA/wayB8KcpxKNr0Okl5CaLCkYjWehEHCak6V5nHMaVqsVVbnGNktU4hHaslrNefr8Uy7mJ5T1GoQjyRRaJTQ1ZOhQaDfK2DgXdOZlu1h1/cYPEJ8wzxA16o2xUdIuRMKlPmO5WuARVGUd6qCNC4o8JUsV3sfIShtgLyElxlpUJ+8VzlOWZSjiCdFZCsSX8xbsYP3xcQeukb0TEq1bYzeAGMN/t45f/7c3nC/LXcA2UN2Oy/5c4sr+r4pyGm4tedNmRbXGq1JB9qQLxhiAa0KG4pXOtw5oPy8g4vPwro8MimR3L6PUr8n9pW1L9g1uaOttC/Rs79J5It09y0iUCjGUOwn9yvmg2S+kDNmXBJL84OCIO3fuM53thUxQv0GKhEQnmMaRFxneSZxpqMrQn0fFhOOjWzy4/zrGOL7x9W+g9Zg8HdM0FiFChL73NhCZAsbjMavVisViycnpCWVVczGfsylLxuMJSZqyXm9CsXupSUcJZ+dzjm8abt66w527D3nn7XdQSndghI+EfAsAKCkQaYZSKaORROxKinGBdZabt27yox/9kB/8xV+wXK1omhAoo7wny/Jg6Nc1noZxmTIap7GNBwVpfegHQoiw9gwCbVys/yeijLDowNjwnNvn/VXbvgj4f91Y/rLnaJ9VGHM9yT3cPo+c+iKE0JclM77oecKkcAkQFoN/D7bPI0Eu7bz195e9+svk0Kv2uZaAuMZ/ue64v0xf+DzS8PJ5vuwzvLzufN51hXAiaD2p4K70XlW/RhDxJtGRRs4TgwAFzlis9zRORBu2JQ9aqdsAZHhnQVgEKqpKBKtGChGKRH9BULC1HdteOPx8+JfLz2h4b5fIHi59/qW3loAa2AvXHe+rRy5B2yi9hRHetYSdaPvIJX+gI5dEsBUEKoIdCunDe7zo5tHQX9t9hpnZQ7srKpqI0O+kVGihkYQAjslkgrNlUGiQYI2nqSpMXQcAz9Q0psR6E+WcQr2jNM1Jk5xEZ0FyL9HoLJBgznrKcs3JyRLnLUfHRxwcHvHgtdc4Or7FeLKLVCkQ1mdrbVCMEK2vFUBcP6gxEmox1FjbBAkD56hrjzWGpmwwleHZ+jPKsqapDdYRQME8AwRVXXN2ft5yNBhnKOsS3waGCY9XAqsEa9dgGkvtArAlvKWqKoxp8EAWo61LUdLUDU76IGknW1WAmFkmFQIdQGqhWG9KzhdzkkWBH2lqfCjcLjzeN0hlEL7ConAkQFujpbdz8JFg6vzKmJXtw94hez/+xseVN5ZMiJNUB5IPu1/fS8P/g58BLcEpIJBLQscMukCYtzZ98AkseB9rhYluPpIRrAvzRV/fLpzXXzn7cGpsSaXgc18N7Nra3PCYoW26+uate+6DbdriBK2SSVvyoq+51BNMxvV1mFqHvSOXWnwg+ohbgQ4MiSw32Gdgfw4Jp/ZZ+Ha+7LGJ4d/w72Eg21cnGPXy1pg6kM7OYKyJNd6aKDMXgWFcUEORIYtJKoFSMbPHia5P9vW92qOLOL5E2/3Cp52tsR24GPoU/TwmPF64KPsWOqAUkaykP6cTUU7XS4RSEX8Lc4eSCYkuGBUzJqM98nwUJfxrNtUKvVkgRQICrFt3Y6IxDaZpwjgWPrYFdLh5S9i2SLlv22F7a9ewoZ8r+qFNize07dL+FUIE2cLYjxWiD55tfTfvOhzEW483Ek3G3uyAw70jbt64wyid4AuNsw7pFOv5OtphHhwsl0vyNIU49zXW4nxDWW+w1gT2TjiUDnWJ0zQB75AqRyGwxlJVDet1KJ3gnSfLMqQUNMbRRFvPeoFxIeA3lK1ROAdNbUKgr2xbSWLjvKGkYDabkGkw9QbhDa4pmYxSErUT7GOpSNKM+WKBjUGQUkpSpbHGhcx6HEkRiMYHD+7x+msPefutt7h185ijoyOSNMULqMoa0DTWhvUEGWuShzkPCPUMk1BHVMZ+KmMNKAFBVUpLnAgZxc4ZqrLGeEuejVBIGltT13X3LJ0L13h2dspqtWa1XgcVAEEg6JIcSGjsmrLaACFjyFjL3sEOO7sT8iInLzL2D/dJf+QwvsZGUWvbrXU+qgg5vGzxwYhVKYeULuJxHieC5J7A44UNmIdICOk7g/IGgsF83I/50I8HmF/3CoOi99pebj9/bgbT9iYRg7gS295ynDiEbE/YX7CLupfOSbwMU0q/MIR9ne8bqjVC20vuXPPuWvqFNdRw6r9TMkQ52cbE7A5wpqGpS1yWkCaaVEmEd3jT0DQVL55tuHXjkIO9HZqmolwvSWrDZDpi/+CQLAuT2QcffsKL0wuaTUXdNCzXJSAx3ofaSU2DMYZEhwynNvrj5Owc5zL0bkplLDrNqBvHcrGJEhSBMRUevHXk4yBxVZVrNlXJhx8/4vatI7I0I08tLma7jMdjimKHzahmPl/hVcKL0zmTseLu7RkCgdaCpmpoTM14ssPR0QF3bi1o1obnT59xMT9lPJ3w/MUF3/+zHzJxR3wrfZPxLCXNQ02IsrrA2DVZZjg4ynn6eMnFxQmJ2iNLRzx5fM6d23sYoxFFTl7krBZzinHOcrlmNV+xu7uDThJ2d3Ypa09lEu7dPeaDj54H8NgKjg4PmM9PwQpSmWKnKanWrL1DSkhTRblZItSM/f1dap/yiw9eUIx2URJ2ZiMePLjLrVs3+MFf/hVN1VDkORLP/u6Up08eoYTjtQf3GI1z9vcmFJlEiga8QUXx93bgCaEDSRkz8oyz1I1hUxmen6746c8/ZV0llHVCbTTGCRyeuqkw0dYRQiAU2MqEtM4OxM0IU7HHmQaVpaSJpshTRkVGkYfspNVqxXw+R8UshBZklgg2m6pb5J13lGXDNB3TGXjeY61H2jYqFZTX24acGBgF7fo/mGw8PsgOxGJyXni89Ehr8THaONiX7Rxw1YHvIrn8APSPhnaYH1qjM1xniAz76smJvPHG2/zsZz9lbi9wPgDhzhlaPWsZZUG8ExGknjIez9A6QwiN84KmaWiamrOzM5bLVXCU7ZrRRLFYXPDsxWdsqgXGVahEdTryQgTDs2lcAOFlIKqUCnMZsCWfAEE7VyBDJo3UaCnxPhq2NoD4SilOTl9EJwaybMR8ccHTp4+YTMbs7e6TZgVVVaG0JkkTyrK8UoOriTIlrSMWUoU9JmosG2PRSUIIhpBINF29v9ivtBax/k/S35doHb+wZ289t0/FbxmS1wFTQ+fpMql1HbnUS29tS0W0f7uIQWsxxmyRS1oHx7YlnoC24nAAZXzIMhIDsqjXU29rvw2usVtk+zV0eC3D2jz9fV0DuL5iqPbRazEi5hKphQ/ZjS7meIYGD/sV+Zjd3QOOjm/z6adneC+RMg2BBxvD4eENJLBZrXjy5Dl5nnPr1j3u3n3Iwf4R5abmW9/8FhcXa5bLkvFoxHI5xzQVIaAgZvckSZxjLS9OznBCsVguOT095fz8HKU0eV6ws7PHZGxYlxvqumF3d4+333qbe/dfQwpNb8/Efir6QAJE0Et2PkT1CSmYTGZ897u/zWuvPeTNN9+kKiv+9E//lCwrwhgwhiQRrDeCum5omobzc0ExOh44esPnFsYjRkBMp2+fr3WhfkArteli1kHrW31V5tvrgJnLgM0v2xbXZa5cN8Z7IntwDR2IxDV298vP9aWvMfz42mt++XlitOcWWdLb70Oj4jLZ3AFjHbo1GPvxXchCGPx+QApcvrbL2SPX7XMdAPfLkAovIwS+CIn2RciEYbDCFyGHLp/j8r/7A9P1Iw9hPRjuH38iX9YG7XpIDJSLMlweEW1YIuhoYy0lh5Qh210KSaIVzkbwxFm8cBGYjaoVPqy7Lp6nD254ufTgcExJP7zUtg8ycHp/iTZ7yXbtkIzzeZf9cKnPD+/hq0UqDbauw7X/C604MDm2dgp2VisBHWr59KSRJBBNCuElbZH0AOAPSChknx3pW2npcIYQmezj94Ew0CpkHSU6oSwXCF/jbKhDtF6vqTclYHGuwboGmQqSJIlZVAlJmpNlBalOY/BPqHMCgqoMdZRPz8+5feceDx+8xs3bdzg6voGQCY0RUfo4ygqpgJP4KHfnbGtfWpyvg2S58zRNialrpHO4OkSfm7rG1g2L8yVPHj1luVpjraOYTDk4OiIfjxFS0VjLqirJi5zReESWp5zP51gfMt2RAo+ERFPVNY3xlNTUdYUmyg16T6pCMKROEnCejVxDlqJT1RE/Qki0FCiV473ENJ68KNi4klU5Ry8UyV5CAygdwGFcUBDBbgLBJFKEDPWF+6UmBsuI/tX2Itn1qV6uuSc0hkFZcb4Vw8Cxy/Y6MbOnBZbD/5XQKOnwXuJdTzAFcknivQqApe9rV4DEt1rcW6RJRLcGY8EP5t72mi4HQIR7uW6wgWh9cHrEMNJkw2U/+gjBtwy+Xf8+9EETJfdbfyQSUC2p0F27H7TdNvnVyu9vZRvF59ffd+sHbAOV223Tvr9u3t5uP9i2Hb4KmzENbS25QIbXWNfgfZQ7JBBNgWCK2ZxaBGLJyUBWOHAR58ETAoPpW1V2a/XQ/qJ7v7V5uqwyL1zMvAh1yAPna+NucWy5qF0jPdIrJCC1in1CImVClk6YTQ8Zj3Yo8hFpktHYGq2XQBLsDaCqw1zhvEfXFUJu4rXQ4VeB/KWbVoI6T7SDEcjtu9myMQTEum10rSOCu8Xl/ttic3EUgAh1jNo6Zi0B7hxY47A1KKeZjna5fXyfm8e32d054OTFGaka4YTH1g2nL06RUpDnGd5ZFhcX2NEI40K2bV03NLakqjdh5CtBkmnSTJNmSVebTylFniYIL2gqw1qGdQMEUyRFUSBUEtZEA0ExowYEOslCwKhzVHWDVAIhHUIEOdtEByJHK4GSBVWesLg4YbNMWCeS3emY7CgLWTs6EEerTYlAoJQk0Ql5EiTfmrrB2oZkpDg+OOTrX/8Gb77xBg8fPKQqQ4CEMYaqaXAKhEiQTRPq4yWhbE3gj0LwtFTheSmCPSqlAOtoTIMzAbfXsZ6otzGD2RhkotEKgslr2JRrRKIw1lLVFXVV8vjxJ0ihyPKcO3duMZvtBKwtUTjfcHYe6jq1OFRZOWY7UybTgulswmxnSjHJkYnBbjYB+0syLEEFKMRxxZEZy2d03VM6vIwBXnE67W1dEe0pMeiffS8O83T09bzASxCtvdZlL7nuuH4wJl5l4n5uDaatYSZACEWQPPAhKwIC+yo8HolSw0G2/ddFh8c4F+wpEQw+1y7hEXh2Lur8vcR3gr7hQsJSMB7SJMiNKa1QacIoL5hNx6Gg1mbDmWlQB3tMJyPSRKOlo9ysWM5PwW7I85Tbt494bXqIcY6qNsznKxINd+7cZP/wiPWm5my+5KOPP6OsDK4JHXI6nbJarWiamiaSAUpImsbQmIzaaT78+Al3b9zm/OSU5WLFg3v3SPKM56enmLJhZzxlsVywu7dHlqaUmxXVcs6PfvQewr2BilJZk1FCPtuhajwOy3hnwsmzC378s/eYz/c4PvxNUi3x3iCVRwNlucTZhhs3DihXGz549z32dkesNjVVHTIPLAkffPgZ9x4ccZTvYM2GPHWM84Z7d8YcH+3wr/7lT/ng/U/REqbTMXu7hyAUWRaybk6ePUGphtlsxGZVslnWnJw8R6UZm6piuarZ1PD+B+8BHq0E89Wa+cU5mbZIUpSQWGtIU82D+7ep6prVqmQymfHpuefRi8ecnZyGAnZnL7h9tEORZwhv+fC9X1CulqRKkqcJq/lzPvv0Qw72p9y4cQ+pNDqBLLF4t8Q7UNqQOAkEmTDZrrA+DGKkoNrUlBV8+MkZH3x4wsm5xLJLZQWlFRjCz1eLJc4GIsBaiyEUhRVSx4gKR1WuUUKR6pTxaEyeZaQ6JU8zRsWI1WLJYrFAKc3e7m5XW2e1WpFlGUfHx/z0p6EOk4okQQs8tyOkHYfOBX1eT1jQEmKhWwnexuxCR1c0zvtAlLWLIK3x6MFHx62mJvFJP0t0ygPbgFNXJ20ArHeZitHWDhrPrUEKbRRi+5uvyva/+M//If/kn/xjfvSjH/Li5Dl5nmJKS6gtozANCJUwGU+ZTmbMZnsU+Yim8azWFYvlmp/99McsluesVkusNWRZhk7go4/fpazWXMxPaZoSpUNdFqEcXhpQAtuEtFmp2kU41PGxUdPZe49pBnJtsiHP8y4LSOuUUTHm4uKCsqow1mFszfn5SZQQSVmv5/zZn/0Jz5495e233+F73/tt/uZ3/zZpqnqy1DXQkkiRuJzM9qjrqpPbbJ3KNgq2zSCyNkRKK5F0/UdFfdokSboMoOF21fGh678BR1LRWH85WNQ5uv5qxtN15FJ77OG5W4m8IeiYpilCiO6622sfZk+1/xaC7hpacsq5UH9ACHHlvtt7H9zu1v1dlq0YRrX37dNbKENwsHP6/bZ0gPcuGrBt5aQQBTq8HudccAKECBlEowm///f/Af/tf/tzcCnGNljhuXF8h3/4v/xfMxlP+fSTT/kn/+T/wp3bd/lP/9N/gPWW9z98n7/7H7/NT378HlVpmU7GPHz4kMasOTn5jNXygrIMWaF11TAqJty8cTu0qxKMxmOMdfxf/2//lJs3Dvje936b1XrF+x98wD/7Z/+M/8nv/wO++a1vc/feg6AcqlrDr3XLguUlRLB7rAkRS6IlAzsZBcPtO3e4dfsm3/4b3+Z/9V/8Q9I0Q0pJWZbMz0+QUlEUI4S0mMZhGkdbSFoIgTNhDg3ztSJNx2itYz8IkUt15dE6jIcQNBGM5d68/GpsXzRT5FXEyxchKy6DQv1+HkQXH9btI5G9Try4bHv3YFd3zg5ke+VttHuH/3c1KF5+/cM5aXCyrS7Sgrdhl21gaGtrb8aHdb27/q3zi87uj2XMiebG9v1eQ9x8HonUXesrGqn9rpV4uY7g+CK/v3zOL7NdJiFfdtzLn10mTYbt0cFtsTG39gU6Rg+GTtXgfZhPmqahqQ1ZAlIH519LiSLImIAlTdOAEAkfwZYY7ADgHcJZEpGE/WPtUa4uRy99Vq+67+0DsNUVuzHcf3DtObf646V9AjB19TTXPeOvCkn/RTbJYEzGZumbR/RtPgDhw9ueLOrIJaHi90EBBRekjXyb7RT/62RdunPFCHkRM5fiS8WTSqVDYIiDzWrNZnNCVW5w1pImSbTlQGmFloDyMdgnIdE5WToiSbKuJpSUEuMs682G+cWaxgh+67e/y7e/9WtMZ7t4BIv5EudqGhPkoJzzqERiTQCEidJ+QSRCIqRDaUOWpKwXG9aLOZvFGl9Znj1+ytNPnwQlD6k4OjpiOplwfHyDfDxC5QXGe7yUWIIkU+INh7eOSPKE2d4Oo/c/4OmzF2zKCuc8WkmkCwE+3juMtSw3G1LZWzdOmE5mMMi8Z6SjFCGi3+ktZblB6xTng5zeaJyxc7TLeXlCI0uW1TPURUU2niBthvBBMUR4R554rPfU3m7brYK4QrT9qbWhQtCO7HYbrAsdSu5bmiWO0/Bqa030S02ffdSuP34APlvfCt5LXCTJhRdIL6Okl0I4c8V3Hc4N18pVt/U0vdiajq7UGXrJZ53tfemzQDDYLds8NmUEt11X39VF+bvWFxnKXXfKCjFqQVw6R0cItZJ428xEWNO7275KngnkFRuDSEHQXfGr1lU/+PvVsWcBQs1qg/UNxjY0psJ0/mQIwvSCkMUjPVKHEaIQCONxNmQytfNieE5xjDh6ezWSpkNc98raTOjL3rdzWCS5hIly/7KT/PYEu1dKwiJrwxP3wuJMWJeVBOkURTbmcP+YPJ+SZiOyLI/yn+c4K7FNOLuxBmQoJ6B0iU421M0GLy0dsdmVg/Bb3UZ4EeM1r1/HLwefdc1EL9EbsgF7OXkvgxqSFILGlLimiecCYYOEqzMC6QRKJtw4vsfr995ib/cQ4TWPPzlhs1wH+9+Bdw5fhWd7cXaBc6FcwPPnTxlPQ512nSoOZ/uMdiZsNkEmNc9zdiazUMMXh5SancmUnZ0pVVVTlhWNstR1zTopQ/BFmpFmBVor0kQH+f3YBlonQdZPC5I0R6o0cgPBMtwpCtabNYv5OafPn7JenJKngpvHexzujSiKIpZ08DTGsqkqRsU0yvAFvGg8HpMmaVTjEsx2CiaTSZBI9IIXz5+FB+AF3ksQilE+Yb2pOjk5mbXGh6ENtHWuRghLUIjssUrb1DR1hTUGkQfJfekdWgjGsykIQW1Kzudznr54jvVQjEcs1ivOLy5YrZaMRhkHB4fszHaZTKYonVKakrquKFc1q9WKw6NdQimKBkQoUzEaZYxGKVkuuZi/wPoaIU3wm0QSGDHvcG2GXdCXRIhYlUmAdeF9MLkEyoOJCT4h8UhiQs5EN34j2oSP5HE738rWbuuyllxn3/csUyScXzHdfo5EXnR8w3LaSRuwtfiGCT3yY5GV7U/uIjttbdT7RPQam/RSLUFfOV58t+i2nvbA8RqcGwhSYCLIvtTlhkRptFZkMSPEmpqj/QN2plPGRY6pK7QUTMZjinyXui5ZLuZo7WmaDacnz7j3Zs7e3gEnp+eYesnrr93m/GLDxWLD85Nznj1fc+vmMZ89egrek2rN+WKxpb0phMB6z6aqEBdBj/TBvdd59ugzFII0H/HJp4+xznJ4dMTB7j7rqmJTPWcxn7O3t8fe7i5PPvMk2YhnL+YkOmFvNkPKhLo25MWIvMjZlCs+eH+B9mCMZrkRZMqg0hCJUpcVJ+crbh7eYVLk3LtzxOpvfI2f//xTHj2bs1g2nJ7O+cM//gm//TtfZ3xRIjWMCs8okyR7Y+ras157vv3NNyjyXVZry/OTU0RyyA/+9U9I0m9z68YeRT7l7ORjprOQiZLkCUmesVysgVg3xNbsH0z5+LNfsFjWSJVibc3hjQMy1XQ1OT786D3296YopbDeM1/U1NUuSmZolVFuzhlPZjx69ClF6rl1OOHJ86f86x/+iLqpSTPFwWHOg7tHKA1aS7I8IR8l5AXgapwtaVyFEBIlRIhQEtDYCmiLHocF+aNPznj3/XM+fVQyXxasasu6htpBZT3LckNtbADrXSBxqrpC6xj5aS15lmKtQ0tNnmSMx2N2ZlNSrcA75hcXGNNweHjIYrHk9PSMsqqYHexSFGPKzYaPPvqEPM+DbJKP9c+8o6pcF0kXZh8ZsgOdB+MwMiwsrYNsnInGJPQRRGEkh7fDSKkIYuIQTmAI9Z/6VPseaGqjrDpw3YUijUoqhJQdXmW9uHZuElIgtULL6xf6X8Vtd+eQ3/u9/ynHR7f5/vf/lKfPHqFUaB2lFInO2d09YFRMKIoxRTEmTzKkUmzWDYvFBZ98+oTF8gytJMUopxiNUUlKYyzrdclytcGjyNIpOk3wHjbriiTNyb2nEYYGgxAJdV1GZ793GnSSxasVIDQ6yVEqykUozdHREQdHx5yfn/P48eOQjaRTtA5gVVVVCKF49uwJZ2dn/It/8Udk2X/Db/zGr/Pwtde5d/8eDx485ODgIErnBaKkaaooaRekPrwPWaPBwIUsTXHOkyYSrRK0SiMh0xaJFh3w0GYIuahHa4zttGxbIzFE7rWfbYN40BMh1zl6w32HIPWWARrHx9CBG0Zx95JyksuO4fB9S6qF6wm1u4aOIYCzkGbqWuC4BR+H43b7HPLa71rL5DIw2t2n2M7s6tvdR6dDBJnNgRPunA/1AJzBu5JSarRS7O0d8ru/+3f4P/03/we+9c3vcHR0wM7OLm+88SbT8Q6Hhzc5OrjHZHTEcrnkpz99j4v5OU4EjeednRl+KkMRbi0YjcbgDc43JFpxenrKOqtJdUaicwCK3QkHB3topVitFjx+/JT3PviAPM9I04wH9x/y+7//D9jZ2cMYS5YmPUYLMZM7OszRKNMyED6drEBjUCqQiN6HbIDRaMz//r/8L/nH/+d/zI9+9CMWiwWbTUlTW3QiSXVCloVjOxtlhKTC40iTUK8iBBwEGcE0CaCcQKJUQp7n0aBvqKog/aO1DPK7eX5tP/7326u3S5j2527XZgC1NnqLuV45YDTyO4SmJ6roorC3SaCrV/nFgjWuzGlRNuTyTX7Z+/4iWxeZB5es/G3yYTjWrtt+mayRy/Pivymy4ItmSl0ml77sNbzqnlt7b+t4r2jEANpDRJfCZzKuhVIglUJ7jyLgh3meRXDLhHqfWLTQQRNehjlKGRDO4a3FoaLMx6uJu1/mOQp/lRB62bYNcPafDY/Vsr2/zLX8+63t/+2zvtbap2/97YwS3OBZDnbrSeBW0qnfobUJ+wj7+Jvu5SPZQqileHbOj36y5taNCaBI0ywAOdaidahXIFQI8tEJXb3b8Eo6wkJGEPbFYkNVGm7dvc/DB29y88ZdkiRIRYd6ThaBxrkgZWutw1iPkA6PIQTdKrIkCfJGItzP4vyCv/jjP2d5tiTXGW89/BrH+QGmqFmYObVtsAaySUY6LchnY9LxGJml6DTFI2mMIT07pywy0knGaH/KnYd3efLpUz79+DNePHvOxekZ1bpiloRC8AKPqw0+KhIoHaKxmyYoo1hvQQuSLIt+YCAr8myMbYLfEAK0HJDxj/53/zl7NwucqpiXF/yzf/4vmM+XOJOgVIFtPHVtcVIgdB+U4FugW0qI9VKgJT5cR6r3vU0EX5X++YenP5Co9UHCCkFn77Z9ZyjR3Xc+QZAP9yHbQwiUjMXXncJ7GT+XiNYf3lL1uBzg4baxrM6u3vajt6ae6IMHVR8f3/eEjthax+KdR/mndj8xPNZWXaRentu51nYfHI9hkEvE7traR6I7YbgO0f+iwxUGpkqYqKPN0sqmbK/4DK6UFtfsMr2HWz9581XcnC9pTE1db+Krom5KynrTvaxr8MKFwA4X1nCnQ9NJAcJFgDmaioqA3XZTspddP8K1WX39MxoGfuJD1lQ7NysVaopL0QdgWhv3F4RMwrYb+XB9wgM2yJXaBoSTaJFSZBPyYtzVprU1NKnH5ARsEUdjVwgR6vEG0pRwnQIwTXtD/bjxvb/eLTfX2F6X6yZ3q5Xs/Xwhel87nDWUmHHe44wN2VohOiJk4xqFIuHw8Ijbx3e5f+cNHn/0nPeffoSpLVIkeCdoqgolFWma0DQNWZaRphpjDev1nHv37uFwzBcXnJ6+oCgKpNYI4bvAxsbUWANGBln5UZ7y2WcXAaOXitzmIbM8yvOXqzVzQqZUkwR7LksStE6o6pD1mmY5SVqAUCiVonSKRVCZGoVjOsrZuX+X5UXOejnC2RopPDLW5bTEYSs1aVaQpjlSBTWQPMuZjCexPS1pLlAYmrLGuYBTSpGSphnWgrEerEMhYtC9IBEK72IZBm8RItYI9QLX1NSNjRioCeuxqWmaGq1BqCzI0AmH9XVQODk94/nJCc9fPCfLci4uzlht1lRVzc7uDtPZlP39A/J8FLJbtWSsM6ypqJsNjdng/IiqWuO9ZTTKkVqRj3KQgrP5BT/56Q8pqwYXlSOIkvdEV6zz9ZzsSKBQkiRkIbZlSYQEE4fwUBjbdbSa6L5tHdCQWRfHc7tLJ7N5eRvabtdvr85gah2d8IZh4e+eZhoAyTIU0GxvpIt8gBjl0To74ZpbxzUcUzJMnd02R4O50K7XwziNGDiHFJDmBUqEYlepToIGogdTVdSJJtMSrRXWNDirwWvSVFPkI8ZFDnisqVnOz/DOcHY2Zzk/JxtNwBvWqznlZslkXPDoyQsgZHIZa6O2eNCu9D6AqSpmAXgPzgrOzufMdg/YLBeUmw2pllSbkrOzU4QKcnt5kjCZ7YJQlJuKLBvRGIfSGXVj+fjTx7zx2l1S7YMGpPDMZhOOj485e/6c5ycX/Pgn7/Ebf+Mh3pe08m/TImdx9oLxaEaWSG7fPsJ5gZOP0acrNmvLaq149nxFnku837AzgUmRkKgUWzrWF2vmp3OKPME6RW3gYrFgsTzl57/4kKosuX20Q6ILbFPhncCjWC43VLWjrh1CKnZ3d1hX5ySJJC9CFFlTlWzWK6w2ceJWZFkKWJJUM84LrIH5oyWLeahTURQ5y+UcW8H5acazpzOefPYps2mO81Fr0lR4WyOUQAmFVmGiVASjvo1CUEKFRc75EH3gHdZUWOdprGC9lvzivcc8flpxvhDMN5JN4zBIauuojYFYmNarmHYrPFqrAP76oHtprSHVKWmSkaU5qU7BtyRCihQpi8WC+eICIRQHRwdY43h6/gJrHXUVwMFWcsq5kNopCZEEIjpZLoaQiNaoRYQigDYQRF44rG+jXNoJZhtM96182EAqqx3TQliIKdWhOGgw3sP4jnIEtEZ4b5iK6Pi18a++NXw7WYMQQRbI6mvCXH9Ft/PzJbs7h3zjG3+D8XjGu+/9nOfPn2JMg1YJe7t77O8fkWcjBJK6bjg9OQWpcNZSGxtqeWUjdvd2ODo44Pbt2+zuzFiXK6raU4wMaTZmsylJ0hSBJEsajIXa1TRNiGKUQqJaHZroeDhCllAr1yaEQukQaZIkAaAuRhP2i5w8Lyg3Fc+ePYNIgjhX0zQN1i6x1qOTJKwZ6pzvf7/kF+/+lJ2dXXZ39/gP/vbf5uHD19jfP2A8HlE3JhAQNpCpUioylQQ5OCFIkjSuPyGbT8VaM/EGOgNlm2Rx8XhuEL3ekyE9eSJ6J4oelBruMyR82nXwclT98HdDkqndhg5un+WiBt/3/lP7eRuJGTK7wvdtNKLWYWm31oaaZj5GoAyuif4Rd8frnd9XGA9iAP/6/jraixSDCM3tSE6H8G1h1R646wg3Z8M8hcI6F54jkiwt+N3f+Tt85zvf5sbNY0ajIL86Gc8QIqExHqVznj3/hNOzC/b393jrrTdZLVYkSYZxQW5SSsl7v/gZ8/kFtglp91rrsFZH+cTlckW+G8ZIUWRMp1N+/OMf8ezZE27evMlbb7/N3/17f5/ZdIcsK4L0jDEkSRbacavJ4nPeaguBiPXl+gyUQNCORiPeeOMNfu/3/h6j0Zg//MM/ZP/gmKZeUxQpxShBSkNeJNTVKfgaKVOcdQg0iU5Js4zxaMpkOo3R1QlSKpIkJdVpcBzKDVVZ0pgKpcM6OxmPr3/Wv6LbdZkqv9yBrh73unNd/lH4JM43fhvsbrONh1sfOdbPN/3n/Tp6eQv3GM91ich42da3yxBYu7TP5x5le/sy7RyC1Pp7u3wM317jL3EdX5S0eRnBcxkCu+53eN9dI4NrvLL/cFL/nHNf11dflfF0ORDPEaISheivo7+u/kPJYD2TEuEFKsohB7muUMtkO5+uBWvawvAgkxSlNF5pvJBEafjwTGMkLvKqfXc5K+tl93vd1rW35wrJ1AJfLzvO8PvQDr2Mzuf13MvP69+TUbDVaoP5p51OutCytsp6u3srSyYCjC5b0FL24KSPWEH7Mx+Byg54YTsLxPuYkd/2WR8CWkbjKVW5ZLFYc/vWPllS0DRgbd2tzVKqGJwoSKPUjZIqyPHL0E+cs0Gdwlo2m4Y3X3+LW7fucnh4A601dV3SNCGjXAgwTUXTeIQI9qq1hixRCJXSRlmHTGPPYjnnxelznj1+xrMnz6FypGNNgmbv6AZ5krNcrVjVJSLXTA92KGZj0nGO0BorCZleCBKZsLe3S5kljGYjxusNi9M5qdSsLy6o5nPS2Q6j/RtgbJTOcjhrWK1XIUhQK4SSbMQGlMTVNaauceUaDygpI/6SYpWlrhtaWSLhK24dT7jzYJdkZKnclHH2u7z3wXM+/vgFH3/8giQpwrOVrW0U56y2Jm/EekImjR/YkkPiIfahAeHYPXjAX8dadh1VBHCqR567PUP/6omrQCgZcBIhLE6InljaQqnaOdZfIkg6+qzrp6Hvim6tdm0N9PauBqRS+E38pu3w7tLcI4A2Y8T7bv/2x/1c5aOKSXtez+BCu+vshcp7mbOu7cXV1uzuflBT2W+1TjzPsFm2Wm3bHxFcndtFe/+i3/OrtDUmyKG1r6apqKqSqqqo6+B3ewb1h5QHHyTzQqlxEaS1nO/k5BBBOj/0h0iIiD7g0TsX5RhfHQzT4UWqnZNl52+3vmrY+j6qCIST1IFoctbS1DW2NiRKMc4KsqygaQRV0pCndShPkmi89NRNjpSKqq4o6xVSbpDChDo00nbniVNIOLsQVzD0y7bI8LUdFNT67sG3ayWJA/YVsqqcsdGm0FjjwYKzHt/A8f4R92495NbxXV48OQMnyZIMTMNqsaapDZv1GikVo6JgMi44PT0ly1LyPGU6nVGWJev1irqpGBUjDo8OOTk9pavF6zxlGeQCJVBKxXI+B+/Z3z9g/+CANE2pq4r1ckm5WXOhJEeHh+zuTDFKUUuBGE9IJ219RMLxO1ch2IwKSaIEwksa6yk3S7Rw7M1GSDKkdyBMmGOERCiNTlK81GidgggZaCFrKtajtgZbGxyxTrvUSCGoq1XEG0KfMSYQT0oEhFFIicEQyxaFdcEFZQ9TW5rK0DQ1IasrKGdZZ6hNBYog3e8d1jeUkbj13gYewTZsygprHXkSkj/GsxmjfESe58hEsy7XYa70DfiKLIWTk0d4HFmWIFSK0hprDZtyw8VizuMnzzEGnGuDVAMu10k7hh48GGOhDzoPWBdrjAmM8EH6UoZaU+DCGhWl8HobqZ+XfdTG7FZG0f1r4I8N1jgxXE+vbp9Tg6k3suOIIWQzDmUtoC2ULqXodb07p7mVDgpGgYvHEs4Hb6ZdF+kHpscHMmqLZfKdQzYEbES8JomgyHLyNBQxS7VGSYE3DUoK8CF6Tkd9YWs03qdI4UP0rwjnVUpQbhYI4Sk3C8pySVlVVEZSlWvAMZkUlJsV+FBo3hhDm6YWolmCgSKliOmgAmtDRPXevbtY02BNIIfSTNE0G0xpMQ7y8QQtNWVVsykrpNJ4X1M1Dcs1OFdzerbgIB1hfVi4x6OC4+MjmrKkWi359NEzvv7OA9I0PHwtFdNRSr1ZooUgSQv29ibUxnKxLPFecOJXlKVgvgzHl1LjGwl1xignSPPUFevlnNnuPRwNZlliXWDTT0/n5EnKrCgY56F9jAGPZr5Y4Kygqi1KJ0xmOc4ZtIY0jcSkFzSmIdO9nNNkMiZJPGmWUhQZde04P3/OYr6kaWpG44L5Yo7xjuXigufPn7BannP/4QOEcFTVmrLc0NSbqMMpkMIhhUOJYK5IKbFOxMLs0Xm2BnBY01Abz6aCJ09LHj2+4HyhWW9UqCVlPU56GmdDSnLM2HNtP45Uctdj49hIkpQ8z8nTnCRJQ22MeC1JEqWwpAgSZzpltdqw2VSBiTcBTHZuIEcVo6m8C+NL+mhnBuQqEMN4hHEIbLgO0dY9GY6x8GYLvIrpy71xG8ZJqCUioxHvo0Z/hOLdIIOpNZbjf12GQ2dQRJm+bqWPRlCYFL4y28X5gtnODsdHt5hNd9nZ2ePF82fUTY3WIcJlZ7pLkqRYY1kuV7wn343916DTlPsPXkMqz40bx9w4vsGtm7dJE83ZxRl7+xes1gvAc35+HmS9nA8yk2VNXRs26w2b9QYlFavVcguQkTIY8GmakeU5Td1QFAVJGgimLE3JsiwYPVnDaDQhzxc0rpd+s9ZR1yXWetI0gOHKCx4/ecSz509ihpumGOWsVkvu3rnH0dFxILNUEgAvoVBKo5VGqThm0qwjdmTrlNLKP/b64i2I1P31xM/7vj2854CL9ORn+/nw75BQGr6G22Vyqc1wHY7hcBy6Yw6zn4bj8TJ4FTJm+wLXxHlkKC0SUtfbZTyusFvgJLTftinWQzdtK2prkFXVBp+0BDb0spiXfxsOEH1d0U2F3XFDW4RoIecszlqcVFEuV/E7v/13eOut19jZneBx/OxnPwcU6/WG1bpitd7QGEuWj9jb2+fo8IjPPvuMe3fv453HWE9d1bz37vvUVYVSwZjUWtPUTbBtlGK9CUViA3kpGY8nXFzMubhYcHBwxGy6w6/9+m+QZiF7DySN6x2lFnzto+F657l3TPrMuPY5SKGQiWC2s8tvfOc3qWvDRx99wnK5JNV75EVCnmvSTGBtzflZhTESrTKkFug0JU1S8rxgNt3j8PgGeT5C6yTKHeQoKWnqmvU6FBo1TQiCybKM2WzKV217FUD/MgLqCpB8qR9/uXP7bsrZBkRhuA5fPvflOebzz/vFiKX22B1gEOtPts7jpUNeGcOXr/OvtYmB7zHY3KX7aOfyv/7pvtw1v+qMl7/7slf3sjXkldczWI9eds4um2SI2Q2/H/wVrZfpW6DWYX0Lgm7/uCOdOuDTxzUo1B5x3foWpGCEuN60G/bv6+73ixDCQ9gSBuv1YJ92PR6e72XHuXxtLzv/cL4Y7rMtEfvX76f/zmxdA/pLfy9vreXQ+/ZDrqCbGyMe4L0fSBzREYBhHh3UeGoR74G90+4HYR5J0gxnG4ypWK5K8iTamQKEN3jr0FqhlUAngiTRKBXHJx5i0JJpLE1tqBtLns64c/s+BwfHZFmBMSbWWurlna0zCBGzorSiETZkC0nwBMm3sqxYrzacnp7y7Plzzk8ukEiSVKOk5GJ+wSQfM9vdoZiOmZqaRntGe1N0kSFShXGh/mYro6OUIh2PSFJB0WQUowLpYJJkjIucUZoymmr2x7tU6zXOWLy11E2FdzYE/ikZComI8Dyss+Adtgk1gdEKgSDLNKUzwaYj1o7wNbm0TBJPUQi8Spl8/Q12i11m2RRhFMuyZrHaBCmgDtDuM4toA5oH5FI7fEU3t/XPPJCQw7Hb2qdDNqLvJ92rreE6QJ17jqTrRcF/xW13bz8Mqup+vdUrh/2/7bvEOnf4NvgyytQz8EkG5NLgEJ090a+F7agS0T732/vR2xnt4fyl77cQ9+Fw2hpJ8f01y2d77u79lr3Q+x0+GhPtynX9NNkZ0ZfOffXYX7XNmCqQS9WGui6pm1A3rX0ZY3De9SSI9KA80rVPMvY55XHSBTUaIUP9JNdiOC2gHNfgkC7xhWwv72Ngoe/DXryLYHc3gfcTuorAuPACXMj8aaqGuqqQHlKtGeUFFYI8qaizCussiU8R2lPVCULCulwhRAYiQQiNEEFybDhO+rOKrYXnsm1wnX/fB2+1/TnORZGAk1KGOckF+0jJJMwN1oEVKJEwGu+wNzuiSKc0pePRJ0+YTXa7LC4pCLKlkazSOkiTGmvQNvj4SZJwfn7Ker0iSTU7OzOmkykvXrxAeNBKRxUxi20MAkGiPbZpyJIUrRVFEcodOBdVY+qKddMgvceWm6AGA5TTCdIfk2U5Kknjc9MIneLbfBmpQr1D78A2mGpDKix5IgPu6iHKmYV+pBQ60VgEUrc4gkcpj7VlUJhxFuuasDarBAjSn7apabyPQbcS6zxChu9DNrBECovAIbxDxICJpqmxtaVpDHVVhSzlRBPCWhzWG4zrsU1nPWW5pmkqvA/ZeI2xEUvQpElCqhOKLEdrhVSSRCmcbWjsBmPWeF8zGmmePH9KkmjSdESQtwxJGIvlipOzU+YXyxgToAisWCh9IrwczJN97+0wGEdYNz1hjAuHFRHClSBECIwQXne4bejH1wxaMZyTZbyOdqTI/vl5ce3c326vJJha/meozdfpuEfDWbg22k10dQG8GHqfonsFpS4bxrH0SC9QyB7I7mpIiQGYvb14dotRBGiUVEHaTEmyJOHGjWPGo4I0UUjvWS2XTPKcNEmCdriQ2CZIOeA9tqmpkRhbxgi7YMmm2pMqD7bm8bPHOJGRJCP2dqc0RpAmkrKqQiR0jE7SSUJdVVhrSbREeEeigrZwuamQQrJYrpjNJkwmBU8ff8ze/oi6rFgtN9SLNU2Z8nT1FI9EKEWSabJRyqMnj5hNct564yHvf/gJ2WTCeFygE0Waao4PD9EIzk9PWVyc8uTpGUdHKVmUjUqFwghPU66w1jDZ2UMqz/HxDnVdc3FxzkXpaIxnvtzgvcPVSahN1JSoOKknWnD31jHWPWexmrO/O+PBw3d48fQ5m3XJs2fnvPHgkJOTEoMCkXN+8RxrBFVVk2QZUhcs1yusq/HCo3TK4c4eGs/BwQ47E40UK6bTKUkCUgXixgt48eKU+UWJFYrpzoTlKidxDU1dcvL8KbdvHbK3VyCEZ7PxNM0ZTV3BSKOVIFVhAQv1rATOehrjsMKECdEZrK2RGIzxVKXl/KziL//yfeYLx7qEshFYEowzNLbBuFCotaob1qu6G/jeG5AheqvNqtAyIStyRqMxRVagpGQ8KrAmGAWN8UgteXj/IVVV8ezZCz78+EOs8Xjr8A60CgtoK7nUZnCU5SYQVFqhUJ0RF9jvCG7bYLC3NXjoZLDiGO+Groxgs+snnDgOrQ/j3gnXGQje+66GRMv6t3UiPA5hW51qRStXFibv1nCOc4X0sYoekcT6amzz5RqhEqbTCfuHxxzfuE2WpaFGmFTs7Ox0GRAQaiP87Gc/4+L/y96fPVuSZel92G/v7eMZ7xRzZGbkUGNXs9nVDQFoWjdAggZAj5JBJpne9SdQ/4hk0gte8EAZzWQkBVGGB5mMAIkm0OhBbDaqqyrnzJjjjmf0cQ962Nv9+LlxIzKr0TITKrXLbsXNc/24b3ffw1rft9a3FpdB0s1Q/NZvc3xyxO3bt5jN5uTZmLIssHanP1tUJavVmvPzC1bLtY9qcY4oSqjKimK7RQjJk68f904lwGSUozHko5zpdMr5+QXT6cxnyjjnyeei5OLyjPWmACQHB0esthvapg3p6jtJC2ssutEIQEWRH6fOYBrNJ7/8mC8++4LJdMZ7j97n3r37nJzc4fDIy6MJIQMwnpHEqU/ZbltP6BuN1k1vCO8yhuxgnO0AoR50w/XSckNQSFs9TOAD2JFZ1+oqded9209Htt1UE2l43evnvV4IfqidvvtutHMi+vt3gQjZgYO9Y9lHodwUlbXvOHT33P0+/Nc7hbv+3ESCAX3hVxzXrrXrk8VgrcSYlhYfPZ9lGb/3t3+fVpcUxZbVasFmXWKNYFtUrNdblsst77//PlGs0G3NX/7lz/n000+Yzw5JkxxnLednZzz++mtu3zliOp1weXnljUXli3crpWiahjT1mUvT6YRsNEYIwdHRMXfv3uPuvfvcOrmNimK09saoT9EP4JHxgQlx7PcbRIhqgyDHyK5eg9b++r0coiWJUx7cf8jv/NRQFhX/7J/9M9595y5CGKSy3L9/m1enz7Gmoio3xHHMZOL7KaVCyYjxZM69u4/I0lHIMExJ0xyApm4oq5KqKjFt5Qu9Zimz2fy18fjr2L4JKB6266TJHvmyO+qbQe83oB/utd/E3j839eOm//5Vr3v9mBsBdiF2+7S46VkQbIWbr/E2MuBN78DhXvdVOnDsLe0mEvCvAub/KmPj25znW503OHHDPv+7EnT9aBK7LI/heaXYB9tf+64NIH5fj8MHUJng6ymlfKUc5wOW2tZryXdBRVEUhWAPL6tj8Zi0UhLlvG26t6UOnsHwOV0ngd4WKT28PxjCudfub7Dv7J3/Dc9j+L23tb/qmPu1bd2zEHATnXh9Dd1f9AJm4G5eIzp7rSechu+0O5PY/VeXkeFJCr8fO/x4TtKcOIn47PMnvPvgiPk0ZTJOca7FtD6KOlIKFckQhOrl3pzRXsK5tbS1oW38+T766KfMxwfEIsY1XgJPhVo9xnZyZ5bJdEakEhACZSR1U+C0t1O1trx4ccazpy9omoYkiXnvnfepDwts3VBuCv7tL/6Csiw4vn2L0XTM9HAKcQR5hHaWuqmpdetxj1gRSRl+FFIluDRmnGeMk4TVqwV5npGPUhIij8kogZIKZwXVdkkUKe8YeoU6ZtOxVyRoGyopfV1tKXFG4wzE8YTFckNnX2INGEW72VBfSUStQdZk6QE/fvddHt37kN/6zd/l//nf/0v+8pNf4gyIkJ2N6NRzurETSlIID4SL7l3bMELcYIzQgcfsTfBubfQKJt06YLEuFH33IWq74eh2u9Ogwp33UQeL6RC27q3ja9fdG+a9LdzZziGDqRvtva1u2f3m70sOz9NfaGdLdHu7dQPZ273lc58g2A8M2/2pJ+o6/H2AKQ6Pu6ntFMa7Z9rdhevxCR/E4k/kXHgsVrzhvMOHOfhVyL2j/lqCXP49aa2uqUIwtc9aqqgq/1PXtd+fCeHAEl97RvmAZCcESIGwXtpNWOn9XesDQ6B7vyLU1RM9EemEJ0/8Mdfs4D1pSPrjuswBJ7qaet263f3PY8Outd6mkALrNLqqqYoSo1svy5tECBMzyvLgd0o0NamLqdsMqSSbYg0uARfhiPCivgrwJEunisWe1Oq+fzu0D66TSzucz70WWNk/Bm1RdLVvFbaFmIQ4yZjkcz549/tIE3H24oqfPf+YYlNhThxWW2IVcXx8xGg0pipK4jgmz3M225Lbd26BcwgsZVmwWq2QUpBnOYcHR7SNRjeGNPV13T0OAo2pkFIwGo2YjEZMJhPG45FfT4NkmwCaqmK5qHn69WOeOYt0jkgKRqOMDz74gFu37zCazhBRQpQ0qHyEjBKEjJBxQiJ9rfmmLkkkJMIhdIND4yvWG5I0RVuNbmoa04BQOKu97LsDg6WuPW4eSYWQ1kvMmxbdVLRtSyRjjPbBqNKn42FtHdZqAU6CMzjbYrXfr0zTUFclzvrSJRZLJKIgAS2RqGA3+4x9YwzaGuq6oqkr6qoMta18hm8US2IlKbcFB8cH4DS6dei2pCrXbKolZbnCmorZfMzFlSBNhC/Lo0sslpcvX3J2seBqsaSuW4TyJJVUEkmYvyHIux+qrpOqJBC4IfBG9KH+YW6FCpb+UQSkdzheu13LBenq3We70ildVU25Nydukk8ftm+swXR90kgpiRBI4TBSDjaukMIlRNiABF0kBjbUtWCQeWEMUggM1hfJtD6rxDOO/gbFTgJ8vznXL3JCeIku3TYIa/nssxVpEpOnCeMs5XA2xVlL2/gsICkcs9kMZw1XF5dEseP+vds+gkj4KGoVGYrNgrapGI8TfvrT38S4hKtlwdVyy8XVhsPDA+rmnCiKmEwUL0/PQ40R0WeheMDJoNsWB0ymU75+8oSTkzl3bh/w49/8Pl989pc4q0kSODwYo9uUptIYHLGSnJwcESUaS0FZV3z8+ef84KPv8fL0FSfHhxwezNkuV6RpytHREVVV8/Gnn1D+6xX/4O/9LbJZgm0LrGqJRMTB4QGVtvzlz/+Co5MHRLFjMlXcup3TNgXPn39FrE6Yjw/BpSDGlG1LHjmmByM+/OAef/gv/1/k40PeufeQ++/eJUo0Dx8c8OL5K/7Vv/5D/oPf/N8hX15im5bNpuQXP39Mlo2J44Q0s1TVGYvFgrotybIJ41HOV199Qaoi7p7MOTo6RsmM9aoE2RBFnkQpa5+N9t6jByTjCYuiAHHMDz94j1keY5sCbIk1pU/9dRXLq3PS9x9wMJ2RZhHOtiQigyZk+YiYPJnTNluMrtBtQVNvsdrhbMZmqTl9WfDyRYE1U6rGsC4qVmVLKwQoRZxkJCri6ukr4jjFWDcYm83A4IU8z0PdDWgaTRLFXF5eMp3kSCnQuuXBg/t88tmnXF5esdkW+EAAv2D4cwmkUF4aAhuIJkmapT2I7glaEexuhzMGcGjt6zRJBQrrs0CCoe1sN+H2gWQnBaGaaTAALW4YpdUZHOEud78HANyCRPXSev15O6Ows1rpgmJsAMO/OylMjx8/ZT5fMZsdMJ8dEMcx77zzLgcHB+RZjnCOOPF1XKqqZLstuXPnDgcHBwiJL8SYJH5tcw6jLbqx5KM5YNG6pWlrUhNzcDAiSedMZ2uuri65e+s2AMvlksXiivFozCifMR7lpElEXVc+yzOO/YZsLffvvefHXOqLHBujWSwW3FrdZbG44vLynMvLC5qmYb3esN0WOOdYrTboQDZpbUjSxEu4Bfm7OE6CBJ9guVjwp3/8x1RVhUOS5T475Td/8zf5X/wv/xFCOOqmZLm6Io5jfOSQjxYdZhX1G2gAzTqSx5Of16XzvC88bFHkaz8Njcs3EUvDmkOvGd2D7/aky7W/dwWju3N3hutNEVXXzxtFcQ90GaN7wsdfU2Gtl3Pxn6nBc+nO2Tnr/V31f++AxT5reHAPnsQ2vSTD8P6Hz2cYXW+t856OYe9dSenth7bVRMrX1tpuS+bTMa9enbLdrjBW873vfY8kSbhcLlmt1hweNXz22ef88IffZ7uxfHF2RttqXr44JwvZRrPZlNViyXazxFjNZrthvaqYTo64vDz34y/x93R+fk5RbLl79y7bquTv/P4f8Df/1t/kN/+D3+rvI4oinPPp/M45tPbjLsuy8PxtT+5KpZAy6olF/46MT5PvyT1vTzlruX//Af/wH/7P+eKLL5hPR4xGCXEiaXXJdlNgtMDZiKaBppUc5UdEIaNqMj7kYHaX+fyINMl60KKua0TSEqkxo8ygTYPARxc7++1q9Pz/219TuwGZESFqezdL3tz+qmTEm8iP6+f9tu2bQP9ftT97f+ObnsK/2/n/f6X9f6OP1yjLN1+j8w9FF00cnFJrMVrTNA1N0xClGofa7QE4lFMILFbXENMrWERRFJxzDS7qO9H7ouHF2j2s9eZx+O86vn6Vtuc4B/K0c9PfNg7fRrJ+V9v1Gmo7EOOmZ/L6Z/sAnv+6h/jFnr1mhZe88VnDcnemDmwBwKKdxTpvXygHGA+ZKiGQIubO7QdsixVNUzLOFSfHY5I898CM8IoqgPfFtA9iquuaqmoRRiFlQpJMqLeaJ18+4/j4hMOjI9IooW62REjiOABGUcxiucY5b5fVra+hWtYFm82Ws7NLysrw8OF7PHrnXR69cx8hBP/dv/jnvLp4yXa9QkwEX68ek97NSPMUm8fUpsLV3RSWZCoiixIUEmkdQmtAY3XliRQk8/EIPSr44PsfMJmMWV0umYym4BzL5ZJXr15xdVpCyCoXDrIo4SQ5JJYxaTZhfBDz6nxNXZa0tqWtGy+hFSkftW/BWUNxVfNP//P/B7/5G+/w/qNj0tTRaEVBikkmRLND/uAP/iN++NMf8IuPv+LTTx6zXq8BD4h7P3Nn/6pgN+qwVkjpMSdrd7WN9kgTKft5LcJCpAJetfM0bV8ntP9uL/nsQ64HVm0/rge6OtfG9T6IN1iR6agiNziHDSzOG9cO6cf2DhAf+Mh7hEsgV6FXoby+iHXPYIgV7F+2IxO6rJWuHPyODOrO05EQw754bswxmIjX2vVnwi6QoI9uvyGL/PWb+E63VpdU1ZayKmiamqoqvUpBVdG2TVDwcF4GD18HGyBCgRU+Y8l5vNKaUPJFd/aoD2p2XQYToYa2G2SSOnxG4TWivyMLAS+x7yxY1fueXRJBP/aclzkz2qKF9teTDqcEZbFhtbji4vyMLMmYjMZEKmM+PQhlLyJqW6PJmcgpaZZR1AUXly+pm20ggjXW1J50CDt7Rz73O/8Nw6knl9gdNxyRPeZ1g61iWx2ouQhnJK4VvPfwQ44PbxOLnK8+fcrzpy+py5pIKO7ducs7Dx5gtAbnGI/HWGO4c/cE5xxVVdPomrquyTIfOJiLnO1qxWg0Yjwa47RjtVozGU29X9pa0iz1ErNCQiBNyrLs6wxq3TCZTIiUpNhsWV5d8vL5c65OzynWK6z2AbyzyYhiueDBO+9ycHRMlOdYmZCOpyT5mDjPUWlGbBuSSCCcodosMaoljyFWgPCScY2pcQKUislHGaW2SExYc8DUGuV82ZrSGISQPiOv1UgJaZpQ6CZg7X5vzfIRDunrFyFxzmc2WV2jdUurWwQQqwSR+NVMhiQNFflFx5gY5wwi8kGhCItpLGkSoduINo0xo4wkGwHCB3AmKXEck6QWpVqadstytfT4jW1RinANx/Ghx+ykinywlXZcnF9ydnrOalsQpxHWaoQKtnOHk3Z4C/R2uuxkKnFeqa0bkV3sgHVhHvfWFGDCyN/VI+wwak8yddJ3uyAAuuypHiuCm+sy7bdvrME0/H2YUqWUnzb+HgJoFTKYLMZvQHj9TOsc0nriSLpdhLgFXxxT+GhJK3wKk1RqsKmEBSCkbO6SLAOoY1oiGZEmGZESPoI3z8jSBIljtVxSl5U3JKwfJHEkybMEqSSXl2cIDNPpiDRLiGKJcr6g5XicMzvImM9P+OLrF5y9esXp+ZKrZYE1LYcHB9StoaxappMJQspd4c6QGq+U16oU1j+TKI4oioLLS8t8rvjww4cUmw3FqmKzasEqsiSi1j7t/vT0lLsPD5gfzLA6x7YtZ5dXbMsFzrRInK8f5bwMYZalnNy+xeXZcz7/4mvsO7e4c5jTFFuMs2hnsDJiMhnz6aefMJsdkKWCo8MRs+kJj7/6FAEYA4tVyXSUkSQtMjZErcPYmqpek2Q5Eo1pt0xnE9I0o6pz4kTwxVdPefju9yirBvHylHv33ufF81dMxhNunRxzeDxjVa649+ABdd1SFC2/+7vv8ou/+BllWVGVNQdzX8ulrg1Vrdlsa64Wa9abFVpGyCzm6HjOcrVgsTgnEXPuHs+YTU9Yrxes1kvW6yVSSmazOZGMfB0wGfso8lD8HGdpmtaz4LoOKZk1bWspC8uTx1d8/OkZm7VmUW5ZVYaitWjraJwglhFFUVGVDW2rccbhhMQ6h7ENaaqQCuI48lHykdcZlaG+kLWe8JmMJygFm2LFJ5/+kvWmoG4awKdo+ih5HyXq00HDAiN8MTvrhtHxYdEIknlD89dan9opHQhpUTLaM5Gdda+B57tpKEJkazi6J7uDsxciwPzCtA8we0cwgNjdNq18nRkRsqhMKC761xXJ++9TS9OUYltRV+eslhvm80Pu3X2HtrEo6QlEZeDy4orl8or1ZkWaxkF+w2vC3rlzh7JoQu03fGZd6et1NU3Ntii4vLpCCEWW54zHU6x1VG3L+atXrFYr6qqiqRtG4xHFdsviqgQcaRpTa+vrkwEHBwccHh4ync4Ax+PHXxHHMSfHt5nN5pycnBBFvlZUWRZUVY0QKtSAaTDaj+WmbVgtVz7SSmuMNuTpCCElddOw3RZcXl6S5WO0MbRtw1/8heFv/+3fC+SaQGszqA3lowHFbkcF/NgVe8Vu/RZrjK/vBF2mzbC+kgfLvPa/eo1YGoJgXfNp5jtS6CbA9qZsiCFpM/z7TXPxTYTTjqTpSCDVE0rDWlNd2xFEr5MLHTE3PKdSO4Bx2Fcf6e73u+7Y4Xn62gnSEUdems7h5QsdxkeWOZBqeK8h0806cL5OXByl5KMJUjrGozH5KCUbjVCR4o/+6I9ZrZYcHR0RR5GPHJYRX335FWVZk8QJP/3t36KqGtJM0uqa7bZgMpnhnAnOmCZNE/JRzna7ZbVak2UZj957nz/4O3+HR48eEakYqRS9842PeDUmZKU5G5w6Q1VuiSKFiiIQAhk5mqYEpK+JlCSBnLuW1Sa8lvV4POGnP/0dvvz8U6z1hrh1mvcevc87D+/TNjXb7Zaf/+JjVsuSOE4YjyeMxwcsrjZYE5HnhizNcQiMBusUOEHbNmjty30KAW3z3SHzYX9vGTrGN+05N0Ym9t9xPcZxfb6/6Ro3gyIDYz447W8je75NP6/f13DduOncQ+L92olucKA7QKojyv09dNfqgCn/Weew7I7xbR+MEwPA7josd1Pbe9bXPr9+n28i0t70PN70Hr+pvZUw+yuc5037R9du7meI3HcBQtnz49gdE/a47rviOunpdmPCWk98G2No2hbhDE4YlDAY6+sfyEEAgjUWKS1I22GpXkZvUDh+eGc29E28Ydx/0/tw18ao65/Ct2970cqDZzD0N2/qQ/fsru+v3+U2WMZw16li10XY7gJUdvBH9x53wJ2vCxo+FyIA8dYrnggRZGGcl8ARQ0ny0AdnkBKUk0H+KdhbAUsQoey1QJHEEWnq7RFjNCLyKTu+Bqimrre0TUmr61DLWYLxWfymldjWsl1tqcuGi7MLpvMp43GGtg1VU7HerFltCqazA4RQ1HXDxdUVy/WCqq5BSOazQ377d36b+fyYREk2my1at9y5e4vWlLjI0LQV733wHuPjCSY2rJs1QkYoIh/IIoTPMjQOFZ6PaVvKoqBoS4RUxFGMLmuM1kxnE6RUzI+Puby64rNPPuP5ixecn51RFwVpHJNHMXmckMUpysE0HxOPFG2jWS/Btl6GyzhDXbckKgencNZhGkfdWD77y8e0iwUXXx/y8P4RUT7l8dmKhba0eUY9UcTzBON8ZnZVVbvsgLA+DUlGBmRRN4J8cOneLAYI9bwEry8LYrAuXvtO8Al2n8qecPFjuyOzuusF278vpA5dYGZPtPc+ecgCGfRHChlqZNADeMN90w5Ae+/idHtomGl708wF+zRiMKH27tufR4R5Evrphmubf5Z28Aycczhj+2fW2y0Dwqib8zui+PqafX1/5rVj+s8Gwayv7eeiP/BGf+y70Ixu0brtMUf/0/a+ny/V4Y91+CwFJf265qwEJ3HG+y5COqQBiwgqGSJkinZzSvo52JU+AYTd32lv3r930pTOBeS427NtkMO0zsvyGYcNNeg8rukzWTbrFVfn54zzESdHx6TplCSO0WlG07bo1tcVT9MYi2Y0mpJlE9I6x7kanJcV77IFBZ2fvd/X17Gv62N3N9/9HNyfw8OjkzihrX2gToTkxz/6LdAxr15c8PTrV5TLmjwbMZ+NGKUZ927fY7G4AhxJFJHEkvl8ThxL1us15+dnvDxdMJmOKauSovClDLIsR0pJWZbed11vyPMcIX1GmtWO1XpNlnqfs20bXJKglxq1ESRJRF3PwQkuz864urhgdXmFbRvausIZr/B0VRX8siz56ssvSfIR2WRKPJ4xP7nDwcktDk9uE+c5samZjjKyRCF0TS1qTNUSS0sSgxDWExlK4Zxlu1niVOztNxnhkDStRretxxStQze7OvYChzM1UvqAYCEF0kZEEcFGkFgncUikiDFa44yvgxWnOVFkIPJ1GWUjSZLYy/M559VT2tK/din8+QIpF8WK2WzaKwRtiiL45hGj0QRchXMSqRzjUcJ6s/HkklAIEdHoyuO/SngsWMVsysrXhDI+uEFrjYy7NU36AH+6+efHn7WE4Ijg13VreVcKAoEwYY5162/4mxN44laYHfbjNwA6tZXuQ08CywFGFLIg+yXd4zNvam8nmILL1/Fm3UIj5G6f8o5Bp6PqL9gD0fiB4e/YYntCyoWb8Zu+xPnUycCc2X6D3m0mvtaI64FtJ0JUsHBI4QdOEqcI51PSVQDw29ZrN6ZJSp6PKdoKu60ptCGKBFpEaBSLdUFcVuRZgkoMSRoTRZbYOjbrC8a54PggJ1Iwm074xcdfkY9mVI3BGecZzTT19ZrqilZ4nWClbAA2FbptODg8wOiKpqxZXCz46NFtUuEYKckorik2lkg51kVL0WjKjWF5KcnziCQRZFnCtlyQxyO2qwWn2jA/mDOfzgN5oTg+OqRYXbBYrlnMc+bTBIuhqksq54jiMWk0YrPYopyfZOiGST7mYJISS7CNxgootz5FsakdzjU0jUUJr7FpdUldLDEzhYsiTGspypb/6We/IBnNiJUjTQx37x5xenpOmvnMiDybcnRwwng65uJiQV2u2bLB2JqyXlG3Y/LRMUp5UK2sNJfLktPTNaWR0AjkytCUFYejQ5+hZbfkozFZorGpwukU7BhcQzaWyKili8LHGSxtmJgGqzeYtsS0XhavbRVFpXjyvOSr5xVPzx2rdsRV3VAYR+Mc2gkilSKQmKahKkuUBIRDBnnKLtsjiiIioYhlhMQxSiNPRJmWSEESK6xtaduWzXpNWVTUdYPR3gmT0qczd5uyX2ysJ2zFbv/rNkxBBy64Xje600P2U9Rv7EZ0AGOoFRXmtBxs/jLMa+f8/fg1d6iXHAxfLMbZXh7P9YtT6JsMUYDO9P1VTgXDuwMcupoubmcQf0faZDShbbWvkbLZkCaZzywIgLUQoFvHcnnFxeU5i8UlSkmi2DsPcZwwnU5Ik4y2Ba1biqpA6xbnoG00VVmzWCwY5xOSKCGKJHmSsFwuWC2vWK1WtG1DHEniOPUp91VFksSUZYtBECcJo9GI6WTGeDwhiWPKsmS5WDGdjBHCSzcqofx1VEuW5NiJxTovh2e0J2ySJKGuSy7OL2jaBmssrW4Zj8YYZynKEpxju9n6jdEadNtwdvqKP/vTf8PxyQmz2Zzj42PyLEdHXrPWF2wMYL2j88T6FGrYGcE9meT8s+6dWCE8OaAihOuyT2SI/grzY+DY7IzqsK/1RgE9gQVD4BB2IO3rknjXjx+2LlOqA9OGhM7upjvgy0uv3XTOvShNQn96oNvXpRPCE3M7cskT2kMpPk+S7Eit7twugIWdpKFfShzGEIDGcM0ABMlu3xZgnMG41mcxI2h1QjZOiY0CDDLy2TqRSsjTEfPpjJfPXhJJ5WVprUUiWK+uqKqGyXTGaJyTpBlFtWWzLVistmijGI+mGGcQwnHv/l3KskBFvpbiYrFEqYj5wRH5aBLAJtG/3w7K9K/AYp3PMPz5z/+Ss7NXWOuN/9t37vHRhx+FZ+gzun2hUDMAekUYWv73KI54771HnL16iTE1OEGejBjneS+xt1mvubjYAj47LZIREsmL58+oypLDw2OiQ+kJpVbjSTtDVRYYrUPxT+elaL4D7dtmROwf0yEorjfEO0CnAytv+p64tj704Mh+h/o9vcNKPK6yI6veBq5/+wyPzrnvYaX9P7sAVnUIVVd3cUj6iB105P/7esbj7pZ6EG2vf9c9edefTdBlHIQ16Frfrt+Jv764BpgN7jRMqT047RoB6Ps6qJ3Da09l/xo3nPM64NW9u+HfBg9k99+D811/16/1czD8hjf5JlKst6Ycr5FMu11qd6Lh/3CdGIZ3HHWov4Kx2BaveS8NUVjvWtf6WkvOS06rAEB1dTU7+zJRkkhalDNIZ/w42nvgnb23T0eI/r/6t35tPnT/+uN6yeW3TIlvni/dJAx+qhs+1f0xMnzfNza3+6Wzyb8LbRi04n32ARE9JIH2wGdHhxNgNU5YEN7Hty7U/OhrPPijjfUyNlKEgEGx8yN2CHgIXJMhGAR/Kq+Y4sBpqmLJraMxeRaTxCJIFCmEtjharNWU5Za2qUJwhg/sUjJGCEcUQZpJTLtBNwJK2ArJapWQJLEPAHTeR0IqmnJLVdcsV2sulwvaVjOezjg8OuHuvYccHh0TRxmmLWnqDW3bEmcxB0dHyEjRti3Hx3eIkyRsRQZhJXESAyLUszbgBFXjAWjTeh/ThDFttUNrr4awrUo2ZcF6teXJk6c8ffaCy8sriqIJ7y5CygSlEpSMmE6m5EiE8UGFWapoW4XUxge2tYZIW6TSGONwRtMKwdXWop+uWRSGZRNz5+GE03XFsqnRdUmxtaRVTpRMcCSDPSasT93UHPi6fd5asKMEw31plx9EyHDajbVu+A33qF1h8H5Nl92iP5jnYrdVij5FqPtb8NUHNoMI474b7a7/7q5LuyC47nvDdUXu/GIbiNHeDw8d2m3u/e+7K/adGJxzf90S7KTwej8pPAeJ2193pRrsfTdsw/39ir5ru4NEeEZi9zo68ZTge7xpndwjlnaDoftj77t9l1rTdGoJrq+r7GXzBUJ0pRK6DM/dOtkpTjnnQWMngq8qw1TRvn6bT/YRCDvAdFwY991sdDtTdufvDvZM54mlvh4aIUjAGV9KIfg91nrf0hgPostuDFlHWWxZra5YXI1YLo+5desuUkakSY7OHNuyQomEWMRkyjKKZ4zTOaVaYmWNkw2tKDGu87lCxkZndAs/Hm2YJlJ09r3vsehtAegekgtj2eHr3fhECE8ca9MimhxJxiSNOZ7dQjUJi/MNq8stlDBNJswnc8ajEaM8J0sT8klGa1ocDi0Fm6JEV0u2yxWrqwXOaKpiG7B1h1KCdDxBSB8wW+sW6WuLUDUNVV15BZuyYj6bkEQSq1tcuQ17hENFClsUVGXD1fk5m/WGpqqRgG5bz+I4/wyqZg3LAhnHZKMN8XjN+KpgdrHi4GxBMhoR25aD2YiD+YiDaUwWNTSmJBIWnUiUlCgV+f0LSdNsSUYjv+dbBQG3sEYTYkyxpg3vzJPb1oEzFussKoqQSqDbKrwThcNnyzkpgpKI84EVaYwwnl+w+MyiJPX7uHXe5jCmw4ocoBD4+os+C1mhooRIxTTWB0VLKYlTn7DQ2dCRkqiQ1e9xGKiaBvAygFHsiT2z3SnN+KEm/Jyz3X4w2CzC3EFYT3xJv0/s+ZrDxRs/sb0cYPCtlPUy2GG/6eMAQx/6fWpnciP6n7Dv9HENb7dnv4Fgkrt1vNtgJYG57m7E9PdiOwec0LtQpNDj7h6KMW63SAnhQr1Iu5PLCltipHy0uwCU66LrBg/C4UH7yCBDH7Jsgq5qnLEBxIxAJrTWkcYZo8Nb1IsrruoCV1YkseT2yQEyzVkvLjFtQ5ZEpGNI05g4EigJUjnu339IFs9p9CFNq/js409JlbdSayWwScRonKGEQTmJUZJGKZ9WLiMQMeWm4GAyoakVdbVmebaCe7cYxxHTeY6bRFwt1khR49PYDJvScnW6oJkkTGcZ2TxFmy2pzKnWa9aXK8qigruSLE9RCg5mE8rjA58dUGxZVjlpCqVtiZqY1DnydIQtYdEukMr5FPRky/FsjLCWZluSjsZUhSaJUh9V4BqMjYjjHIGjbbY0laFcS9rSslp4yaE//7c/Z3brFndPUvKo4d79OZ99npEkGUIm6NZxOD2m1TVt2bJabHjy9Qti2dKaDdquGY+PEUKTxAnOtWw3huXaUokMpTPkWrBcr/nBT97hav05uA1RPMa1jmmSk0UTxqOU0TQiypp+YiiZABZja7xcm8aZDabWaG1otKJuMs6Xll9+dcXjF47TYkxhEy71JcZJDF67c55NaKraZ2OYljiJAjtsg6PjQUoVao0pJ4iBcSLRbYumJUskUSQoyyXbbcFisSRJM6xxgRj2Bf5a3RC0mHqQR8pu0XFEQ7C4My4du3nTAQ6dTrV1aBwCMwCK/WIoPRO0Z1Aa5+hiuVQwLm3QFHfBcbaEDLlg6Du7A0yk66IFwxeEpdMC3RnAXT8G6dPfkTbJx5jEsGXLul5j2sZHbZqWNhQ3LIoN682C5fKSV6cvMMZweHiIFBBHMdPJiKOjIy9Lt11xuTrDGEvbWKz26e9lUTFKclzbglNEQLVdUZdb6nLtU5DHOVVZ0NQNIEmSnGJbkY4zjo6OuH37DqMsRSqv1bteLlktFjjd0jQNznnZU4wntqLIS4OZVhOriDRLyHNfy8la7SU58Nk/WmustTS6oapKppMJUkguLy99oVIpqaqSf/HP/1tOTo65f/8BP/rhj7lz5w5JlvoixFIQx4mXiHODsSVt781147ffmK0n8nxfBXEUIUVErBKkSAKx4kkUY1p6JDh831oTsoRed3D68TxozvqfYYZQ/7ebQFOx3+8uWrrLchrO1/0Mwh3IK6W8kZjaZVx19kJIqQ7HyEAuXZfv65q1nXNADwj4c7kg3wkgvbXR1cIKUW9K+oxGKRSRjILMm9e217bBCW/YVlqRj0cIklDLyFC3XrYlEjEfvPchH//lLzBti25abKvBGuqqQkjFaJIymY+Js4zTq0suFxtWq4LVuuK99zKvwxxL7ty9zavzc46Pj8HBy5enSKnQ2mIMRJEMmaI7x8NhiZSg1S1t23B5dc7//b/5pzx//pyqqsjzMd///m/yD/9+xJ27txiPxyRJAERDdpySCpwMDpo/t5KSu3fvcnLrFsvFJc5q8mRElifEaYZxjny05YeNQEWCzWpFsV0jcXzxxecUt28jnGY+zVivll6D2uhQNLcKeubeTuukDb8L7aaMpbeBEt2+1c/KDnzuQJ7rhAK7ed1d68bswY7U6A36Pg4tnIPXzju8hzd9djPhtQPX3rSt7kcyd+6X7f92ncjeP9vw/jogqzPYwx4vXoeN+ntkt1QPuPrX72fwb+cMXX8WnRRbRxp1x78tstkveztQr38ndOBJABekuJG82MsUu/Z59zT2SJ7OB7rhHNfJJRn+HZJYb6KDu+/2mGjfxIDA20Xd+3N6J1R0wFHIeMBqmqrwYAQGGodparSUuNTXemmalvF4jHMS4bwugLBmb/xIDFkkySJBi6W1fvPbCX5cD9DYdV6ER7V7UANvONi03mb11qS+VrdzaBPf9PZF+Fs3jjqwKbxNDyrtjgw1W77duUMPd/Jq/bl+/ZsbrDUDDn3vmVk6MrU/cmf/d76AjOjIExvqd/nMD4mTEtGDmcGOGGZP9z3w07qX5xfQGksiLUpYnK24vHrJuw9+QJ4nxNLh2gYl4xC8WGFNyXZ16VUhrMAagTYQpYo4UWSjhNksw7RXaO3XO2uhOG+oyjbIAI04PD7k+OSA5XrJcnHBxdUljbFMp4d88P4j3nn3fY5P7nJ5tQlS7QW63fZKMLPZnOlkDtbLUxvjMwKV9OByolKM1WjT4Oe5YVutqesaay1xEpPEeagZ3LDabFguViwuV1ydLzh9fsoXn3zJarHBGkcqM5xzKJEgRYwQEciIw4MD9Hbr6wa3FXFmiWvvI8bGy/cmFiwajKHF0IqERmQs15oXVcWV3PL9maYQCp3GyCwiltBWjqoqsfh6xp3aR/eWu/fZjSU5CBDwf+xsVDcYWyFjrsfErwdX7fby4VjdJzTkHoDn/VrJTZNaCPpa5HvnCfvIMEvv+hdfz6roAEoHxvishL09YtfHXZb0bs9xTvTr/f46eq3j3X8O7SN2z3koey3kTup5eK6dbdVhFLtn5ujwAHriafi9fqOktzr2+9U/omt2zN5h35UVdtfquvU1uq1f45qm9fVhnffHXEgi9vPI+2cOEKqzlfz7ssIgrPVqWFIghEVa19fDEhascTvCqT+X6UlJ0aHRAyUa/2/k/RtCQKJzdPhwT8gG8ks46Us5GHoSTApBVZesVldkWczp2Yyjwx+DkyRRhsskTl/6IEWTkmAZRweMk0PW6pJWVhjRokSBwRMVFhsC7HyNSCd22Sou1LvpyrEJ6yX+RBinXqnLZ5d0dW8Mu3EPzmfN1AnjdM7x7JD37z3ii59/xeWrBVjBw6MHjLMxaZwwmYwYTTKKtube+w+5XK9Yb9ZUbcvFqzOKiyV6U0KryW/N2WxWCCGJ4wgVJ6jY18hzUhAJQTKO0dqwWS25vLhgubhkFMVI2zBKIqTV1E3pCRzrx4ZdrlmuNmy3W9q2q4UkBkGQoGQUgocsNJqqrZCl5eKqJHl1RT56QZrnxAqOjsbcuTPno/dvYzODM1si4dA6IolS4ihFiAjlLHVTEacKSx0ydvw4EE6A8U6BFL4WkQgy+kKIgDf5wBGJo6lrQCBVjFReFQVrcFbjnEBGCpUorAbd1uAsSRKRJh576mxBJb0Kiq/hJJEyIU0SkjT1NcOVDJL4AmKBiiQqcZi2G7OA82VufPxBizYWoyuM80SoihLSPMI6g1Ryh6844dWeTAholt3kCriuCH6ZCJVLhEAqNSB5O4Mz7CV4gslBOId3Kqz1ylE7H9j5vSRMYb/2hx8Z1m05+MwNww9vbm8lmJQauHNdimXnwPhbROHlwLoX3u0bu0Qt37wurqALlJXBincIUD7qXTjXP8woSfvvC3z9gA5Ik9LXm7DWs3hpljGZjDmYz9ku15hWUxclAJP5AUp5gLOqKn73d/8Gv/zFzzg/e0VbN8znc7787GM+ePQOzmq+/OJzjo6nNFXJ0fGcO3dOmM1GfPH5l7w6u+Dyas3FVYmxkq+/+py6BeMUjfbFbqNIMcpylMxDpHDpU+RSxVLGXJw/5fjomFtH95Cu4fnzlxyMY0aZIokFaRQznygmk4zWxqw3movFika3LC7WLC8XvP/+O5y+uEQhiOOIC32BM5o4gjSLmM0mvP/wLmdnz2iLNatLuHv3gDsnt7yhKDOEU2y3V6y3a9597yE//tGPeXV2RlMZXj47xbaO3/zJT5BxzovTS8p6i8Xy4QcfUTUax4ZpG3F8cMLV+QvW2yesC8Otk5xVoSk2l7SzQ45mU27ffcAvf/mSuik4u3zOtk4oNkuESknSCSfH93n54md88MOPuHtnznQyxdmENI2wOE7iGZODOe9+GPPL/+u/4uC25uH9MfPJEdqtqF5dso1i6uKA+XRMKhJenl1xtdkyvz2l3G6IJr5wqXEV0ubgDMY02EByNY0vMmesZLXR/Js//iUvzi3rSmGsoig3lGXdG0/WGqRsWa4vKbYlrTGUbe2ninNI4WtxjEcjYqWIYg+sT8cjttsteZ4xH88RAi4uLvp5NplMePzkKbP5IUI66rqhqirUdYM4TPJugnegRbcAeOBwP8JJ7FUypNfi3QfI/IYyNOBhJ6clOzk7Y/rvdOtZX0w0/Lg9JMYGmKmLat3pQ+91SnZ9FfSe+XegleWW1WoVZMYUrW5YLK9YrZdEUcTdu3e5urrq38N6veaddx7ywfvv8/zZcy4uLnj48GEvKbHdbvn668dIEWFaRxKnvhaNFFjXoiJQEVTbOhQELajKgrquOTt7xdXVkpPj29y+fZe7d+/xs5/9nHE0Ic8zxuOc6WTEl19+yZOvv+b01QvWmzV1VaLUjjBp2walYq9NGyekaUZRbImimuXyii+/LElTXzcsTVPSNKVtW0ajjHt37pCPRlgcH330Ec+fP+fy8pKrxRWr9Zqz0wuePnnGH/3rP6Yo/nP+4A/+gD/4gz/gw+99xMmd231avQv6zt4Pdz3I0G3mTdhXoigiyzKm0wmxirykZeLl8Tp9aujmiPJp23QG9I7w6STy9rOaOkePXgJSECT3lAgZQWLv2JsyFYb1nWAwJwcE000yPd37uAnAvB45353TS7v6LCaJQAm59wxu6l/3eQes787XZfiAiGSQcHQ4a/ec1uEzS5Kk/1sSopyMscRRTJ6lWKfZbrfUVd3XPqwqP5ZXqyWnp6cIIVitVqg4Jk4SPvvsMz7//HNUHJHnOW3b8uTJE5QSzCa+7sA//sf/mN//u/8xv/Ebv8F2W/BHf/TH/Gf/2f+eo6OjQDJGIQOpHTxbRdP6grrPnj3jT/7kT/gn/+Sf8MMf/pD5fM56veWf//P/M//Ff/F/4T/5T/4u//Hf/bv8/u//PkpJRqPcZ8YN33+XJIdgPp/z0Ycf8OSx5Pz8lNa22EJzOMpRUlEUjvEkRzqHmnn5wKdPHvP555+yXi8RwnH37m1evnxOGmq4NXUN1lAWWx+ljaD9DhFMw/amDKDr88gFg/5XiY4dZhq+qV3PVnFD0kHsH3N9jbg+n99MMPWI+a/UPEQnXrMFrrdvur/+uG973cG9/VXgopu+497w+Zvuy3Vk0wAF7GydIcDXv5tv6NP19+cG//Ze1uA9742Ja8fssDnxej8CsBr+7N9f+L07m6MjECGSMoDmLthm/uteyraiKEIWtOqy0v3c0MYgcURRFLTnFZHsst9tkOWxoDUSCSLqoznf9la7zJf+NsI7eFumXj/PvsU7eNvf9t7Pm8bfrzognduTtfqutGE23f5YDr7BHuB8w3MPtkNX11AIiZB+7CllgzS4L9jeowRC0GVK7cb80AZjby1zMgLbYkxJmqXMD2fE0iFsS5aPWZ6/om036LZEN1uMLUPQn4+MTtOMOFEcHs1JsxRwtE2BEJEHe53PahqNZpzcuk0+HqON5ecf/5KiKqmbFhA8fO8Rv/cf/R2SdIS2jkUIGvUFzRufdaQdUZSErC6HCFlMIpCrUvoaT9o0IcOqxTnDZrMhiiPyUUae5wAk8YjVas3VZsOzx09YLTaUm4rL8yuePH5M0zSMRiOvelA3NG1DWZasrGM2yjl4+ICmbYmkYjyekKUZjxeX1E3NZDTmYDZjPpvS6Iazqwu2VYXVmtJAq7WXj28Mn3/5BV88+4zv//gRR3eOehLF2Q7Z3W/DT64HhgxJh914CmDajjHaX0ff0G4OOnn9egFXfvM5xP599PbxsL+vrUn7QRz+O7taGTcHrQQs7Ya9o5sXr1/v7TU3Xz/Pzt9wzoU0j66Pw0f8ulTom+yWvab2bRTpuqzvt3bzxmt811oXyNdqTRuyFPfGxuC4rjYX+L3Wy337wDaJwhn/KjwRpUIt8lCXSRAChQVdNJBwAtvNiXAdKaW3l+0ueKALepR7mNPrfmj4L5wLkuvSg+x+LbRsNut+XBwd/oj70UNUFGOsZjoZc3F1jqgMQhnyPEPhiJQiUgqlZH9fAgNuR1x3j0sIX8rFmeCbCx8cLYjoF3VABFl3q/1OJlWEQOC0A+OQFsbpFKkOyZMpioiPf/4JtIJ79+4yzsaM8gmjdIQzlsl0wsHRIdk0xyl4eXrK6YuXbFZrmvUW1RoSoUhHCVBzcDj19a+jCNMFeBpHmo04PJxwcXFBtd2iG1+3/mg+Z5R4G62tS0xVgm2xbetJIxFxut5g8AGraZr6eoPOY/M7TCMkilhP0NWNoXUODTghkTJGKMXtkxOqaoK1DfNpzEpVJKolTyPsKKcRmuk0QugG6Qwq8j51H9YlIrC7gEucCFiRz1jq1KGMMb70SMAUqqomjmOkiukClawznmQK78vqtl8vnXOhtMIOx+nWURsCpYQQ3k6G/lrGGuq6RBtPMsWRIo0TWuownjpMyKGUpDGOqq5YrVbIWKJkjFIxSnlFoDiOQ7Dtbg75vUL0xntvOgufmdjhuUKEVKDe3tn5JJ2d31tcrjudCLSO64Nl3eBvb/O/hgFvN633w/YNBFNIg3V4Rrc7MaEzjr5wJgHU7s18az2ULDoNbw8vSyeDYRnAMudogUgKrArEk4WyLD34oUR4SV6WTUoVwHPH3Xt3MWXFfDbj1q1jnn39NZES3L13m8lozGazYZRPWK7XNG1DtXU8efKEtjVk2QjdVnz6y085mk+p64aD+YTf+73f49NPfkHbGJpKU1ctKwpOTm5z9947FFXN46cv+OrrU6RKsM6n033x1VPaYo1MU6IkJhIKbWpmmURJi5INo8OUy6sVulpQR4ZxnhHJCKMNbW2JUEyyDNeWNG2NpEWOEqQcsV4XFKWhqh2vnl1xnE5wpqE1DdNpRBY1WFdha4fZFtx9+D3m+R0i5cjzmEmacfv4hM8//5rV+hX3777Lb/+HP2FbbrHW8urlcxrdcuvWCeevlpwvlpwvS7L5MV+++BIpBffv3+ff/uIxy9WG+3cOiKTgF3/xF8xnY0b5mNntKQ8fjHh1XnI0HaGAzarg7OxrDg8PuVxcsCmuWG0KJpM5ddFQlpayMFgTsd3UlFtDuXWslw1p3IJsMSgsKXULwrYcTGLu3UkYjxq0c6w2iiR2GF0BKXWzJo4d80lGFkfEUYtztddobS3YhiRJcc5gtcW0jqY2tMZxflnxi0/PuVwoNqVgXVm2dUurvfRiVVeAJc8TLs5fUhY1IEnTHCsNKC9TpESEEIIkinhw7y5xFNE2jZclG+eAo2kattsNQgiKovCGAY7RKKesi34xl5EK8ykQuf1iQr/w9KmLQ+M4rBjeEN6B64QFR2sbHDbVr00yjrHaBuDbL3IKH9nRRagMjclO7skY68ktBuCJM2GxGhq3IVol1HqSVvQLqXBdYb6BxvZ3pH351edUVe0J6nyEiqQvShiyasbjDzg7e8VqtWC1WmJaX6zw8OCQqqx6o7IoSopiy2q5QRHTNi2m8ZaCBGazOavlJVWxIk0Tkjih2C45PzulbVuSJGG1WhFHEaM8I4kV2/WKut7i3AFtU7FZL5mMU169eMaTJ19zeXFOHEcYXTPKMuI4xklJXZVUVUWSpqRphpQRp6enHB2dEEUR22KLEIosy8iyzBtMSnJ5eY61lsl0St02xHHMnTt3ePjwHaRUfPLJJ/zoh4KLiwsuLi44Pz/ns88+4/Lykrv37/Heo0f8+Mc/5t69B2RZhlQRzkGcJD7bMEitWGvJsxFJEpMkMWnqC2FGXR0J6wtkul4LfZgZRP+ZHRAlw7nRZwJcI5qkVD2pMKxnNDRuhlGDw5+9SPnBz/A6b7ou0F9n+PlNALUQnlTyfVW9Y9wZ2L7m466PXZTTTSC3DJFQHancO6oBbPIRaruaTkBfU0tKn06/e07+76vVhsXVgu1mzdXlBZ9//jk/+MH3UUrRNh54qeuai4sLkiyjqhuePH1KFEVstgXWWbIs4/DwEOGgriq01pSdvnScMp3N+NGPfsT3v//9MIZcX2dKqdjfQdBmbpqGoij49NNP+cM//EPG4zHL5ZLLywVN0yIVnJ2/4L/+r/9LXr18jpCW3/u9v01VeQNXRRFSqP68HZkhVcSDdx/S6IpWe7mqotxwevqKLjMujSO0btlsVpy9eoVzhlZXfPnVZxTlmvEk5fT0jFGeIQSh3mCDNV6X2ll7E57znWpvBnz6I4JTsvvPm4Ebbvzv/Xm3c9A9OuN3zc7A7wK2ZB9etUOodzDafhvOvb3MTOd2DsUb2tvueQjK7t2rG0gxXP/WwAYZAsj7kMJN195JkHwbvOhN/e6CVlz3fOHGdel6n286n2NA8Ij948OJ+3Xt2/R37zne8K2b+ufCtTslpuFzvBm82/8sRB8N+jFwPMPx3Wk6eTxrLW3b+tqIbYuOweHlUVXk/43kbv9y1vkamlgQhkgloHxBcW8zGvqwRGcAE3zAa87scD/r32N/N9ef1t6z/aZ3MICdbzzb8Fzdv0Mw+Hpv3jT+rq8JXaTndwkE3RFMN8+p4TFv+m5Xu9HPGQnC9PaTFNJHMvdrqW8CEQi9oZTn4M0PQJnCgMQSRZbJKCLPU9JYouuC1eKSn//yLzk6GJEmElzjbY+AgygpybKYg4M5USIxtqJt6l61wTqBUhFHx7fIRzPWmw1ni3O2RUVRtRgjePfdj/jo+z/g9p17lKXP2DfWUgflgLIoAY2MElTARhxBBNpa4jj2HIYKfpiuWC2XVFWJNi1xkjCfT1FRRNs2nJ6+AgQvnp+y2WxpW8NsMqPaVKyaBiUVH7z3AY+/esbV5RKpIqaznM12S1ltaesGjSPKU5Isx24LNtsVq8WCPMsY3c0Y5Tl5mhFFEWXtA8gs9IoJpqyxxniATlsOZhlRmiGTFBEpjNEQeXBQvkXn8vq77feZ4Mi+MbDi2np547m/YZ768RiwPnczUdMRTE7s7y0dRvima3Zk0s3BYLt9+DqJ1AGm17/j25vUEV6vP7O3X99g23T7iRvk0HZ+T3dYn7V07VzXPxuee7dPXb9ed97Xn9r+rB984TvWOv+rbVrKoqapdcB6oLMrr9cO3lsTQ+hvX1M3CH1IA1b4jE1pwZogmxzUN3AEuXDJcABYa0FIhHRB3cL1e721neKG7Mezn687O7MLuJQy+FfaB/NJKWmM6YH/Tz7+GWksGU+mAVVqaHWJKyqEshjTeL/U2JC0IYllhJMKa32dHwZ2s0SGkiHgZMgiccIHYve+vw0GYYSMIlR4hFb7Y2MZIaSvQWk3vpxIEiWMshHJPGGez5mNpkgUxabk2bMn3HvwEBFHVE3D2eNLzi/Pefb8KYvFJda05FHEaJqQxQl5mpLOfMAlQiFkjJKJL9dSthRlxenpBXVZMp9NGWcxTTXGthXSaZyuacqWwrXYtiFRCqn8u8D50gY2vEPdGp8Da4yXOXWA8NKLFk8yNbpBG7CSUAKnxSF5XmkuzxXnpznlZsH9+1MO5ymTUYyxlul0SmI0toUYSZ4mtE3pn7UQOBRRPAENTvvaRDaCRrc7HDEM4TiOe6wgSRKiKCYOBJM2GuNASEEUCFUV6nT7RCnVkyQdkRYmiSeWItWvZ9oa4kiiIgXaB3rEkUAoT0YObQupJMp6AlNrX0uqbVrKsiQhIR915QQEeZr7ICzXZeNLIql8UC99d4IiFcFGDiUfwoay87XCWLU7/6x7TuKGfUU4EWqfdefw9upuK/UyeiIcKywdA92vH2/bL98ukbe3CBEmYZd50EndBUdF0OsFWmcH3/W6hD0w7Xb6yHvGu+tYcv9wOlCrf7jhIGdtf63l5SXSOY4ODzg+OqIp1rRNxXw+4nA+Zz7LAUlVb6nrkm1d8er5c+7du0fbjthulhSbBWmakSQpIGiamvcfPeLp06coBdui5OLygo8+egR4vcvDwxlRkvLV41eUhaZp4OR4SpZkveSMsxWjXJImEQpflCxOMpRrGU0mqCjm6vKUo9m4jxCPBEinmY4Urba0xuEkjMYpVm+QQnIwnxPFKZEVOOFQkWM2FZwcx4yyjEj5VMHpWDDJx4zylPF47CPItSJRGZHQrFYrptOcJI1Cxorg1p1DjMlwJuL8YkOcjmitA5VztVxxdvkZVbHicJrQGsdqVdAUJZGUZPmYRAFS8/D+LYyzxCoiiTNevlpw6/Yd4lyhLgzPX15wlB4zGR+zWjXUNdy6dZsoSrDGUZUNi8WaySSl1muKxrAtBJdLRbW9QnGHNLIo0YCqmc2UL0KaKqxuefnsBSpOScfjMLY8WeiLuSpiqWgbgzOBYLJgSTi/2PDs5YbT85rzq5Ztq9hWhnVV0xpDo1vatmaUZzy8f4+f/eXPAZ+aaq3295xERFKRRIo89/UynDNo7aNHJuORT9cMmQxt2/YFGR3WF3uzJswHv7AqtatH1s/LEJnVkU1Syl2R+CGLvTeFg9EbSONuAekqLPdAEn6zlR3w231ngGz4DbtLrg71mZzrTdmOaO6dRefoiyuGxctnPAVyCYl0gURzYs9g/S60xeKKtm2YTKaMTo549OgdnG2R0iGl4+z0Ba9evuDJk8esVgu/cRrNZDyiqmrqqqLYbrHG8vLVK5bLJXVbMx2PMbF31CMlPDH08gl1XSGFIMsz1uslWjch+qlhvV4jhOLo8JCy3PL06WMuL89Rsc/eSJOIxVXMxcUZ2+2Ktq2AGN1YdFP3kng6RFTZoN9rrePi8szXilERZVWRZiPquqIsE5LE69VLKX3/m4Y4iXvyQkpPWM5mM5RSjEcj7ty+Q1lVbDYbyrKkbVoeP37M+fkFDx++w507d7lz5y7vvPNuD6gJKYmjBKVUMEiiPuI66rNrdlGCTnQA8OvEzTCS0EeSdXJzYcey+1lTKhh0O2N6R6y8HsX1OsEEO4Jm2DrQcHjc9XZzZOb18wz2+gGhEx7BzjDp1AYle8bZdZKqO4+1QV9buj3QqD+uM4IGDnRPdEURxppQ80CBsFxeXLJardisllxdXVGWJT/5jR9TFAVXiyuapuHs7IzlesXIGIy1NK3m/fc/4G5yj4vLSz777DMP1EQxbdtSFAWj0YjnL15w69YdHj58l5/+9KfhHrwx2Dlr/j5tGJcCrTVpmtI0DaenpzjnWC5WNI0nfn3NKMt6veDs/BWvXr2grgoi5WUOBFDXFXmudgCw8+RTmmWkWY6KY9arLSqKcUb7OlbOotuG5XJBWRbEsWI+P+Af/P3/lJ/97C9ZrVd88cXntLqlrr20rdYaXdekSYRuG6zWb0Zbf83acGxdB/yvHzds1/cib9fvHPabyNzuyC6AwvXfGQI73aZ6DczxiPTumB6whb1fxOv3dL35/X63eX8boHuPuPjGo7/teXbz/CYwbL8yy7e/6mvk0RDQ657NW/r1xs+6vnW+oxB93b3rA2LP5XJvd7q6a73pfQ37PUBSB8TU/rWun7PbO3b9vKEvAbkz1iKR/VqMV2H2WQbW9nu41hJjoiCnsqvNtwMTAyglvFxHkiRexkyEgEIbiCUnwr9dyPDgXm58EkM6aDAfrjnP/d702ry9eV5ef19va6/9/Q2v9jpw6sE6y/ANfHdIpsEzu+GW/XR6+7Po7Bk/rr3kohBejnhYm8ddJ5is242W/k+dpxKOkwJpRKjv5GhagUV44qOpWRcb1usls2lMIuIeYPRBSSn5aEKWjxDC1zt1woAE09YkSUocfoypWa4vWa1LirKl0Y5sPOPBg/e5ffseB4cnGC1wVqKNQRsDQa5ZOg8S2dZH4Qshgvy4I45j4lgF37JmUxVsN0uM0SglGI1SxpMJzjpWyyvWmw2r1RqtDXGSM5/PaRvNZr3l4uyCs1fnFOsSZwR13YQsBHzhcSEw+NpVrdGUVY1UCic6WUJFFkl004J1mLalqb0fkJKiHThtqKoaHWwxG9YLEUeIJEFEkQcopcJ2PuE3raH9L934GA611+1Qu/d5GC3fZh+46dqdLf2W4zvQbvid4Sr2tn3idRLmdRthiJ29aT75feQN/XO75/Cm/uzWvmv7nbjel+E5X/czhrbWW4N4bu5pf+7r533tu98hzKBrnf/V7dVeXWb/eez5pL2JaQfknffHpJQ4uZPgdcJn4zgb7Facrx8u6OXtvPSx67jdcD08ttNhSmGMdmu652xuImddZ2x5fMi0QenC1wkSQmIEVOWWZ0++4vBgxvHJCfloTNO2GFP5elSupWq31LWvmecDS32WliIOz0GH2ua+j8qjUF5A2IbnJ728WGCdQtASOKvA+Jxv4TwhYLXDNl7VK5c5s6Mp4/iEg9kRo3zE5cUlqUooy5KyqFhcLIijhKquSZsGIQSnr065vDhHbytSJCpOmIwzVAxCWGpX4qqG45NbpOkEqVJ0C8tVwcX5gvV6TVEW5GmMkpo8icgnORjBZnFJ05SgG1IlEWmKJJBFzhJHEdparDZo43GLzvfwJIPfW332kleFMWaXzDhcj9tGY63/UdJydPw94myGjCXbuiLKWnIXJGrxtaOcM/5ZB/tS2wYlMkQUh7FThfG0u1oc76T7pVSkqQrZzT7QxBiDQ3jlEeXJISUFrTbBihRo3XpVJby6knUOa7TnLYQvk6OUv09vXnv1K6xXelJCoKRDKaitw1qNNppWtzhnaU1D09Y0bUPTNL1CiURiGouUHvd2xiGQqCG55I3xvtyJCGRLH9L2Gt7iQ2tEIGe7/UaEydnVd+7emBu+OxHWaedJZq8oK/ZNcK7vEztb/Kb2VoJpd+HhZgqdYqYH4jqNdn8ZeX1D6zby0JHwOIIBsf9gYHfuDjD3kktg2gCCuFD3xTq0bkgjD3pGkeDu/dtsVldMpxmTaQouYbspybOIulFo3bK4vOR7H36AECNGaUyZJwg849+2LTjDOw9uUVVeX1jrhmJbUNcNQrZoa0hiyZ07RyxXK5QoqaTh5HDMJB/RNi1tXdG2mtk4Y5THvnC5kSRpinAt+TjFIjl/tWU2PUKYFikMSgpiaVCxwCTe4JWJomwlRSHIs5jJZE5rIHE+alAqODyMuXt7zHSSEUuJ0Zo0dkQyZjqdMJlO2W5KVssSKTLGI4kTgiz16XmeqY1459EdViuDUjmHRxWrbY22FmTEcl3y5OkzYmk5nL+LNorttqVa1UzHk6CX6XBWc3gw5vS8oK4anFNcXFxxcucRB9Ehtd4gzgRREjOdTml1iYq2zGYz4ii817bFaAkuo6pbNtuaq5Xm68dbdLPGmQqna4yoUblmPsuIlEIGHerLywsm8zn5LEMpg279YqGERKoY6yRtq3HG4ixoKyhrwdllzauzitVGsCwsjVMUtWFb1Fgsja5I4ojxKCNJYpqmJYoVAodx2i+MzqfVJrFiOs5JkwQXCrzGKmI+nbBYXOFrthiM0TSNT6v0YLRP/+yiQq2zxAGgHeAz7Ob9TopKhUiEjlgaGnsdGdzNZdf/Hz2BKwKYHMpAehKpM4q7OSq8zJcUO3LJCRHqp4q+b3YA6nT97DKweoZJ+It747gT0NvFHn53FOuhqrZB5mVEkibcvXub9XpNkiRIAc+ePeHy8pyXr16w3ayJIsVVlvL06ZPed14tR9R1zfLqis22wDmHmsxC1KUvmOisZrW6YrlcYK1lPB776IrWSzG2bctq5fV9N9sVCMfjx19SljVx6rWC22bO2elLLi/PqasCZ42v82S8nImKFJGKaNu2B+B9tgV+PS3WCCGp6hrroKr8+pMkCXEcM5lMWCwWJEXBdDolShOUlOjW6493BsV4PObg4JB8NEZKyeLqisVywcXiiiePn2C0ZbspKIuKyXhCFCcAJElKlPnrpamXYrXWk7tSqD2ixFrb1x3c/eze25Bg8pl8vuBjDz4D0GUtRT355vZqnw1HwkBy8i2ZQfsOwyCz6o1AN/1cY8/Z87vxvhO7b7QIcd3R3HmT1nQRTrvon45AGpJnuy7YHRm+s3z6e+wyKoefgV8bjbFY5Qm/jhBabzZsNhuqqiJSMc9fPOPs7Jw2ZCMpFaGNpigKTCD6Hjx4gLGW8/NzxuMxdjzq5aDSNGWx9mTlaJTz4x//eM+g6tbULv3dP6fd/WrtpfsAiqL0cwCInfVE5ignSeNABBqECPNDgrGeNO4KgtpAuKsoIk5SZBSxLgpmkwnWGJw1gKNpahZXl9R1RZJEPLh/nx/88Pu9LGDbthwczmhqHyVdFluKzYY8SzG6xRr9HQI+Xwd9/opnoduE3WDO7tmyAdzv1oJe/otvQSx8w7U7ML3LPLtOmO2dp9/sbwaSXgezrt2LcNfWgO5srkMSBp/urRDDG9uzB7rz7bknb+RCxN66dlNfh/f1TaTCNz3jG78vgrP1K+JYNz3n4br9pv5e799f3/wc2oYh201Kb++J7m10Mno27EEWa7zd1xXwDhU2BmR7F1UpiSMfSaqtw7jO9vRkuAhxrjJITnb39jqJs3NsXweDrw2UQVbxa+Brf7rh8d/u2Yq+D7tx/TaT9MYxJYSXfv8Otrfd9ZvG+Wvn6Il1RwekIyzDdXa3DncuxU2eQ2ff+IOEBWlV8GMsdQuN9hm9VV0HCbsahEApiXGe2FJKkaQJeZb2wU9GaxAWqXxAThwr0jRGRoptUbItNUXVoo0gisfcvfeA997/gPFoBqggvQ6mNd5Gdwara+LIZ94bJ+iytPzarogjBRjapqIoNqzWC+q6ZDTOSNKMLEuJI8lisWK1WrLZbKnKGuss09kRAkklvCzexcUly6sl5abyIKmJUFGMNpbWGExnN0qJto7VeoM2FikEUewz/2tdE8UKKcBoTVGVxFna74/G2CCP52/Fl3qQEEWgFE5KD2qryONHg73t7c31S8XrK/2u3bTG3DTtbyJH3tQ6DOtNx3dSpHt/H6wn33YO+GPCGa+tc7uzvWHfGvTxOh7wepf3+7PzCYZX6Q6Vu3U07Bv96hyus9vX97N893EB/N7A0A9627P/tsd9d1rnN2mt+xrGvg2eee9nDp/ZgBjCv0alAn7rXJ/F5HaoPh5JGFhtXeFGOoL39X1XdHhPGE99QMo1pRq/brt+3Pn69RaHRbqu/IMD7aid4+z8BU+eTDC25vj4BIvwJS90Q6NLimpNU1XopsG0XrlEOIUgQjovXdslPwjhMa9dgDT0kBmA6zDv7v4kzgTJPbpzgjMWJWLG2ZR7J/cZR8eM8glSKdZyjW41y8WS7XpLU7c4B0W59eoq1rC4uqIpKmIEWZKRJIJslKBFi8X4BAzn5f9G4wmQsF752u0vXrxgvVqhdcvJyZwstqDSEJxgQFfYpgKtSTrVFOO8H+ksUagrZIPKi5BhLHRwnRBoHQgYPOHS2USily8KsmnOYQzUVcvZ+YL1tsW4GCskra5praCxlsi5sD+YHsMQQvmaQsIiE4ESCoegdY4o2sl0Wme9WpTaqZtIGdEFqO+CbSVSeixTSU/OuEA8OUC3GtkPcW+r2vBMuoxSKem/a7usOmcQfbU454NVrEHrlqZtqJsaKR2t9pK1NmAkHo/2tZ3aRiNcFGqo+XqDUqjAsYYB2LO9gx88JtLvP+7a+hrso85K2u1TXW/D3NtN1N15uz3Ka2L2Dlu/3Hd70bdwht5KMMm+Z/5EarABOReKmikRgNGdATh05EBgw6zd1Z+QA2vdy+YJSQ9ISaEwxjIZT8izGCkc5+cFSRx5g9Bq6rrihz/4iCgSJJHk7Ow5P/7RhxSTiCRWRLEGB5vigtk8ZTTJ2GwqPvvkK+qi4PbtW7xz7zZpGvE//A//gmK7YDYZcf/+ba6uXjKb50gxRmtNkkjOzs6ZTkco5YvMjyPJKJPoRiDwRMXJYU6x1lSlRRAzHsPBLPJpmdq/TG0EKvKG68N7U37rJx/w5Wef0pQbFCnzaU5Vb0giRZylpHnCclth72ZYm5DnYy6uNnz0/kO03lLXC+7cGfHuuydgLRJBEiXUZYGTEdq2lFXNxeWG5y+umM3mHB/d5dadYy4uXnD7zq1e29LJhiwRTMYRUTzhzv3b/OXHn7MpNizXa1Zrz4y3NgIxQZuax0+veP/R9xBkQESkFDjDdr3k7NUFRWV4/vKKkzvvkE8z0nzMeDJHqIjWtNS6pGkLjGmQaQxCE8cpJyeHHByMKJqKPMtpjOPJ0y9IMoluK5aLJePUcjTKOZrPqeuG5XJNNh8jVI6MEqI4ZjTKOTt/xTgdo+IM6RJWq7XfUIQ3i0oDT19teXHecr4SrJuYVhjK1lHUhqJqiWKHNhXvPfqALMv5+S8+RsnUb0AS4kgSJRltq33R1yQhiSOaumQ8npDECVkcc3x8yGJxRVVV1FXp2XMpqesaE1KLkyREikrbT3a5k4sNAMHO4faGgdwzIq5jMsNN3M/BLhrOs/xIiRIRGA/gWgvCOoSiz7zojAVrfbZSp4MqlAoXswF08jJjxjq/IQJCCYRTQUJlaJKEVWAQYd1t7J2M5nehaePl6ZQStG2NEI7VasnBwQFCwBdffM5qvSCKJLPZlMko592HD0gixWq1ZrvdYq1hs9n6OZ4eUmwK2qah1Y2X18KgTcVms2S1vkIAaRqz2W5YrVdsN1uqytcZi6KIi7MzVosFlxfn1HXN8a0TouBEf/XV55yfn3rn2jmqssI6w2g0AiSt9hsseOC8bmqmkylHB3OEFLRag9NURemvF8c9IbXdbnvCabvdcnh46IkgIdDWG546RGnNpnPeefguP/nJT0iShMurSz7/4gv+7M/+jDt37vDy1Sl/8Rd/wemrV3zw4UccHZ1wdHTEdCJ6YqQzzKUQlKXujZhdccsd2LYjn0QA3IZklOuzQQUy1OzxGSr+3cb9PLJuN7e7sT7UAO6u39U66wgM2M9g6rOnrPORLgjUdc9RMNij7S7i6Jpj2OHFvvc3yX91jnE3PwMppE0wSj1Y2fXVaxvv98UYT7RYHMLIvXNot7tWFEX9fZnWEGdxb7gK4PbtO5yfX1DXDev1lrOzM/78z/+c58+fslwtQQpOTk5IRzkvXrzg7OwcIRW//OUvePjeuyRJwnrt9bwVjrquaZqGNE2ZTQ/CeddorZnNDnCh78M1dRdFDXmes1wuqaoKYwxJklCVjddrNoaqqrh9+4SH7zzkJz/5CY8evct0OiXLsn7tTlMf3ZbnI5SKEEhabYgiRZrlpOmI5WoDQtFslwhryLKMpm64vLxCtzXHx4e8//77fPThRxwdHfH02TM+++wzfuMnP+JP//RP+fqrL1kurri4PMcZH7SjpCSN47cvUL8mbTgehzUFrmchdfNqSOR2x14/l9+murnS/wo9EbSbv28Dkzp7+fr0/TYA1LCf3wa4+lZA/N7xN3xX+vXD9aTFbp1wg3N168yO8PL/SiG6mrLd13b9uN6fN7yD6/cyJG2G17+JoN+775vOG/q6T1J1pPwAK7y+3H4DSPltya1v024am2/DRoPexA6UFbsAot4x7UGhIJsTvG/nfFaTsTsQaNcPvx4qJcnylDiKMY2PPvY/3u+TOCIBkQDtQyT3+Z6Q8dT1NnxIP5fecn83ZTB9U7v+/PbGzfDmwgdvO/tNpOBre+x3pHWA8tuEC28E5a/Nt/5YoJflcoIuOr6rsdn7DuH43ZLsBn+2u3fovGKKxNte2igWixVpLNBVS9N4eySKE6IoResGh+NwPiOJUyy+BoNzXknE4UBrjg/nCCGo6ppytaHVjqJxaA1JOubWnfv87t/4m2xLTdk0GO07WhUlorcBW2IFuNbXMI2yYKO2pGlCFCmMrqnKgrOzl2y2K1pdc/fubU5OjnHOUVUlL1485/z8ijTNybMxeTZhNpuxWhdcXV2yXm3Ik5ztZovRXlVAyZg4ytlUFa5pwbW0wT+M0wQcnF9esF5vmEURaZrhjOX8fMHt23fBOsqioKlr1sXWZxvolrpuybIRrvUF1w0gRIyMIw86Bp9PqcSDes74n8EIEHtveDAwcK8B29fHWbcH7M/RHdk+3Hd7oHFIWd24/7g90ua15gY+bn/M29f3m9Z/3/eb6xr1/skN53o9eGEHkO//bbh/dkcPA6hgb+Xbbc7BkQ/PSoTf3fDz/gQ3/3cHL+7tAXgpJr7ZnvkVt8tfy9b5r52/+MY1dI90vD4eA4iudvW+ugwlZ30Wj5J+rUM4r1DjfFmE3VBx/Tjt4V3Xzb+dz+xcJ4/b1ebtJHS79dzhMDjtvNqHBCl8BrQ1fl22VAEXMTRNgdE14+kkBLBuKIo1q+0V1XZDWzUhQ8aBBekkHvoeDDxLGHS6n00ekhLsajUFO8Q/LSQR1gmMFejGkKmUOIoYp2OOD465e3IfWWesVlsWiwVFtaWqKi4vLkiSlPfff59/80d/zDvCZ03JdURRFEzzjJiUSEKSCjQNTgjS0Yh8OiZ3ivFoihCSsqq4uLrk6uqCs/NXbDcblITZWDG5NQVTsr7aoqsCpxuUNX6fsSEgVjsshk6SRDcaZ71PqKKI1jiEtb2/78shhXmpQAqvWuSkHHAhDkUUgkstRVnx5NkFk9mUo6MZo1GGiCYUte4l+JUDrU2/bgghmM6mYZxarDdBQ8C+QxtN07YkSVfDeLhOWFpj0aaz5zrbISh+6Bqja6xQOHxChpC+7rMnaw2dv9LhLxJQkUCILuhKI4UDp32tKCODJKNX7LFGU9clUSzQusYTeIokijEWfA0vRV22PhtYg7CSSCSe07FmQBRdb11WvOh9Lz/R/PGDWY7f427Ye67vW51rRqe4A0I6hBXh7l0/h7E72bwOC3tT+1YSeR3Y1JndvUMeQL6hqxFc5D4bAnwKmRMSKxx6sPj1EYyu0+o0PYiXxhFFsaUqHXEk+ejDD5mMMyLli8dfXZ5zeXHGrVuHvPPeQ370w++xvDrn/Q8fUGxXbDYrjNa8//49Xr24QDcViXJIqfmTP/mX3Lt3j/v373M4n/EbP/oep6+eo3WD1jUnJwnOdhtyTBwfc3Z2FqKGNdIZqs0lx7OUVBo2kebu4Zw0VSyFoVSaOBIcHSYYUyCML34WZzGjyZxGt9Rty2ScMJ867t+d0FYRiYpI4oj5wRgUOAnGOebRlEcffEgU5ZSFZvT0Fd/7wQOsa6jKJfNpTFGWJColVgmtiXh5foFxlvmB5M6dAz76yf+Mg9sBiMZSa8HDR++Ca2jaDU1dI0TO6ekF221N3VhaK3j25Avu3j4CYFtsKLY1H3/6hOL+feajnIuFZF0qHk5vkY8V23LBdr3i7OVjGq0wLqXYLvhX/+q/53s//BHZOCeKpnzwwff57/75H3J+vsAaySSfUpZrIgdl3tC2I7TOkTIjiiTjScJv//SnrLcFozymbjSZBNcoWq1oG8lqpflv/qv/iof33+O994/RQvDkz3/G8VHG+++MMUKzXC+J0xFCShrdULUNi0by1YsNZyvB2Qq+fnZFg2JdlBhrSLMI6xre/+A9bt8+oa4NTWtJ0gnGtownOQfzKVVRMz4+BEqsLVldnRNFEYXRRLMZ6STnk08+RjgvpdDUJRKo2rY3npwzxFFKGxYkKUSfmvkmEKkjlnz0yc5YtNYF1t0bYlYInJM+0sN6QGAIWislUVL04C54gyNR3WYRCCZhiUTQLbUuLNAOqVSvD24daNXJIfhoGO0cHQk91HD2G4rDIXug3C8oby9E+uvUnj9/yp07dxmNMhaLC/5v//S/ZJSPePDwAZPJhKvFGc+efMlyufQA/dER682cw6M5TVOxXi05OT4iz1JuHR8hpeTUWl+IUDdstysWiyv+p/NXZKOM8/MzttstX3z5BaPRxEdPKMV4PMI5L9n35ddf4kIWTVWV3Fot2GxWVNUhSRzTNj4jQuB1cPMkw1rNdlvSNA2z2SwA9zWbzYbz87MefO/GZ54lXqKkMbRt7Ws/ZKk3OipFUW5ZrVbMZjNmsxnj8YQmGNHvvusl8MajCZeXl56EcvDw/gPG+YjRZExdt1xdXfH555/z1edfEEcRaZoEQD9ls173BKpSPnupLBvA9TJ/xrY7o7MHowcBE/289HPS1w+K+4wsTy6p/jvegIHOQR1m7wx/H9Zk6tpw3g+PFYO/3QSaXQfRr1/vOiD7pjZcg3ydDg98GOPlBrpC7l2W2U3nVEqhwrU7h6htW1SXsaMUuu1kESUylZRluauRpSKm0ylKKaqq8rrGScYf/+mfILAhij7i8PCQn//yl1hnOTo6JElzvvrqKy7OL1itVrRty3w+R+L64rh5nqOt5NGjRzx8+E6fRdZqjXOdVF5HToSVzPqstcPDQ37nd36HxWLB//H/8H8iiiJPUB3M+Rt/62/yv/1f/2+4f/8u89mM8TjvSQeBCOseTKdT6san2CsV4aOcHEkyIs3GfPb519y5c4dZFpMo2G5LTk5u+6Acq5lMRozGc7SFW7fvEMUJm80WnOQf/aP/FU1dcX52RlsXfPXlFzz++muePX3Kk8df/6pL1r+n7dtBvdfH7XWwpp93byFo3gwW3fz5Dm253sc3n8caH9l50/X/2loX/NEDcH+1a9x033LwfN9WLPbf5Xo3R3bvt86Zu4lkEteO62EJd9Ob+eb+dP34Vcikrh7Nr9w6bZr+Ltwe6KkiRReda53PTJeIvrC2jCKSJEVFDickWvs1P41ihJBEKu5rwIDtyXQTORodsh+cwBmJ1b4WgkINE/PIAAEAAElEQVQh8dGfQ2h4D/rd6/MbWo+P7p6lZAeA7B16bR99Ewg3/FuHL/27NrFDsb87LfgduNfnveiAkBuA49ffyc1zZlis/sYB1H/gBsd0YMwOIMN5H3u13vJnf/rn/OB7H3D39gm6asnSKUXZIPDR3Q8fvAuh1q0UEVLGlEVNHOqHZlnGal2A88F1rXZsK42xincffcjDdx5x/+EjLi4uQSYY49CtDhI7Fms1OIPEkKVpkHdqcUb7GqUywTlLXZVcLc45O3vJeDLi9p1jxuOcOFGU1ZblcslyuaIsah48eAcbAGKA9apAa02e5cQyplhXfPTR9/ni0y84e3lOud3y/qNbWBlhKam1jwC3FjbrLbaumcUR62KLihIyIYnjmPv371OWNThHlud89P0fYJzh62dPMUXBOE5pRYRLHPV2TVnVEBnuPnyHdDQGFSNjSRkk9KR0hDivG3bEv+65FEgaJ/bH1TesP32gwQ3BGj46fNfP3lZwbz/rm87VtetLyRA8/HZLzNsAwSGSd9M1hn1528W64Jz92k8373nuht9uXndfz/y+qb832U+/3q1tjS+toC3G+PfrOgOFnaS3H4M7n0xG3vfo3pNUAhGC3SIJ1oBQzicfG4nV3nrA+X3cWELgsL+WM529tevbLqB5APLz+t+7+aGECNkYAhfq/QhrwVoMLV1Np+5eLs5LnK1o6jV37z8kiiNWqwXL1RWXiwu0LT1OHSTfjHbgpC8BQYwTPiPFGosRLU51nZeh3J7oQX5hZaix50kn5/B1c1EgJNJGzCYHHMwOOJofoWuoLlds1luKzZar1ZI8z/neRz/EWcvTJ89IkoSyKqjqEq01Ed4+mk3GZHFE29ZMp2PWuiSepEwP5sSlI1Yp1nlBv1hFzOcT7t09Qrdjslhx5+SAtlzimhLXVOi6xLYNTlufmYLCWS/DFipiYUJdoiTy9+wCMagiX5e9aY2XxjNuxyl2XLG1/UwUKC8ZG4LLjRV8+eVzRBRz507F4cGYp89ecDTPOZyPOJyNuX104H0B68eXcxVZXiMjh1KRJ6IEQKjBZQ1KCNIkBKIG0kwor07VaOMVS0L20s5qtxitvQReqOHolUAkpm19dpJpiaMIKaMQUBVIWyewtvGZzNIS5RGt9mSosTVVoSnKDWmaeDJK+prorW2wzpNWSsUI65AuBq18AHhT47QikikCg3G+XqEwDqT1zxL8omjw7y8oAnUvsFObFDcEWXVk7s7eGhJLXn7P5/zsAgWdw9dcAsB67lWGNT3a+and8W9q37IG01AmazeqpJS+3pKUfhEIQ0zJXTaFC4ykEw4hfISOEGpvI905ToPiUjjquiJSfsC+ePECJQx37tzi+OiQow/e9+eShraueP70KbNZRlFuiSLJ4XxG29RcXlwxn+fMZ2Oa2jCe/Ihnz16ilKDYXlJuz3n03gNkZMmTiNE4Zb0+Zzqeg3N+kcUxGeVeTsYZYgFJGtO2NZNckMWZB8OEpkl9FlGeJYxHka+7RAI2waKRkY/arNuW5XKB0SWTSY4Yj32xLympmhKkIEoTJvMZbWsZjeek8Qh1GDMbHRAnCWXV0mp4ebolT0ZomZImI8bjGQ8e3ebrJ1/h4kNccsK//eQ59+6+w/PHr6iqNb958CGnV2uaakldeoIpyx7w+RfPyDKfZr/dNuAk43zEnRPJ+p2HfPLZFxgjWa9bMBH5+JCzyyXjp5LDo4w0k9TNgvk8RUYjRDRhPJvwb/705zx49xHj6ZxRNkW3XnqjLmuqUhO5iCwWJIlESUex3ZBnj7h9MubLp6/45JOPuViW/PgnfxOaJTSXGNfStpYvnpzx/OUlp2dLrJizrRNenra8PF/wy09e8Pf/3m9zdrpAihYhHKNQZNAaw6qo+R8/eYWxM5ZVwdW2ZFO31Man2TqnkdIynWZ8//vf48svn/Di+RlRlDKZzUliX8diu94yG8+p1itUFOQUW833P/wx220BQFVsaavS13cJQKmVlsi0SBkAaOcXhC5V2QqfaRWpXTZAZwR3G7fXve8k8nwRwo4IkkrtYr9c2GSl8ePaxD37LYK8nxDeYJByJ7sXh+j2fvYH4stJiXIOExisKPLSi9ZZLI5Wa3RYoA1eJmFgKvt1YbDQGbefIeBX0+9GWy4XHB8fYoymrms+/vhj4tjXObpz5w7j8YgXL56HOit+7VmvFkzGOUY3OGd49uwpy+WKzWZNlqU0VeUBdBVxmByQZTHPXz5j+eoVZVkESVBJHLUY4yXiunEZx7GvadQ2iACiP378NePxhAcPHpCmqScfk6SvQbMOZA0B5E+ShKqqvOEYyJs+S1UpFCLU1tGBkFAIgd/88Vq2TVN5bWndst1uSNOMOI5Js4zZZMLRwZzNpuCTTz9mNp178kgKqqrg8vKS0XhMHCnSNEUIwcFsznw6JYoiqqoCdtkKWZbRtg2wG/9aa5ywexEynQHfkS2eSJGBWPIyeGmS93J4UsoQXdaRRr4Q+hAAHRI+3We7+gP7TuR1oqhrb8q26M57/fxDImt3H2Lv+m8CNTtySOu2j57bAXN+DRlGle4CVHp3/jVyy1qLtN6hMRjiON4bN/65e2ISoZhO56zWGx4/eUJVejm6KPKG4nq9ZrVccH7hSf48z2law9HREXfu3AEh+jGg6wrnHJPJhCzL0FZyenrKZ599yoMHD/id3zkmSZJAKF53sv3aqYKM4rvvvMs/+Pv/EKMd6/WaLMs4PDri/e99j/fffZc0TUjThCxNiKQXI7XhWUVxQtMYpFS0rWG1WvLk6TOqqsZaQ9NU/K2//ftcXl6gyzXbosIYzXZb8dmnH+MwzGdTVqu1z+hLY5qmZr0pWa0fE0Ux8/mU46MTsIajw2P+w9/6bbTWVE317Raqf++bGMyBNx91fdy/yYjeJ5h3n71GVLwGsAS5vAHgeR0s2Z1C3PC3YUbQ7rsdKft6v2+O8b6p/69/9+Z2U8bGr0KaXCfxZIjIu+4g/VWbfyyvP7cbj7uhX/vZLOK1L4nh752j/QZw61d5LsN+XCc13/ae9t51159reOLekOq+09tdfo3txDY6269R0mcdaE+0G6PC/XtwytdNtIggwdsRTD4IXSKkQuK8Zr2zSCwSjcAgAlDjLcGd3F4nUbPrruvJyN53ZIe27mxcemWCt2XPvOkZ9tcbTq2/JpLprzIG/r1tAyR8L4PktcOuP9ybSeabgPcOMNqdbPiXoV10HVT333Oh8oIfLZL1tuLLr59SFgXv3L2FUAl5NmE+H5GlIXrfD1YMlrZtGY0mSBnhDKzXNU1rMLql1Q6tBRbFBx/+kHv332U6O6TY1jgncVr3AauVbohUV6u6A3l8fYc4lshIopQH1dabNZvNmrLYcPvWCUmiiJMIJeHi7JwXL54Dgjwf8ejdd5FR5klgGSOFYpTXVHXFdlNwVS959vIln37yOcvLFdYJDg6PefTofZ4+fYFxgkYb7GKBbTUH0yn50SEjKbm6uCI/OEAIhWlbtrYgjn2AV920lPUl26pkUxY0WtM6QWU021bTaI2MFKP5hNF0gkpirPDSeiBC9rbBOS/d660su0f73LRF3EjOsKsPfNPs29+rB3612GVV+Pdxffz4f6zbje0bCesBANf56/sKAvt977f0N64VXd9ev9CNl3+NVPfnGCqg3HSNoX+z//2hnPbNrXtnHQ5x/fv9/fVY3033w2DK7uyjADXsX+sbSadf7+aD/HbZS5296PrNSwx+hx5sdtAR/Z1fHmBmhJIoAdL6eiwdtm2wSCuDzSBRzhenMdZjvH6aBHvCddd2Adei79swSLFX/RiMN6VCnSRr0AzqCu8MLZxocA7WqwU4g3Ut08mU9XbDarNks1ogoyABZywYh9O+Xx0+LQXQ3aOUWOcrMUGHXRP+W/jvWQFByswHRHsyLFYJ42zC8cEdpqMpGMmTJy+pL7a0rc8AvXPrLpPZBGssm/WaJpQzUBLGkxGjNEFYTZYo6mqLaRWz6RgjBPODI1rh2GxqvnfrHaI4RijFfOaVOs4uLkhiS7lZeXJQF7TlmshZ4qAOZhBYIXGhnlKrTZhRXoZQOEeaSLT1QRderj1CSYl1AtllBCkQdrfWWrcbU17e3SEjiXHG+8xCstk2PHlySlk1bItDpGzQ2pcfWSwKNuuaUZoQKRjlGfP5lM22JMutr5tkJSqLsLoN+wQkUUSkCMGovg9O7KtEOOdodEsWKZyzGIMPig4cid9jY5yz2EFmXRQpHzhlHTLU2mrbhrbWaKsxzmf8WmcDVuRomxpjWprGP08VgdQQS+UDs4Ak8fuxUjFaO5rScH62pK401nqVJ2FCRpkQPukqyJE6R5hjDoQNygJhTe/W805Gsn+vwSMRPoh/L1h5+P8dMdUv3GEC2CBhiPBJbnKX0NDvx29Zbt9KMLlQ5GpILvl/d4NLEXIku2Kv4NOnRJegBbYzDqT0ILSDrvC5lB0op4giH0UeRxGz2TgU0bIIZ9hsVmhdEynJKM9Ik4g0S3BOB7KoQElDLQzjUUqeJqRJQqQESSxRMiJLY6azEWki2Wy31FUZNJdXxLElTWKiyFFtG3TaIoUCC0oqLw0nA0juJNIZnDCoGGzIqsJZslQSqYQsTYnihCzPkCIBE5PmMXVTgRSoWFNXDXXTMp0ekMQZSipabdBSkaQp+WTMZD6nqmokEZFKGaUjqkJTNYZt0bJcNSyuFpwcZdy6dYhKJqxLx+HxEZNDGB8eoEZHPPnFXzA9FpBOwDou1w2Ly1PQBW1TolvN7MByelEwm8HYKqraUJWGclthtGE8yjmczzE6oq41ptkQ4SWwVuslUdwQR2OiCKajGJWmRFnOeHaI+h8/JokTpFAU24K2bqirmqqqaWuLaTUiAqNbdOsjuleLNVpElEXBdrvm4vIMg/O1lpymagoWq5RXr5Z89fU5z56fc+v4mLRoac2CutG8eL7i7LRgNm5Jk5YogahpQMRstwWnFytOr7ZY47halWzKkla3mEAYqtiQj2I+ePSApq4pNiVaw2x+AEqglMC0DtNotKpIld8sZGzYrDdMxzl5mnowttXoSFFXFYKQXdQVCAwukbPO0ypOIKKwweOj/jssKpgP/TrQEUyRkjgnOhPBa+gqhQz6qDZIlRgBJmQaCLEPiUghfQ0mIXyarFSoLlp/sJDYsMJI5wknYouT4TqI3u0TRuPr71i/UAcDF9fp3AbDGvxi5lfR75qNSFEUbDZbptM5WZaxXC5CJoYiiSNm0zFl6VOsdVv7WkrLK548+RpjLJv1BmMdxbZCKcl4PMIaTT5KWG82xEnsNwpjWS5XtK0OhAPESUrTtLRNgzGW6WTCKM+9bKP2jm6rNYvFMkjxWTabTV9jxhMorS+kibckhRRsNlvqusGEcddBQcb6yGVPYHonzTqD05Yus6kb3J6UcX2tMrUtiKKIW7dusVouSYOM3uVigTOWNEuREqqqZrFcUVYFAklZFCRJQtPUVGVJFEeIUBfJEApXWm9gDIkWKWVfrFeGiJchSN2RZ12qdxzHXt4vjvvzWGd8FIwNFdSxN5I9XTp295m1dk9m7jpwPTTIxbX/vn7u4c/wGsP7uO4MWmf7ypadTvXwPMPaS9fPc51QCn/0Otp7yYsDsiwQ734NcPRPWwik8HrRUjiEklhrmc/nOGC93tDUFWmasN0UNHVFVZe8evWSPM8xxrDZbMhH/n2en5+zWCwQQlDXNQpBnmeMx2Of1Xa1DnWdauI43rOBhmTfsBnjDdPReMx77z3i7/29vxdqOmWMJxPmR8fkaRLqOAiSyBP/rgeq/d1a4yWlLi4u+fSTzzm7vOrHnlKS6fQAY2HrDI1zCBlRbDdsy4qmqdluSy4uLimKiul8ShxHWOuzA7XWfPjB+3zvww9p65IsScnzjCSJMFbftCz92rWbyB/f9qOx3gTwvC1j6abv3Qws35yJ3DlJb/rejjQY3IPYw3Lf2IZBJm/r302kRvitv/5wHRh+78brDh0asb9uDq/hnPO2BPvg8O4mbz7na8BeB259y7YHTd3wbPp+Q5BEv3ZM/294vkM7Sbz5mffnfcPfbmpvG3vXQbYhoDT81s57648EulqbOwfTS5zGxHEc7MdQBtl5wNa57r3tghNc0L533V7agVddnTnnay8pYRA20Ilit84PYd7d7Vzv8Zsejj/MOR9p2nm9N423m+be9VPRAdJvmFtve09d6wDl/SHxzd/7dWjXbYvuX48RuBvXow7ceds5v81n4S/XpuE+uN31o/u7EN6mWC43ON0S4YjjlCwfk+cjksRhTIkSXd0NGfwihTXg8LbeZrvCOYm1EiETTk7ucu/eO0zGcyQRuvXR9F2wKhicbQlVaPx8GQTVCCURyiGEZrVZUhZbjGnI85TJJPeKLrphcbXk1cuXVGXFdDpjOpmRZyOsUz5qWiicFT5wZblmvd6wXq+x1hInCdlojIksSsZo7YFBKSSx8rLpkywnjSOySDGOYpIoRiBo2pZis6GwJWlmUdJDSnXrpfk7k9cYizaWRmsvbx0JsnFOkiXenguR6ciof39+HfNgmeik1rt3yP669qax4foz7drNxM7re+CQ9HnjvB2c+Ppe5ILD/tp+ecOQfT0g5ebLvek7/lLffm25KVPrTSTZkEDrSKo39e/6XuxP/OZ+7x3r9q/1hguEpf2GbOO9//5urLMwkDqzO2Jwn4/pAiL9Z/0wDCUQ/HFDCUp/sFTeuHRih9U4K0F5xslnJgusDJJZNpDwoXW2kPdlhxl2ou9T138huuyq/Syrzsaw/Vq920uE9ORUUzvWWKQE3dZenrTc0tYl0oAP5vT366OhZQecgQtlZrp+OghFl3cAu/PfEVbQFZATUoKLcMahhGI2mXM8P2aWz8HAYrni8myBrC1KRWRJysHBAXESs1ouqcoS3TTESnrJYByRcJ7oEQZtfDB8lKVsq4Isy9hUJevNlh/eekQSJeTjEVGS0OqWPE+piyXrZYLTDdVmgVUCtMVqjW1aX/KiXwz9tfya6mXurBBEyuOH1vjnvmdXiTBmhvb4cNwEQ865ULfaBPWikAG7XG6xztFqQ55LsjRluSy8HCwx08wSR4JWC1ScIWgxtMSxIooVqRp5fFibHhvzdcX97okQ2L2SAn4eGO3LIHRDr6or8jwL+74IeIJXUbM4lAQlu/3H0AWxGNPS6sbjHRK8ZGOLED7gqm0rr4IWVCVEeNhKCpzyJQPyLEcQg1OY1tFUhvOzS6qy8WoUQoCV9IZjGO87gtZ521YE5QofyRueeZiHAkTf/9CXwazczaNuLrnBAQOHssuSsvT2tE8mdCjrcF3ZrbfsVd9IMMnugiKkU7JzuJDhuk72NVmAXrO7jzAzfqNXQiIjH+3uC7/7qO8kSRiPc0ajkS9elmfcv3+PSHlDrCo2PH36FcJoTk4OmU5HrNcrJuOUNJkghCc5Ls6vSCPQTYaZ5MwmI+azKXXd4JwmTRLiJObg4AGnp6dcXhqUlLTthtE4I80EuBbnJHXdEimLEoookohIEgmFtZE3lOotkfCrk8OhbQso0iQmTWKSJPVRQypHECGE4vD4Nmfn51jnUMqQZ1DVcO/OLbI083I/uiDOZ0wP5kwP5qRZhmFFXTTQWmIFq9WGjXQsVgWX5wXnp0uadsrtu3NEMuPlq+eoPOLk3g+ZzGdYIThdNBwvCibH9xjpI56dPePzXz7mcJoT4RdRNUopTYTZNFRaokTCZtPQtBf9AHz44AGbdcvV+ZLldsNsBFkWY0xDXVrMWHEwO0BhIIEoE8zTQw5mB0xGYwSW8/OXvPfOPYpNQVO2ftNyPsqoqSqaDLIk5+mTZ7ROsCoqklSyXJ3z7OVTDkaQCoNpSjalZbEquVrWnF5skSpFxQlis6UsG8qy4YsvXvLho0PkLMZQEzct1sHZ2ZJnLy4wNuHFy5esN4amsSAssfCs9GgScXJ7ym/8xof8i//2/41pBSdHJ4ynM16cPaOtHNJCrBRNueG9B/c4vD1Fxo7T0zOEM5wcHWKtY7stcNbQNjXS4iMJrCNSyi/qzjvckVCYUOzecU0epXN8Q5SI3yc9GRRJxU56ziO5Q6mqLlvBSg/yGxUh8ABBp5UvpZdIUUIGgsmnmIq+WEKXmjmIclISJXwUmg2LmgVcJP3ia/2GpWQAKLqFrieU2COY/L52c0TWr2urqprLyyum0xnz+RxwIZuppKoKwBthOEPbthjT4Jzj008/9pmAdY0xjjTJmM0mWNuiTU2UwLPnL8nSjCzLAxlVonuJMkucZJRlSV1VOGsZjXLSPEMsQ60kBE2jsc5SliXbouDxkyecX1wGaU1BFAp7F0WBDWN3G8igtvUZLj7rSfUGQhRFROMEKemPieMYJ5TPjBXeiK2qEg96eSPBaMPh0SFPnz7h/PwMT/LE1FmJ0V5vuW0NVVmw3axpmparqyXj8ZiL8zO0bomThDu375LGES6JfJSjEETRrtaYDOPVONODaJ0D1EVUeZIs2t1PyFoSEk+ahbpM1pjegRLwGsHURXINW+doDYHI645wX9flBqfsJmLpJrJqeG/D/gjrAkjoAZVhX7r+dgTTnuE/+AH2yRkBXdTN8Dnu9dcXoNvPeJMRxpj++WqtOTg8ZDKeoKKIelWTpikX55eU1RbnLKvVigcPHrBYLFitVqgoYVsU/Nmf/RllyKxrmoaj+YzxeMxoNEJKycXFBbPZnOl0yjvvvNOvnQRJ0WGQTefodrX0lFRkWcZv/MZvAEES0YFBkCWRr+XgLFKEjI3B+7TGG8rr9ZYvPv+S/+Ff/WvG0xkHBwf9e1YSJpMpptwg8MBtq1uO/j/k/dezJUl25ov93D3k1kfmOZlZsqsFutEAGj13IEYQY6CRRjPaGB9pfCCN/If4RCNfaPwLOHNJ3nkgOcMLjsaFaAAXje7q0pXq5JFbhnZ3PrhH7NhHZFUDM7Q71dHWlfvsHcLD5fLvW+tbh8eslgvW6xWvXj1jtdlwenLCbG9GOkixpuHVy1ekccx3v/0dmsbQGGf/6Loi26x5dPB1Z6v/8o+2r+2Cn9t2fRN4cZuMvX3O/QRN+/l+2ciH7uX/6r7rj7923L4JlN15xAPA1sNERe+7XY7nDc+7OwfdBvfvAM4d4OuJGrNb1wjb/+qN4FP33HvKdN9V7Xft3qUlFdr9cvsOvuUerINuLu09/6EImoeIjfa7+8iQ9vObCJPeXXr/7v62Q4T5T916h+zy+EmpCKKIKEoQUnkJZGdnuozIdPaDI1K8pIqUBCKg3RwLv30MlCSQDY11QIqk3bj7vaIV3N+T79qBneui7TVS+6Ed1z247CHQ9L5jZ6/Ntu2/DjF0hzC0d/vcw4TIN/e4by7rf98nsR++zgOE3Zl3z723jcTDvzk3py04r5Rbn6+v5yxurnj/7UekgyFhFCFEhTUCESifiNvZfVXpPI/DMCZOB1zefEYSD4milPFgxLe+9V0O9g+pKkNd1UgVYJqGpixwXsigMBjtbGJkgFROKlypEKRB2xLdWG6uzpHSOcPs7e2hTYOUkmyZ8fz5c25ubjg5OeH4+JjJZEZZ1AQqQFeapqnI85LLmxtevHhOluUYL8n77vvvc3UxZ369YjXf8MWzZy75OM5LXFnYn8wwdYkwDQGC/dke0hjyMme1WVOJhqJsSNMBQRjSGOf8IgPtsKGm8crntrPtoyRCBQorPRBp3aypjUZifeL1FijrrRfwwFxxt9+053fd4fYYvef8+z7fd9wmSe/eu82R0V9fd9eVB97gzpN2y3tvYR5c39uy3fec+7kecetd+uvxti12f7tvDbK08qvtfR965zevZ7ee5EkTYXfvt3v/Xx15fdNYL7EtEG3Ce3S7+NFjA2gj8dycaL0D4e0+6Rz5EBLpcyI6INnJq3l82zWvND6X5lZSzULHz2CtdzgxW7xI7BJMrR3RkktS9trSP8t2eMB2PLkUoBqtLWVpuLlpMLpGY6nrCtM01NrlVLZs66dv4yEcMaYQGCuwRm0LbyxWG9AeBzcSFyniorIFEqkFcZRwMnvE8eEJTVUzn885f/GasqjYm0wZDpxc/3A4JM8yyjynzDOs1hzuzxgNfB5eXSOsQevKwXdRgA1D5hcbwsZwPV9wfX3D8sn7HIRHDNMB6Shlvlgwmx5S5Y9ZDGPyzZolDTbbkC8rqqKkznNCFdA6oNuWWfNV0c6nLfbocEH3XdM0jiDE7We5pTjmP/r/OIUWi+lVo0GpkKpsuLlekecl09mA0XDCcnmDaSqms0eUFUQKslJT1JrBAKomII4VURw6aT7bdPhSGEhq4eYYIRVCSOcoKZSrT49Z6kJ7NSUX4VeUBekgdXtw6VKLOGFa7ZxfBQiMU1/SdYdxVHXuVH4EKOEiooyuEdLNiVVdUNcurYpUgiiOsFY759BAEQtHSuaFoald5FWR1Vxd3FCWFeACFqxxecewLveUsY7YQRqHu2IQwiKU7QxWa8AqFyDgfWC6tVNAzzn61p6ww2T8e3fzhd1G8Vu8Ah2etHOEsfTXv2mdfCPB1HaZ1rutBYpo/zXGRXoo5UKstPbnb3O7AJ1EkLUWL9PJZDLpvLOFEERRwHQ6Zm9vj8ODfaJQIKwBGzAZxDw9PWQ0TFAuppG96YDNZuML6SaJOEg5PtqjKNasFhkhASpQDAcpummoqgwpGpJkyPHxmNFIspzPkdLle8p0hhyNSOIJoZQY3VCZgqYGiSGQIIVG2AplDWVRugR0UmAaiwqUZy9D0uEjLAoZuMRvQSBZ55Z4cMR8sabIawajA4y2fPF8iTY3TnOUhr3jA26yikJseHfviPnLC6RV5HXN2evn/Pyvf06ZRKzzkqqoOdh/i5/+4nM++fyC2eyQ06fvUMkbfuPoPVY5PHv5ko+fnVMKyZOTYwZxxM3K8O//5CP+4Pf/EXuTCULAyfvfRwxi/ua//wkvn13wwTsfEKd7LFdLwkixf7jH4eEhV+dLQiHJ04DvffsxYbBBWkNTlSwXC4ZpQqgiKmPJsg1Vtebl8zNOH7/k6GSf/VnM+fkXzCZjyk3Dcr4hiSVxrJmNx5wc73N4cMLV5TlWaAQaU9dEKuCLzz8kef8pj073mcQHfP75awajKbMDw16mGYyGqMAwHIXM9ockiebo8IQsdxPMYBTSyJIvPvsYYUMGyZT9SDIZjfnyywtuVM5oELBYLDC24PGjE9599wmff/Qhdb7hcO8xVkR88exz1psbMA37sz3efedt/t5v/hbzy3PKJqPSBQezEZNRys3VOUVeUteGoiiQFgLpgOzG2m1yOeuS11k/poz/LgiUB1gdyN+CyYHaArlKSQLvRdqOOXDuKS6/TIC1UNf1NveKn2iMJ5doIxalG8NKCgLVRjR1qwgIkIEPYbZtUjiJwXmaaK3R1iBtgA4kgVHIxkmPCaO9bN6ticZsN5tbz0LFr9JxcXFBGIYkSYJSiqrIWa+WzOcJja5I4ogsW1FWRQe2f/b5xyTJgCiM2Gxy9vYOOHv9EiEtVbXh408Eq3VGFKUMUjfnrjPXFg4Yb5ByQ5ZtHPhtNFVVsVgsyPOcIi87rxCN4me/+IiXZ6+ZX99graUsnXxXHEdeMq0hDEMGgwHL5ZLhcNiB8trc3cDp16+QUjIYDBkORpiqIo7jzpAMw5A4DqnrijCMiOOYKArZ25txcOASGj9/9oK9vT23OGMoyhxrIFSSYZpQVTUXr19ThhKpBFVZ8PrsFavVCq01T5486WT/8rL0+ZIsVVV5cMwtk26cKeq6oc1fppTy61fURS/VdU1Zlr2WdZZW0zTdOEdspflawLglVIwxNE3T5apqD+0HTftMoJPxw9+3XXdb8qf13OkTSO3RPj8InCRia0i1zw+s7M0vCimCHXKpfZ9+WW6TVu1zWu/c9lpnfNqufP28b3c8Ee22roMg6JFOkl//4a+zXq/4Z//sn/H69WsXtZcmjEYpi8UNWZZxdHTEyckpr88vWKyWXP3VX5CmA05PTymKwvdhw2az4csvn7HJK8bjEcfHxw7I0RoVBBhjfbuEu22L6dpKa0NVVT7ySfloW/w8CkEQUlUFWZ4Thy43V1kWNI0hCmOEjPjrv/ornr94yePTU5QKnXEMGK3J1ivOz17zxecfURYb9vZnHB7u81s/+i2Uki7Sryi5vrkkSWIGg5TRaMRqMWc2nbFaZfzxH/93fP973yFWinyzYX5zw0cffcQ//e4/fuP89E08dsHHhw3lfr9+iDD5ZcDj26TOfde2RObt3zqiu9vQvfFJ9CD5O2W+XfbbgFRL8Pxtjq9bH1ty5gFgye4CyveBgA8SBrfIpduAlP9wi6z4z3u80UObu/V2+9yHCJN769u2EiZtXgy742XcPk+3wJI7q7vnZDLh8uq1+1tKVJQQhwFRGDnP0sAR/6Gfl40V6MbZCypUKKkIZYABpuMhsY3ItKLMnByq9tr9VmxlaYzPwdDP4eFLSncSd0frfcTvfeTpfU4Wt+vw6xBK9x0dCMb/37rT/+CPnX4p7vnOffPm67/GVHLv2L6vDEArB+lPRhsNViOFIYoD9iYjvvtrHxBKjTENxoCSCdYYhM+nuVrmhGFMmgywVjC/vuHqZs2TJzPeevt93nv3Aw4PT513snEIim1qTF0hrO72c2GkCAOXi9RhLMoBRDKgqtcsVhecnZ1xdHTEdOoUDqy1rDc5L56/YL1aYozm3bff4dHJKQhJVdbEcczLl2csFmuW8yXX1wushSRJGQ/GBEFEEKfc3DynagwasAJ+8fHH/M6P/z5xEDG/vuby+QtWFxdMRyMGSYoylpvLK2xVIbSLenK5L51slBf6c3l4G5cbQylJXZS0UYsqDNg7mFGb2qVXaMEra1EtqvyGRm/r6r627h8tefimo7VT75t3v5JketM8zjbSc3s+X6svP0zc+DvfucdX9fe/29ESS7/U8QbyautY9rAU8Zvn4Lt1e9/9fiUOC1iJQOGTqSCtdEC0xUm6SdlrD7/+GU8MGZ9vqQWYBZi6QUqfrsdHJmO6pXdnfyekG98CQV23Diu25WjYIti7dtt9NqhrT0FV1V5uf3cctntzayxNWbr0LAKwhrLImJvGRRd58snWDVqLbZ5Sy1aVQ2ydSI3uKFF01aBE4BxtrK8EC23kKlZQZCXj8YRHx484OnzEbLJPvsr4+BcfkWUZ49GEo6M9pkdOXl0iyNcbVss5TZERB4LD/QmBAmUtVjcILOPxhMUmIx2PkWHEi/Nznp2d+zXEYfH/6l/+P/nRj35EoCyn0RNmw5TRZIg+OWEUhVyen/OLv/wLlhcX2LpCWesiUXFkirGWyhgfZYNLjWGdapHehso4vNDUaCM6LNJ97+Tbbtvr1nTUFRaoW2IEi2k0ILAa8qyiKms26wIhII5D/ubD50ShRNIwTEOODka8+/Yey0iTxJIkCUnCjXPiVZIwVFjdMBgMnJ0oHEaqwhiXpKHNEa0RyhGM2stItk73SkmPa2qUtBjdYIzLwxRY6fJSNRV5WWCMYbleueeHARZLo0EqR1JZDMZoijJDBi6/VVnlCNnuXSRSBcRxzPn5BVW5oSw0y2VGnlUEgcOAdW1cRJU2PqIKjMLXXS/Cu/PhcmPNSIPQAqsMQgkXlSfc2GwlLJ3ilnIciuzZxT1HsN1jd1/sKB6LsJrGbvehb5qn35yDSbp8StKHLMoeEw4eUPLfGAFWOsOibUDwk4NxLLexTvVYSqiqgrr2hTOQZ3BzfYmUgigMGMQR3/n2+0wnI9IkZJCOOTrcI4lDojAgikLKIuPqfIFAMhikYAw3N5foWiOFosgrEIYkkoSRZDgcok2NbiowmjiUHBzMWC6XjEcjT+YJp4MoBGGgkFIwHITk2QolrBMibaCoa9J4QF6ULBYbZBAjVcwgnWIJuFnUnD59ShDGCGpMk7Fal3zx7DVxMkHKmC9enFNVDV988SlNU7J/MOV3fvfHXM83aFZEyQYRDvi3/+EnjJIR2Trnyy+e8/T0CT//+DmbrCSQISLY43Ke893vvs3p228zne6xWK747ItnzFdrPv38c168fEVeLnj2/HOGacp0OCEdHfLlqxuKOuD00TGbquDXf/Rjzi8vubxeoWXEOx98m5cvntPoEoviw5//Amnh8eNDAg746V/8Md/99iMykTEex0zGY1arGms1JTWbuubs7DWH+8cU+YaqCHj3nSN+8eFHPDo6JZQRF8E1UJMVc6ajKdaULBfXDAYDnp29pGk0e7MDBskldWGoM4utQpLJmO9+/xE//Rd/xDLPOHl8ijINv/v3f4jRG6p6w/5v/xo/+bOfUlUlk+mQp+MTmqJgPB7RFDV1vSYWAdmyJJENiay5WlwyGUj+/u/8faIoYLFYsry45PsfvMvV1YaLy0tsvuad00MGg5A4VgTBmp9/+Kc8efSYvckYIccURcHV5TlFUdE0BqPbRVL6cFWBjLbSktYYr3fqE6v2JnUsCCkwnU79Nv9SSy4ptR3wLhm97QwBqVwy50D5SCZru4SJTsJMe4KpnbTwXvagBE7Or/W+llsNX8vWE9xal0/ESEltGqQRaOvJKeEXuEZQG02lRbeotgHQ7X2EED3W/VfjWK/XBEHA2dkZWeYiMKoiZ71eUTcVe/sTTxq58G9jDFEUYq1Aa00mJJu187BYLG+waKp6gzGCqmwIw5R0sGE83qMqm04Gw8ndXaCU8B4Phmyx6CKRrLUdsWCB1XJNtnGSmlJJ3wckeVW5aB1j0LamsRll3aDqGnDGxyYvCMJWdscZjbpxhFJVVVi7IggURZn5EO2WHHU5lKQUaK2oqpos2/Do0RFJkjLbm7oI1usr8jxjPp8TRRFN0/ioqYA0jcmzDZ98/BHD4ZAwCslf5ggpefXyBX/2Z4LDw2OOj48ZjEYMBgOGw6EjV0LXdx3xonc8qdI03SF1WslAaL27jV/ga7+pao1a6SPRdLfZKsuSKIpcDicf7dXfQLkca7v61f11VoptlOJDnu6OBNEdaWR7pFT/HNjdvBljsKJ2m5E2Kqslqu3daJDueiF68gZ4QNJ5Bt3O8dSS1VrrjrDp2y73Peu9996nyAv++I//mE8++oWTqhUWpeDRo0fM53NWq5XTrJYOMG3fqyhcH2/7orXWjSkRkCRJl3tOe+9iKZX34NG9crsNmfQbWykk9Ih/V3CNaRpHugucrnhTs5zPuz5VlhXL5Yovn73ib376MzabnMFo5PMnuFBxYw1NXSOFYDBIEFJzPb/iiy8+YzRyucbaXFBllREoRRiELudTFDAcpCwX15y9es6LZ1/wwXvvMhqkCCz7e7M3TU/fyGPXMN4FtG4D07f79n3nfL1nbo31h8tkd/o9iJ21sSvTg9ff/ew8L++CZrfve/teXTSI2L3m3mc8cP1XESpfdbR2+Zs8z7/q2Q95pt/+Tdwim/pcTBvgdvtN7gOzHebhnw07F90hDKGzpTpp4dv9ry9Bfk8dWGvv5QEdPiS2duStwwFPHgBqh4B081kYhkRxRBwnKMoOGGyjlpzX8nZeVt7OtNo5FJqmdnk1TYO1AoIAJS2hFIQYhHFQNK0t2e4zWzk+Ibt3Els/6nvfo0tU7ue/1nnqoXH84OGrQfS/uOeZd8Botn20hdP+NvPDN+W4TVh/vUM4e4m785iFW81wu11uz+W32/Au8dhGQDhyqfGKJT7f7vfec/mdmwphGoR1Ed1KSXTjZHmEECRJjNYVjXbOoePJPr/2a7/J6cljhuMJdV2jAomtG5qq8Xaui85RgfOCL6oKIjcWpffgN8DlzTnL5RVFseT09JS96cxFb9cNi+WSTz7+2NssMcPhgPF4isDJBGVZzscffcTV9dw78UhG4xRjLHVhyKuCRmdsiguyoqY2lqyoODu/5NGh844v1muuz1+TLea88+QJ+9MpgZRslgv2plOkNihfl2vj5HmR0qU7Mdblb0JirPZe8AYjDGGoSAcpo/EYJBjRznwWSeSiMbxeqvWTpwOsb0UD3W71+8hhId4wa2yva9fAryL3b3//kPTsvQW8/6uvOHqT8gPHdi9OV5b71uj71kH3p6F1TL1tC/QTxHdLY9cu/fq5px56FX9v3e7UhPC3MA/O07v2TGsjtc9tz3nYtvqmHroymMZgGy8Pa70iEMoHOMhevYiuA7qtqXWREUYgA0/WuMXLrb3CegLC4TFCOhLC4NgD7wriZeS3/acFrKXEk/Oyw3ig38/6/cevor212+3NwOFdavsuwna51Wj7sXSRS05BRND2JWsEXe5jBIIAjHEzjnHkQFM7iU7jx5rRjhRxkuUQhRHay6ElccoPfvABSijSJEUCr549o84rIikZTGfMZns8Ojwims3QRlNkG7L1giJboqRlmATOCVY4R1jRqgsZy3AwomgMi8U1X74648WLMwIZEquQQRwR7wfMry+YX14wHiQEUUi2WrJZLXj94gUfffgzssXcRZ8qicK4iDSLsyOxKKuotMXousNaDJaqMdTakSdaQ2Nahx93OCcA1x5tZ7HCdqSO7zI0XX+gaz/lvCb8XKDJixorYFNUXC8+IYkjlNQc7o+RQUD5yXOmk4DJOGE8TIiDEmsMcRiQpgnj8dClRYgiVBiC8rOrMDTWRaSFQYAKE4954HGuEK1rMNb3LxcY0+gGbRovKe/euNEVxjQeq6kBg5AWFW6dEozRHnNQGDSBUkShctG5FhpjMUYgCUjjEYv5Z1xfrcjz2kUyNX5faH3qIAu2laBEYBzLi+0GhsQ2ms50l358Kmj1LC34sDSflsTLIIo+k9TL1dQd7dywXXxpF5e2HbVt10z7ADG1Pd5IMHklBD9ROIOsfWCbJLADuNyMgBAS2QLdvrRd8X0yWSWVG8xd8nGXl8AB2QFpHLC3NyKJA+JIkSYRo2HKwf6MKAx8cvmQKlIoQnStQUAoJVLsU+QZui6R0pIXGwIVoTRYZYnCkKosaXNtjIYjP8A8K940SGs9uWRR0kkzGVu4yUgbGt1gGiAISOKYKJoSRCmrvAQZYlBYCWWjIIxQuBxz8+Wa2cEJ66zmapFxsSz57LPPwTakSYwWEaiE68trksEAKyV//N/9lJtFzYsXL1mvNqyXG568PUSFY8q6YVVUTG4KqkahjaSsGuaLOc+fnzMYjrlerLi+uuD00TFRYv1gKcmKjFWeMdisSYcDxlXBJl/zyaefczPf0GjBarNhcDTm0eMTiiJjs1lT1w1JENDUBVVdkmUbMC55XF1bsqwmjAMQEVXjcrW8eHHFdPqUNIlQ0qKbgiJbkKgpoRKMRgOUrCjLhjgNSAchjSkQTRtJI5ENLOcbonTG4irjlXiNqTYcPnmLdVawXK1JIsk4CslXBVYXCGU42p/xne+/zdX1NcKJayJVQjIwBKlGASUBETnrmzOkzjmYxHzrO+8yGUZsNhn5coU0hs38ilAEHExSklAQpZIkhTi2xDHMJi73UpIEhFFIEEiuLq+IogAhNHldYIzoIhAEFmkFxo8zKyXKuu8suDxv7dARIITyE6JbLCVu/AVS+f7aStr1Cd52MXcee0oEnRyBNsIvmnjZWQ+TdpORG/dtJJMS0nuMeJTFL+wWp9ftQjkNjXCFF8K9i5ASq9XWa0m7ycpKH47rX9a2m4H7Ngrf8KONorDWUhQFgRKO8JNgbM3HH3+EEDAcpk5ruHEAfVlWTlpNCIw1VHVJXuaABllTlgajoaoFVS1YLcvOG8atF64tXYiu6aKfy6ryPwkCZTtSEm0QoiEIAppmK+lmfNJDl0jRYm1DVTeoovZSj9aRUlVNEieoIHD9C0FZVpRFBUIQhaH3XBKd7FwUuUiPqnKRV02j/VxUM5lMODw8IMsylssFVVUTBJLLywvqunYgWRSTxAmBUqxXC5qmZjQakeUFk8nEkRq14fz8NfP5DcPhkPF0wv7+vtMMrl2E1nA4Ym9vj+Fw6KN3/DDwoFsLjumm8VE6xmtPe+Ox/de4DZ0xLtql9aoJPfnWl9rrRzlBOya23nvt733SqU/83Ef69KXngDskT/tdS2T3N6zWh0e35GR7zc45vf9313del95jzJez9VJry3ibUDLGYuX2WW1kVrtBSdMBx8eP+Pa3v8Of/+mfIjAuv4FuAEuWZUymU0ajISoIQAas1+uuL0VRRCiV0/KuKoLA9eG9vX0ODg5cDjuzBQYcObjVor9NSrRzZv8d3Hs4w7WonISj0Q1XV5c8e/6Mi/MLLi6uODt7zbPnZ2htkDIgCCOUdPrOja5odIMSAmMayjKjqgqKKmezXjNMU8BtGKw11E1FoFz+PCGc1M14NOgiwEdpyrPP3ubwYJ/pZMJ4NLxnVvrmHn0ipzWc7zvnPrDjPgL2vt8ffjbd2Lrvmu0GG+B2Gfx1bcL5Xjlv32tnbhA9APw+QuS+d9zZIHLnmv6/X/fdb9+jfx/be1hHyuxghbvj6pd5juh93vmtd+/ul/Y5PTSwe/IDaOUO8Se2RAMt2dQDwHio/7TribjbJg88dvtMuz2v7TPtF24PKnzPMdvzurVh++xtn3J2pFIhYRAS+KTFSinnWCJ6m8N+IX0JWsUKay1BqzojKqx1jk7CNjhhEomxjkC33mmq/U/rDbttme161KsyhJC77XhrDXnTcae/erDWuXj1y9Kv39379u/Q/3zfs+0vMT7+Sz7uJXR7/eNh4rn9vf3ctyseHv+78+OtFmmxsN2O0XZ4d2fh1sXJZMDh4ZQ0DRBSO/DVtnm9BFrbbt8lhECb2j3COu/nDz74AY9P3/HOSc6usKbBaINAEwQODGp000n+OUxDIb08szY1F9dXrNdrpLDsz/aYjqeEoZOgXiwWnJ+fOxm9wKUYSJKUJIkpy4Llcsl8PufmZo6wEEcRCOcVnRcZAQOSKAWpKOol88UVFxc33FzO2azXyL1jXj5/zurmhquzM4739jg5OGQ8HCCsJbQaXTlHKhkELnf0ekVVlYCTj3JEk+lsRa195LvV4CPRwyjE2AaMxoo2Ot96KT3YCl1u58/W7ro9zt7kQND+a29998uSvnfWyDdQRa0zQP8JLRF03/1u2/FvPtr+evs9diVn+895+F1bu/z2uLn7PtvPX6OI7L7rQ+1z33Vfqwp677TtG9v7/yoR+k2tvUweXsLulrXQ7vVv7QUBjHRYLlgHGXh5OmRrK/qRaJ2SjXMqMX5sOufmlqkxAi+hu+1LFhBB2ybbtpE+fKa1cbfElNsfCm+vtsoX7WLcjbkWf+op30gBxjinZRd/4n7TTePuLaWL0tHa7+E86SQ0ThY4QFj3DgZLOnDKMGEQUlUVUgaEUcxoNGL/6JCLs3PMxuVgylZLIhWyN5kwGAzYm+3x+OSEm7JkcbPg6uKc68szMDVxJEmTkOEwIcCirKAqK+pGM57OWFeaxWrFfLHi6uqGqnSBEnEsiVOnyIVpuLl0KTjCMKSsSuqq4Prygny5YJTGKCzSR+Zao6nrBotGW2i0UxEyXoPNelWhWltqTyxp63PueHLD1dHu+Hc2Ww+b6Jp+5yR3pvA5lEUb3ap93nbv6JFXRKHgZpHzyWcvOT6IiKIDEBV5UZEol65mEMcgJMPREN00NL7fSCEx1DhnTIkVLlrHYRkGcA6ibn9usVajjZO3t8Li+AlHNNaV4xSMbmgd7901DpRVSnbv3zQ1aNev6qZyDiVhQBg4WT+LBSuxVmG0ZD7fsFxmVKUrU7vHb/EOD6o6jAhBp3rZLXwWY7yooejtbdpx0kYc2u2M7nDgNgChb7ab7d+ixTe6kevbV3RtiN0qmHcE04M7k68imNgWZsd+8zcHN2Dd4m0R+BwFXu/PzQGWbmKwfdBKdwPcmgaEIIhCxsOUp49POX18zGwyQilBIAVpEjEcpMRR6MDuQBIKQxLElGVFkReEQUCS7rNaKPJMgHXe/GEgcH7UkjCI0bVP5h5K4jBhPBQ02g9AUyJkRaAsKgApLQhDVXmveiMwDQRhShgMCKMBKohprCSr19TGRZmIQFE10BQ1oWywtebl2RXf/rV3uF5dcnGz5npVcHGzZjIZME5GDCf7XM9zVhuNDAMaDX/xFx8ThDGvXl1SlRWj4Zi8UWgbUtWSLDdkuUXrgOUqJ7q8IQgkX37xGY8enbJartks5xyd7IGoKEoXntjUhk2+oagLSl1RNAXnr8+4urhmfr1Eyoib+ZLjo2PG0xFREmG0IQgiGl2zWi3QRU4YRMTJwHleKSgqTdJAkg6cl4BdY4xmMhkymQyII0GZr2jKgg0LpBgxGqYu+SkhSRoSxpJGF1jtB5qGqmhYrzImVrK6zglNiRQZ6d4+VV1T1wYpNFooFtcrMBlJ6gDrD777FoOzkHVeIlXIZDRBF0sGgSEJoGgsysZcnd9g6prhZMy7b58yXyxYLeZkqxWRklT5mvFoxnQwpBxGlDpDBQ1xrBiPY04eT6lKSTIIiaMYIWA8GWGNoChKqqqmqqsuumi78emNOQ/sGr+4S2DrXQQo6YhOHxmklHIho8qRP0HgJizVZnbbWtWAwAj3bGNBGgHo3ubLdmRPSzAJAUEgCKXyIaVbgqlvyLkkudaRZd1GUnoPGgccaaXanQNWOuNGIBwj3s2EdKG2vxpbcXe0URKONCoJpPXarRJra549+5JHx4eMx2PSQUJVlmyyzHkG+jk2iiOElDRVhbENKrI02mBM60VYUVclw8GEIAi95JgkCATL1Zyi2FDVFYFyObra8Hbhc2MZC1hN6y28mz9HIEOF0D0yRVvKsiIIQqR0Ye/OCBGEoSM5QmWpfCSPNZYgDJzcjgfHndTYNvKm8Llzlsslm82G2WzGeOyiT1+9eom1lsFgwGIx99FELvppNttjNBxT1zVVkVNIRV7kTCZjojBAS0tRlVxdXRLHMZPlhDzPEEKwWKwQQjIYDHj77bd56623nFe3kuhmKyvXyrjVVY32UpfWWrSz/LHWOTA0TeOACi9vZ60lCLZRM30JuDdtnrfgy1a+4nYEE9Az3Hel+PohzvcBNsbqXWOy3byabfTjvZtX0fv/rWtbYqrtOy3B1Aeb+iRYZyNY273X9jdXb9PplB/84NepyqoLV9fabyqEc0aJ4hghnORiXdddP1JKEanAh9O7aLuyqJxU7+Ehgp4sg93KkdkeQLVTD4Le+/j3Nq48WtcUReYkFIucTz/7mD/5kz/hiy+ecXb2mvPzC+bzNYeHx2799JOibhrqukLrmkAKGl3TNGXnbWWtpdiEbnzXFWHkJKySJKLGsl5v0FVFGDjv6EApDvdmmCrjan+Pg/09Tk5O7puWvoHHfcTgXdDkIVLpP9Vx95m7IFH3ezuOeiBSd77Yju2dO90mUVqSo2Mw7pbnPjK6fc52PX8zUHSbkHsYRL7zcAcWYO8U76Gty5tBs4ePv1sklQOHtwTh/cdtB5k+wdVtwO1twPHWhvyBYt4GVvuX3v7tQYLK2lv12vPyt94Y8xtSPJiuhEIFLkehc5DqXd0CRXb7dzdPC9HueZ1jnqmcHWEMwmpvJbocdWC28n1+L72NvPLeyv133L7OzjXb73f7ar9/vrHviNsfvqKf3R6a/Z/6z7mNjH+Dj9tj4PZvfWL564xlP0XwlW3RUqy3n2tvzxnbHCDgch/opmY42ufgYEoQghC6y6/gpk7nPKSCVi3CRWJLKbA0IAzvvv0B08k+QghnTxiDrmuEJwWiQIF16gHaGKxw3vGidcJqajZFxnx+CcB0POHw8JAkdnlS5zcLrq+umN/MGY/HRFFIkibEUYTWDYvFnKurK5bLJVoboighUE7et2g0AkMSp8TxEG0EZXHJ1cUVF68vWS036LKhLkte3jwjXy0xRcn777/H/mRMFAQY3aDDkHKTIYLAjW1pKIuCuqoxViCVIoyTruK37e3m+EBJwihEhooG59jmEbWuBe+28i0nivbeXf94c7/wvYKt43M3kbc3eMOz77nXLbKoPe5be93pW6cDa+8fF+359/92d/3ftc3df+5bn+8j3Ha/22IMD5Vp97g9XsW9z7p9z9vnPDRHtLdov36obVvSwv2njfC1/a70K3GYxmI1WO0wVm6DwuDIJ+F7/u2mFrYLYnYoMy5qCTfCRDc22u8c0WSEB+9b0sFYdy8fku1WdDrHIdviCN4uaAGmNlChL6muWqzI41Z35XKhBeV35nTjcuRYb6gJi3dIlCgUzmNXeyUOcISB3UrI+3zDEk0UJgzSAXEcURQlw9GYZDAgTmKEUpR1TdlUhFIRKMV4NGR/tsdkNGE0HJEkIeuLcy5en/H61QvWi2umo5gQBWFCHCQI7ZxsaBpMoxkmQ1b5kmxTOOx2naGEIA4UgyhklMQkUYw1hvn1NflmjZSSvNiA0ZT5BqErRoMIYRpsYzHa0GgLtXGEirbUjaW2siOYjI9aarQLhjB2GxjSjwZvp0zHgWwH2tZkbce27ym+Xzki0PqO6M7T/juhBEIGDnMiICsa8vya0egRtQ6wucE0JZHCKXcgSVMDVnSKJ7Jx+QitafMUKa8k4lyFWuLUYTROyl5Y46OVHIHnorOMcwb1L+RwCuOvd2MFWpLMuDXbq7nUdY3xDrDWWoRUmKYBFNYImgastCwXThbPGBeh12G+HjcTfjC6OhZeZrAdl25M+EAln6vJNZZtE2nZ+7YQW6zHEUNbu7q1S3eJp1aCXdBJN/TXG5+rqtsQPXC8mWDqg1D9wnRGXFvELfvsDK8tMOYKrdxg93lekFA3Ti4mCBQqVNRVgTANk2HKD7//Pd55+zHjyYizVy94/uwL1KMDmiJjb3zAYDjAmIZKWCpRomRAEg86ljkPXbhYkgzJn+c0dUEchaRJRJHlTCcjB8wYi24sg3RMWZZYXdKgkWqDtQ1SSK8zLlksFjSNRcmINJrw+On7RNGIItfc3Kz55IsvOX36FGs1tdZYpQjTlOcvXxHQkEjNn/35T7HhEcus5mZR8OzlJb/549/lL//yz4lTzcHx2/zRv/kP/MYPfoPVEq5vrrl4XXA9P6OsKqazGQfHb/Px56/4+PPPqGrDaDBjOj3i6vWcTz5+wcXrax4/PuTVi+dcXZ5TlhXZcs5fvfiUMPFSGUIQBBFhGGClJUgUYar4t//tv6YqDU+fPGVvcsCXX37Kt7+jmS9uiMOE0ydPOX99zhcf/5w4EIzTmMdPnnJ8/IQgbLCyQtuKq+WCp9NHJKFkT0p+/OMThIqZzcaowLBebbBGcnN9zf5ewv7ePs+eX3Fy+ogwDMiLNQ2GJJwwny/Y5JpNqYmDmGJlMIkgVAFpElCUa1SoODw65uToHa5fPEcS0DRQlw113WBUTTIaYKMETcx3fvD3WJ2/gHoFzYby6pyDvTG//aNfp6wttbF8/vxz1lnGYrGmyAsmwxnvPDlFNw40t03FZBqiRUM8kIwnEUGoOTo+IpApunEeFL/5mz/k+fNXrJYboijhiy9f4iIa/OLYBwF6G6B2AfbzRY81FohAdZNHG10UKBcREiq32CnPVhsfCtxer7wRIf2EpY3sq5Fj0WCFj4RyUYVBIAmU8vINu5vkvvHnUvu5qUmKAKW1T57niDJtTBeObaXCKqitpsus7GZLjNBbJv9X5GiBdikdiCOxlGVOGCZIKdmsV2SjAaenj4iikKLMmS9WRHGM0+ZVqCCibgxBFFPVJY0pSVJBVVqskQQyYHo443vf/T7T6YzxeMxsMiYMBS9efsknn3zMp59+zGq9dJEPPn9DY1y+p1C6nmKNM9qgXbTVNp+e9AaEtYRhRFEUVN7b0QH8LvKpy70TOpKllcKrtaHWFdIbqC5HTdkRA1VVMZlMGI0mnJ+fE4Yhs9nMS/05mcHRaNTl53OknUZKxXA4ZDBwMiGbzYrhcEySJM4wsA3T8aQrV13VZOsNk8mERtf89Kc/5aOPPiJJEv7JH/whv/d7v8fjx499TjNLGIZdPp8WgNNao42m8dFM/Q1TXRsfneVySqVp6q7DyRAIIbqy9MmVts63/7rvjJtQ7mzenDymkzLs52Rqja37oh9ak9EavTUme/d1GwXYmQgEzuttxxjdBZrbiK2WIBJCdP2m7U+3z3cOK3Tv0t6zvyGZTCb83u/9Ho8ePWKTrdHaSbQeHh4SBI5IfPnyJXVdY5HM5458VEqRZRnT8QSsM1TzPGexyhiNRsxmM8qyJEkGHTFore0kgMUtK86yrX9nFLo200bT1BV57vrkYnHDLz78Of/1f/3P+Xf/7t9RVTVhFDMYjDk5ecRmk1OWBVGUYIyT44kCRRgKNpsVSZIwTIcuJF5YpuMJZVmgdUMYBXzwwQd8//vf4/DwkLIs+fDDD3n96gUvnz+nKguGwwF/+Af/I9AlVVmim4bLq8s7c9I38/i7e7fevb4dl7e++YrH9HM/bDfKGrxQxw4BIXb/FfTngPvLtwNuoXsF69nw7I7v7n6Cez3T3gQG3waLH6zn3qbU7WQ98CbvVtmb8Pidd7+nHu56nO+Wtf/dV4KKvXrpyKF77vem529PZoeQ6T+/bZnb7jUPEnu2zZt0z2NaZNyXxRE5vQeKfj14EAgn0+Hmf7NN8CxdoWUQIJSTydFaOzvRO4G0OR/afH6Ac/qLYySCVdFg6orGaLAKa2pfGS2Y5AplW+8mWuLqza3TrzvNw33v6477bt3q7rtj8H7ldfc9q5WJlW/s0d/M43Z99r/rf9/9vjMXbb1xv+5zHjpucQldf5PS4RarTYaUlsEwJh1E6GKNtRprnApAqOLOZgkDSd1sEAiq2kUNJ0lMqBLqyqk36Np5P2M1Qjrvb2EbLJYodPmKrAdyVCC4vrnh6uaK65srjo8P2TvYZ5COSYIBAJ999gWL+QLd1EwnE+I45ujokChyOUqfPXvGxcVrZBAwGAyIoojFYsX1Yom1kKZDvvPt7yDNlOUy49mzF/z7f/sfWK4yp6zhjbebq0tkpZkOBhyfnvLo8ABpGuqioshzri8vGA9HYCz5JnP5RgMIVUBR1dTG7UGUUqDduwehItABsVREg5R0kBAE0qVWUBJwCSeM1gijvNyRvTPcOlKh13taIPy+frBDLDuX6Z3r2v6w61PxwFze75fWz1VvnFPun7NvRxI/RErd/W130bhD2NzOa+yPfnTUQ+XtO5Hc+yZ3ynj799553W9vXsO+ivgyXXTK7ovtLn9tZIymqx8Lv1K5mBqBNArlKYE2dm47n3rcua3zduMi/NrWI3vwNJLs2YgO9HY3kn4MuYgRR/xY6fAFK413xnMgtnM29u2qXSqEvmrFFvBuo5l6+0VtMB2Yv33V2+OotVVuOycCSOlwMiUURlufO9m9dydf79+z1CUGCSLANoZAScp8wWVzTVVVPHnrKSeP95BKcTOfc5ZfsDeeUOclysL3vvsBk+GI2WhMEicIY/jzn/yEn33yGfP5NU2ZMx0mjCJBGFiELljdlDRlRRKmWO0k1HRjmF/PWc4XZKs1utaMkpDTowNmoxGjOMbWFWWdYaqaTECerzFNDbYmDqWT36tLdFPSNJVXVPFpMayTMK1rl3fTojqHUd32E7E1x4T0M2a3ZgoUFt3P/eo6V69dwPYi6RxJCVjjycltFL21BtP4eVVK18NUwCBNOX3yPsZa8rJENzWVrBDKMhpFWBFS1YYkanNT+xQEQmCpUVGMkgLTSLStkSpwyk7CdjlChbBIYcDWvmwOf7RGo60LejHW15PF51NyOGZd11SNw36MdY7DeZ4TRi4lA1agG0NeVgQyJc9qsqxmOIxZLXOaxmGkBkdGaa0xVvv62s2X1q1UjlOjJX9EL1LJkWEWadqcZLblnXz7+fWqJYVkfwK3TmbPt7XDjbfjzYp2VvARsh3V3Npn/wkIJv802jCrrmjWRyOB/012YXTGA1GBBKREIVHGUNU1SRw6gkkKkjjCNjHvv/c2+7MpF2fPeefJIeVqyenBPu89PSGJXbL3Is9YLees1gvKvGB/b+pCwI3l+vI1p6ePGQ0TrHF5On74wx8wn9+wmN9weXXFaDhgMhozHk2JogCrDfkmw2iNBNIkoioqdGOpkDTaAaDT6QkX5zcIG7N/+Davr3OsqXj9+ornz88o6oaDx+8QJi4RaFHVDEZDvv29b3P58oJf/PQjzs9rvnw2Z77OObu85vXFgvn6L5iOhjSN5E//9K8Jwyl//pOfU5YarUGpEWFkGE0jLJpffPwRj06OGE1SrFGk0YDF4objkxMWN5dUVc1qteZ3f/fvU5cbsJbjwz02qxsS5XKPCOXC1wfJkJNHp5ydXfDv/91/ZBzGhMGAv3z9N0SB4lvvP+H64obJZIQ2htdn55y9vsTKEI2hNrA3HZGOxwhRYoXCKkU233Bx85rQS1uFqeLp01MHmucZhQ0ZxiMmyYDDo0Omsz1evnpGVVvKSjt5sMAS2JqPP/kQbUMmsyOsKUA0rNc5i6Xk3fAxgxQmo4iXr17z859/hl5v+OH3H/PBd99nNA5ZZSv+8s9+zre//yPeef97PHr8HqFKmI2eooucJluQDn9BoyX7DVSNZZM3LNclRfmcyUQwmYzIViWb9ZI4SolDAYllOAAjQsazCQdHR4RpyuF+TBTOkHKIMfDJp59T1SVVU1HWBUEgqZqmk7Hre/Nvx9Ou9SaE25ja9rP3JFBCuhBQ5f6OlCJUChX0cjFZH1mkdwEki3DShh0177Y6xri/w0AS+PvGYUQbENUiZ22I6LbM7nsrJdpKtIYwkA4us4bah1xLK5BWI6x2QIIEaQWNNTQYBBLrGfa/KxD4X9KhlGAwSJ00WiAZJjHjyaiTtCyrCDAsl3OkH79aa9J04FrOCoyRJIFiOj0gjByBnCQDAhUjkAQq4tGjU9568hbDwZAkjkmSiMlkyC8+2sM0DddXlx3gaHwUk71l/BkfGpsmI05PT3ny5AmPHz9muVyx3qxBCKIo4uzsjOV80UWMvHjxgqqqSJIEIVwOIvcci9GaRphusQ0CSRAGIGFTlIjSyZepKGaxWPGzn/2MLMt48eIFw+GQo6MjX4+KPM/ZbDZdDiVroaoqFosFSZy6EPf9AyfNl+XOIcBa5EByenrqnA1836uqhqYskViGScz+/h51mSOsJnAhhGR1wWq19NeIjrwIvdyflNYlO7ZbQm6YBoRhSBzHXd4ll9dI+4SYOG8cvBe39VENXnKvO7ql2Ucu+e+EavNZOGkARzQ77WyllPu9Bbj9Oi2U9wDyGiWu7kz3Xref2Ro2QsiOFOtOaTcObDf4xvdZIYRPztlqY7u63uZ1cu3VRq85byDbJdRsn+PqVhEEEUdHiv/N/+5/y//j//5/4/zsjEBJLi8vyfONk0bw+avC2BF57bPiOKbI887rKAwjRqMxs9ms13+si6gLnLlU17XzbPZ1B2CF7ZGuW+LAf/BSpIL1asXf/PSn/It/8d/wL//lvyRNB0Rhgm4MFxcXTMYzQBD6CKT33vkO//Af/B75Zs3HH/+C//Zf/b/57ve/x3g6QkpBXVXEcch0OuX999/j7XffJtts+POf/IT/+O//HWVZcHp6yg9/+EMCpZjfXCOFk+RMk5BYCpdP4ldnqgV6wPpXgJJf407bjx1IY7ux4VD8v+Mjvsbxy0X09HYlt0GgTkLt7m+7z3NnvemZ99bt7eryN7sPcPtl2ubrEkW/zCFaAObB3+8nFL5OVFl3LnfBuhYE2dkC3iLv+tffetCb26SlDbsBL3r/k1i8tCvGR17qbm0xps1DCLXRYNxGLw6Vd3LZAp1S+jxMWqPrGhlG4HPIVSU0RhHEe84TGouT2Nlm4m7zkG49q2gxse4/W7hVdOBAvw7vOE78Z7Ant+old/vJDgD8q8cr3SV4W+Dqnraw93y+XWWC1qv27nPeOFfc1+zWzXXtZU1jEFaRZRXrdcHR/oSiyGl0hdUGiUIpwWgwRinA1lS1pW7a3GSWPCv4/JNfEIffYzadMBgNaOpi60xoXT+vfP7JwOfIKMqSL559wSbbICScnhxzcvKIMA6RhDSl5pNPPmI5X5DEMfFkjMVwcvIIaw0XF6959vxLjGnYP5ihVEjTNFxeXZPEA548eUqSDIjClKurSz77+FM265Llao2uNFYLyixHIpkNJ8xGY2INB5MxB5MJ6/kNUkBV5pi6IY0jkjhmkKRIBFXVcLm6JBlFBGVIrQ1KeAcKY7CNxmpNICV5UxLhbLmyLrChqxMhoE0+dW/k5+3m64ZU69T08Njezp3bXEO7/WcLxz8cVbO7PvVJpgef+0C5rbeJjc/j9VURPdu7iZ37vOlh90cU3Ypq/UpCdldub3svyy6Bc7se7tbdm8ilN83L9zur9IgI26sLu/3tV+kwjXUgvXaYDhY62btu0eyto1svQMAByy4kopUvtyANQjjlhk5yz/p82UYgjCOhNC0p5VZgFyjVk+ESriwCg/K4gbZbZ8HWiUCKjrrqbC5jXO44d+5WSh0LosWcrEVIn38GuxMN0s7Lumlhdukczo2LVhFimx8OvMSZ1sRhSCgCdNMQBQnvPX2fg8NDlFVEKua9t95lbzLj1fMX7J2M2Z+4fHSzdMjy+obPrq55+eIFf/zHf0zdlJycHPHWk2NCCVHQgNUuErSuOT485sXzVwRBQpImfPTRR1zOl1xfXlLkGQeDmEeHB4yShMBoqmyNiCRxoCizDQLDMAmRkcsZJYUmsJpoAMKGlBUUJVRl7YgB4ciPJtDoykU3eSkkkAarfTRcu4UR20g2a7WzES1bpzC23arXy1BSuS5lPD8gWwUci9AglI9s9wSKxRJIRZ3lNAJME/LTn37Ej3/8Q4QIqSoDQnI9zzg9fUqYTFgsM+IoII0VdVVR1DWNNcRJSizpnDqwAhU6HEYIaHxaEBegbzxfIXy0sgYarHWOwbV3ErZGeG7D9a8sy8iKvEtnYLE0RjMcjp1ijQoJ4oS9ZMJ6WdDohrzQvD57QV05yVghnAKJUAJjnXqK9OtKS2pZjI8I9LXrI+7wstOOuPNrSIvb+UZog5uEP9EA0rrAhx3Z6e1GrPsspHXSiXfWFT/n8PWcpd5IMO1EVwD0J47+za1BIFBi1yvasWH+erFNQB5In2spiUnjGIFlkIYc7u+xNx0TSMEojdFNjdU1ujasyw1XRYHWNXVdsd6sWS2XVE9OSeIYbQyN1rx48aXzNtbOE7SqA5I0ATtBSdibTbEWyiJ3USbWkCYR2kBV1xSVG7RSKIQNkMTs78/48z//a5ZLi6WmqF/z9tvfIssKZgfHBOmYn/7s52zyAuqaII45enRCUdU8f/6cJrdMp6fE8RRrA6IwZTSYsB6UTMZDrK4RQjKd7jEZjTg7Oycvbliu1zTasik27IUTprMx0+khTVMSh4I8KyhLSzp4wotnL2mqkvEoYTobM1/OmYwH6LqmrHJOTo55/fqcNN0njCOurq4oq4bpZI9i06ArSTwdcXWxYDKcMB6NWK9zrq9dyH1d1Ww2BYvF2uVDKSqqsiCJFVVdYGyOCgxJFGJNxXpxCTJGBokLKRWWpqmo6oJG19RlTU0GtiGKJVZohEwxKBoNmJr1/JqDwxlhNCIZztg7G3N2tWEUukGdbTakmw2jQUQcSbJ8zeH+jMo2lKJhnCYcTU/4h8fvcnD8PuPZCeloHxUmiMZQqoxGXxOOl6RhhDFQ14Y0N/zWcJ+TiydcXb/mZn5JnGQ0haRpKjCaILAoCVGgSIKQOIgYJAl74yFGRFQNlGXBYJCSDBIWqzXL9ZrxdMJildHUmkY3bjIxtts8Wes1v8VWT9lFhii28UwtUO1scrc+ONlI2Usw38+jItqAV0/DG+vGppKSreuTWzIk1m0QhI9IlD0oyoMIUrS5RgTbXDOiW5QkCi0M0ntNWKUIpUQL4XRXAxdZQjdBsjV8sFtC61fk0KYhih3hID1peHi4TxQFlGXBq7OXCCkoyhIHwDgNWyEDhAhQKiAZpEwn+xwdHrN/cMjBwTFSKkzjPCwwMB6NOdzfZzgYEMcxYaBodEWZZ5RFgTWGNEnIi6Iz6qMgcAKjUnXGm1KKIJTsH8x47/13+fUf/JD5fE5ZVqhAkSQJl5dXVGVJWZYsFgs+/PBD0jRlMpkAltVqhRCKzWbDYjFntVphrWW9drKaTe3+346FMAqJohBjDXlZcH5xTlEUDAYDpJTc3Nw4QyUMge2a0xJmRVG4dcqTP3GcOiIjigjCiKZpODs7YzAakSQpnXErLVGkiJOQTbbmz3/yJzS64u233mE8mfL49Amxj0By5EC43TwCSrn5Ctr1U5JECWEYbLX8vUSiIz6sj7ra5jc03oBoZdz6Y9yNczeUjDU73wM784jy+vf9vEuA32Rs77uznROw9fbyAFG7IQeva9y/n990dBtyPHHoAMsoinw/lz4CbCt915a3JaJaebr2sFiM1SjhPOaNFV7CQfAHf/AH/Jv/7x/xxeefUZUldV0QxyFJmhKEgYuUC2PKsqSua+q6Jk1T4jB0Gth1TRSFDIZTBoNBRxC2Oc7671jXde/9WqCgNcidR5j0+uZCCAIVYrRlkA55++13+Z3f+V2+/OIFFxcXXN/MyfOCMExo/GZICkOoQv4X//Sf8mvf+zZ/9qd/wl8tV0SeJMrWS0ajIaenp7z33jsIAfOraz756Bd88tlnrNcr1psNUskuZ4QUgpOTE0aDlMViQVVGGF1TVxVlWfwy09U35ujW11vkxpvO9586e3wHqve409Z07jMq7kcnLfEGwFv0r7/H3u6fek+57wK7fUCmf94Wk3FFuwX6fhWKxf1g8YORHLZnR/QK0Y9wsLeu/6WIAdF6W27npq867G5j3b7hHeis3ci9KVrl9v0fiqZp5S7aO/Xn3e22/k2F317nb9ptAN03u56QCNvLxeT+09aU7f7YejAbh/qigpBQQhDQrYdtAazVfk1yTknKy3i0a5nWmhov5SwVcaic01EjKZVzQMLiXYsEmhbUNFsKtI+H+RLaruPuVscdELhX3+05272puP+cW9fuHH4Mt7/3o1gfaue2zA/3s2/e0Uk0ie0M+VBfbrGFXe/0+05qx8UD97lvrrjz0JYYaEe32/4YbYjDAZiAqrA0taCpwRhnR4Uy8OBUSZ7lVJUjn8JQIT1oZ4EyX3Bz+RJTOwenNE0wVlPkRWfj1Y2z4YqyoKxKrq+vKaqS0XjEZDJmMh0TBSFKBBR5xfx6zfX1NcPhkCBQxHHI3v6M9WbF+eszl2c6lAyHM4q8wFqn5HLy6JQgiDFakG1Knl9f8PrsnPlVwWqVs1iuyNYZddWgrCAJY0ZJSmAsSRghraUsMoxuWC5vqKoKJSWz6ZS6LllWFXXVUJUVKnVOTGGgkEphsMQyoAkDtGkom1bNBpI0ZjQeEYYhTeAiHaxwTi7G4jzqMRhpvALPV4ybPrHQnw9ukxidhtBun+n3i6+YcbtrtoCeefNa8EDRb881/b8fmrvudubeOW94xkPHltC65RB159g6mrXOZuKWR1J7aeds2i4w3NMO3T09NtHVZ0uO0EU5tPfuF+2+7rB9ZvfNwy/+DTt0rT0xYH36BLbreSdh1cpDuqNbW61w+ZV8oheDjxgydqvS0F4AdPNnH2nu5Y2Brb3aOrNsiSaPOYmeo2BXNnrY8vbYjgffwG4B99e0+3M8SWC9/Jk71/jcyC4iRDhnQB8m3xJNQjhZfikFw6HL1ayrhs1iycF0xvHxMU8fP2G2v086dE6RrQrI8uKcoCwZWItoDPnlNeevX/Hq1Su+/PJLTFPw5HifySCCKkco3FwpnUNxqEJW8yWDdIiQEY1uWK+XlHmGLhpiE3A0nTGKIyIFWEdIYCKqqsLJnSoO9yYsF+eO4FcuKsfomqrSGC+91zSGsgRrG7RxKjRSWKww6I4odISbtruKSS1x6BsE2BL/SnhO08u6OUhQYo100T94XNDbTcYTIKJzzHSRh1Y7jENY1/9MrSnLhrKC0XhCGA/INpcEYYRGYVDEyYDlakMgUpS0ICyBcOpLLu9h5YBKobC6ZpvnXSN8XjJrDEK0eYg8riEc/uK4hoa6aTBGeEfVwEdaOWcr7XEep/oUMByNqZvGIa5GuEg8Lbi6XPDJJ89YLSuyrHRpI5TX6fGRS3jqx/Tw1JYQtl4NpVvmrPAE2XZwStliv9vv2rFHlxfa+lG+HdhtmiO/semaeWu1ie2wg04ez1gXFfym440EU2cj+pLeNva3a4V/sV60k6/zDvxxRr31wLTC6AYJhIFCCQfU66qkyhUqidgsF2w2a5SEJIkIlKCsSsrCERRSSuqqYjFfsPHe3zJQLuGWr5i6diGCgzQlDAMGg9QB8cIlpW+8J7IKFJgGqSssBTQWI0EYiTWK+U3NYm5YrDRlXXF5VfP0nV+DwJJEkmg44vDqBo1luVgig4DxbJ+mLrm5WSJNyCCasX905Cdap/8o0AyTGGMkcRQisCRJQpwkPiG5n4SlJYwUg0HEeJRyc70GbRxpYBtW62vWmxuSOEZFkkpXFOWa8SRChpYggjQasFpH7O+PCaOQxfyCdbUh32zQtSEMElCK2f4ecRBjhWC9zknmEm2cNNUmy8nykkAprG5oZEPZlMzXcwLZkCYh0sYEQGNqykZSFXAzX/P0yRMENVVVUNc5SrabyAptS2Rg0EZTNwESQW2gKipmswnJYEIQDtnbm3G2LDHS5TXJ1jnDTc5okDIepajAbVDPrq5JJgHhMOLw8YTj6VtEyRFBPELIGIIBKgiQOkFqCKNjt4lAEWmIB4bRtHbSgUmADAVJmrG4XpOvcnStUcoNDikkSggCIUijiEhKGimpDf59aqSSRElMkqZY2yaHNejGacMa0+ZccGG7grsGaDeuuiHXJ5IcESRVP7qwNd78mO0mGNFt3vHAY6uN2y4cLhqhnZdEz4i2XRmk8Gx7+63o7EN3F+8V4y5zk5gUjoQ2QmClIBA+yaTyRkYbLWGslwh84+z0jTpakkHrGoEi8ETTcDQkHcRcXL4GnNyWA3agNbLCKCZNh8z2Djg9ecrp6WMOj044PHgMAvL1hiIvqKuSUDkN2qapsKahkpBnG1bLJWVZuMTBUrpFWjpvh7brdFykcNFpURQyGAwYj0ekg5Qsyzq5vCiK2N/bA1xkyv7+PkopxuMxo9EQgPV6g1Qh69Wa6+sr5os5Ari+dhry6/WK5XKFUm79aBrnWiOVwlrDar12BNEyZDAcslouMdYiA0VVlgwGA1+7LqQ5DF2yTqUCiqIgCCJnlAYhIHxuJOM2uFp7ebSk29RHUcByueLly5fkWcbHH33MdDrj+9//dQ6Pjpnt7TGdusgXa32ic1x5W3JCSic3GUeJNwjcOuoMGt1F1gA9L6xtXqWqqnYIpP5473tA9n/rS2S0UoTt32/yvL+7RRN+/druJPrz0PYeu9c48mhbvpbga5/fvnOfaGo/3wd6bze7xhs47n2fPn2L97/1LZ4/f84XX3zWAYHtPa21lGW5Q15prRFh1NVJkiSk3k7YPtN587X3cG3CTjnad+0IOtPWrQNDpXAypoSCR8cn/Oi3fszF+Q0/+9nP+PSzz7i4vCZQEWVRoY1hMh7wzjvv8YMf/DrHh3s0ZcXrszM3H2tNMhwwG084mO1hG81qveblq5d8+eUXfPnimbOxsF4/vODy4hIlBWE4JYwi1qsl2WaNNQ1N7aK9fxWP233+YTBra7C3a2X37S0Q7A7QKXr3EL2L7pRlF0jZniN6v90dD/e9031/3zeW+qfet7m/9U3/rl8N/N0pi+0wgv5v3TzVbns8EnHbDuoX9L4ni97vnff7faDzPWV08hrb+m83m+2T2nK1gMubyLj7vNJded4AjvfBmN63bwI8273jzl22Zlrv1+2ZHWUm2nJv363tni1A1J6kpEIq4yU58bacU6oAHOBiLcIGiEAi7NZRwBrjotNrhRAhYRAQS4mW/o1NWwCzs79sASpnY5p7bcE+KXYfyXM/4eBrtO1f7btz/1jyN7rzd7eHbzGAB67txp7Y/fubfuwQnb6iezPmjq3SJ+3eTO65/4jb13fPvD0m2w/97mO33/lGtFZgjUSpGN1IysKADbHGec47mfCAJArJshVVldHUpSdaA28LCKRQxJEhz28wOifbxEynM2rtbNWmaQjDiCAM3d6wrijKgjzPSIdDppMJ0+nU7eOlk0vKNjk3NzdIKUlT55SkAkFRZFxdn7PeLLBYBgOX80gqASjCICJNUqrKsF7lzOcrzs+vuLpasLwpWa02rFYbjDZI68aasgKhnWNLGjmFmaaqsNpJAAaBJE1TDg4OKLKCfJ1RFRVN0xCNUuqiwnjZP20NKgx83l7Xvto0/j4BcRS7uVm0jpXO41q2OkS211S32nV3J/zw2Lu7Xt6dgzvCpN9fxD3PfGAduTu9bL+wol3K3jzmH3JCuOdMfplN8VeOp+2Zvfvf99tdO6BPFMGtddru1stXE134iJS787Dl69ZNW/5fjfm1fxi/Z7XtWtr+X8A2uVLb98XuCaZv32wJpq2dK3rN769rCSZL99naLTnbYhP9owO62eJKLWbUlmVLXvqn7fQHTzS1zxVsMWfZ9nHTKzvdvtOVj17eJcBK7xgpXBoU5Ry4qzwDrTnam/L248c8PjlhbzojCBRpGFCUJfPLC+bzORQ5Io7RmzW2brh4fc6rVy+5vLokW8/Zm445GCcoYTHFmka5SC6pJFYrbCCwQhKEMWWtWWcbqqok2+TEShHFMaNQobSTa3Mkg8Eal1YiCCBQoJsCYWvSOCUKHblS5BWm0ZjGOPJGi07FCGv9XOtyXmqUIzawW66wZwd7CLqLxBVdi7l/Je49OgNOSKwQaAOOtLJtei6E2TrLdnyJzzWPd6pt1/ckSTFIwmhAGCqKaoOShtoItBXE6ZCmqN39tMaaxuf7xu1rG1c2qQK0AGsUQgonw2otVnrneF+/Ujg1D5fXWHuCsvEBK606jHLO/l4VBo8lbJ2uIxDKv5sCoajritUq5/JyzmpeIEVIlzPO28gInzvKbsfP1uGsN3D8uHF5lMTOuLqzIRDb9rt7vvW/u3sKsbsX7K73OK7pxqLwY7U/Jzw8576ZYNop+3bgb//18jFeIkcKsXORENYbjtvNbKBcIvR1kVOWkjgMiAYxdZFzdVmTrUIGSYSpcubzK6JQMZ2M2dufEYUheZ4BltPTU4IgoC4qqiKn0ZqqLgmigDBUaF1zcXHObG/G/myPNIkJQ2cgHuzPvK5yg8MWc6ytQJQoVVFWhsY0BEGE1pqPP/uE9Vpyc9OwWK2pmprfXJcEkcsthYTv/uB7XN8suXr2nCyrUMGAwWiEri21qbB2xdN3T1mtM4piSZ4vaKoNodpnMptgjGGxuGI0SkAYwkSRjhOiOIUbzXgyJI4jmqqgzDfURU0YOA/rzz/7CCkDhuMJQaw4vz5nOJBYZYhiRRClBELy1tvHnJ4eIiUslzF5saSqMgQho+GErMr49R/8kKvXV9ycXyGtZX6TkaaBM7SDkKoxZJuCILAMBxIjLK+vXjMbJkTBGKEFsQwYpiHzQjFfa7788hmnpydMxyHogrrKGAxDrFEYW7LJrgkjTVFtHLkkFbosSQLB3t6QdJBiRcD+/j7h+TVaNJRVTZlbylXBOB2yN5sxHA2Yrzd8+PkLTKCIRzPel0Maa6DO0SJEqQShLCKJEAOJUhqrH1FmJYmKiWRAYgzZ+obBeMKeKZGhoChyLC9c7q9cO11X2yCQTvbNWBIVoMsGGxuEClFhwM3yBisUs9mUJBnwiw8/o2m0S9zeaOfZbrYEjvUb4HsBFNGSvC0w4z4r6SOXADptVNET4OxPBF4oyzrd3K356LRHd+coZzTYRoNyRJoUvU1zZ7xavBqCK5fdfaIUAmVdZJSUAmkE0goCKbFWuTqULsS00duIFXpR0d/0IwwVWbaiKBRJEjGdjFiv10ymLk+QUrLXT5xhpcKAOE4YjWfszQ556613eeed9zg6PmE83ieJ9wiU4Dq4ZCXnbKylKjbopiLPNjRVBdYRKTdXV1RF4RZL7TaBUrXeFA78wbSx0wYlI4aDlCSJMcZwfn7Gi+evgHZRk14CRBHHMXEc8/777zEej7u8O9ZagtDlzsuyzGnYhorz1+e8ePGMZ8+e8dlnn/qcDg1lWVJVFWkaApaiLMm8vFkQRQRSolSAUJL1es14NOqRGJYoigAnURdFMVovSJIUKUtn8AjB4eEhrXxfXm5I05Q0ce8aRyFlkXF+9pqzV2c4SVjFRx99zOnpY77z3e/x/R/8Ou+++y6DwcgRVj6PUHsEKiRJYgK1JSzaOquqykfGOECjqiqATlquJZiklF0UUvt+fYOw/7zb5BLQRTbet4mG3ob3FqhLH4Ht2lnsXOt/uXOvljSSUnaRQf1Ne/v7bcnQ2/e+Q0CJ9p1dfq9/+A/+IevVirOzF2ANdd1Q1VVnqG1yF6mjlCJNU4qicElag4A4jr10n5NSaOUcXT3TRWC15W+a2svitfmiVDc+2wiVbXJaQRCEWAuz2R77+wfs7x/yk5/8JX/+k7/gk08+ZbPJ+fyzL8mynEePTvj93/8HHB4cYXXD67Nznn3xBaNhwsFsjw++9T5Hh4fEccxf/dVfcH5+zmq9Ji9zJumIsqmoGhdZoGTIZp1RlgVFUdA0NYM04fziCimc40+R/2oQTLcB6IeObd/cIqW3yaW/7fOEoNuM3yGDfDTvfcBQn4DakgBfvwwPve9D88Dd33fv8xC4+yCoZd/8LNsvK9tavo8kuLsb2j26+27Rijef157yFVW6c5ceKL779T1/f3WRtw/onXdfPfbraAvM9PZqO+3TF8Pw60TP+1z493Ab4nbOpgNc3Vy8BYMs7VoSEChQEpfkWGsE1u0TAOu15a01NMZQlgUqcjK9iYrQUkDu53srsASgXH1K4b2f7TYK/yGi7euPRDrbuvt8D1Fpb7fprXN2AZbtL/eRuDtt14IDv4qHfXgM2t73t53q2vrqzwXt8fWIuhYEFdu/6Q2vXrGkDBAIysKQZxpJjFIpCEEgLUGgGI5SbubnWNsQxa3TkKIqHXibJCn7exFFteJmfoVuLPPFjLo2rNYbam2IY0fQ5FXeSeoORiMeP37MaDAiCp3TUyAj1ssli5sly9WCg4MD4iQkTWOqquDDD39GWedMxiPiJEJKwWIxZ2/vkChKwEqKrOTycsnl5ZL1OqcsaowWLBZLVssNRVERBiGhEDRlja0bmrwkHY4ZxDHSanRVouua8XhIHMfMZnu889Y7nL0847xsQEMax0gFy6qkMRaNoDaWgRqy9bq21GWFFtoR1ErRaI2WGi1aiV6B8uCkA8Tvb1LRfXhojen90W9r6+bA+9a3XcLkLth2P8mxO+Y756L23K+znnxt8mT7vLuf7znzFrn08Nr/dcpwO9Lz7j12/94SBreJqG1Zdr+/Uw67Pechacyde/pztmf96uRgMtqlQLAulIQuehTRrXHW+iiUni1n/RgSRmDkts9LITBSeBk034mt8HsZ7WW52mgpe+v/7e19BAbbNfP+Lri9zs2nWzm7+/qvNa0TtIsiUbKNStye26aecM6ieFLG2RNau+eFYUgQSFTgpE+DQLG4ueDi9XOmgyG/80/+kHeePGU2GmPqhqvLS+r1gsvLSz766CNevzrjhz/4AZNAoMqMMst59snPOT8/pzGa/emY08ePCHVOXRY0dYURMEhT0C4PUFMZ9g4nrMuGxXLF5Xzu8kOvN5wc7jMZptRVgalqiAKscu2ptXPmTyKJpOHi/DmDRBIFKXEo0Y2gsoC2WC2wWiKtRAlNm2zDyAbZ2oO+b+i2j8DWXhHtyNo6L1laTJ9uGhbCRyl5m1P54AghvQSyAatNz/YUW7tTOIW+NgCl7T+z6R5KBCgVESUJcToCXVGUmqIyRMmQNAKMc542uiKKQsCgG+NsUm0Iwth97vLS+4gh70DdNM5pVxiHd7l8SFvnUWOcjGJRN05uUUhUGJIkSUe8AKhAYY1TrAEX2SxUxGYzJ8tKqtKQ5zXT2b7DenQFaKytcVFU7b2c9L+LMAErbFfn+GaRckumCgey+oCU/nc4JSjZBiL4cdT+JracDv3P3Vets6zfez6oo//wWvSVBBOi56V878/bhaBjmL1B0b1M71ylFOPhiNlo6PQT05jJIGE6GbI3GaMkrJZzTFPz6PjIdW6tydZrcgEyUKRe3umH77yDwknP1E3NarPg8voSqSAIBI8eHVM3FYv5nKauODzYYzicYGxNVWVYU5KkMXVTUjc5ebFhvV6hNwnX1xlRXBNEUwQjPv3056gwQZuY6+s5H37yGbPZyOWGkIKTx6ekacLe3gGw5OzsNYvlZ5y9vmA0GfDk6RHaFmTFnKJakaTwX33rB2xWa+pq04Gsn3yaEaUjGlsjlKU2JU1Ts1mvSCPFdDilKmomwz3KqqQocuIwAKmQShAlinE8JY5BBpab5QXLxZxvf+s7xGnEYvUShObtdw84OT1ks1aEwRREwj//V/9XbpY3/OA73+dHf++3CFD8x3/7b5jPa2b7Ux6dPGKTabJ1SVWsKIqaKIlRyjIejZiNZ0zSEdevXnDy+IDKCKoqoyokP/3rX/DtD054dDjk+HjGIA6oasvN8pIvzz5GhoqqCslWNZt5wfPPvuD0JOb3/+FvkghDlm2oaw1hShAZBkPF8dGU9bogRxGqmPfee4+nb3+X9Trj9//RP+If/P5/xd5+wv/l//y/58d/78ecPv0WRit0GaBDSUNFyZpVVpHKEYVRFFVDXWwoVtdo2zCeTJlMxyxXcxAGJS3ZckMSJtSbnEePDggDi6kLFBAS0MiAQAUMRilvv/MO11cLmtqSppI4fcVyldEYF91QN46Bl50RtwtgCT9utPZRU7fGYQvmY0H7SKMOdG69VjpQbOvNb/TWGOjyt1gnjQdbkAvTylVZrFJsw+m3slDtodrf/DtYH4faGvWBVGjhogONbaX9FEKBMiC0K3vjdf9/lfbjLrLGeVRUpWWxuKFpCqbTEXG8z5Mnj/nFLz4E6PLO7O3PePz4KUfHpzw6PuXtt9/j6NEThsMRUiQ0VYjWNUpGlGXNxfkFr15+ialL8CHAVVUSBgHzxYIiz5HWRd5UTY1Stxcdl3vLLeIwHo1IogitG25ubri4uOhIERcpE7g+pRRB4KTOJqNRl3MoDENQA5qmRkrhCamQb33wLd599x0WiznPnz/j5OSEV69e8dlnn/Lpp5+yXq/ZbHKiKEIpibVO2u709JTxaEgURbx8+ZKzMCQOY5QTaEYpTyw1zmCIogRrBVEUEwQhQgWUZclwOCSKI+Ikoak17773FCEMi8UNX3zxBUIKxumINB0QJymDwYDz83PWm5zPPv+CNE35rd/6bb797W9zfHyMCoKO4ArD0BnA2kXatnJtQgjiOOyRTs4rxhECTUcuaq2J47iLEgN87iXbq/etlGF7XUsudS15C9R56De/T6FbyG+d3pfi6+yEW+O2TwiFYUgURd1moM091RJjfVm/PuHUntN/rsvx4aToAhmTZRn/+B//Y1arBf/6X/8Rm/XSRTT7/VZVVX6+ctFqTdO4+xiD8s9bLpdYkbHZbLocYXVdoywI4ZxjjG0erLttJfmoCBzJJH0EFD7iylrBZDLjd3739zk8OuH58xcUecVwOOIv//Iv0U1DIAMO94/4+Bc/o2k0T5++xf/4n/wBSRKxXsx58eUzbm5uePb8ORaNsZZQBtS6JpAhWV2idcFqsaasK8C4858957d/9Ft897vfY7VasF6tOlnJb/rxywE63VU7G92vImTe9Oz+JvjesvVyD3497+Pd400e/feV9fY8cP/z7rvP3fv+snV7G4x/6Prbv/2niAK5fb/Oweer7v9LProjl36pi+4+534iqz15l+xoz293kts382CLpbfBbM8TO9FZ2ucmqKqKqirRdYEwlmGQYuLQRSp5AAFj3MbcaIx2ZL82uotOMsaQFxmqsqhEIqIQgQd3Ggc+GPpSHfgE1NrJR4uvUX/tGvVAF3TTfmsLP3DO1+y/b8KN/zbj4Jt6/DLj9E32CNxPMv1dj3Z9bpPBChRF3nBzveL12TUfvHdCU64xusTqks8++wwoCZQrUatCkaYzhoMZo+GU15cfgQwdKBYl1FXGzXyDsRIhna2z3KzRuiGOIyaTCaenp6RpisSBSmEYUmYNX3z6gtqUHBzsEUUh4/GIZ88+59XZC5qy5O13nqB1g9bO0eX09AStYblcMr9e8vrshrKAIEgZDMYc7I/INiVnL24QQhFHKeEw4vLsnFAEzMYTnj46QdYNumkQAifjjGY0GnTR/Dc3VyRJ4qTy4hLdNBQ2Q1hLICWBlEhrAUPj9xpJHJPVNaGQHtwNOhBPCDc/aaMJexLvb7auvs7RP2u7B9651xvXva84eh4J/evvEMt/x+P2PvuXu+7vNmq276IQYuv89dBtW8zv7u9fv9V27tf+x95HMvWjXfDE5K8QaOAPXTsyxfQcMTonPeGAZ9ce/jvZryPdfdeOOyUlwko0zS3CVqK8rdDiQzsOfwa2xKIntVqtNW8HtUebz6dd+8G4CBOPg223q7JzTGzv47BotyK4ecJu55FefuL22cbnlmrz5QIURUmja7SuOkfBk6MJ/+j3f5vHR6eIquLFZx9zpQIOZnuYvOCjL77g8vKKsiz4n//hP6HMN6wWV5zP58yvLtncXDFMBOPJPkePjrlazLF1ThBIokShG4tCEAahywU9nrLKC85fX5DVTn50tV5wdJASygZT5aQqQEQBlW2cozxgUUwmY4p8Tp4tCKg4ffSEOPAEnYA0TcFECFtimpLS1M6JQroIc6sNQmgC6eqnsQptPdHj86JbKzC2zaPk2k+6AqB7/cI563gWQrb4o3eCxkXGWsAL0Ph+6YgPaZ0qgG2cBDPG+MhPyaeffko6HmKVYtyMOTw+JZSGn//1T7g8P+Otx4cEQlIUBVZXqJbo0g3abKX4WgfRViWmqiqUkIjAkV+tU68MPOFk24j5Nq2AJBIRtbFsNjlFWWGtZW9/nziOu7XKCthkuXNaFlA2FVIIfvazD/niizM265wgiKiqmkY3Tp7PSztKL3fXOVgJibXS5TpSbuQhjG9fT6j2CKW2Ydz829/beDnKjvBrIxR3ZSm7ab5bD30j0fvtzvHV8+1XEEzSdzJXge0GYAuGg27TvAmLlBblX8AKl2Ct1o3zKheCSCjGMmYUhPzg+99DYsizFUaXZItrKmUYDlOmo4T1uiIdJGijybOcoiiJooimyMmKmiCMqWuDstJ5Ho+H7J8cMjwesl7PyfMVQSMZ6QGxcWFoStdEScS6yGkwaKt48XrDdBCSKIHIaqqrG+bLfVYbQ7lYk9U5z19vuKwUm+WGvK6odcif/vwZ0+mIsigw2vCH/+RtBukei3zOxXJJPAj5s59/iAwUbw9G6CzmL/74Tzk8mnAwShmNBuxNI65qyfxmQYjk6dEhB4f7JEnCarPh8uqaL5+95Fsnh4wnE9I0RamA0WgERjCIB2gbs1guOX50wmQ2o6wKnn/+nN/60Q95/fIFWtek8ZQiKxFWU5YFWjeooCIIQharNca+JooG/M/+8H/CxflrNusFz559wvc++IA4kSiVsFplvH79EXGyx83lijQeMhilKCYcHExIRmCiilysOHjrEavaUAcw3o95nB2xenXNK3NFNa8ZHyWcXVxxMJvRGLCNIB3ts6oEjRqzCmsWas1xELBYlhi7ojFgaBgXa47HM473ZoTDhINpwmKdYaVhMprx9J1DvnxxQVOsePniBUWxz2/88H/KIDlCl/tEcsJymRMlKWW5ZrlcIrKYeDygLAqn32pi/uQvPmUwDAgjgbWay8tzrq9XpPEpTdjw159+ztHsgMPwLepmw3L5mnCwRgvDLIqZJSk5EUW6T/rkhNWm4PXrC1SYIsOAuswpqxKkdLlttEEaiwKSMHQJlS0Y3CQTRdtJ3ggIuiSJfmOGT5Vnt2Bvoxs/jF2EobVOM9Ti9lRGN87zx4dnbhcO671VnRwTSLSVLsTYuqR40gqkFijZepkaGtG4xd4bmNZKb1NIhHA5q8JAIvxbKYzzeDNOq1UaaITASoVF/UoRTD/+zR+zXi1ZLeesljdki2tEk3D2XFNmC/b2D5hNDzE2QEUDRuM9PvjguxwfnzKdzphNJ0xGexTrgmpTIrHQNGw2a+aLORdnrzh/+ZxXz76grAonAWahqmrSdEhZ15S6pLE1FieH0RqQHZhvLcZ7RaXJgDQZOZmxOme+vuDy8kPq2i2+EgnWhRMHSnlPIcVqHhIEIUq1/0YYrZFKEYYBQRgzSNNOVu7xyT6DQcB3vvUObz95xG/9xg94+eIVn3tjb7VaOWPJCi5eX5CtM0ajAYGQVHmFqY33aLJOSnDg3kEoicYSlCF2Zah0yd7eASoA0AQqYjgcURQOoN+bHvCj3/gxTWm4OLukKArqsmQ0GrNaLJnNZowGKYEQlFnGX//lT/j8448YDAakgwFCwQcffMDJyQl7e3vUZQ3eOJY4j6ZNU3mZPp+7oqkRLXnjQgcJhCRJQ8JAYqlx6GULkihvmGydOdp330bXtNJ7dmv8+6OVqnPnGYRSPdBx+7vb2G0j1LYbCufp23oKtfdso69cNFt0h0hq/1Y+qqvNKdVukJum2RI9PodUSzopJbBCU5uSwXCMAL77a7/O//J/9b/m//R//D8QhANc+LeTi8uL9Tbyy4fwW6BqNNpI0kFCWZYUVbmNfBIuR5qU6g6Z5urTolSwQ4gJ2vxRBkuNpURbg7aGurLUtaEoDK9eX/Fnf/lz/vu//hk38xWnj58SRynJIOZ8XfPP/1//H4aDiPHpEz740W+zsJqfffwRqRAoazCBJN1PCCPn2ZYXBeurFZt1SV5VaO3ylSEq3n33MXE8RCpLoHIOj6asVgvKQjMZP/rPMq/9D+7oba5bfKgDLnpEwK7nrehttJ3udJvgtPUu4851d4/7yJ/7gC0p1QO/9RON333WfVEUvR9v3Wn33z7xdZfQuc8b+G9BtEnRf2D3fOeT5qRZrX+5fu3fIX3eQIr3yyFwU2N/nhNKdnOObd0nu2dtvX0dTna3zoSfbjuHO79ZMw+0e0fCsAVknEdvL/pTbsu78x70tm+2rYu7QFvfmUi0yaulcniSdZtSQSs7vAWAXEJuZ19avF0pDEqAbgxNU6KbmlBKEgEjYYiAshGESnpJdAlCE/gcNRac/Km2GOnBHhtS2oLS1ohijmo2DNIhhxIyKSiMJLchBTHaShoU2udLCX2DCL9OCoSTO9kBoC1OHPtWndjdmmpBAKyr87av9RqrA8K2tBs7/VG2DdPesYebtX3q3mgmP3dg7u8n37RDBqqrWyu2ddrOG/cToveTSC352ydKd5Cq7rgLQCO4PfV1R2QC1yQ4HKPCoBQsqpw/+auf8vFnH/O9D54yTiVVNgdqAmFAG+rGIoxlNNwjEBadr1gUG5QMCcMYhJPOy4sciyaMXM5SFUqiULB3dMpoOGYwGJLECUpIV2dCUNYVf/XzvyGOU2bpgHQQopTkr3/6FxRFRhgGHB0dUVYCISNUFBMHkk1e8OWXz8iyEt1AFKccH50wGR2QxkOEVfzH//jHJEyQaUqla168foa2FbNxzP40YH8Ih+mUMstp6oay0rx6fUFtDpkJJyWsG8l6uSbb5BijUVKQxglBmIEKkEGI1A3LzZq6rKkaTakNjZAUUpOJmkJWpEFEgMA2DlhWBKDdGJV+/rXYrVd926RtF2ij87toFdEu1Rjhc4P49d0AkZEuQnino+4mq3+oJ7m7i52/EBZhte9gdzuZ6K7prAo/xewCgC2Y6fb34t71dtuHH1rjbXdiN068fYO3FfprqGlfoVfsLu+Kf57t7AB/RytAeorBbNf//ju1QH+7StmdMrf399747VoEWNl05XW2eTtbbNe7uzVsbn32K/g9a/c3+WjquhdNBN26ZLct4A7f2YRfqzBY0XM8bO0DITDt+n6rm7mciVsCyUUEOYlR2zpHeqNOeLvDWuOV+No12REQrd6+wDu3WEcuCNniTBKkwQrp85R721QINIbAKmzTvqu7UEkFVoO2BNpSa+2IBV8ag9uTUlcoq5nGipOTPYZxzDQJmFqLOT+DKGYw20MGMR+9esGrl2fMr68ZD4e8851vc710eXDXqwWr1ZxFdkM6ChmkA+Iwxq4zhjWEQQBYmkqTl5rh9JDxbA+pAuZZxvn1OVW9QRcFuqiIq4bpeJ8gCEFIaquRUnmbx6ACxdO9ExY3r4kj2D/c52h/iDAbTONyaFtP9hk0VpYQ1ASJRleNwwKtQAlH6ugGFIZI1C53kxLUGuc8YQDhSBcrXf0aY9CANl0z+3ztpnMEcpZb0o1hhbuf6o1jY/y87vucwxVc/j5wGMVmk/Hxzz9mMjln/+CAb33n2zw+OWSYHmFMxWefz/n2t04psWibg6nIlpYkCQgCBcKiy4awzkmjxgX5GM00UOSbFXUAOpQEfk9QFQ3aOptYhjFOXUkgZeiJM4tUEVY0FFXJcrNmLwxIkogwUCDAJGPWRekjqgBToq1FCAOixFDS6AqjtedUXJ81nhgU0kUPCpqtra8cfmFE67AKQmhX0Qq3DkmLCARC4T5LiwwEMsCNIWld+rFAIYXtopmk8vaVbdeMXbtZtClUhHB2nMS3a7svFm+ca99IMFnjEjC2kgUtsEQ7h1nnOS2E9Q3hQOz+5rcFhAQQByGjNGUyGVJXBUkckA5iri7nPDo6YjB0UlBNUzGZzDDWeRcjQ6yGotR+49NwfbOi0YL90QghXL6bTbYhSARCggokcRxBYRgMBui6wpgaazRhFKCspGkMptHUZQNUZKuC+fWK+SZmlWvWuWWVC7JKUmnBptIUtQYpuVlnVNrQ1DVKSK6uV4QnY6SKkUFMY6A2DuRdrpZcy5iDvT3Go4TxOCGOAtbLOcM0oi5ijIEwEEgMUlgCYUkixeH+lNlsBkJQVwV5rplMJkRBSJZlZFnG0dERe7MZZV1RlRWT8ZSqbBgOJ9R1idUNZV6TZSvX6EHgBlGcYK2TxlGBRApJkec0VYkwDS9evgApCOMEK2pMXpEVG+I0JlDOS3G9WVPVMYYIYw1lVdE0hjwvWGeazaamKteEypJEAVJCluWMJiOyMkMqxWx6wNW85PxKUxlDVVuCOCKvCtabnDB0gHBezDH1EmETtC65usp4+tYxTTVHaM0kTVGi4r13HjOdDDC6RtiALz4/I00z9vZzDh9ZKqv59KOPEKGb38rrnP3JPlGYUFNRVDUvzy6YTBIQmqouKIucV6+uSJKKIqt59uKS8fCQ5bqmyDfcXM8ZpJK9gxFKCiIlCMKEVVZQ6RApK4yxlJ79Fj4zoTYuyZ7wXgIS0I32S7Mb1MJan68J7yQgnAFtlSOhrHH5wrAYq51kpXDhntCCIq1UWOsF0Q7jXngzrZHoPBdai1MIkNYbEkJ0xoXFYFoNX2s8UOHv0bdeW8BGCD+h+lsL995Suwm4ndA7vXr58MT1TTu+993v8fLlc86kpSzW1FWONYbVcom1MJ0esLd3gLYBcTpm//CEd979FuPRjDhyHoFlWbFeLdFNhakrdJ3T1DWr1ZLLizMuL864vrmgriqC0JH+RruNR+31Zvvbgu1C0/7X91HrpHDiJPV5bBo2myWb9YKyckaOQG417H1UTUs+KBUgZYCUCqVC2mSdLjdP5CUBAx/lFJFnqSczAgZpwunJI6IoZG9vj8vLS87Pz1ksFlhjKfIcaxrqukbKAq39s4R0cno+Is9aQxiGxHGMUtJL0pUkSUpdNwhREccJgVLUVYVKYiaTCT/6rR/x4c9/wZfPnlF5GTVrBHt7ewRKIgVUdY2Skqoqvf7uAgTsTScMBynDQUpV1Fis9zzzpI4HKpumoSwrqroiSZ1EG0J0+ZuUclrCrcSKW4dFN8b65AdYlGKH0HHH7ra6D362Rx/MbsHt1uO9JZH6z+nnWboPfO4TS7d/a39vSbFunvLEUtM0CCG6CLCWeHKazRKtGwIfWXdycsrv/d7v8S/+xX/D+eszJzNgNCoQXXtb60BU7SxKmsagdU3YaLI8d5FljRsPW5nD3bHRr7s+udRtvKXwfzdoarS2NI2hqjRFUVPXgpcvX/Hll8/58tlzNlnFOqsZj8eEYYDA8umnn3ByvE9ZbkAELFYZjZWIMMTUNassxwpFrTV1ram1JYwH5FcbgiAmjhUWTV5kLFcLBiYiTUNWmwVXNxfczG+YL5dY8dXB7N+EYwf8vWd5uQ1b7pImltsXCSveqMZy27P5bhTKVpLrq72p3wSmPvyMnef1ntu76IH3vXvvr3vcN/5vkyfbMrl6bbctd2r5De/z5jJ4MMvfs3/Triy3SYgdF8u77yxa46dF4Vrap/d+3T3aHfd9R3+Pdgv8232J7a22XbY1kG6Vuzf/O8DFl7UP9XU2mfvb2YjtXN69JK02vW4qsIZACcLAO4uoAKkUQsntM30+g5ag3FlvhCCIoi5KFKvRdY6wCdIoJIH7v7VO7L8FyfqV4N/D9jbDtrf29E/v2uGeKgcHOt8HCYuuoh/4jbv94SHpvnuPv103/i/yaO2ZLWrsMIL+fPdL3hEheu1873i5TYy77x68Y2vX4KWWlEQIQ6M1mzpnGBnKfEOIRJc5gfR7L+uujeMEgQfHbO0Ao9hJvxnjInK0cXZAGCqiOCSMIw72D5iMZ8TJgMjnf2y9kau65PLyyuVcHibEYYDRNeevz8mzDUGgSOIEJysuCcIAYxpW6zVX11cUZUEYRkzGI6bjIwbxPtKGFFnJ1cU1N1fX2MbQVA1FmWPrhiQIGacJk0HKMA6RpkE0NaLRSG0ZJilN2VBkJdJI6ryi2KxdxJLP6bpebyjLkih1zmRh7JLWa22oak1Ta9o0He1ewBHffs6wki5KxeFWLdd7T79iC3z3x6roSTn1m75zBrg7Hz807d7bR7fb2d2u3T1T3LOG92eadq3YXSOE2KqJ9COl4fY6en9ht/fypevmSDoyoH2fvvNF7w679bxD3vd+7dWJeKiOuhqi967d5fcevlbcHNG9/+7t+vfZeedembfj+a6Kwjf5MFp7woYdG+S+pulaxnin4r4NgXWAsgBsX7KL7p7dv9bhRO5vfB5vr6bR4kM9gqv97DCE2yad6I1n63OSexLSuN7h3aKRwpVP2jY2u12v3b+0RJuxGN3m0zHeWds5b6lQMhyOSZUktDWz4YBIQiRAGevSrAwGlEXJulhxcXXD5fUVcRASxwnGGNbrNYvFDZv1kiLfIJVgOBkROATeYQZt+xjXK9PBgMdPnlBUNessY7FauLQQTU1d1TSNJo0TwiDwJJxzhGpMg5UWpQRpHHHy6JgoaAhkTZoIolCyWrq89tJTsuCUPcIoIBFgpfCqSW27CcJQgtVII1BGYLq2aHN6CT9nu7kZhMu1JB31IfxEGAi2dmbbtl2/st0cLfwa3k7D7bjvsA9wsoxiG7G5Wq6oy4o8yylrzfXlAUW2QNiGv/nZRwzTkNEwQoWSRisu55dMJ5IkEQSBBKGojSEwFoXDruqq9nv+itr41AkW6rpGW4tUIUkkwBM/be9L0gF5VSGrCkRFWZbkRUGcRISxU/IxQrLZFOR5gUBxeebyiVdV1ZP+bx3624raXZe2/gV+DHjboMtL7yoeqVwUEz6Xt1SeMJK+3Xw0Gv7/rY0hPU4lZPv47YLajV3TOgHZXp60thv0F0LeeLyZYOoMdbsjqSB8ZzJGY/Dgi39Q6wG9JZgckCiAIAyIhxEylCyzBZqUKFTUpmHvYB8pBXVT0VQQRTHrTUZduzwWxgo2m5xAKQIFV9crikIzCEOCMEDnhjqvGE1TdNMgkcRRQtOUyCSikVBVzgM7ihQGiZIaSUS1WrEpCpbLgsWyZJ4XzDcVy3XDJheIZIa2gsa4CA8pBEXVYHSGFBCHMc9fvGRv/5AwiojjhHW2JgxCal1TFDlZsOLp01OsKEmSAKxmuZzz6NEJSRLSNG5Cr5sKVUsaXSElHB0fEAYJRVlSlRV5UbB/cMB4OETrmiyz7O3tsX9wwKuzMwD29w/Is5LxeEigArLNis2mZLnKiaOIJAk9mDvAWgdgG61YzFes1yuSSGFszRfPvsQiQSlkZAliSZa56B+FRZuSzSZjuZKkyRhhIoSFqippmoIs02yymrrZcHAw4OBoSDKMWJZLDh/t8/L5M6JwSDqY8vGnX3B1XpHrHKEko9RJp1VVjdauzcpyiQwLhCooqzXXVwveevqYMmvQ2jIYBFTFmrfee0qUJuimYbMp+Ouf/pwkGXFyuqA2FqMEX774gtFkxGQ6IZtvOD5+RKAURVlx9vqCxWJNOnB614vlNQCvzl6j5IKyaLi4vKZ6r+Hyek62vmIxv+HwIMX6ISWFIYgC0jhA5xrdlFRlRuhB9iiKQSpW640bzB4BMQhqbdzm2dHLbiw12kUOtcSUMEgjMcKgu42Ul5UTzlt1a9gZH/Jqadp8Ogif0M9F95mdVd/llPKSvkhpMZ0hvDUqnKZvm/Npa6zsGDe3DYkWjMB5Kfllq5vtpGhaE/Fhi/QbeJycHrPOlqzWc9LhkLop0RaqrESbNXleMZ7uIQOXc+n45JTjoyOCIMIaTVPXLIqMq4sLqiKnrnKqYoOwltVqyfnFa84vXrNYzB0YH2zz4Likw6B1w52Gs7bnnb1tD+WTULYEU5ZnFGVBWeYYbcAKjG7BJuXJA+k3VLIjKKR0kUzt31EUEUWhC+cWzlwaDIZIKUm8HF0UxRwdHzEYDhiNhghhybINUiqM0WRZ5eQ0Aa1DlDLEUUxZll4azSUtTpKENHXkVdPUZFlGEjvJPhCUZemjamyXoPk73/ku77z7DhdX11zf3JDnOTrsEzPOQBoOh54Eqf182HB1ecV4PGE8HlOXjjDRXt6uJVaEjzhqmpqmrhFp4pvBGRthFLmIx95mQmvjvcnpwL3bG9SvBJ7t7ju41pY7hOMWONwSTPfdYxuFtL2ulei7D2BvDem2X7V13t6rlapr+2sYhjiyXHtZCHxyTvfc2d4e3/ver/HjH/+Yf/1Hf8SiLv39IApjlI/Oq3HyMm79Mz7xdk1Zlh15B3QJPNvPfRKvHxW2kxvKb+aNTxqKsF7KAprG5YZqGsHV1RXzmxuyzYa6tlycn7O4mWOxna700cEe08mA4SDC6oYwDLDWSeFt8hoVBDSNpq4FTRMQxQlBsObk9JTxeERV51xdvUDbkrKqkIFhsV7w7OWXvL66ZLXIyKvywb7xTTreCGy2oNFX32R72tdcovrA0UNjoP/31yFzHrrX7WfaB37/2x5vjJS6dTx0zm1S7b7fvu4z2mvulMt2cd1+E7V95lcRYPe1QRtJAf06tf0TdsmNHVyxBVjo7JruzF+iSR6qr/vOE93cfc8DhLOxtHZJp6UUHjRw5JI1DaapMbVbK6UUnXODUsrJ6Ajh7b/tPC+425+BLmdgF51b1zTUPnG0i2r3IVe0Dot09ePbTDz4Nl/ZT+78fs/meAvC0nv+fVX39fv/r+rRB9jvFbe6M3dtZY5undn9/svPiX1wf/dw/clnfBcCqUKv8uB6mAoM00mCNSVNaRGmRkmBMAJhJVIIojCm0dqL3go/phRFWaKNAFwOhkCFxElCkiYk6YDj4yPCMPE2rh9L0u39s82Km5tLZrMZURTT1CWrxQ0vXjwjCgPSJCGMIqzWhLGTSC6Kgqura27mN4wmQ6bjPSaTA/amj6COmV87B8jPP/ucbL2hqiDPNmTZihDJMAqYJCmjOCFRinpdYMoGqw3KCg6me+RV46KNtKasa6oiZ5gmxKHLuLZYrijKEhnGxAgn6Tca+kh8jaoahHHqF7EKiMMQbWqEwtuzPgm9J7qth/VaTG1nvu33Le+A6X9xe1Tf6tIDoLZ/7t2ecG+fa4HQfhfdBdwtHbnU62c7/V743e2tNdn2X8GXttvCd0vX1qHL9hDbu+v9nRfyk6SgJZf699u+4e6z2jXSAfW31sbbz+1dd6dMLc7cfSfh3hnb37v3ftu6dA/dHcd333f7uYWv75bxV+Fwe467BNPtuc/xQn58CIGT3OodHtt1EWRmp7/Y9gb0nmGEU9ho9322v/9pr2Hblp3ttW07D2H32tJ6e2Obc1pY53gpwDlcC4ttyRSBIydtd3VnY7goHLPN6WYhVIooEOxPxgzDAFNsiIMQU5doJDZSpMMhIgi5uLjm/Oqa1SanyHL2H01J/n/s/cmzZVmW3of9dnO627/On7tHmxmRTWV1KLBQVYSBFCgKJEHKANMAA1E0DsSRSEljSX8DyaFGMtFMM0lmkmgySqQMMplMIFCAUB2QVdlGejQe3r72dqfbjQZ7n3PPvf6eR2QBIg2ZtTM93nv3nv7svfba37fWt9KMaltim5Ll8paq3OCsocgzsiLDVG0IULWQSY31ImSwSMXJ6SknJ8d8/vRpIKdWK5wQGGNDsoMXZHkR8D0bSA0lZCxzIMmTlNm4YDTOSJJTvC3xrqI1JdYYVKKi5BoRb/EkdIHsULc2+ltdMJDGuwZjQkaS9KEfdUpsMcUd6SWuwxNFyBcVIvhjUkoS1cnVd2vdWHeJu4ZhZyd3bvHQNg3XziBoTRtKxGy3XNze8vzFmOk4J5Ge589rFvOcjz/6gPEkx5Gw2bZIXeOkIu8k7RE0LiT7SOepTUuiFa31tLbt5x9jAgEnpI8JFyrWpgqB/6NxwbrcoHRImjER2zdmFIhZK/FOcHMTahymSconnzzh+npJVVWxP8tIkkZDKXaTQVyiEJJ4OnJJBEIvSieE/ULm35BMQvggpScDWRRhYqT08RgxA6sPBPM7cumuFuei3oyIzj68ufZ5m6l9K8HULwIJIHKXQiu7M8dOImW4go6h01rjfQC+2jYMOC01RksqV/Hkp0/41/76v8p2s+LF8+f8yrc+5ovnX6K1DmAjkh/86IdIqaiblrpuGI1GrFYrzs/PGY0yLq8uuHj9Y169OOX0ZMZ8MWN+OkOlcWR4T7WtyKSmFZY0T5nOCspqyXa7BEJNBwWkqebi5Yab2xqr5pRO8upqw3LTUrUSu5HI0YzWQ+sglZrWeJq6RAlBJRr+3t/7r/nGhx+jZILz8PTpU5o6yPydn53xzUcP2ZZLVuslzinSRDEZZ2zWt6xWa5IkZTodMx5lpFlK05YI4Ui1ZLW5ZXF0zHwxoyxLVqtbnAk1PCaTKVVV8a3vfJvjBw94/vwFT58+Jc9znnz6lFGRMxmNePblU46OjjDGcLts8L5mPHnAZm25vV1i7AVHZ+9wdHTCeJTirOHzi2ekyYTWl2y2t9wur/jGhx/zox884Wg6ZnIyRSYtNzdXVJtb8iRhnI/IiwSpDUWe8yCZIWcp7z884ngxBwnp2iOF4eR4Tl16rq63tG2BEiOcLfG+RSrJb/zmX8JXNyRpxnw2osglH33nIeNihqkdF6+vqUsJNiNPNLPxlKvtkufPPmUyO8f5JT/+5A9YrmuW6zakfgrLZ59/hrUOYx0qSXn07jvUrSVNUl68eM4//P1/wPHJlF/99d9is7nlxz/5AZ9++imffvGccTFDkmAsrLc1TVNSbm5wreP49DE3y4rxuCRJE9qyZj49Bdny5ZdLXr98yr/8e7/D/+v//f9BiGD4lsuf0dpQ5NRJ0UePhEVHcJusC2SuFKCkxytCJIENk7ryoKLB6qJI3ZARF7ux29FL3ocI/g6oxe+cbyldLwEEXV2mMHkr7yNBFLX9e2AnZjAwBHDi0iuSUhLRZ0RqoZAKnAjGTnlHIhVG63jN8o26Mb/I7dmLp1xcvsI6y/HJCU3bslyv+37w7PlrPhqf8PjxY45PzpjO5njT0LQ1zlqauuH6+pqXz7/EOYP3Fm8bLi9f8+rVK65vrlgtb7FtqJHUZQRJqZCJxjtivZowOXVSxp6dAxAIohA5mWUZeZHGoIC2r700dGIdNhQI9C4szG1XA2wHQCkZsq8gEFFFUbBc2l5W1TlPorOodRtArSRLmU6n5FnBbDbhO9/5Nkmiub6+jvWZGpwzEXC3KGVC9pRVWBtqS7Rty2Kx4Pb2NmbWKFarDaZ1HB0dAUHLfjKZoEc6Er+Wsqn53q/9Gp998ZSb21u22y0uD06+MQatNefnZ7Rt3UvDSSlpmoaf/exn4Tl5T5JkHB0dMZ6MSdKUtm2pqgqtVJxPCWRakvb1LYxpSdNp76gLEcg9EdOsldYxO3XnrN1HAu0vXve/69reAqPfRw2IJvYIleHfw2N0GshDcPdwcdpttyObPIcZQV3truE9WGsQEhIVnmGSJCgpmUwm/Hv/3r/PT370I7w31E1JXZcAJDqNNyVoGkO1LfGx/5k4r06nUyaTCdba6Jfona2M1zJ8Lh0Zdvgsuog+IVQ4h5IkWmB0IC210hwtFjx68IDrmxWtFVRVFd5/UVCXjsuLK64uLpACEiUZFRkaR5FpJpMFaEehZCDHmoayrPjur/4W/8a/8Tf44IN3ubh6yctXn/LixadcXb3k5vYC09S8vHjBq6sLljcbEnX5Fuv0i9kO+/ewdX71nWOIgVPtv1456bvAmOFxh5l9X0UEv+27nyfLqL+OwbXcR+zc9ay+DtB+mMH1tu++DmB/n227l+zu4cV9uKXf/iuO8eb5wcsdkdId/I3iyINj9890sKr23bEiEnOnCOFb+udwm7tJxujpCcGwYHq/qQ/Z5PggLyv8DqBz1tDWFVW5xpiaVAoSKVFCoESUE2lbnHEY6UhliBg2xuAtONNiXduTUV3m6vB+nPM4Y3cAKBJsi5SGsDpW4COhP/BNd+js1yAb4I3F732CHr3v+1Zq6e522BffRgL+spBSb4z1SDMN+2v4vcvCflM+rN9T7H6+kQl5x5h90wbuA/29LxPUi3ogpalqksSTp4LpKOO9d4+RZovyhizT0Bqa1pBlOWmasFqVvUJLVz90WwfVDa2L4LMimUxnTGdTZvMZi8WC0ajo5YOkBB0LdL98+YqbmxuKTDMaJVhjuXj9ks8+/SnzRdi3bRqct0ynE6RMefLpp1xeh7og733wDufn5xTFhETl4HK8T2jrG2xrGRcT5vNjXr/4krLc4q1lnGUcFRnzLGcsNTQWjCMRmkQLhNTkozHFZMpoMiFJFE1T8sWnnzIZ5Sg8dV31YKN1lqapEQq0Vhwt5iHgJd1QXl6S+FAqIVeaWpiQsR9ll4N8bQh49FgQbn/8dgQIPkppif7dxRfbv+39lWMce4cEUX/0/YyXXf85JJ/EPunkQXCfnO1OavZN2zC0TB04LhAxXv6QwNlZp13/9X74+Zv3el8b+qd7c2m/53A9wN4z3X04eAZ3nf3O8Xd/6wiN8PtQaWH4nAaESX/vnv5xebH//Z/DD/oXtZk+M0L063XgTVvqO5IA8G5v244s7SWSD5Qm7rLL3nu82Q/EO1wDiUi6hwwn1+8XjhlflR8GIAT0wPX9IY55K/GYPsvUexVJYNGTpcN1l7UW44MEoPexNpyWFFqjpKdaXeOBWZ4jrEF5yPKc8dERUiX8+JMnrMuSTVlzc3VLnmYI48AYpBJcXl+yXi5RiSIvCpSS3K5WKBdKPWBB4fEqwQnJqBjx3e/9Ck8++5TnL16w2mww1rFebajqkPkiU41VOsilqXBTja2QwlNkCWenRzw4O+OnP/0zPvzgEVmucVZRbVtOT4/BW6qqYrPZUuQTWuNxbUvbtjhvKfKUpjWER6sZFROE32K3DY0LNbGCHoiICQQRUxRdPabQeXqbJwVaaZRO8Bisa2PdrqCe1Ekv76/5D/tRPOaBX98RLd57nLU4b/HCc3lVc7sMRKg3ljz7U66Xtzx+/JCzs2OmRw9Zrm6QqcQrja0bxqM0ZC05g3AWrCH34IVCRazLeNuXc0izjCRJMB4wgU9IkgyZhLrXaZZhnUO0ksZYVpsNSEleFIDi88+/5MWzl0ynMz7/8jlYgbPgUUghkVL3gbGd5y8kUQVA9uUQEOHzkCLWub1u97zUjkQSUS6vk8iT0iM1SOVDpEVHOimBUGKnDrUzowdGXcSxKfvNoAuQ6ybdLgD5/va1dFFcYIuCNqbrUqbiZYjQ8eRgsm1b29eS6CZanOX6dsXr65ecHB9xdHJGWVVcL5ds25qf/OwJ777zLifHIwQKpTOeP3+Bs3B+/pD/6H/+PyXNEn7/9/8Bn/z0Jzx+/Jjvfe+73Fx+wWQ+4d333+HV62e88/iMNEY4OxPkzVSq8NawLtco4dEiLKJ8TGv/8Y8+xfucpDgjyQs+u33O+PicNqkpbytevV4hNo6yaWhNg99uOT2dhQijOhTBPT8/Z7vdcnFxwdXlBePRiPnRN7G+pao3/OhH3+fx41M+/OAdmrakLDd470mV4uj9d8myAiEUP/jRD3nnncd4D2misLYly5KQpeAd3luKosB7wdn5MePJlOubW/74j/+YZy9eUlY1o/GEbdlSN7AtN1zfbJlNTvjiy5cczY/QuuDq6pKiuOb6usa5hDyfsllXrFc3zGZTtNaUjWRbl5ycHjGen+J0wpNnX/Leh+/QbNe8vnxFnVvajeVbH32IUilX12s+WnyISgUKiasNl1e3TApLkoQaW5Nxysur1zx+9CHbNWw3S66vLzCmoNq2oFrk0YQXL685mWhubkqur66YTmbIPMcJyXpZ8+zVkn/4j37I2dk55arkT3/8R4wWE9LxkuvVn/H6quTl6xrUiPNH59yUa77/0z/l1YvnPHrwDmlaIFTCq6srzs5e8f57H3BxectPnnzGw/KU3/+Hf8jl1WuefPYJWZ7y+N0P2KwbNusSg8QLzcXVJVW5QdHysy9ekb8SlOWGhw+OGM/mCJVzc3lDkUn+0m/+Kmk+5v333+fHP/6E5y9eoVQaan04H3RTFQgkFoVw0CWuOhOiv6wH4yFFYJ0JNZBsJzPgUKpbzMse2CUaB9c7aUHK0piQ0RcyTjogVKBkV28tTv5KIkzMdBIOnyiUC8SyUgIloksfJSgHZRYJop3080qXla1C6EkAlhEhQ0oJcqn6jBf5S0Qw/ekP/ylNY2JqquT07CGPHueslmtWyzXPvrxkMrnk5OQhs0lDvdnw9OqSsqwiiCPYbFdcXr3EGot3LU1b8vSLL7i5uYopupbuRUgRZQkBYxqc3UmuEec3GRdwzsaaFfFLISRJGhy3sipxLsg+ZkWKFyGSJURH+16vtQMPjAsa9s4T+jwWE6N1pJdoK6iqpgdcrQkTv5S7NO3xeMxms+4jnPK84OT0iKPjOa9eveKzzz4LETmS2M9b1us1SdaSpilJkuK9p6qqUO9utaJpGkajCa9evcI5x2QyJc+LUEewtQgRJFWXyzUffvgNvve9X6VtDU+ePOH4eMFoXDAaFRTFiPF43BNG1oZAhiwLGVRffvklV1dXOOfIspyzs1Peefddvver32M6PQ1yg9stdS2RChAOJQVK6SAPF+fbLjMmEGhBuzhN0zck6O4DtO529nbtbiBnHyjsQVznescwLCLCsbuIHKVk1Or2bxBQ953bGNOTMyHrOO33775TSvX1mdJRyBwOGWrBWf7Od77Df/A//g/4z//z/zP/6P/7++R5jvcOrROKIidJEn7000/QiQ4SecaybbcIFE1taGqDmiUQixt32VMdcdhlZnULmi7qbvjcu4hVa4iOvUOqQKQqbfnd3/nLfO9Xvs3V9S1fPH3Bf/lf/T+4vKyo64a2brGm7WuPCB8K+i7bNQLLtbPYZy9obRUleFKyomA2XZBkBZttTd16Hj1+n5MHx8wWM549/4zsRUFVr1ktVzw4F4wmY66vb976Tn6Z25+XuLnrOF+n/XmIl7cej/tH+pBc6trbyKXh9297JofX/aZE593H/m+q3ZXd9TV3pIvI7TN7/dvv4+uc459XH+tr6IldDcsQ4bu71mCdozSYChkI3keNeu8wTU1blZi6okgls8mEaeYZp5BlGilcsElCBoBcC7QMCgySjtwSfdaS977PCh1mmiXSgQ/nt97RCIfwBoRCIkN13y7SRUT6qwOcxP5z/XnHSZ9R+MYX3PvCDoHiw0CJwwCNv2j/PNo+6PHP0t7waWIAn/MKZ4OEO74iTyTf/fhdbHWFpkV4R1uDFimZzrGtY2tq0izHegtKYr2nqbYsqwalc7J8zGR8xGR6xEmU/0/TUBsiBJaEQBgpAkH14x//EOdCUGaapWANf/r979PUNSfHRxSjnKbekCShxpOzhj/90x/QtIbFfM677/8q0/kkrqc0wius82zWJZPRBHvk2S4rfnzxE7Jxhk4lrqlpVku+/f4HnEzGSGtZX1/j6hbTGHACpcL56rKiaWvqtubq+gJha7xZ42Pm//J2jfUepVJ84mjrBp8IRuMpxXhMMRlzW9Wk0pIhoTYkuaQRDuMtdAGFzoO3hKq8jmF2UAdwiQF9NKAd9t81RNJ8t/4wB71pwJoc7Oze/FjsyJNOyUMcGqE3D/yW9qahCbVsdn555zt2F/Nm1u/XINnvIL4PidY32y7T5OuOuX6rzq72a4S7tz+0k1LIe8zu4fmHxNwQHf3lbX22iPfsMtf2icC9R+T39/XxMyFCqRGJQA3ez12E/n5fEv067XAeDIGDu5PuiMP+4Hg8xncqPtF/GJCzIrK6IZuJmDXlsFoEuX6/O473PipeRb9HBMUriUd5QiaqMSzGBaNEg2lZTKfMpxNa57i43fD68oqbm1uamNzQbEsenZwyH4/x1nD5/ILtZh1VoBKU1oDDmTbUgIq4A0ohtObxw8ecnz9gtVnz7MUzlqtllMAPEu2t8aRpyG413iNimRRBrKWD5fR4ztF0Qp5IPv7WO1xfvaLINXkq0Am0tsZGtacsyzCuxXqDdQYXJY5VEoJ0m8ZgWktT1TR1jTUWiSeVEqkTtFI00iK9ofHgnQk5G873JT2c9yAkrXbkhaJtPaaFthVorXC0+yUzBv1i329Tb8zL3rseL+gCT5UQ0X4LmsoihCNJ4GefveDV1Q3T6RMWizkffOMD2rYmH6/Ii6DW9cF77wQy0sXsLG/xIkF6iwhiO5FMC72vw8ESrRFSoYylNiHQlCg7qNM5ZVWy2qzZVDVeKWQMOr26XPPsy9cUxYamtngjUDIkzwBUTd0HNctYGymUTBEIHcdLlLMjBp+ExAG6D0HZiNEFQilIKMb9ZCCVpHRI3WU4RUxP+x2B1ZsDd/BeusxAetvQFR+N3HSwHX6H9N7X3kow9SwyOyYyTK6DLhJ/ty5cYFegOxQVV33xOescaZZzNDumbkp+/x/9AbatQEg224pvfPMjRkUWjJxpmc8mKPmYPC84Pj7hj//oD/jgw/c4PVkwnfwqWZbSNBXnD0bgGqpqw3RacHt1iZSKNEmZzma42oXUQSGDfnC9RXhLIsP1VnWNA7748jVNk1GMz1hXjgcP36PhimcXX2IRZEmKtDZ0UiRVVXN0doLPMkxVMxoVXF9fUpYbpHeMsoTF8YxXFy9I04STxZgsUSzmE6xNqIqEsqrwdhfpkiSSX/nudwLoay2yqrm8ukUlOVorZCwkvt1uKYoRAhHB0w2zo2MenD8MDLWHum6pmxZb1bTWUhtPko5Zly1BL1rz+uIWT2DMN9uGrEiwVlGWAiUFzmUY33B5u8JjqZqKq4s1ygsmWcJkXKB8zSifBHBYKeazCXVjefH5a6anx2TTEc+fvWZeZBRphXWgE0WRjmgqx3pt2JYtxWRCtYlpfjphVCx4/uwaeTZlNtakOqfZtNwu1ySpo64cPinYtILVF6/ZlCXbquGbZzNqI7hZldysN+TTBc9eXHPy+AzTVnz+7AvK7RohE5TIAms9ztiWDXVtKLclUibUjeOTJ0+p6jVlaXj65QtOTs7YljWbbUlV1WzrhuV6y2a9xtmSH/zoCR9+8JjTY8NyVbJcV3xQLMhSyXicImvPcnNLmqU8ePgQoVK+ePqsTzv0BBBSyFCkyEdiV0qBiEXxpHch9Z9QXNXJkFkiXQAMnA/EgZQepXxHe+8bEB+2s9YOigLupAVcl0YpBCpGtTjodXKddYPC1KKfSJzzcWLvziOGxqNfKnQfyQ4oEAItQ20epZJIkqn/1sCn/zZaWZeEAq+hZlCaFjw6fxdz7ljeLvnsyecsb9asblZkScp6ect6vaSqK9IsJU1TjGkpt1uapqFutmy3t6y3q1CXS8V+JcKclSYhg6kjDZyNmZ+dNIQIzuEwi15ExkDKHdBeNw7najyBhNJaxSKFEqE8u8iyGMFkHVYKpAvZSYLQf12McGpNjRDgfAhQaJsuhTn0TikUxjZkaRk+E4LtdhMznATWtoxGRcicNQ1CSIRUGGeg3cm7JUlC0zRUVUVX+6csS7wLknxap3T1ogIA4cgyyLMCay3f/e53SZLgMEgpSdMk1vaxeG8pyw1KKUajAqU06/V6L7so1A9quLq64vb2lj/5kz/h9373d3nw8Jw0S5nPJrTW9HJxQghGoxEQgjysDRFGSRIyXrVO3iCXund26PTvtIDf3Ba6KX2Xpt4tODtn/5Bgugtw3otgO9h+eL4+Ym7ogB4sbrq/hzWcOrBSJWpA7AQZvY6sT5KEv/zbv82ri1dsyw1/9Md/gJRQlhVtG2QQt9sSZ6NEodKRFHX88Ic/5KOPPuL8/DyYLwdS784/lAAcZnPdF1EdsgV9T04pqVBKkOczFosRx8dTxuOUuv49nvzs07DAqUP29831FW3dYK3BtG2om0aQU8X50O9wVE1J1ZRstxsuLl9xfXPJ0T9ecHJyxEcff4PRSDObPsA7yXZ7gzXPkFKjoyzlL0PzXV1CsQ/w9JHJfQXx4V77JasPMY+uu/6885Xo9zs83+B48bT9eOo2FYNteDtB8cY2d6A+h9scjun7M2XePMZXXc9he1sGyFfd033HuO/3PeI3fnY4bof3fN+5O3LpDfj769zzkNwSYucicXDfYgcyDiONh63rC4dvVA6i9XsqJR5n15M9kmA7Opkp4QymqbGmRgrLbFwwnxaMUk8qbdDntxapwxqhC+IImcYSrYKwqvM7WdQua9g5hxQigokOiUUrHUk7hfFh0eqdwRDAh73nKQS9QL04eBSD9+8PPh8+8+HzPXxTAZR+8xkf7ndXhPhdGUr3ZdX9MrW9Z3WIHdxh9N60M/4uc3XXmbhjNO591/k13fddNVqPC3J13pJqwSgVSLtFuSrQnN6HCHoZZdtkqIHpcEFu11msdVjrSNICpXOmsxMenL3D4uiUNM/iMizQusGNDpHMeMHTz5/S1iYCYhlJovmzH/0QgWc8ysnzFLwly0IAUV1XvHxxQaIVDx48YDqbked5WEfGgtzOela3G4TLESiqbcPzZy8oshFbs6apamxTMk41ylnaskR2dlBLElWACySK8Q7f1ggkSJgtpmATRFPjhQyKJTIEEiopQ7aAlFG6u8YiqOsG17aMZjmp0tH/7+pBiEjchIy26NnQ1QrpbGT36g4z4fqavcO37nfjuf8pD/zee8aqOATBB38JOnLpvrZ3FQene9NudL7127bvz/yVA0EMfr79mPfZrn5P3y3kfbcYDNv6N4/cAf97lzA43+7R3u1jhGPIHQ7i/U5yhS6zVsR3Kugk1XYIRDd3Du7/l8jM7gW1RYdgj2CKH/c+zx6/s/M6ejIAEM737xy/s8GH67n+GN2JeNPvC1nIb/bn7lx432+zk8ndnWdIMEk56DMxIyvUxXT9NcQY1t6+A3hrsLahcYaToxmTRFGkmmyUcnZ0xPX1Feu6Zd06NmVDVbeU2yA9N5/NyJKUarvB1DVVWZJoRZrleOnimi4oDNVNgxKCXCesNis+/vBbHB0f45VgeXtL3YTavq0xtK3D2rA2RIaAAOsMSnkclqCy5Tk9PmI0HpGmSZx3apR2SGVBCpQWjPMJdVXR1A1tY0m0xljIMonUjqY11G0TEz9cVBfbgnUkEmQqkSLU1kwSSaolWgpU60JZDRPX5jK8x672O85EOUKLjSTfIbow9F0DMhRJUd+Rjwx83P2s0S6oVIT6IJHYCh3aGLCtx9NQ1ZbbdcVq21KMCopxgdSCtq3YlC1VuWZUJBwfzTiajUhkRuI9ygdVlq4OtkeAlCgdnoWJ2V/OW1oTAp91EjKQWtOiE41KEqTSSKVJ0iIki0hNXZkQDCF2YzL060H9akEghEQIsJdd/aS+PhIRcwvZR8QAh0Agxe+7jCVFlNOLn6khWeWhl8c7HMOD9VFvYQdjp19rgpexcILzvfrp26alr5XB1F1C6FDdAm33fXexncZgwP2Cc+K8C2lhSpIkKVrnlGXF69eXjPKE2SSnqkpO5lO0Eghv0Erw+NEZdR3IEiEFr18+4+hozHhccHx8xnicU9cl1sxYL6+5vblgVIxo6wZnHa2Hpq5DdLHzyKhR6K1FOEdIs7S0dY0QiuvbkuubLVmh0cdT0mKClyvq1mGcJ2MHiEkB1oQaSZPRBD2bkkiNaUqUcOSZBgHzaYFtp0jbUCSCNAkvR6caKTKctdTORmcqAP3HR0c8e/68T3tN0xSkpqpqpDRB69ETDEbT4ID1esPxg4cUMkFUoYDcZltS1g1ta3DWsdqUSJlS1xXWWLRUbLYVSZbh4vFk4tAqxVmFtWC9pLGGclMFltN5jPFsN1vmxZzZbIK2KakO4HCiBdPphPWqYnlboYoGmaY0jacsPat1A0jGo4zpbMbN7Ybrm5ptVVNMCl4uL5EasjxFyYSygdU6CITmiaOta9aA1A1NbTEellXFdmNC3RVjuVkajLDcLDfUbct7757xxcsLlpsVra25ur0hkYL1dovw4XqUyaiqhu22ChqlQlFWLc9fvMbahrKquV1uSJICY4KDiVAsVxtWmy1V1eBsy4uXV7z3wQcYpylrT9vWlFWNVooi16A8V8stWZGR5RlKB4mrUHAxDLRAIgksAejEO4SW9JuICJJ5gVcCH1MsvdyZBiHiNC1873y56Hz0E7rfSVBFYdbe0ZA+6K4qQZjAfHD2Y3JmvJYenonndYO0z84xucPV7kCz+GtnaKUM0SA6CUB9qL/zy9OssyiVIKVCJxnT+RGP3/mARKesVxtMI3CmAQ/lZsuyrVitrjGmJckSkjTBWsd6HaJj6mbLtlxinYkTV5gNOgk2rTVKBoJJaYV1rlM0jO9lB171jp4MAjIhciJIclnn8b4Jc4MIEmABA5LRw9u9b+dBiZDaPoyQCwRTcHpChoeMpIoDEWR0jDVIMazLZuKTE9Sioqo1UkiMtSitUFpirKEbWN7bfp9wvhRrJVXVZYDF8A8vY1aYjlkyGilzBCYAXoS6FaenD5Ay7P+Tn/wkOiehw1tnMdaQpOG9KKXJsmyfiIBI0hlub2/5/IvPeXB2St3UzBdzRqMiaDcLg8ejlO4ja1pjcM4jpULphCRJB5KCO/duuIj7OplDw/0OcejhWO1at7A4BGQPF7EdmO+9i//2r2NIMHXZQN3nAcAU/dw79DWMMSgd+rMg1BALzrrsFy0Pzs/5S3/pt1itlnz++ae8fPWCtmlCvQWIutFdXaXOuRU8ffqUp0+fhvMKHd+ZoIvaHz6Hu0inPSA7OlAq1iAJ4weUDvcTFCITZrOU9987w5ots2lK0xhGoxE//uGPubq6ZLMpUd4ihR045wKhFB6HdaGmVF031LVgtbziy6ea8WTKzfUN5+enJGkAd5UsmIznaK1J04Q0+Vqu4C9Auw+EPPhO7Pze3YR1914/TxvAWAM45B4i447P/PAXsd8P4c2/+80PBvMbd77XX++W1vyqcxxex9cDznaf3bfPfeTTfcd92z305zn47PA8dxy8u5j7t3nLM3srASg7+3ffcQ9t6R0bDM978Ennk927pw8LUAHgQr1Qb1u0hFGekmeaRLkgm2J3dWt2xYjDgaQKASYCD9bt2fT9q/QRMLKBZJIOJz2J87TO4mJtzoAv6x1BJu4ZgBF47D52/cdveebwxjgYyOF/Zft5CNRfpkCprt1FxL05dt8MJjlsh2P68Bw7iziM2v9qgB2INWbj2lUA1pBIT6o8tBVKxuxhH4AX64J/IIVAqrDm8T5kPuM8UiQImZDlExaLU84ePGY8nuEiXuB8kH2ThMygtrVsN1uuLq/JsoQ8zdFKUW5LNqsVWRbIJiUD+KSkoK4r1ustdV1xdHTKyckJWZ4NshiCf9o2ju2mRCFY31RcXlyx3ZQUWYG5vcK0FdIZirwAYxBKkSUJ46Lg5uaGpgnBZhKB9Y62rVEolBYkqUL6FKUFGBX9IYkWikQlJCpcc2NqttsNjXOUdQveokUIWlRe4L0MNby71aT3hOwFH4mhgLDJru7vXe9zbwDv1p07AzLsInf3iTfIZi8O7MDg+55c2s0hu/EtDv5+s9/eRTK/bc7bAffiju8Gfx8yB28c4+7r2TtQ2GD39wB87I7sB5vt9h88+oND30Uu3Tc240S3u5eDbQNOtpNJ3J3e933ll7FZZ7nLB3jz9y5vefDd4FHu0Buxv6XYHX3Y1e972qGPdWs+H1+p373S4bZ0GVhddosPmNdgTdm972HAFR5QQSot/NutK50NBIhFEERYPN40SNMwyhMmecK0SBnnGXmaYk1Dud2yqQwbJ6ialrKsqaqaVCnOTk6wTYP3IUsJ78nSFKUkbYeh4WONyNgbpeDo5IizB6eoJKUst1RtHTK1W0PbWjyC1jiSNEMKGdfoLghl+jYEAqcJxSgny3NUkuI93C4vGRcpQob8s9FkHFS5ouKH9wYpNUkCCAvGRkKrwdgQDAQeayxKahIlSETARZCgXZBx11qgakNjQEoLBhQC40BYH9TjCDh6kFty8RkcSJvSBVXsv3exZ1UOxvqdvvTOPng68yBoW4exnrpxlOVrJrMJaZ6B8NTNltY6qu2axWLK++8FBZMkj+t/HxTNbEiiDVKvbkdqBTLN4bzFNHVcuwva1tIYE+qF64A5CKkoijF5PkKphKZqEUL1Uq7WuigbLenNlRB08nVCEGsqRcm7SECF7+Mz7AkjGckj3x+rOwYdYdUTVRHX6N7Boak8MOr9n90z7mxEN+ZFuIbe0X6L2X0rqtBFNHQnNa6TRthpBcZxvpu4pAJrscb1xdHHoxHj0RgPXF/dkGeas5MF03FGnoKpttzYLdPxiNGoYDwe89E3PmC5Kvn88y949vwpv/Ir30Mrh3c13oWUwvPzR2y3G/JMopQllQ4xGWOto2kMtzfXpOOUprEo6UmkR4kgy2SNoW1rtusS7zWWhNvNlvXrC37nW9/idlOzXJfUjaFpDLqu8N6ilUQpkN7SllvmZ8e8+/gRL758RpFJRlmGtZLG1Iwzyfm3v8ntxStefP6E84fHrNdL8iIJkLwx1GVNnifgPFVZIdWKJ0+eoJKE2fyIk5Mz1tuaL798DgjOHjwkSXJuVysckmLkKasa72Cz3nK7XHOzWvHll8+x1vf60M3tmsVigXFdpokNxtw0sXaOo2lKRqNzbKuoGotxjrrd0tgmgKRJwXQ6QYmGIks5mk+ZpYrlxRc4V5JlBSenU16+/JJiNKOpHdeXS46OHlLVktXKIGkZZTmL2Qmf/OwHvLrasq0V2fiIm9UrxpMZ43GQkxpPjyjrknK9gnZDqhqSk4ds1zWr9ZJNvcXcvEbKKY2XbErHJ5+8wIiKVbkiG494//2H/OSTJ3zx9AvKaktd1xzP51jnkDGaua5KVssVr19doVRClmWUZYV1DW1b05qaNC24uLxiMT9iMp2idcg+WK+2CCBNCrZ1y2R6ihMF2xqEyLi5WYcIsyInHae8vtlSjCWr9Rc8e/YsSJdZG/TwZRBDsh5wDu8sIU1WYAkD2gvwIkpRBY2H3ifsfxImgM5mOB8yCLsxHRb9u1o4wu8meAiZRVJ6XIwYUFIinEdIGegkL3bRcn5wnJ0XHs8to0PRORnx6GI3mQSZPRWBTk2S6EHNlrdZp1+s5oBUJyRJTp6NefzO+3zzo28xKibUVcOkmHF99YrxKKWpS24uL1mtLkNUwzbsX9U1ZV3TtoFMcb4NUhg2OuYCijzviYJQcDAQeyYC37sIIiIItIsm6gD+7j3XdY1SHi8C4eNwQd8VifexZtNgrSLwCBUyl7zr3n8nnSRR1sV6XR7nuiy2JEYkeZSGJJHUdRsctL6DSEQTM+28wNhA4lvvYjpvlFaz7EmrKaX72lHOedI0QyvFZrOhaRqKoiBNs0D22CDzU9c13nuyJOP8wUOmf3Xaj+NOos6YUAsoEA4Oa1vG4/GehEAe6wkZZzCmocgzvnz2lIvL18zmM05Pz5hMJiGgQSuSNKNtW8ajKa1pUVozGo3j+1D9uzmUaAv31kVZvbmwHf57M9No4OTfQS513w23Ofx+t8gIdeTCM7AEDe39SJq+OGuXnaS6zDXzBvDX3VOSJAgESivqpg6+gNR4KajrFp0ofvXXfp3xZMwXn3/G/+H/+L/HORNJyCA7uJPiszHLTHFzc8P19XWf3dZdUwAYVL9wcYT+1D37Q5KvX/T0fdEh8KGenhYY02BMQ1NvaOpbttsr8txzdJwjpeTXfu3X2Kxfs9684uZmiZYi1OBzwQanqUOlUQpVJIAO2XFCYQ20rWe7WvH3/94/IM9z5vMZp6dHfPDBI+aLU/I0p6xWIYr4l6D9vGDv0Nm+6xhfl7TtxxgRDBf3A1FvJVsG19Iv3A/Os7f9HcjP257BVwG+d0Wwft32dTI43oxsFvc+i7ed567r66J1vfdv9Pc3ImaH+99BFAUMLMJaB8/k6wKI90WRf9W+dx3rDXK/B926jeJ/4mIx9CMVsptFCFOSeKxtcW2D8IZEQ5YlCB8y3R0hCK47arBzBhlBcK00OgmSd21b9fKlEKX45M6pE0KCNQhiXUeh0WRo4bDCYb0NIFW3oh40d9DvY17y3t9vQhwHzzM6mPvQbedH3wVuvPnMD/8+JJ3u+/0vWodl7M+VoQ3H2u7vu97LXUD1mwD2fcBzyPSxhPemY8S4xpMA0rZoGWrO4kWswelRagf6SOmpmwrfOhKVUhQ56xpORzNOTs45O3uENWDxGKFxrsH5Nmb6Z1xdvOLzzz5HOMHR0RFFUVDXAfOYjickSYLH4r1hnI9Yb1ZcXVxQVjWnpw84P3+M0qHms3WONNUIPHVrKLeGum4olyWffvIFy5s1eVYggXqzBtsyzlKmeY6ynvlozPHREdPFnD/7wQ+4unkd5JaSlLFWwddvJUoLlHJMiozpdAqmDbJJ1pMnmkwnpDoBLG3bsio3lE1LbULhdGsMwvm+pltrgtpGKEnle0xNxv4R/teFuR+89d4Ohz87lY1wjI60Guzn7+gH8Tzdd92+O0BtgKTfAY5zMGfsLm1nj982X379eW3niezmqUPZ2TfPOfx+aKP2rnc4v9E9u84yvvnM3vzEv3ENh2uH3Rrj8JSHL/WNP4Znid/Jfh57WxDBL0tzsRTB7jkM3l035fvdjNn3R7HvI4hoCwUxIDX6qHvb3PGsnT1QnujeTf/PR1KjC1z0BBJJxiv1eOFxwvU73RVQI1B9Bo33Hm8iuUT41yU/hEyg+KcEYRzCNmjpef/RA8aJ4GQ+YToaIZD87MlnCKExDraVoaxqlqs1Ck8xHvPw/Jwffv+fcjyfk2VpyHRNU+o2SOD7mMmKt6R5hiIoeP327/w2yeiIm9slm8064HZCUjeWunVkWUFrSvJCh8wkbwkqoS3eW5I04fh4gUw0WTEiyQratubps8/4y7/1m1TlGussZ+fv8Pr5c4SUpFmGVhlNa0hTgaMF05WsCeoXIBDR/iaJ7iXVQuaUQyNJvSTLFUmqKOsa3XgS47Ax07xqLa2JdZqEDaSICvJ+e5KN0GMw/bsUAWPs8MPwnt/s10NZbR8YGrqAza6PahWCNiUKJyTLVcmmanGEDJ40VVxc/hi85+xsDoDWCULlFLImEQ1ZFq5D60BYtq5FrbfkRY6N/oSxLZWxMXPLUzc1xhpGyQihVPBJhWI0mlDkIxKdsjV1wDOVwhqDNUGRRmnd4+97hK2Mkndd0XspwoTWSUwK2Wcj9ThcRyIRNU1kwPXo3od0O1PQmXMRxluP0MQg3t5GCNEHh/uYVtDVL+xixxnUbH1b+8qw1aFj7lzIKFJSECJxOgmECHwDtmnAuV5beFQUQebHWrI04eThOY8enjIuBHkmSKRltWz49sfvkWpJmiRMJzOcW9OU13z43gm/8Wsfc319y3/5X/yfmE6nfPOjb/JX/+rv8uVnn5IUKVmR8e4779JWK9arZQStQ2S+SAgF101F2VRkChSa2tSUZcv1bcmmyvjWd/4Sk5OWP/onT/j7/+AfkecTNpsKYwKphLPgWpSESZ7xW7/x63z25KcI3zAbp0y+8Q6pTtiu13inmM7PuL29RM8yZpMMc7zANBWr2y3OFIxGIx6cnXKy0PzTf/JD1psto8mE+WLBe++8hyPUF7u6vOHVxTVKZ4Dg5YvX5OOC29WaxjiOvOQb3/iI5y9f4ZGUdcPl5TU6Dey8EBJrLFW7YVNvsG1Y9OVJBkDZlDhrwVt0qtlulzQmgLRCGowPypchCyelxaKNAdMiTc3J2YLyZst8NmY8llhXkY0SdDrm+nZLuWn4xje/izMlzeaWuvY4qzF1w4PzU5bVC768eM32Zo3ShvFYUBSOur7l6nXJN995l6zI8Y3mbKEpGXF7fU1Vrnnvg1OOT9/nyc9eU7WO0wcP+Nt/+9/hP/vf/a9JlefsaEy7vabZLsmERmVjMpUyHU+pyzoQKwJwhjzPwHd1VlYRNHQolaC1oq43aKmYTUPtre36BUkxDoXnFYyKjCzTTKbH/PgnP2O9vOZXfuVbfPH0+3znex9z/vgR08WYR+885B//F/9PdKr4+Nsf8Sd/8MfUtsXLUHHWCxnIL8KCX/rYESKZFBbXDo+M9d6CAVFCxSi6aIwg6uiKngDqmrU2kooR5PC7Qo0AwnuUCOSPUwAtqU9wKkThi3jMbjGgFOHCOja9P1V33GDZhr5053hqHSYJrSWJlmSpHjihPx+A9S9yG2cTsmLCZDLn9OQhH33z2zx65120TMHB+++9zw+//yd89rOfcHV5wfL2BttWWCyNaWlMQxv0FYNEhrAYZ1BIVKqCPVaSJAmZMMIHzdYk0chIUCB2z9z1zqHYTfTx+EhB27as10vSTKE1GFczKHVO3wm6/hAjpEORwbjYi9GAPrKPeiCpE4pNarRXtI0lLzTegzUhwlFpMXBgXawlBs4LrBV0RJl1FudAyTAfATRNxfV1S57nLBZHMRuroWkarPRI2WJMyFq5vb3l+OQElWics9wsV4E4EoGsm8/n/K2/9bf4u3/377JeryiKjNvbG9I074nTABzUaJ32RIppGrSWpFqTpxmJCvX2rJVs1iuaOgB0SZayWq1p6pazh4/4m//Wv4OPZF+SJCS6y4wKkbjDdqiJfei075z/uyXzOmm++zKX4MAJHIzXTs7OOQMx0re7JmNMPF6Q0R3uPwQkh5J/XcHPTmopTVOECLWamiakrmdZHlLpww5kWUbbNkipef/9D/mf/Ef/M/7+P/yHPHv2lLquoLUxokhjY8S9ikLG7777Lu+9915PQHUE674c3n72Ukcuee9p27Z/ts57FNC0dXTsQYUkZ7R0GAy4BtNs0NoAJULU5HnB9773If+3/+s1q+Uzbm9foFWolaZFGoIShKfwBXmehGhnJalbwXw+oyimTCcLzk4fMxkfMcomSCFomopPnvyQy1dLZvOM+fgI1xj+ov031w5BoLd9/88yD/6z7HsXsfPPY07+KkDovgykP0/bI8wOPu+OP8yMvOMAdxJBYvfBvef981z/oZ398z6DADkdkkyDrPAuKyBGCysBOIu3DUo6VCJJZUIqPd7UWBEynBUehMe0LcYbpDeM0qTPxgRBmibYJgv1agd23w+KgGudkChoncGbIPkqlCIRAiclzslIBjp8PG4HLx6Sqnc+xw63vPe1Hjxbv/8d9BDpV57rL9pdbW8hED/pikLvg+X7NuW+d3tIBX7ddv9+xoOQmjSTtNstZ4sJZ7OExQikL0lJqasS0wbQTCUpaZHiFRjfUFYbNIIiL9BobN2SiBHltuby9RV5OuP84TukQuDSFOcNztVI4fnRD37M61evqeuGb33zWywWM66uLri6vsQ5x3Q6wXqHEBolU1arFc+ef8nxyQnvfvAhWTrCeUHTtCBCJvvN9S3WemaTI06P5rj6lic//BEnR6c8OnuHtm75u3/37zJNFFk6YprkfHT+DmejCe+/8w55UXC7WfPxx9/m+avX3N7cYI1jlOecHi1Y3SxxznJ6ckw2nbC8XmLbhqquMa2j9RbTWLy2IA2pFCRKUgpo2pbaSwSOalvSbBuKNEN5H2XdibUouncme3zp8O11hJP3xPq9g7cdMTlPyFDrMTWg1/TZ6x5DhK87QPj77vEfUesdzf727vfP2Hbj481+vGe/RCRtvsI03h2s0UGFYu+uxQDM//rNH/wc+vDDeT1a8p78C1k4w8C0vZtjOJfbuMX9JNgvUxsGfe66xPCZxME1/JOuhx92mi57OK79ulII9wXfsCuLcqiSIWKnFN4jfQg2DVgU8RhxyMUa4j7aAk9XyxFA7vWRUAc8KNxYXD8SRdzHex8Jr7CPQiJtzdG04Px4wXyU8v6jc2zTsLy95fnzl0iZst5uWLeejYHVzQqtBOenZxwv5lxcvEBpuL65IEtTJpMxZbmhaVuEkgglaWtDliiyJON4seDdx484Pj3hk8+eU9cNaarJdIZOMtI8x/qaxrggbSo8zhqcNeg8yIsKCVmekGQZp+ePePzhN0mzEWW5YVU+Zr1dMx5ljIoM42z09CRKSlQq2WxrtlVD07Y0psUJT15kNNJgjMcaEWsjW5SwaOmRKg3yx0IilCaTAS8RURYutZ7WhXlTak/VOKrGY1wd8aLQN1zH7MV3fGghe0ios1l9HxZ7mMVen/MEfDOJKjl0pQJcIHisxxuDlhlKaKwPtcDbxoNQSOFY3mz46Y+/4OZ6w8cfVbz/zoKTRYFvwVpPikAKh/cmlMVpWlysEdgag5eKxjpaE9bKeZ7TWkuqQn2lpqlp6pbRaMxoPOLV6wsQAhmfgFAKpKRuG5QKWdDIWLNaDMclfd0lhMDJXWYYUZpOiDDvyW6kyfCeQvaTiLJ7tj8GIii0SCkGpiC8CT/0qP3ej4FBGRBKcY5l8P7ua28lmIwJF6j2ovt2L76T2FIqidEUYVviC2+bBmsMWkjyLGNxesSv/+q38L5hMc1CCrqo+fiDjxgVOgDdztJWN2TZiMUsxeOx7ZaHDxb8+//u/5CmbSirkh/+2Z/yxRdf8O6H7zOfz8hShfItUkh0EiKfvYCqrRCEzCtvHNa1VNWW7aZktW4xPucnn3zJaJGxrlNUmvNgMWNbVlhfYkyLkpJUC5ROyTLN0WKMNzW/91f+MtNJQaoEq82G45PHnCxGGNOwLdc8fnRKVmhkMWMxynj+4mnQNkfQ1g2r2w1ZNuXswRnq6par6xseP3qHsqpYbzZsqwZEwmQyp6pbPILReBSIBieoqpbb5ZZt4zDWUbeGqmnRaUa12WCbkBJpjSUd5dRtyDRQUuCVp6nKAJDJkFGw3rSApW5anPcU4xwlJFonKDSu9bz74DH1zStmec60SFlMEh785ncRtDjj2KxqtNZ44WnaluvLNd5/jtaGXDt8kbBcr5iVIxCe1hpW25LKet774EPSFLxradoanUuullfM8oTjSUYxkchGsZgWjCaCdz98l+XWoTQsFgUnx8f85Kf/BOEqfv3Xv82v/cavItSISaIxPgWVIqSkqrZM8hGpTvEILrbXSAXltsRZwSjPmUyn1HUZFwWh2J3A09ZbUik4PVmQqhRrqlDDyDuctbx+dcmLV0suL65Zl3/KyVHO8YNbFifnPJ7NEYXjd//q7/LqxSVPP3/GeJRhm3rAKnu89SH9l2AUnGkhyTrTE4Bh4fvJFjzeWcAHiZJYwykoTUU5vAH47Hy30O8Ipt7K7xHK0vveCRCBzQLvaAZRI51kHoiYfcK+vwK71X5vP4gRCLuJJdjArn5UdGzuQwd+AdtsehKzVuZMpwtOT0+ZzxcoIXHG4k2LVNCaiqYpsbambipa22K9wxImj9ZZhFRIJch0CvhIlgKiIxcdWumQkeZc0G4F+qgj9iV7umwnYy1KiVhrKMrloIOua6zlZF2MWo51FnaRUyEbqjtP8BlCHw6ZKhFMisRXF6lirSfLVexTgiQVpJnGtCZm4YW+WpZl74hY5zC2DVFFRKfWhf6ldYKzwTatVi0Ao9Gon8em01lP5jdNw+XlBWmWcXx8zHQ2DbbNe4yxQaLUac7Pz/n2t7/N1dUlVVVR1zXzuQayngTx3mOjY+IjOdFl6AgRIsWdsVRmi21b/GjUFz3OkhQlNaZp2Ww2jCcTsizrZfNC5pbrM4SEEH3GUueodQ78MJoQDiLPBm0YkTjcf7dA2EklDp3Crr+EzB/JkLvqyLVwzYFc2tPUjragI5e6Gh4y1mfrztXdc57nffZQf78u2FGECBIAKhRg1Trh0aPH/C//F/8r/rf/2f+Gf/JP/oTNZo1SQVpySJQBHB0dcXR01N9b965MjELqSL3YnaP92j9OR6TJaCkDkavQSpBoGWRzhA7FU1sD3lOkGZNRjpqNOT055vmXn/H02c+omyXjkaSua9JUIFyDEookTcgSD94E98lLtqtbVjdXFPmY0XjK9etXzGdnnJ6cc3x8xtHREb/1m7/FcnkJosW5hjzNvqal+he7vQ2w/zqZMl83m+a+rAdxz657C6sO5jnACN483lfiSV+rDZ9JL2c2IJb7SMSDn29r921zX9bWXdvd966+inj7utf3dUm8t2aiDGzqz9veFvU+vM7u59uu9a6I9ZBr5Hp73ScQeRDeRSR2lzWMa1E48iiBlQhHmkicMaRaRwlzi7M21Gjwvgcih/1FKcVoMsGaBmNamiYEb/iQSh2vlxi4J/AOjHcoDMK3IXCq64cqeppduGZ/kwdDYggyD+c0v+9G7gFgfh+0dcPvusF1h27eXe/kruMP38thAMUvfOvWBOEHcNfzuivTYkdMhTl1+P1Xn/busbh7z8OgFSlUBCQdWkrG44LT0wWLkWB1+QXGCCCNtXsko/kUlMC4oGrhfVB1sMbirQML8/MzRuMxdbXhySc/4cmTz1kcHTGZ5qSZAgyffvqE66tbxqMJHzx8n9E4xzlL3VQ0TQUSjLfRrwl1ga9vb3j3vfcYjcckOqONEeRCaoyxbMuaJE04OlqQ6BzThDqfH330MeNiyuWrS/7oBz9glOeMlaBQilk25nQ6ZaRztssNm9s1y+2GZbVlUozIH6UkScJ0POZssUAB5XbLixcv2N5ucT6oAmwbT2Mswjd4FxQvtE5xrmVUFHil8CpBtyGbqy1rtjdLitEJRaJRAqwMtX+NryOzEfMS+2hDdvZGBDCzG9e9xB47YqkL+maw+2Em5G4Dv/dn6D4+YlqyJ12GxHZHknQEuh9sdxcZdNhHgUju74OsdwUzhG33jzmcH4cklPd3zStq7zi7OuodK7E78pCs6Dbp6y51ju7B3b1tWPqYidoFH3TXcJi54Pt75M3vvGcnrT3cpqMWgszi8EZ+eZADQlZlbCIa3G79PGzDv4cgP4N3HjYM3w/rtXTvL/RXz1CG1PW+gBvM78NJN74nD1jfK0Z0MphChHV+10N8V28cduPLC7yNUuZ4EA4bg2m7+wlSeXFceYeWkEnJw9MjTuZTjqdjJnmCEnC9XHJ7uyTJs1AGxVvquqUsDXmWMp3MydNAGnjbIJQkUSkIWG83uCiDj401mLOELE14/OgxpyfHTCcTnnz6eQgAiPRXUwdVrywfYZ1ktdowLkZ4a8AZpLBokYTgnixnfnTEh9/8mG9/7zd4+Ph9vnz2gh9+8jPmR8eMRznTcUGqJJvVkmw0gtZhWkNV1lzfLKnqOpSc0AqtFU1teszee4nQCulEeJbeIoVjpy4Ug0JdC84gAC0Jqi82KCK1KryLbo0vY50fFzOWdtBi944OxmfEPsJ2u35zl+8f1k4WFQ2090GFwBOSH3zEfZwPa2mVKJRQWNMGs6AVrvVsVhXbzUs0CVpYPMdMRkGpRqgUj8W2JVVtqE2LsQbnHUmeYo0hybOQkeQcommRQpAmmiwLwcNNWzNfzFgcLXA/+yzUQepWdCJkqQXSJxJGvSMbsxBlnHfE4L5Fp/oUn5WLxUpkyLztnlQIlPO7fwpkzGDygJAOpQIx1c98XvR11j2EJAHXGxK6BeuOXPIxNdDvzRv3ta/IYAoTlwVkdA7jtBrByEF0tIuxSf2DCBchgNlswqOHj3j44JhRLsmzEYk0SOlJtWY+LUgTH2T1bIxSp6XIdSjk5RqEyEkSASi807jxiKOjGc60LG9vwDu8rZlOR6RZilSS1jbhwXgXMkGkxBmH9VDWltW2ZVtJ0nzBzbLkZrOlbmuSJsgwhesI93x2uuDRowdkqWKzvuH87JijxYQ81WDD4JTKYdoG61rGoyRM5LahqVuabc1kPOLycoUnieyxYbvdMJseI0RC01p0kpF4YFvSNC3GthTjDOtipI+1BApT0bQWs1qjqgbjfPwXDIhOUjZlGVM4BQ5PokIKpYwFSkMSQXh3IcIww/lY30SElEklBAKNcArRCrSX5OMRReJRvmWUhKK927JFSE02CjVWrq4vWa1rmsZyfXXLaCyRI0Wbesp6Q9u2LFdbVuuasrZYEQzuYlGQZwneO6T3aCkxvmFTGqScIzCMi5SxTimygteXl1gTJPzS1JNlhu989z0+eP+c+azg6qYO3KsN9YxkIsjTJBQoFoAUFEVGX9PCh+wIKUKGYqITlEyw7RYpNLPJmMl4jDWW9XKDliC1Is8yJpMR69WaqjKUlePVqxsm4wek6YgsL0IhOGvJs4yyLLm+utobpL2TFY0KccKWcj9KqxtfXsTJ2IckaSFBOBmiTAfgcRcZ0o3pDiQO08gAbOm3IKbzdg6pQ4gA4DoZiv9FGxnWAi7GJvrdPexPEAIZybMASoOKk4MnAMJCBnXNnoASb6zrf6HbyeKMk6MHjMZjRqMJ89mMUZHhrMN4g3Wh+HXbBoKpbipa09I6EwPqom6ykn3tLakCCN4/TzqnUsTtY1HDDkhExNpcsHMmd7Z8RxZ1DkBw/F1HVIouytj3E1J4h/uExi7NmXjtu6oJw/cu/FDCZuBES4mQSUyxJv4M/dPYcP6OQBUE59WxX+BQOUVtGtbrdXBWpCRNsyBzJyRogVJhkb5arUJ9MK3RWg3IluDQ1HXNO++8gxCCZ8+eUpYli8VxPwY6Uq+bT7uFZZIkmEg6pWkK3mO9QzkVgD+ClJ+UkkQq2qZmvVkxnXZEl0NEkOQuAKu7xvsj9O8HcTvHcB9ohh34s1sw7u/ndzrD3J0d1WN/B9fbgZPdNXcEU3eMDoTfX3jvZ2k5Z6OChuj9lM6eap3wm7/5l/ib/9a/TVEU/Nf/9d+Lx7X9fXV9J8uyGF22W8TDPkB12DNFrC+GByXBq3BM2/VFoWIflMHJDMXtkCJBq5Q8GzMetZi2JS8yTo5P+MGf/Rnr1RJnW6QK9Zqk8IBByZDun6YJWqdonSIEbFVFW6+oqg3OtjTVlu12TVNvKMsl5faE2WwexoYJ8YLj0fzOfvCL1r6K+NgD8fdW5PePlbcd+w3ASIg3Rs0b2/iDz+84rxCi77Ff1d6AWw9AgDeiBQc/+3P9OYDxw/N83e2/7udfSTSFjfr7E3Gf+zI2D8/XFZ9/47wd4PaW2xKD97x7V3GXQ1Ji+N3BNXyddhchFY7brdN23/XzbpyjtQzSLt4ZhDN4Z1Ai6NKnUpImEitUABckeAdpogMp1ZvNGMTSLZzjSYIEr4ySYBpvdzbfWouzBuNlEGUREoUlkQ4nPE4G4KrLQgieYhfktJOaHN733f3M7w2Awy3ufYV+8OMrxvVdf/9FG8zB3d/RZ2TPtuzXLewyGfaO02//huXkLhN5n69z+J0UAQzrSJHVeo09m6N0TmsEtfcIrxA6SL95PE1T4YWlI7+Cz9mSyoTRaIRMFG1T0riWtoXb5Zb15pQ0UzGQy7Bar5gUExaLKZPpCKUlm3IdMv6EQ2oQMviJ1gXBodl8xnyxiEFFocC4sQKcRQhJXuSMJxPSJMO0jrKsaZqGB2ePef3iktevX1GVQWkkN5B6yGSou2Rby7YNWEHd1LRNg44kUZYlpKnCe4PWKaMsZ1qMWW62CK2xKFo0jXcIEwq+SyGZjUfYbU1tGnAeby3ORJvaGlzdkjgBTu7kLAWBHVJx7UG3luhWLuxA6KgX34NkYm+YD7y5bu1zsMGgT+wIpf3M2Y6M6bZ9g0wedslurdKvi960B4cBG7u+v183tZsjdne9728f+t67c4m+Xw4xhcPtwlLtrixhsb9PvIDd32E1FpZ0d/n1h2O9/4ZDguxwe9+dd7DGGNpejx9MvHt3H//v93ynXyrwoKufKEBE+UDBbp3dbyb2+4nvxsXBo+p6T7dOGRJMu+8DyRSA/oAZdLKW906F0fQLGwOtOt/E7zIx8OwlW+E7fLLbPgRdC2TwJ9Quw0kK8MaQahl+bytOjk94cDRjPimYFBnz8Yjtdst6E2q0Z8WIarOiahratgXryPKMVAdywmHJUoVOBHUdylkQ54sgRS5ItGYxnTGdjJmOJ6RphkewXK1AyFhvXbPZbhgVI5RMkWhMYxiNcurtFpkkZFlOkiXkRcFoOuXk7AHvfvAR73/4LT794kt+8JOf8fTFK/7Nf/UbrJe3pFlOIgXOr2jrmlyHrPHr61sQQcGj8397lZM4XoQglubQ3WPeZX51475bW0eVNSUVPpbAkUKihUdJkJaAF9LhOj4i/34HOvX9dIAj3NlRIjYldr3Nx22DaQ0dpseIIr7U4YpEcpJ4HV0QkXBB5s1aj3MNF6+uSTOoTc3D8wc8PD/FocEHodxA+AmsjdSP87TWkYhQZzTLgppPG+e8uq5Ik5QQzBqUgpQWAdMcuDy7PPxd/6bnk/aDdPv1YrS7wW7v7KhADsxcIKYCVtvt020bca+IXRyaRil3akDO0T/7bv0kGHQKQAwTgTvQ9572VoIpRAxbOhZZxnxEzw708T6yZPEynHN9B1ZSMsozzk6P+c53PuZoVmDLC+aTGZv1GiU9RZagpCPVEuNj+l0icbYliXJZvnW0puL16w0IQZqlPDw/ZbEYcXl1y3q9YVtuqOoNrWspRmlYBAlIpMaakFompcR68Ci2teX6tmZdpYxmD3j22WsurzfUrccuHVXdhAwuJcE6ppMR3/nWRxS55qc/+TPeeXyONSUCi04ESkuca9mWK7yzzM6O2G43tLVhvVyxvlnx+J1zXrxosDYFEYrErZZbjo8eslikNG1gS7MsJ0kyEGvquiIfB63LpjWUdUuaZjgvqZoGY2qSzNCaICXhPKHAfBZkmTyCJE2jJmcg34SApi5ROuj0OG8wzqPIItgWwNVEKyaTCW0J3giEhXZbcXqcM0pLNBWpdKyWGzbbLToryEYaaxteX7yiLlMSPaJpKpJMYyyYLs3SWl6/XnJ9U9HUCpmlvHx5SZGfMxnP0FIjaUmFxNUhI6xuChpjyLIUlWqqsuX2eoU1FiFammbF6ekJDx58m2I0wrQV15e3WONoW0A0eBSLxYSqqjG2RXhFkec0dUuaKFzUwTRtg7eGNMsZFSl1lTCdjDg/PWY0Kliv1txeXaKVJ00TxqNQ32K7WdM0Buskm80WZwXz+RHTySwOHLi9ueX5s+c8f/asz2qI1djCeFKhvlnnd0ql6BjwXTskjkB6iROdAe4iCDoAtt8t2gTR8edBZ3QgoycBL4NebCgIL2hNkNVz0uGVQMkAloow3DtZzqBR6jw9DhsNlIzXI2U4d1hA+VCckSD1JFWX2gnDSeSXoT04OWc6PSLLM7K8oMhztILGtJi2xrQVbVtSNyVVXdI0dSSPu1T2WCMvScKiVBDT20VcDHST1UAEYbf6oktF72pzBbA8kgTWsUuk7fpXnBKdj0U13V6WnO+32y2igsPb6UWHfiC7Aud0oNTAgcXHDBcPqN7pEUKgtepOFLWWQ9FKaTxC+lgLKRCjQnhsdECCIyJJ0wRjWqqq6uXm8rxms9kgkOR5rCEFlGXJer0mTRNG4yKSKDtgZLVacXp6Stu2XF1dYcxVJFmixEcENXeZYR4tQWuFcyGiJUmSftvulUgBVdOSJClaKSpTc3t7w/mDc6QQIT07SegDPO4hmLqMIjjIlDhYqO4vrHdOzm67NwmhYevus5OS685/GPF9GM043H9IMHXSC1KqPgusu5dhRtWQgAoOtehTw621KKliwU44PT3jb/7Nf4eiKPj888/5/PMvoo2kBymc8xRFkLE9BAW68w7bDpCWPbiqlOhtbycfEMZUFzwQinZbHEqmpOmI8WgWHGDrGI8LppMFf/SHf0xdNRDhujTRMQDEIaTr+854tCBLw4KibYLkgrENTVPStFuqek3bbrldXvD6dagRcXy0AEBpxWw24S/a/e3rkiSH2+9H6+6hoP1i741z+B0s21lC/N3XcFfmysEG9xJaw+v6OgD5182g+bptF2xw97nf9vld5/uqe+jG8uEYPgQVgb5G034kLnTkxuCo/Tr6LraiJ+yG1zc83+Bzf7jdwTGG13doN/f32YPf3ti320QS/TFj8a5FeoOzLcIbhAoZRoFg0ggfZLQFnkTpED2qABf6l9ahDpMQg5p/NmjWh/k2xdtdBmrTNJimDj6mypCpRklHIrvVuMS2gmZ38cGeInow6pC8OJz/ugewB6EegsT3kpMH8oIH7T4C9qvGwZ9nnPwL3aJW/15/74AK0QVA7fyR+8nf/YzK4Zrmqx/pHWOZoE4jOl9ICq6ub1g9OGYxHeFlTmNrtBSkKiHLU5q2oTY1KgmS3iHRLuSu6ERTTEaUtqUsSxAJ1kpuri/wosXYBuNahHCcPzjj7PyU2WRGkmicN6w2NzSmCuNOgJAe0xo8niTNmc+nZEWKaS3WNkGyR2h8BERn8xnj8Zhq01CVFeWmxDlHojVPv/icL794ipQwHo1INgbalqC64WjKulOUDmsH63DWAALrJHVdcV2XTLMRmU45Xhzx8vIGMoEVgq31tN4ifVAkAc9kPGJdXYNz2LbF1i228cHPbS2iMWjrUYnq1Te8jfNhF90JROmBQX8Kr7MLWMOLuIYUPfnUDdu9kS38vdnDb7YhoNb11d2Bw7o6fndv39sBgX1/GwQn7WxVF8W/i8o/tPdvEqxvZhd3qyYhA7h+GDxyGIS2I3wOffJ9O9oRZs65AGjKjgCL+N9XKATu2+UOKRg8pQHptXeL8UO/B7oOH+3uJXf25OcNaPmFaVEFImQDDfrLXt/pjGV8y2Iwxg5a6AohcLz7XXBIsIbfQ5BlzI6OuRr9O/PdPBrP7mNZGdllLvs++wkh6SoyOR9VH+K6FrE7XhgsAS/CuRB47QP2LLXEOhsyKAHrDefHM84WE0ZZGiTs0oSXL5aUdR3qB0lFVYXa1dZaEqHItcKbYLOF8OTFCJkIqnWFaU0oNSA01ll0kpJnOSeLY46OF2RZirOesqppWoNOVAywUZimZTaZUicGLTQ4G2pcupY8T5hMx0itmUwXHJ2ecfzgIbPFAxor+Md//H0+/fxzpILzR+9QVRXOS4z14CWr5QY5VZRlzc3tksV8jtKaummomiq8Kx8zyOO7Na0Nsm2A8AJrPVIqvJe9jesfOxIhFF6o6AcGO6OlC9ieCPWv8T6YBtm9K/qxuu/l7ve3fTesR496HBM6gVPf99/duA/ZvlIEEin47rbHG/vTehGuG8/ydo2hZlWuMU4wnR+BkKHchw/lSvDd2HIRuw73rbQmQ5CmOevNhqquaOuGdKFpmjpKQxuSRAbMie4ewrVZH7QFotZJj+12awHvd7NZtNDxOQX7KTpsVOy26TG+iKV2gy6Qi8R1z+4tiK6SgB+SS9Fe7OCe3bqz6wjx9YVzxvty90+sX1mDae+1Ryd/18KNG+fRGlKladsWJSSJ1kzGIz58/z2kgCJPmM9GpNMFy9tLqnJFPh8xyjMUnrYO6WjWWKx1tK1F6SADlAoRSRxF27YYU7JcWxYnx6RpTrmt2G63NK7idnnN69evkcrz/nvvUa1LvLEI5xDeEMglx/NXaz759IKyyblYXbGpHQjFaJpQ11BVDd4H8sCZhn/yJ39Elji++Y33ef/9d/oFVwB4NDpUBuXoZAbesSm3LOZjbm5uENKT5RpjarJcc3t7zfX1NWlSsFyVvHr1kjQbobXm6dMvePTuOxSjnKmZ0VjPg4cPqb98wdXtkpubJScnJ9yuggYoQJIXTGZTVqsV282GbVmRFi3eCpI8oyiCBFRrDK0pAVAIppMJaaqpqwprNngnQGiETNCJZzwp+M1f/w1+9P2fcf1qCZWl3a5YvDfnwfGIxQRMu8E2BltbnK3ZJEtWqw1KKc4fnjKbPODiaslqe8u23pLnitF4xrZq+eKLK65eN3g7JtFjZlOLIKWtBFKlZKnm6vVT5uOUh+885Iunz8jGCyazOW0Dn37yCV++uOH9Dz7CmJanX/yM3/7tD4O8nXFcXa94/uIlq80WqUckeUqSJ0zmY4QWrJdbqnWJ9hpjHFmSIDONlArbGLxr8U6F52Javv3ND5jPZkHOYLviaDragabecPXqRaxN42iqFmtrVqsNRT5iPJqghGacp/zkRz/m5fOgzdrUBp1mWBcmcTUgdpBBRd+KOO66Md47UjuHqlucdYCy78fsLqKkc/J8B2ANQBQf2f/dOWJhehnqcakuzkwohAtFlFU0mM7vMmC6fa3rnOfoDHc2z4XMK9k5I8FSRSA2RPp3dsVyv+H6RWsPH7wbMhQBYR03V1dkqaKqtqxWN9xeX3N1/YrN5pa2rfBYhJZoqXAiyrvIUCdhR75EWy12Tr0Y/OsWKv3cRJDelFJFHd2OpBS7nTt/MAJ1wensSIuwUBw6DN2cETKdYicQMTNURFdCDCJSwk6DhZPfnWPwvPqINULf0iIJ+sMaVFBapWlarHVY4zGmk9ML4yNNNd4XWGtB+BiFEqI+wSOVpCgKvLcxW6zoz/n69WsWixlKzVBKMZnO0VpxdnaGlJKmaSiKos96SpKE7XZLEC0SqEhoLZe3PRGldZC7S5MEiaCqqlD/pzWImKVSFAVffPoZ52cPg9OrVJA8VRrnA3AnxE6SD/ZrBB0uMPtnHn/pJOh241YO3vF9i7f9z7XW/T7dNezS8j1SBvt6mFU1JLO6iKthBN7wvoYyXkpJpFRA+F4riZRul4Ung0a2lJJUZUDGoyzlv/dv/JucnZ/zH/6H/2GQOujIKyFQieab3/wmH3zwAW3b9u+me0b3LWCHYGXIwEoIZGoAbYJvFhZNNnR78BopMhLtyDNLmJk143FOlhb8o3/0B2SZJlEprbUUozGr1bIfxEIIlMyYTuZMJ4tY50vT2pr15pq2rQFDY2o2paNpN2yrJdtqTd08ZjSaMhqNUNvmznv6ZW0BRHkT2H9juzu2OezXw+b7hQEHCNg++H/Hp3ce777W+yX3HOfnaYf3fhdBc3jvO9Dqn60dktPDc3xVu+veD6/zkKwaPrPdcd48UnRb3niVO7/rK6TzerzH7y0suyYH9nB43Ye/H95DZzODVPtAcSK2JKygQ6iibfFYlIgyuc7hTYX3DUIqtM7I0pTaWbwN9T2VVtR1hfAWrSBPNKnWpImK9RyDHTamDtm53gUgQmuEVpi2DTUIjQn2XIZ6CgkmaNULh8MifVcTLsrjehl+H9zNHu7s7x+jnR9zfxs+2+7YQfWh85P+ov18bUgUdQB6aD1qMQCdh/ZD7W27v99QCmw/SOaQeI042gA435f/BBDGoIRAKhWIVZlwsyqZThre+fA7XL/+AulawFC3DdY2JEoGMK6x1FVLojTnD8/QUnJxdcGy8YxHc9JMkiaKxdEYpCGRgkIXTKYFH3/8EaNiSp7nSKl49eol2+2Kuinx3pIkCa1pqOuG8WjK0eKELkDLujaQS96jdUo+GYWAVJ2yvF2xWW1wRqCThIcPH/JHf/jHvHzxkrZtSJXEtA2jVNO0Navtii9ePkd7jbRBrSPPc25Xa27WS2QiyGyKlh5lPHJsyeYnPDh/yD/+wY9YbkqWTc1tucFiQSsa17Kpt1RVCcaSCkWhUox2KO8RQiMbi12VtNcrHn/8Abe2Ym0aNrZBC4XFxVLxbud7ih1e6Ttiqe8XxEh1esms8OFBpxzY9v0p5GBDEdbWb8wEYijR132mCEvzXb8bnK634Ye1Sodzgw+L7x2I3i3CIdLpovf1gj/Z2Xq57zYIEYHggCX0Y0fIUNsm+s7dv+F+w5+7QIhwX13gViAhu7XAMBr+TfvZjb/QuhqxDLYb4BCHz3R4DW+0g7lvd4T9z99u8H+hmtbDTLguU1vf0ceHihT9R3ut94UGtZd268T9n97TZzKHx70jKg+DALrtcZ1XIkLNZNcFtTpsvDbV9WsbAv+82AUed+ElcdAF0F+GNbS1ljxPsbYm15L3Hp/zztmCk8mIcZEjheLTzz/n8vIqKEUVGcv1hrJtMM6ipSBLNOMiZbVekmYalSg2mxVCQWMBIUmKFFrPeDziaDrjeHHEYr7gaL5AKElZlVxdX5EVIyazMa2xLNfbWK89I1E1iYQ8lSzXNzx4sGA8mVJMJnihyEcL3v/oO6gs5+//wT/l//5f/ac8ePyI3/ur/zL/yl/7PX74h/8XJuOCV69fsr69oUgUV9c33F7dIBHMp1Mm4zFlXQdMzXm8CT6XIwRTCNH58TFjWGikSsL8a0OmT/DTPN4FTJJIPOEEwkXCvlNa7qb1SOIM7bB3vTHb63D7Pnj4zPW2fog5AIPMHUTEDTt8AdvbaocLvqLvgpi7ixhiVgEfu76pud5U3C5LGuN5eH7M0WLKbDYiT0dU9QqdaKQW1HWNUBopU9IkQydBuUZJjfAS7x1FlvPDn/yAly9fsy5XMTg62M6O6AoSeURbTOjre2Mq2lsrwv4ijhcxHH+7DP5BuHjE8WJ2IJ7gO/v4hd+NT9mBD3HHDiYU8ZyxPEkYe3Fe6g7R7zowHAOJzsP2lQST2OsUhylcYONCxloftCrjw0y0Ik8TtBKcHM0ZZRJJA7Lh0eNTnJmhZMhaMM6yur0l0Qnew7asKIoJTeuR2vWpXev1mvF0gk41m82K9dMl0/yENMlZLBaUTYlKBNNZgfMtxjRkiaZq2hAN5EJBMC8K0FMav+Kz57dUJqUFZKJIpOfypkYrifAgteD9dz9gnGusKXnx/CnTyYekmSLLCvChrtPx6THb7YqpnuC95eLiFUqfIbSiGAWtzLzISNOE9XpF07TkWUGe5xjnaMttqLMk4Nnz5+gsQyc6kCVtw8nZCdPFgvVmy6effo6TEhNBNbmt2ZYtJ6enzBfHvHr1Gi8U02nG0ckp88WCL58/51/6y7/Nttyw3WwwbUuWKMrNltvbG4wRIZXTj6nrkrpa8+zLL3lwNGOUC+bvnzJJclJuWcwr5lPBOBfUmxvG+YhRcUTjHFu75fhkwbaxrJZXbNdL3n3vu6x+tqFtYLM13NyWHJ/MePFqxbbOKKYzXr56xq//+reZFAXeWG5ubxlPEqaTMXka0vX/2l/7G/zs2XMcoV5SXVl+89d+jRfPXzCbT/iX/tXfI9eSJ0+eoJIc6zNEkjKezbhdbxFIjhczXl28pNq2jLIxi6MFr29eoaQmzRJm0zFHxyf86fe/j1aS9fKa9a3l8cMznj39jOb4mEQrqtUNq9sLHj96hIxZcqfvP8IYx5PPXmHaW9Jiynq55OXzV5yeHHN0csyXL16RiCB5paVmsTjldrlCSYWSCoegNjXd7O/xhDwVH4x3B0R4jxU7AmfowHYk0z7ocL/D1WcDhAP0/q33IKzHCIe3gqj4hJShDk2XOhtkn3r7g/ciyk90GioRMCZE3KvAnRHiBCSOKM1mQ4ZUL0H6y+Mjxom9A19aXjx7SlXe0Jqa1eqGL7/4gqeff8rt6obGNeHdQ8hCxOOdQyLj+4sTd8jixfcTTlyA+Zgd1C1q+gVDF1HaZV/QHwtCJomMYH1HjMhYkFJ06Wt9au7h/XWxF36nl03Qz+63GWy/u647YcK4TSBBeqdZqzCfS3CBc4gZVmAMlGWFtV1/DDPrgwcPaGNtOmNaimKEtZb1ekXbNkwn80Botw2bzYrR6IOQ4WgMdV2TJEEaZbupKMtQEPr8wSOqqsK0VRybgjwbhToUPpBX43HBkydPyPOcLMuQUrJZrSHP0YlGC4VERqdUg/NUbcVyteH73/8+27Lku9/9LkhJWW77LKymafYInm7cdwTJ/vPdJ3UObUaXgTV87ocLwWHrznsIMh+C8F0NpUNQqLNj4Z/q+4DWuj9Odx9JkpCmKUIEUqxtQ62PPAs60d31d86k9y7UU1QKkBwfnfA7v/O7/Mf/8X/Cf/qf/ic8efKEpqmZzeb8K3/tv8N3vvMd5vN5f16t73eVhs9v+Fk3PqQPwS2u9Thre1nTsBALmU1KZ+S5x1jPaCzI8iTaRIUQCUmS4Z1juy1JkjQSpp7WWJrWgtCMJlPmszkqVRhfYn2D3QTJ3iRROGFwwuClxeO4Wd6wrSry7Yh50957f7+o7b8J2PhwfN11Ed1c27XDShHdcd7W7iIgvk5E75+HBIqzxAHl//+/dhfJ9LVbN9/d8yyGvpE4+Lwjm/bmpftOc8f3913v/vvtYn4P9vlnIOiEEAxK2/XHUQK8N6FWgbOApdkuET4QOsLVYCqKImVahFpwiRK03oXaijik0pi2QWBRKESsd9vGjIjg5wXJ1yRJQq0CY3G2xTnXE0vGGJIs1EAVSqNkiPb0sR6AQpGIQMR7IaIjIwYZ+0PfYNjeDkx+9Zg43O6u0Xj3Mz/0sf95EKz/IredDzcAk+LiwnsfX9/9KRD7j3PfhxjahDftXbf925+/dA4pQm1EYwMoe7OuKZZbvvnxN/nG0ZhXzz5lu7zCtzVagTMW5y1CKBbjBePpmIvrK6xpyLMUU1tsYsinCaPxlLKsaNqWyWzCfDHn7OyMxfyINC1wLtQOvXx9gXF1kNSJNZWWt2tOTk6ZTuZkWY6QUFZb2tbiHCRZTp4VKJ3gnGe7raiqktnsiOX1isvX19xcfM5nTz5lPp6SK8XL5y8QeEaZpvWe2hhut+sQYFm2mDrI81osy+0tXnqKSc43P3yP0/kRp/NjFpMFWTamNobStlTOYpVmMk/IvERnCqUlSZaSZTmbqiSXinQy4/mLK0ajAu1BVQ3r1xdUJ3OmixlJlmBKT+trhJEY6bExYG5H5gz8q8iT94RM12F2y587uo4c/HEfEeX3+yqxhhAxQr6D9Hq5to482REdu8scovh7ofTs7FfnU4f6Gb53BrrjycExI4HUXbDfnaMjlaQY+uy7tV0X/d9v3y3Y43PdXy/44UNHChkIP7nLJFHsNhkGsYa/u/FIXGcNH/LwvnbPYbgOvGtMv9GGl/hL3pTunhl0/VcOMpm6LIVOgaoDq/fXKwP/UQSlyj1yaQD897v5ECwnOyA/4OHhuFE+L9QG3vlXwewLpJcI5ZHO45zA2rCWdxKsAmd3Nb/xLtaGCWv2Xb+TaCF26LoPaNk41TxYTPnow8csxjmm3nK9WYXg7+UKpRUySToEhKqtUFqQIEnwtNWaIlc4Qm29UZ6xrra8++45bdtwc33NdDTm3YePmBRjijQnS0Ng5cuXL2lMSzEek+U5QklsvaVtDYlOkPjgb2GRwnByPCfJc4ROaBEgMy7WDZ/9/h/y6uKaP/vxT/jN3/pN/u3//r/NfDHn1avXJNmYF89fsl7eUq5XXJQbPnh0zma5JJGK2XiKc47tdh3qO3UBvpEUEiIEVVgd5rEg3S5jwKqntTao1niBUglCiojRRck4FwJ2rfH0ddx70PDn6bk7DGI4d993CNfZyo7877CIAebkAKkcopNT7nuviGU/IibgPTpJ8NJzfVvyT7//Iz7/fMzJ8ZzHj8749re/QZpNSLOAr222DVmWEcLqFVpJrPKMijEgaNuGpjEsFlP+7Ad/xuuLV+TjHNOGEgcq1GPBmC7IJVyxEw6FiPZ/SMrFgFQBPSDaT19RLs92U8BgfeQD5hViEXY2vJt/QrkVMwwJoNMmOpwTOzdqz87Gv3eZVvcmQgJfK4Npp93YTw3d4kfKAOjFyVcKgVaKRAmKPGUxn/LBe495/vwpn/x0zXymeXCqSNKzuOgD23q26zVFXgCS7XbD8+eXPHycU5uaLoLCAZPpCA+0TctmsyXPc8qypC4bkAKhQzScUkEnsq3rII3mBc4JmtqSFDlpMWY8M4xnDa3fIJIMGSWeyroKi2cfahYlWrJc3XB6/JhH548Yj1JcW4c09boMRFqeRifBs9luEN6TFzlaa5bLJaaqEMaw2VjyPKco8vhqQcgQEe9RZHmB9Z71csni+JjpdIbOxugs49XrK5wXzBdH6OwFpoEMRZbBeDxmPpuT5TkeSNOc80ePSbMChMICxycP+PDDj3orn2jNerXEtC2b9Yrrq0uev/qM9e2GWTaD6YjtWpFIzWiimI9GPDia42vP8uIF7aggnUwophOEkzQmyGHkJNTWMJ/NyFJNU9VcXn2JczXTyZTxWNJaQd1C2TiyIuPx41OysSfVHlNvcNaRJZJqu0YKH2qiICmrGp0oXrx8wXq95t13zphPElaZZ1ZIjiY5rq1xbcv19YaqkSg1YzwOEhxCCupyS13WZNkIhKJtLEVWYK0Laaym5fLiNYlW1FXJuMhZzI8pshQlPdgW61sSJUi1ZFRkLBZHjEcTsiLni6dfcnI8J0tzbm8vefBgwRdfPGW+mHJydsZoVHA8X3B7tAYrMU6RZAVVbaialrJpAtmAi+A5WOsCuTMgl0IG0SFY0pFMXe8afhed5gHoIXrtzbCtlHJXwC0akzBpiAH5FOQaVZx0gpJf9Oqjg+wi490fSgDO0bntQgQphq5OSyDFAvBsJUjfRdj88izQq6pis1ljbAPCUpYJdb1kW664ub3i1csXXN9e9TYR2dlggfAdwRdtdEzBFYg+si8sQHz/97B/vLmQF7vPY3/xAhItSXRConfkUldYcHecA/fAd7UsYineg6/7GIzY13ZZsm9e5/41dufcORLhcnf1l6QMTkUXDTPM0PHekSQJSRLICGMM1rZB+s5ZbNvQAowtaapwzrBc3vLs2bM+20kpRZqmZFmGdZaqqqiqitPTU548ecJ2u8X7ILeW50WMWA0Zr+PplOV6RdO2jK3tZYPyPI9ks0ZJBa4J858NA6ptGn70ox9gTMv777/HZDLtJ/suMtx7v/d+YH/R1vcHsft9uE3IXNpfgBxGJO8+3wdvd+fbP/bu+/3F7JAg3/UnsSd9Nzxud7wuO8x7jzEm7hNsplY2ZjUFqTrngmPVye+FzxXTyYzf/Z3f49/9d/9H/P7v/z6ffvqE8/OH/O2//T/gvfc+iETVWxa5g+u5C0zsPpMItACnJRaPEw7XycHQAW0CqXTI2E4COKN0IJA7MlAqiYz1ufAS6z2+NdRNxbba0LQ1SM9kOmY+n1NWtzgamjbaZhdkNIUxtK7FNyUmSjcWxejee/yFancAzHe9O3/w3bD/H0rd3NXuIjLu2Ki/pq7/xi/u3S8As2KHLbE/tu/LzLnvWu48/l1/R2CpX2DsX+ZXnueuY79tn0NbdRd4/1WA/ledbUj83UU8dFnX/Ud3XNvhCQ9htL334IePLJ43Hnd45eLg76/ThjUMgicQbY8YyozYuEZ1COFC0WQRatd624JrSBRkiSLRMtR68x6tBIlOUUKglUAyRglHqoPkTKKIciDhnMaYoEEvBN4roMW4YKO1ToJ+vw7+uLE2ZMAD3luEM0gUCoeSsUzdEFB1+yve3kWNIMdd7+bniWZ/s/9z5xxwV98+7LN/3mv4RWg7W+b3xkAPRkU3cwh0HI7Yt4PM+yNtf9uhf7jb5vC40tu4TgkZHVJJNlXDi1eX/OGf/AnvP5xRLW9wzRbl2rDechKtEpROSVTCcrkKdcayFEusiYlAKU2W5YxGI1JrOTt7wPHJCYvFnDQZIVEsl7dcvH4N3kepY0NT16w3JZPxnPk0YAAB2LJcXl3Qti1CikA6IQb+rGA8nuA91HWoLXrx+oKj+ZyT2REXr17z8tkzZtMpMzkhSTL0NCVTGcurW1xtGGUFH7z/PtPFlD/6p3+I8YbpdEy5raiSijqtaZIGrTMePDhle/EaZVsSCYkSuNbQtILGNKAE4/EI62yUjBeM3htjWov3Fo/BbEvstkaObSi0fjTi8+sXtM4Ssv2D7+TwMSK+AxUH69Oe8ulWPGFy6iPo9/rYcN6O+0akr1sjDHvKPmEZnnFns303AbpYt8Lv/MBuu3Dy8LOrUb7rsrvY8/BNyLrvPuuuWgwGSiexvFufefqMJi/jmlAOzhHtUldYg6gc0s873Xpx8K+/t8E1StBe9DVnPa4nlXbja4cl+Jjl1D2Lni/rx+awxTv2ko58Hj6D4dy8eyJ9vlj/Trvn8ksEGfRNqv01vBxkPUAH+XWy5+GDPaIIgg8ymGbjR7t9OhJTDHw0QLiOZBj6G51MHkgnozx8PHbXX3wQXHFOIL0ARcDRjcebcFLn43eRLgg4EpGO9OAdUmq6WuXgSSS88/CMx6cLxnmK8A7nLE1TsVlvubq6Yjw/wlmDjePUWUOW52ghECaQK0IEKTQZC0926iTbrSfLcx6cn5IVGWmmybOUyXRMVW53Po6UJGnKpi5pjUMpTZFneGNZLyuMqSnyBKckKksRSY7xilfXS15cbri4ukWohL/ye3+Nv/Fv/ut8+I0PqMoNF6+e8dmTz1nfXuNsjXQtqQ4ZuEWWIAFjKtrG0NY1zrTgDM7ZXd2r+OwQMfBb7tY4IfjHRulCgVCRmPFgvcMYF5TGnAvrzwEO430gcoJd6db44b13+h3dAD9wqRliOPeO4WhOhdiFpXSCR8PD7PqxH5hST+hk4IWPJIyKPqhntSqxraWuGsqyRCjFBx88Zp5kJIkmzSd476lqi5CO0ShDaYdv256ks8bx7nvvkvzjP6BtG7RKQrkT0d2/o6sDDj7m6To6LlXFcRv8f4lAhnHV3UbHuQofs6CCL9yryDoIWbYehAuqbZ38sB/OOPEdDXymvfkw2tVujgDf13UXhKkGu7MV/i1G960E072OXQQMA2jYbxzfo0erMOiKPEVKT11tMDVolWCOxxjb4J0jKCh46sYwnsyoq4b1puF2WVJMSpLU4HyIjquaOqSyO4/zls26JElyXBsHk22ZzOcIFfM9fKjJ4VpPqlKkSkB6NqXFAlUraJzCCY1KMpwzWFPTtC1KjxDO9A6MNQ1JIjk+njEuUm6vXiO8T7xECwABAABJREFUpdyu8XlGUaR9raq2MQgCgWONxTRtqA3iYkqdlqRZFiTEInBWlkFPU+oUJNRNQ922FNaB1HgEm+0WYyHNx6EmjyREuiea2XzOgwfnKK1RSpHnBR99/G2cF6w2Jduq5sH5OScnZyQ6IcsyptMpN9dXaKXYrte8ev2S8Wcpm9WGRGqkd2xXN0zHikmuWEwzjmY55U3CzWsbtKANYREqTCh8ikSJBN+ENL3xKGVUwIuXa7wzpElwbJ03gRHOE0bTlPk8BTUhUQ6waAlZqqhrRaILpuOCyWRC09YI4WjbEu8qHpye403N6VHOYp6TKcd6s6bZ1pTrkk0FTkKWChCKxljqbRkGvtAxRdehkxSlwuitqpq6rkLxPqWYTMYcHy2Q3pJnKhZCtmRJwuOHoY7FYrFgMplgXVi0Hy+mTCZTquqWJEm4uLjg8vIKZx2jouDs5ITtusJ7wXJd0xhPawW0QR6ym41DcIZkMLR3g7r/KzqwvfMNHdHTu907hCQulukdBc9OQlPsdjgY8cEgOcLG1oU0kY65Ft3iPgz/3m504HNg06N58yG91gqH9zKkSIuQjWWtx6kd0DOMqvlFb2W5Zbm8oWkrhHBsU0FZam6X19zcXrFerajqMgKMPk5UquskMbttt2SBfSey08HvQbW+d+wc0CABN7goHxyFrp6NVppEaxKdxIjjTpN7sNjvHJi+DVLy/b5z4dnVugh/3/2+d6BBBHugXzDtT5Ih86qrIxd6boz+EKFuUqf5bK2NEmYepQSggyPsAlEedOhDIfIga+aoyoYvnz5lNpuFjDEhydKUIi8iKaNQWjOfL8iLgqvra5qY5SRkkI1VOtR/youc1hgENTpmgzVN02foKKX6haiP16ykpNyWvHz9Cmst733wHt/59ndB7hMyw7pLHanWAWBDMrkDew5BdCkPFhL3AD13+Qdd1tOhDej6Qsgq2hFMQym80KdlXCTb/rqHJNQwo0ggenAI6CUCu7pLwzpO3sueYOrAASkl5+cP+df++n+X+XzBT3/6Ux48eMBv/5W/wtHREUN72duxn6MNAQoBSNUtuEVfY893i3wBQgbgFQlJmqI18Zrb2E8lzimsscHWO7DO0tqWbblhU66ZtTOyLGEyGTMtZxjfIEpHa5q4SAvBM8a2OCcwLoA3aZn9fDf3C9C+TobBYWbQW7ORvuY53xg3XSdjN693i/ohCdUv0vfAJ/qxdHjsO0mTtxChw/12xNJgu/h3t6z8qtn5bYD719mn2++u533fsfc+f8v3h8/qTtirI/M6mzkAOd+47uFvX/Fg/Bu/dXPb/s+77unw2kM32c3j3WXjgxSKFJ3n6NiBtiF7CdcgMSAsQlqUhFQpskSipMe7UIdFa4kSIQpTCo/K01BDUClSrVDSsSs+PJCulUEFQmuNM1HrXypEkpCTYZyDpsYYh/MWZwxOGoJMt0MSoqOF7xbNvoOQdzc6BCCHj/6OcXD4DO/7bn8MdbLN+z5NHKU9+TT0e3uweu/Qh3//YrfdM4xrg0MfQuwCl+45wt7zuhOLONh3CDvHnQ626ZGn3ff9ecK8bIxltdnwxdM1mTpB2w3aN4GQlToG0oaMEGsdbdOSj1KkUhjbkmUjnA/gqFKa6WyGlJLT01MWR0cUxQjvJKvlmpurW1bLNaNRCtKw2W4pyxJrLaN8xGQ0ZTKekqYJ1zeXNHUDIkjZCbHzCxGhJm6RF6xuN9R1TVs3OOs4OzolEYq2rlne3jIfTzCNIc1zkjTF1IamaiiSlNOTE77z3e/gsKQ/CjJQSiqqSDBt9IZUpiRJxruPH7I2NdZb3GaDdC5gOt5TNRVVXVKkCePxiCwJWEGaFGw3W4xpMLZiXdeYbYnb1qRpTlYUnI4XrNuSrd1SRx/bCYJsfDRmtkPUOoDTA50uQmeGog0aKK7jYjqU79/9rnZT32ciOL4z43sLon5D3/3H72xB18d20kWi71f73Xc4H3ddUcBefz+cs4Pl7o4frjH6Bz5gcbHwLvvNBwYs3qmIjIHv/Fr21wWd9KCPTkjvh/QoRJd5Lwf7DZ9RZ6F3z6B/QmI3Pnv3pt/tYN4criO7333/xx54vVtj/vl8sn/Rm5C75xSyl4ZZRv1/Ym0uolvp995a15W6N9Jt2z3XsIaJ65adS7rrwN21sE/CegfCDfrbwK/0TiCj7KJwXb2nkCMiXDeWfewnvs+E8sPvsCGnTwQs8mg+48HpEceLKdq1tE2D8KGe3bYsaZqGmZSxDhQoKWIigYoSnq6XNlOSsGZPNGfHJ1xeXyGF4OjoiNlshiSUI0gzjZBQ1SVCxH10KCpR1aF+bpplYW3qLMY0OG9IixHbxoDSWKHYNo5nr6/54sU1Osn58IP3+ev/+t/g13791zGmZnl7zXq95tNPv0BLRyo9RSoYTwvSROOFA2txtqGuSrxtEc4GfM6FWupuQHR776O52JWnMMZECc3YF6I8pvUeawMBZZ3F+lj/vXudw3eLf8P/6uSGdwRGZ4s6y3S3f7Tnpw+587jfPmYlYv3t/YyoHjQSHcblY5mOYC+F0HhraVvLarWlqiuElIwnE6RKGU8VSTqiaWqqyoBsSbMcY8CaiFu6cIFpFgipLngqEJS7+5GqqwHrAl7nfaxZH0naHsPrbOfO3+0s6YFb2S8Y+yy16CurqBbYJ3gNbOab/q/fubW7p7y/0hODNecb/vDd7e0E09Cod1cpgh6jGERxdpENAN4aJkVKmiV4LD/64Z8ymxScnhxzfFJwdCJQSlAbQ1XW2NYxnyxoasfV1ZKbmzWOhBcvLpjMpkglMabl9vaWtm3JsrTXjtQyQwnBZrNhtVnzTqaRCqTs4/cQwiOVDiRCMuazH/6Mm+0Vn3z2is+eXuKFQiUpbeuxhEynUHfJ412Ls56j0wV5IlnfXuHblHGRkCeKi7pES4+3BWVZ4p1BxdRj09Tc1BXCQxpTI6s6GDghFWmaY4xApxmjyZS6sbTWkSYZQmuW6w3bxiB1zmTqaK1ls61ZfvYZTWtwPgEhUTplsThivghEx2Kx4OzsjMeP3uXVxSWTbYlD8o1vfBNjQ3R6kY84PT3l8aN3mE8n3N7c8MXTz/noOx8yH4+oy4pqU9JuK778/KecHEsSVdFWF2xuaqazY7yH6+sa194wmUhkkuHIMMah5ZiLV884PtGcnY1QMuXm+jnWGKwpkLLg+nbJu+/NkUmCYwl+S56OmU0maCWoq4rR6B0UIsjWzSbU5S3LuuHsZIwkY1I4lldXfPzBAyaTKdJX3Ly+4PLFJTIdkyvNDz/5hMnROdV6S9UYpNI8OH+PVy+vEEKjkwRjHNPpjPVmTbnd0rZ10NY+P2M2nQSZKuGZjTKausSZBi1TfuM3fw0hJXXTUJYbWhuK9s0WM4xXvHyZ8+zFcx48OKGsGrbbkqIIzrk1BmMty80zLq4uQagQOWCClIjSBCkl4ZFCBdY4pqN6F2q5+A65FJ36bhizQ7a6T5jviAh2zkeX2tzZX+99zHfcOWs7MNj1Bsk4DzIaRhFUcZ1wIKNjEaPihwCxp18C9E6ItZ3TGq7ZSh9rN0XN0l+iBXlZrrldXlE3ZZgAXRPrtV2xWi13TiTR6VMhzdn39jk4cpIoQSfEXmSBYJfKGiIkAnEk44Kkk+6CIG0oZQCf8T5oz4qg657olESn6A7AF+CF3a/9dbBQ6JzTzgHuvpf9QufN6N/7I34HIF/v3OwWSc4H7XYfJ/ywvhJRli2AZcYEwF1KSV3XoUC5CnHTdVWidYJ30LaGxWJOWW6i3I/j888/5fHjx8ym8ygPIMjSgvFkzPzoiPF0SlEUfPDBN3h9ccnN7ZJjGYpAB8covDelFEVRBJtobZ+Nm+c5SZJQ5DltY5BS9QvWLM+5vHrN1eVrrq4vuby+4O/8nb/DNz/6GCEUxjiKokAIsSdh2GU1HRJMIShi97y7dxhIoP1ne6jZPgSMukVId87uc2CXmWjDIlcptXcd+zJ8IQJzeO7D84Z/QWPZGBcBQN8Xj3fO9RKOOlF7x++k96x1sc5juN9vfOObvPfe+yHYQOtIPHaEVSfP13Xsfcf5EPy+r992AGwgysJhgj8penVK7z06S5BeolMNGJQWtI1BaY/SCmvBeNvv55zHOMO6XPH/Y+/PfizJtvRO7LcHm87oQ3gMOd8xb023qnnJKpJNgOxqDt0giy2BgAR066GBBgQIEPSHCBD0J0jQix6kZwLqFrqlBlVgkyV2sW6NeW/mzSkyIjx8On4Gm/agh723HTseHpFZxX5Q32xLeIb7OXbM7JjtvfZa37fWt1bra6bzCQ+qUybzCUtzhMNgXY8xJjSURQEqNLDF442h67tQ/fQt2P4qIMR4vH4dyTQm8e97z0dA8M4JDkZWgr32YMBhpfF91/amCok3EcNvtLV+sLYkmzucj+Q7HH6X+8iQr9vGwc59n/+mxNl9JNvrtsFu7Q8wevPOee6sN69mVe//H35ec/5DDHEk97bfhuq419i+g2sfns/dexzitmBW0qLvEN4jvQNnwLb0zQble3INuc4plETRh+olH31Rpci0QniLdwbnHUoQE1rcAEb2ph+qRIuiiCBFlOuREpXliLiPlKF3ZN130AfAwlgLosVKiVcaKSyKKI8T5Xr32fHjeRhubMie9XvCYo+iHD7LO4H1182N9Azuvv7mcZ1mzbfIgb13S/N5f6+9T4Bh/PsbmeOwk7vzDAakaTgbg0RTslHjYwygv9jHOgE0VWRC0xsTejAqQZ5L+m6L8C1K2JD0oTRKFVjr6LoW27XMl/NAsjhHlpVMqodcX1/TdQaH4OHDhywWC8pJRV6UZLpkfbvl458HSd6yLJhUE243F6yur+n7jrOHj8l1TlVUTKoJUsPTp0/xzlNWBUpn7LY1WR4Sm7JMUxQVUgTJ+65ukUjOTs44niz54tPPOX9+jvBwfLSg32yxQqMzxcWLF0grePTWGT/4wff50Y8+5P/5X/9XrFdr6ramqRvmkwmudOzWO7SXTMqKH37wPkIJcglmu8J1BiU13jvqZsuLy3PeefwQnSsypRFWYltYlBW9FXSdxVlNc3tDlud4L8iM58PvfMD59QUv15fc1GuEkHit8EqCkvgk2RnBNO9CItiwRiEHEnDwrWKcIdgnNiW/MY5Shp4UaSSJsb0QAzh5d0yF+Gk/11MPpODQiYP9XxnqCdD3CWINdm6wHj5EzYxlwJNOUppXAzOQznlHgHVQgBn7z/v5ZF2sBhm+3YhyS1M3qWUkaihKBvoRwLwnwcTgswxJbHfdHTHaf6j8gj0x9WqF+J6YGNsShmsSwzG/fZtUe6JPiACyh3Bl/8ykuLNuicPHIobXQsKZlynR8L6f8Bg8FmEBscd00hbW67hOJ4KJNGzDGPaW2B5GINz+goQA7yRWOKQVWGnx0mN7hxVR1cILtBZYGyqjM6UocsmH3/uAk/kk4LLGsNvtmBQFxjq6rme5XFIVOXk5xQE3tyuO5qE6xdseLx1lWYAHJSVlnvPg4UPmyyO++OwzpFa8/8EHmLZBeI/OM1SmWK9XdKYNdkxpijJnW9e0TctsOmU6mXBzeUnbbOhdj9QKWRbsdg14ya7ueHG14ZOnz7nd9Pzjf/K7/IN/+I/4W3/rb3Fx/oyXL1/y1bNnPH/+gs8+e8p33nuEUCHR8mi54NGDI15+9RRjezKp6Ood0kMWn1kvggKNdw43DkGiLXTWBhk8Z4cBESTaDV4EO2Gso7M91oN1oT3OALMkcxHne1h/Y9zCnTksEsY4xh/31MXd7ZV5LfZjbki2SzF6tHfe28FHlELujxoTOkXM3xVOkKsMtCLTAmN6blc19e4zFoslXWd4cHbK6cNThHTs2hrjOqTqaJodzhjaNpBy83nB06dfojLFZDLl5fk1i0WFNaHSTqnYWoSUICH2lUDeJS4PYQUoNawDQu4xkUDK7ZUuRDL/eLwNxw53JbQaGVnSOPcCASWG5wBC7OOMIUNjRDyJ1IqFkMQeEoNGSlhvsLtfQzAxWsjckBwxgFGEBURLHR+kZz4JUkDHyyXvvv2Q4+WEk6M5Fy+f42xPkR9hrOP58ytuLm/YrGtA8Kc//VNOT09ZLJbkec5sOWe721EUOVVV8uGHP+Di/JyubhAEiZzt7Zbtbs18MeM7H7zHanXDdDYJC5QHb4nEj0RrRdfBn330OT///CVNL7Hk5GXBpt0idYbUBbY1ZMIxrXIenT1iMSv40z/6N7xzVrGYHlPlipcvnpLLh7z35DG96djeXiOkpNttmVQTlBSxEW6QAjNR4q2NDeRB0veGr55dcHz0mMX8mJvbHecXlzx5+zHf+e4PeHl5yfVqzfJozhdPX9D1FqEyqmKCynuuVjV9b+jNli+ePhueizWWelfTNA0npw957+SUoqzoLCyXC+bzOVpr6rrmaLGkt4aTByc8eesRN+sV//f/2/+VH373e3z4gx+xnMy4/N4HbLdPseYS4eecHc/4V//vf8XV1SUZPU8ezVBZh3Eh8zDLCiQl203NclFR5hpTGp48PqauLbe3a7RWvHv6mA++8zY361tu19e8/fhdTpYLFrOcrtvy6S+e43MJehLlvwx/9ud/zK//xo9Yrxzr1SXN9poqh0xZ+nZH0xhcb/n0kwsWJ4aHTx7zOz/563z86TOOplOmj455+ORd/uQvPsYLhYuzs6zmPHtxTtd1AVwX8OTJGeWkACHo+x5je3zfkGeSosiDPn0EMI3pMK4HJKenxxTTGeudobUOJ3IWxw+ZHz1A6hwp4C/+4o958fKCy6sVl1fP0dneIcgzHctc+2HRdskKcViFcneyeicG4jcZbBerDMXIodiDVzGjVaYsq7Gx3muCBmcuVUI4rHN4E8hUL0XIMHM+rDijBcI5F5v+CTQaL3303UOPgEAwRaBEOqwMc8WrUFWi1TfTv/9l2G7WF3S2xrgWazo2tyusa6OjHh6etRapQ1mvF2kZGUk3RYd7CNz3nQVBeJwYyzt5cCGosFi6tqHvw/gPC130Gu44l1LJocdNmedIDcZ7XOPY93FKdGdcqMZyuMnHIBBMITQ87A8E++DkVbDQ7w8WtWl9lMRz8XqVUpjY/ys1qgyVQTp8LwIZsd1uWS6XkWgTZIVGCEXbtrGSsePyaoLFc3Z2xnQ6xZiOFy9eUNcti/kS56CuW955512qyYQ8K8ALfvSjX2G9WcfKJBOkTYRgPp/x8OEZpo+VTYR+FfP5nNvbW7TOqcoJSmb0fc9ut6MoC5z3NF3LrJrQzOfcrFb8yU9/yr/8l7/PP/tn/4zf/u2/zfe+/yHr9ZrpdDrM3WDT3ND3KFU07QNCfzDv9xVEbnhvDHTe3YZxIfe9uWAEREdQMEjWHfZ0OgSNGZ7X+FrG+wlUDKDE0HdJRmHx1JQ0vZZloVJXyS4Qel7HaqBAaqW+TvvjdxhjUCrb9xaL79/tX6Xe0NTy3vuDxJGBCFlkIYC2WCxCSYRPPyLMb+8RCqwJuvfVtMTZDmMawJFlCuldIJt6hzMN7U6xuV1xO5lwcrRkNpkgOCZToWJBxaAzVC8FWcGuazEmgBRt8+2qYPqmYMQ3ISv+Up8fkxpf85k3XeN9FRivI72+7lxvPM9rruMu4fZXPf433b4pcfSX2u4h+5JVhH3AnMBLz6v7H3o8f9XL+Prnfd82YH6vvB7km621IIPNkUrhjcObFmyHdx0Kw7zKmE9yqjwj14J2tx5q5gO/4+gbAxjAoVTwMW1v8E6iZI7Wkq7rouQxBz0aIShOSGsRUuPj2muMoekN3VC176M/6pDC4fEBSnVBrsWh8DFcHTiLSBLAq88hYWuvu6NfR8qmfcb/jl8fr0//0/a67TWzY+TCvT4h474nd2fu3UMeikFm5s22WwiB1FkAdiLIXeQaJT1VDieLnFJ7SqlDbw4hUDpnt9viAKUzqkk1+MsehSMjm5YcHZ/Qdj3Pnj3jt/69H/P4rcfkRUHfW64ub/iDf/VvqKopp8cPmM5KVrcv+eTjn7Fczjg+O6XIMh49PEMKweeffcZXL54GHGRSYExP2zYYC7N8QTVZImWGtY6byxuuLq9YzBY8Pn2Lq2fX/PS//xOeff4V6+sVZ8enPDh6wGfPr2lWDWWeM9Elv/03f0JRFFSTgpfXL3l+dUEvPCILUoDOC24329BnzTmKsuDDxw94/8GSiX/Co1Lz/PySm90uVCUqyWq3ZveLFfNyinIC3ziW05MoqSmRkwKhDZt6R7/ZIr3Ct47LHhbLGVIvqYosSApnil5CLz29DFUHJnQFwgOuNwgvYyWDCFKGSo7KMGIIchDPRiltLCnz2zlDAuIOAL2Dobv3BQWh8mJPPL0C2Y+2u/1M9zFSAgml9HhLZGDCXjJoVd+JycNPwODUiHw6JGcS6pv69N7dpAAlgmRzqDIIYHAitgbAOO0vFQYbYk7ng8bZGDNmFCeO4oGD6x6RFuP7O9C/YxJk+Bp35rkHfw8z/a0lmLKkzBCBZaEGSSsgEDiCKHseX4JXhmjCdwM/GsagkOl5pueVSEDCWJMjcJ8xEZh+DvtBpp6zeInXxHnnAwSQzmck2JAcY4VAIjHO4BShB7nweOlClZMzKCmYVTm/8Ss/5PHJjLbZst42SGvJtCafTDmbzDk6eTgkcUqpaJqWtTUIZ3DWgrCIHEQGuSw4WR4zm87wXvJHf/CHPHn7MSrT3Ly8xNLzvQ8+QAKb3ZrNzS1nZ2eApGmD7RdKUekS07Scr1ZcXV+QVznFfIrxni/PL5gsT3l6seKL55d88eyCzc7wz/4X/yn/5D/5p/zwhz/k8uqCXdvw//gv/0s++/QXmGbDtCx5+PAh7zx5wHKa0e+u+egvfsok1ygPTdNT6KgY5qEzDuMsUikkFusESEXfh2TckOBjoiJGkFhUMki0ORve742jMxbjIjIQ+REnAl+498kAy55cumcNTlU5ibT2B++93p/eD9ehGVE8joz8g7hjgX3sWJf2TX5C6nOaBmX4aZoe7y1KBj/z6voWlRUYJzEoTk6OECL4C23rWW9qskyxWtfsthtAks0XNE0LwnN8MscYF30RF/EFRZZlGGPAJyWZUfJ+TAZO0qfjhNv9NY++pSc2ngrz0rtAGErvQYvwL/tkCtz++6ajpN7oA22VzhNc8iEJKJFLAFKrfQX1G7Y3EkwiMtlhpOwffcoekPHLhkqGAGrWdc3J0ZyyyEB4Li/Pefr5xyjtmU4r9HPJzfUN589f0tYt1jis8bz7zveQEpTKmExmHB0tOTldIoWn71s2m2uKQlCVxSCr5G3HdFKhlGS9vmW9XqOVoqqCAbE9obeAUGzrhuubhrNH73K1UVzd1mybns721LsteTXDoRAyI9eK09MlmRJIb/m9f/wP2d6cY9sdxitmVYHyPc32NoBvpqfuGpQn9Gdyjma3o8xynDGorETlBavVivliikcwkSXvvbekqeHZi0sQmg8++B7ltOL88oJd3QMq9F6SJR5F2/RcXZ/TmZ71zmCNxTvH5cUFu+2aT3/xC/IsZzqd8pu/9Vt8+vmXPDh7yFtvv8PZoydDLxFroSyDrrMxFmNa6kZRVgV/83d+h3ZX89VXX3JT5NTrS6oqaJR627Na7fj1H/8Wn37051w8/5SsKskKT6EUnhLnNdYpduuaq4ue+URiXY7vHTfXa3aNIS8zKHre/eAtZrMFUpacLE95+vlnfNqtUdoynxVgDU/eOkEpyWaz4vGTx8xmFU2t6Y3lxcuX/Pt/87e5OL+kadY4L6lbw6/++g8oJnOKagai5Fc+/BHGadbbjmfnL1lvdzitsDhaU7O9rNlsanSmyfOCLDYudh52ux22a1nOJkjv0TKjLEreevw2282G7W6HyjTz2QxjLUVRsOsVnekopwtudw2fPX3G4mjJ+++/zcMHMx4+PGGzu2Wzk/zKr3yfP/7zT1nf1rRNh+tC5zYto4m0IGLFXtqklPiY8TGAICJBIME4JeOTHL+UkBRW8TCXx7YqfF5EZ2RvwEIWmAjZrwK8ixWLQ2ZnPJ73CGFBpCysCGQTtEUZekoFJ1igIikWbJ71IhhjwgvChde+LduuXdObmr7vMH0HOIyxaB1qkpy1ofpDiKGvkHWp11LorSQkOOPjs9jLj/hhgREHq3cIJlI1h8EOlS4Mix4EgF1rHYPpsEJprZlOZ+gMul6y2UpcWsxT0OCTA7DPetpL4qWsJ2BolOu4P0gYB4bpumHMXA3OjE/HCRImQTM87W9JXEm4l2FBl1IiI+FQVSVt2yKlZD6f07YtxnTcrlfsdjW73Q4pJc+++orNfMNkMkUpzYsXL3hw9pBHjx6hVADcnjx+Cykkz188x3vPYrFgOp0CcHl5yfn5eSCQ547JZIqUwe4kosT7VPETntZyseT09JRdU7PdbZBSUFUVX3zxBb/2a1vm8zlN0wxgbKroGQfUQox7ER0SSHvSJQySJG83BuPuez53A8b7wLsxYZOCzQRCjncdAv/R+YI9UTHICeMmlfIPY9RY3ODEhaxe74NetEqupQm9RPbnCb3PiiKPxFIWeza5V77v+PrD5+3B++N7kY6/zxYUCK+Cuyt8rLBWCCxCBBmYEJALOtOiVEaeKVrfM5/P2G1ucN4gJchcgxMY24M3WCx916FEQb2rWV2vWB2tePDgmEk5wduepr6laTI604CzZCLIW1nTIwg9UJz5Hxi8///TTaXnA4OdemO10T3b+Nm+iXwZ/h4f997347otxnvtz/NNiJXxdbxujn7TTQzr+eFrB987Xvfd+/BNQftvck33za3Xgf73nus1x3vjNfjDT+5BmuBMjQOxsOe9DM+IFL/nOt5wjXtC69VtqFwSEUYcAfWHp0+AY1wPXajs7Zsd2BYtLJmCvMrJZOh75HpL2/b0zZY8y1BaobSKYF7IYBWEBKgg/91FsMnFmGuCUnubXhTFQY88ZyydMUFixfQhaYsgGYMIvXuRGrzADHc5OohRSkTI9JX3T8BH4HaYQ18zLMbj5+4Yet14u0um3h1H38QGvG6/X9ZtiDt43XwbgcX7Xe8/1gDE3/dw92TfuIfj60Dq8XVIaVFCBrl0Y8k1VHnGpHDMSk8hOkol0UIhnOfmdg3CozIN2mNsjW0lma6QQuOtIM9zEKFvUNc3/OEf/Rt+8fknCCFDA/XWc3x8zGwyC0mv7Y4vvviE5bxiUmVUheLkZIEUjo9//hFd31OWGVJC17VDn8nlfE5ZVpiup+8bus6QqYzvvv9dvIVm3bK93XJzteLy5QXKw9tvPUF4mM2WNNst3nkePnkYE7IMq92a1bOaz158xcb04MF2PU4EX6Wa5ogsY7NZ87OP/hThOrTpOJsVzLO3eXl7y+V2zarecbtZcbJcoPOcUuaoDKosR2tFa2ravqZ3HVoKTFOjREYhC8SuQ+qeo0nFcrmg8w5bKmpvqbG0wmFySedslMwTOOtjxwqxj2OFwMt9DOQEgXga4ptAfKfWBkGFJ1VL7sfK3tonG+AGaahQnZF86DTOwr5+pM23H7/7tTKQSodVIUCo5IgTKFWQxLK8ED8zJpkg9P9IZ5HRv0jjPSiDKNPu8f4De5b6J8d/06kJ927/reM9dCG5NPWEHUvg7+ebGOTbtc4GgklKETPxRfwud4gmHz37sc88Pr/3w9J8n6m4m8jybbK1RVWENTbGe4hR5TL7MUcaNiKRefv3h7A9vXZP9dLdvrzhWafquDDCnE+VEgxj0TkOxlYIMWNv3OF6fBzbwf9JyiahUhqklijvwQfKILRrMOSZYDmf8ujshJP5BNvXCGuQBDy6rCasNjU4jxaS+WQaYjdvyZXg5GiOtV3oBSk9IoMqL5kXcwpd4o3n+vKao9kC1zuc7ZFCsFgcobSkbxus7Tg6XdCbjrYLSTPgKcsSu+up6x11u0MImC3nXK9v6Z1gdnrGunF89NmXXK9bytkRv/uP/i7/+J/+HicnJ9ysbmh2W/4v/+f/E3/0h/8G03c8PD3i7/29v8fJ0YRZJRGuoV51nJ0eU0iPbVt2rqeaVXS9A+NwAgqt8cYGhS0CcqJj7G0jSWFtKG5P/bA8PuJ9gXgyNlYsCRUAumF2jm2FOEh6Ts88rdNpHO4l8ZLt25P09yNAYtSPM1UvxQHrGdmV4PPK2G8p4Urh/PurlFIN9tR5F2UX46CNSSrXV2ushaYN8vLVZAoqQ+cZZTWhbUPCp3WeXd3w/MUFq0+/YLPeIoUaqut0lg+JsCkxFgIuGmTzQ7WVH9oJOERoUIZwEpzYk78MEzd+vej3Op9gtGiPx2vX6D6KhJPF9SfaXB/XinTPQgwY8jQcYiD0w37xOco0UV9va99IMO2bokeAmMMy3gMwO35ZISRHR0coJdltNjizQ8YgRCDYbQzr25a+hd3W0DYtRVHx4NFDmnqLUoLlcslyMaMqc6ztsMZRFhopFM4EYsXa0PPHAl3fY50hyzPaNki9aKVx1sUKkzDpm85w/vKKopqTNR5Xx4qi2PdIyJyimFAU4cZqLShyzaQssEWGEj58Fwlts8P0feiDpDNM11LkOcJZvLUogp552/eYrqPtoW17Zl7SdT1d79C6itI1FVleMZ0uqPuGtjWARMqM7W4VmmbKjK63bLY1nelpOh8z/wIof3lxSaYUWaapqoqjz47wQrLerDHWstntePf9D5jPFuR5hgeMURTRIe6NQVt49Oghm9UNu82GpttSt7c07YZM9RSZ49Hjt7l+/jLkD8mg8z5bzJFS4JyitwqlppydndI1tzx7uuLk5BQtc/rumrbtyEtN3dRc39zS946+dcgHivVqC3SUhQjlfsKwmFfsdjvOz58HWTlnEEJRFBNOTh9jrMZ4jcw0RV7y9OJLRFaFLEvrubq+4N33f8jtpqNpN9ysboM0h1B0PuhuynbI2cT5kOXdW8Nuu0MJyJQCAkNeFCVFXmCtxfsAckoXJkSocDAIqdB5yWQ2o3/+gu2uZb3Zst5smE0ESsKkypnNK4zP0FrgbI+zBqUE0u4X5+AkSlxyoERyVuO89oNVGJxIRqZ676AlCxMMTFQOGIzO8ObIIfHJoCTvI3SWi06pj73mgx65935oCh1Ol7JS44Iy9FcRo9/3jq7HRzktt1eaFq8ayF/WresbOtNiTI81Pc5btA7gibNBxEApFRrgeoayWSlF9BBi0BwXDaTApyog9hkjofdLHDMDUBL6FgUd3mDvB4ddMBA/zobAAsLaMJlM0JlAtkGWTLgEAMVFn/jshYhyjGIPVIYLjqNNRodlr4uYYrzkBA8EGYnwYL/fwd9RNg1G/XbCfbJ2L6sgpcQRFnulFJlOkUsgz8K5QxZ40uTVuqfvO5qmpu8cOsvYbrdU1YT1ZsNkOqPvDVqXeO9ZLpeAp+sDGLdYLCjLkq5r+eLLL1itVuGanWM+m5HnBbvdjtssZzadxaqfcXYiFEWBEGCsxZiesip59vwZXz37ipubG+bz+ZAFkxy6RJiNA9wxOeN9uB8JEAwVO2Ni6X7U7jBgFgfHuy/gS3J9qQJuXy3lX6lWSv2UIPl84pXrH5Nf1trgFPvkQMphrHmS0xWCXO/SfCFm3Y/7O71acfEqueSHMTkmRdN9eKVqw0PUsxuCKJQirPEOJxVSpQakDqVAZxLrVCAUt9fhHqngbCazmjISrbVYZ2mbhtvVmtX1LcdHR1FqsWIyqSg2CusdIiYAeAdKecgE1oA13b3P+JdtG4cvA440WhtfR5TcB1gOrx3GWfeccw/u3D2eH/3sA4eRYMQbyKzXAdxvIpj+MqRV+l77rOb7z/vvAuZ83X2+b5/7ruPefRIo9Q2v4+6ZhRCDctIwtwcP6zVHFiIGqiPbc/dcr7+I4f37bOrr7vNhBUcM552LvRh8yEDtaur1CiUsZSbQRQhure3ovcALh7cdtm0R3uKsCskgPsmYukBwCxnIICdxtqd3lkxLiqIYANEkgzruBaiUGu5Jst029gNI0nqeYJuDxLIL1+RDr86EWqU7MNz/EfDo9zPplft6l3zy6bX9g2MIbIed9r1T3kRI3Z3X32hu/dJvb0pK8SPf89V7lQD0w7jkru0e20UZJI5jZfKYZBqThK/MExmqupUImd+TXFJqQ5X1zCpHZk2opnMW2zt6Y8iKLCovh2xuKXKEF5jOUtctx2/F/qhK4HrL6nZL09ahP6fKKYsZk0lFNamod2sur15i+pajxYyqzCgKTZ4rzl88o95ukVpHvywoa+gsQ+ucLAvVV11nMSY43pnOyFROX5tQfX95SbOrsb1B64xc56xjqwFjHUKJkPAkAihY1zsuL9bcNjsaa8CBiT5zPtUYoHMO33Y09Q2niwlVpphmJa1S1G3Drs9DfN15ehukBZVWZEKFzHglkC7cH60Uvg8ItO96bN3gZIbTOZkuUHmGxOFVAalvnHToQiOdxSuBUAqfCKYRYAbgIsGU5LmyIZHN7wkmu497Erg3Hi8pjvXjz418T6zb/x1D3v2YTuP40D/cE6KHfUUBpB+N3REhk0DPsN9I8o49wZTAVtK1xetQ/b4aycUM90QuhfsQLaEYXaPal7sM9zN+99SjZdxfNaigEH+XMZ7I9qRv/Df42uk+jLLzB0rkMGYYz/cDG3HHbPhou4eY83XO2C/hVhSBgDYm/ET0ZLgXCbs6sKni8P4iRuomcbyNJfLGz22/+Vd+CwRpqtpIh9vb+/B38IgThjX0cRbB901ruXci/EgRYx8QXmDjZ4XpOTpacno052gxBW9xtsc7OySNWge36w2ZVMynU7TW9K0JsZ+EMs+YTaqQzqIFopCUKmeWzbCdpekbXG8p8zK5IKGHcllibJAXt84wzSb0raE3PcZYhFQ4Z+m7FtN1OGvJchX29yC0RuQ5L54+43q9Y74840e/+mP+7n/wuzx+8oS+a7k4f8Fnn/2CP/iDf01V5Lzz9nf4wXfe54MPSprdDca0YFqUDGNAux4vQQuPEh4R5dKkCH2hWhN8QhfnR5ZpjAkV40IEXNKO4t9QXRYGR/ruPtmjEeYYnlrCmcTwGozWaDj4fUAoxWjs7N+4M1aSdUvoUiDTvdhLJIvYOy5N+9SHzONw1g8G4+74DXY7tvIg2lYR7FldNwEHbhssnvnREp1ryr7Ae89mu0NKwvERXK9WXN+u2e3q0OYkqrmEPuDhi4Y5JodrlCKsr8650GZkND9I+ELC04QYvl+w/XdvVsI59j93zaAY3eSDdemVXoJ+tB5wgCUf+GF3/r67fQ3BFCxAyFSMpcDxgaZQSEadPxFRnOlkysnxMbavuby4YlJK3nnnIUp6nBU0O0dTAxR07YbNumE2PQqMsJRoBSfHx8ymGXgTgQ/L0XKB94bdeoPte5ztKfOSzvQ4K9BecbSYc7u6xfQ9mdZorZBWUDc9becxFv7iZx/z7ge/CkJFJ0uis5xdHYCv6bRiPvF401HMZkynBS9efMmiUuSZDGSA8bRNy263oaoq5rNZBI+IE1pQZJrppML2HU3ds+k62q6n6wybbU3TduSZo64dx8cPyPIKi2C12gSJqsjAGutZrzd4oTEO2ii3ZFwKZDy51ux2DVWZI2Qgi7766is80LQNu7pG/OxneDzvvPsu81kAQqWUnJ0+CA3prKdpaooyJ9cnTKqc8+dfgnJcXVzibc1iUvDv/fqv8uUnv8D6jnKSg4Tl0TFSOHrraTtFWU748Ifv89Gff8zzZy84Wj4gywPoKqRnvqjQmeT68obdpsX2kncfdbR1x3xeUlUa03eURYFUkqatOT8/p2tbvv/hu3gvKMsZTx69w9XNFicDmVNNZqz/5GO8MHg0KjecX17w+N3v8+LiiufnV2y2W3rX0XWO1hiMcUxsFeSqRJjovXF0fU/dtixmExazeeh7JDRVWaF1xs3NDbN5RZ7nWO+odzuOj094+fIlsgigXllWGAdZbB7b1Dv6Lsc5y2Q2Yekdz15cowVBz1UKirzEtH3oiROBzMSz7CvnkwZmtCr3AEBChCw6mQLrMcDEuKryLkiUGoSMTIgQgxFxQuzBskQoxQjf+7EB8weGLsmQDT8ymSw/nM57j7M2VUtzf8biL+fW9S1d3+GMwbtQmZgXeSDPbSxvlhIfAz+hAsAsVZCG8zbovAopUFF/3MoAyTi/b7CopSSpbgP7mCT9QlpMxiCAi02NLTamI0mpmUym6AwQPUoKrIhtxMdgnYjV9lLETIygA5yayaYfj8SJfbZJ+OzIKR05NIlAIg2/UWAXdIPDvElElCCc1w7lxyI0vLSe3vShmkNnZErT9z15HgKjrgsNOpu6RghBkYcKmaZu0FkgerbbDScnJ7Rty3a7ZbvdkGUZWaaZTCZIKWjahratWSyW4B2r1Q2ffvYZ2+02ZnRbjpfHlFXFixfPcc6xXCwoioo81+GbOx/JsNDM0fQhC3x+tODl+Qt+/rOP+M4H3+cnP/lJ1FEWqOhkd10XialD0CXd3kQwpcomE6KUIehOa37a7lYRDM7M6P30XiKy7gLcd7ON0+/j6sj0ueTkJCdtH/wfBv1qFLimaqzkAAVgVIexHbPkpBChkndk65INE6OxL+40Tk59nsal53cJssPfo2cwgAfpnsWEHedRUWol9IwMyS3eFbz33gd89fQXWBvAXS+j9Gj8fCixD9mLTdPgreD68oYnTx6R5xVFUTKZTMmLjM7I2AsLjHFkWZSTVJ7efDt6MB2AwfsXY7LGPRHOaLs7hsfHeN2nXiF1vT+cLAcXl65r5LL70Rv3Hf/Ou/cRE+N9Geb+q9fwWmB8IGpGAcg40BGvB9XfRD69iTT52mv6Bsf/JtuQQJOuh33QlEzOwfMSI3Jj+E3s34S9nSL11jh8Tnu3Jp5j4E/8/ux3vtdgc4f/xTV6ZIMP9jd98OtdT9fsuF1dsbm5pCoUYlKQyxwrJJgWcPRYhDU42wdgQhCAXx8ycTMtUKjY/zOcPVTadmSxmnmQ0ZGCtusioHwf8B8kTLvWxOrNYIeslzgTkoyst1hhQ69ZIrAR7+e4piCReD7eb/w+MWHwU8djaLiPfn+QeAPvTrXh2aYO5aPnEAC0BGrefU7JJ09POT0gP57Zv9Tb+L6/MoP96P6PtsGipjjC3/3Yfrbtk5cUWgcwW0cyRunQM3QA6H1qYj7AWmGsyuADSSRllnM00Shfk4maMjdoI3GdwXSGvjOAQGkFMpC2Ukp0phBe0HU9t6s1xvQoLYiq+MEvtmGcl3nG6ckxZZmhJGw2t7x88ZyyyCnLgrLMI+jX8/SLz5nPTiiqAiUknenJck1elmidY4ynbdvQRxJFWZRkWtM1HW1j2G0bzs8v6JoOgUQKie0Mt6srutqAcxRZSVlVCCno+p7VZs2Xz7+i957eBT+6846+t8ynUxprUF1LjsE3G07nFUWWUSiFqXuEc+RKUZUFlSsxfej9aKVFCUXnbKj4EaBU6AHlbI1E4q2l3W7JRUYvFFJqnFBY4VF5gVaSTAqMIFScCQtSIpUGFeTxhio2EYglhx/6ySAgJ0jFBX8xEEtJ9j2msI98Shf7lfgQj0Xb7KzDeTtUhTpjB5818lODLQqEUPRrvTuosksyzGM/GEAJhUzySGpUrTTqozRO6k4SecPm0twLfqUn9O4kVl45G76XTb6989iEHwSneJ8QoPYEV1rH0vf0XsZEgP16NfaFx3LZe4IpJBkEomLvC4fvIUe28RAsfsUr89whmPa2lgiG/ju6Bf+j2ooyH8au86OqMvbPbm8zxUEMxOgZyPSsA2AzIpT2Mdh+PB4a5wCS3/Xnku8LXowXw2TLUxLkfiwkZMIKi4wEE04ipEdqifFBJUfYUNX0+NFDjuYVVSbpuhpNqLBQUoWEzW1DXdeoajKQ8ozWbYlnUhUIpRG5glySCU3mNe2upWs7tI5KG8IhtCTLc6SQtE1L1/VhDtmgeGSsDZLASHb1BtMGAkqq0MP6erUmn82QxYRN0/GLr14g8wkf/uqv8/f/wT/it/7aT9hu1qxurvnis8/4l7//++y2O37rx7/Jj3/jx/zge+8hL/6Q1cUG12/RoqUqNHRNkPmLiUXW9QGHEQEj0iLIFUspUDHWybVC4HFO4JxEKXA+ZLenlhkJ59urjYZk/EQkDcv8HsobnvnYDxpmtjicm+NRtPcJDvfZ/5588pRIJfEpq3k0DqVISaHBFtr0vNNciJ8PPfwsIYmAQGJG/14ISd8Ztk3D7WZL23fMlguKuFZXk4Lt7pYyz/CuxzlYr9c0TUPbNFjnyLIi2Frnh9hPZ1lYs5KtFIH0D3J+MbF7hCUMWFmy/8O9SZhI+olzMt0bmfom7WMVUlWtEAFbHWzlCO8YPZhkH6QkzMN0g+OjHez1G2ztGwmmXDs61+Ois2aMByFRWiIlWGtwhMkkECiV8f3v/YB603B+/oz17RVvv3XCY+vIipxd0/HpJ9dcXV/Q1Du0hNn8iEePHvH48QNm87dR0tP1O6xr0VowmeRIqUGEckg5z6mqcOOEEMzIqeuO7bah3dXkmcA6Q+86TK/QxUO2teX2tuP6piEvK16cf8Vm12N7h6LC1oJSFggJtlvzwaN36Js1x0vJrOr56M//GB6fMZk8IqtmlNmUOXO0UHRNw+rlNeV0QtsasiIP7HWWMXtwzNY0lGVBLgs+/2LDly+fsVgsWM4W7HYt23ZD6WZ4I2gai+ng6nLHrq7pnSOvSn7tN77PJ7/4nKvrFdZ7pNbk2KFZfKjSUui8oJpOOT4+BhEAxovLiyFb3vY1P/nJT/jed7/LydEx3hvazTU+z8nyAl9MsEIgtMIpQ2sznrz1A5azIy7Pn/Ly2Wf8yR/9CT/+8a/ww+8/ZnX1gquXX2KY8PjBGUpKVjc3XF99xa99eIRp5zTtJfl0grUCXcLRpOTD774NrkOScbNqubpu+eyjL1iv1kEWLZtw9vYpx0/e58+/vKDe7FgcP6LKHSePv8Nq9eecn3/J5vqCk7ffovcTbtyEm6uMfj3jex9MUbMWvZT82t/5O/w3v/+Mn395wc3VGms2yHxDt9tijMT7jJ6e2eI4ZGEKgel72t0OJaFuaqztUHjaqgykmgIhHHYTWOrVasV6vSbPC0zfs5w5hDe8fHlOUc3B1PTbLfb2hu/+5Ac8WxRk6yP682uaTy85Kac02Q6fa+anp/z880/wwobMOhS+iy6lC1bcYkcLczJEcXHQ4z47YaHYW6L4WnzJiugAxoakwg8mbABblEjVJ8TSV8s+8yiApi6BTMlQy3CdXgZN69Bo1KOEDU10hSfkqyafNja+J8ilOCy9E5j+2+MlrrY9vrcoBxkK7zVd53A6x2c5rbV4BIUuUTikN1h6nLA4bfDao2ROmUmUDQ7P1pihWWCpNbMsZ4KkbXY0HjoJjdb05JDNEU2OME3olaXAxsbgynoqI6hFIJeEKrAUVNNjysygaJnnkltjoj6vCuPOOKSwCEJw02PRagIiBxcqOBztkEkHkCpaGBNNkBJLEKHEMICeHkL0mBZk8E7hTJTNcQJvA1nnXSw59iEzyjnAeZQQoc9E14ZFXkqqqiKTIjQSBpy19E0LMVNyWk2QOiPPc6QUbDYbhBC0zY7rq0vKssDanul0SlVNePfdd3n58iXeeq6urvns0y/2JLDz1E3Ly6srzk5OeXnxkrptuF6veDyt0HlG1/d0pmcym1JVFcv5gs1iSVvXlEJRCMWf//EfYfuWD3/wHpNqhvUBAGybBkmowgy6yoQ+cxH48D701SjLEhMljIYbzp4kDvfXD1XNxoQssDzP4v5h39TraV8JRZTJCAcJQKMYAuy0JZIoZYOOezlJNXKSBDHjKJaVx8SX1OhWCBGBpmxPLiKRQg1AobpDGA1gISmAivZrABVHoKX30VYdEmfpvWG4DoF5eg+02AdW6X4FsjRogmY6Q8uMVAWQFXP+w//g9/iTP/pTLpov6XyL0g6RWSQ5yoNULTq3NN0aJRVetFyuJOcXS1T2mKoqKPIFWs+Rsgd6hHRI5RDCUDc9QjkWxxXfhu1+ApAIajKYnCE+Gj3fuz1XQg+Hryc5huzkEdk0vMcoSEuv+YPV+vWgtN+HZIzm6MHx0xgcVe0lkungu4wA9GGs76PCPVkvRtfv91WSbyKZDq5ltN/dqpBDYvfNhNV957s7F1/N8ttXM473G8AP/DA/ZfzeCZAZ9iVUd+4ju+TFhB5zUYwj9kiMwKQLKgOh/1oANYT3Q9alVyEZyPnRdVg7AELE7H9is2LrLF4G5XQhg78l8TgTpDcEnpwWUzesrs+5unzBxflTMA1np0sqM8f5KSbPybMs9pABLXWsvgjJdEp7+q5BqBaJQnmHsB7XBxLII0FmtE6y6z1ZplFKBv+5tWTKo134UUIzKSZIL+noQosUbSLQCd5JegO987QoOi/ZWge5xoss3Fsvh3GYEgEGW+qJlWMjwCElIqRgnv34EqMxdrfH4OEYHMs6pcMGHX4pEoGYbPrhuMLvq/9TFuqbZ8gvz5Zq0e8SfMOcHYUkA/jJfte7BNTBXE/2VGryvKQsS3SeoyLJBKHvjEhgdlIMHyr0w1aKkHAltQRpOHkww9aebrNmdXXJUQFYH6VrICsKvFdgHVIKiqwIySY55MuMWT4H2SJVRqY9hZIUogo9Mb2nyHMWuedo6nnx4jO2ty+QYsfR4gFlPqHQFV1jefrlF5w+OIk9OkP1VNe2qHxB23qatg0+kpQUmSaToUeUMB4aSXNrWF21rG4NdetoO4P0HtO1TIqCeTYF75lMSh6//ZhdveHTzz7l5cUlvRWcZEuUaqhtR2t7WuHY2B7V7XAiY1FkTKoZm63DdT1KOc5vX7JpawqdcZbPmWYll9e3bK5rGu3I8hLTmTAHvUdLxXI+Y1LMcM5EuTpDb7dc3ayRmxukLhE6Y3J2Sr5cUJY5Hs9m09IZC1qjS0U5m4GW6KwgKzJkrrDeYG0fwFEZkvEySox1B2Sj9UmRIQzavu8SdIr3DinA9qEqAu/wxtL37WBXOukGKWoA6WP3+Ghr5LjaSMqQABjJm8EvlgIVyRxFIJjGfUCHFUkwEEoHviYxdk+2zgegGR/mjaEOfVFcuH6sg94OlaI2nsFJcBK8kgilQpWFSNeh0pmin5Qk8vffdT8/5UAaDCRVvAeJwBrW1tF74/V/6KfiObAfEKUOX7N9nQ/yy7jpeUavDSiDV4AF5x1Jdi4okoCWsbdO8uesQwjPPhyKPW2FjPKTROUIAH+w3sL99zo8Q70nZJ1FCIXBDF4T9BEnEigviDVJoAReg1XB5gpAOo8woIXAa0FnelosXgu+U855crIM/Sb7DuE1282OeTUnlzl+Z9m+uOS9x6dMpgVKGep6S1lMYh+dluvbNcuTJVkWbEbftyDhdruNalEGVWjqfktRFuS5JlOC3c0a43yotNQ5l9c9bVuDdEgF+IaXL5+jEeiiRGUFtTFcbAw/+t732VnJf/tf/wt+8dWG/+K/+F/zu3/vd/nVD3+Fp59+zvmXX/LRn/0pv/j45zx79oz/4//+/8Di6Ji6a7l88Tm7P/mvUN5xNJ0wKUMCwm1tsNYFG1Pm7LY1aE8uFblQNK1BUFMVBUIprHOY3iBlB1ohREiuDTlCDocbenGmKiitgg/T9yYSf+PhEFdxl4IXG+Pb8L7c7xKSjQEflXmGJCEIYzH6XWHbjxon9q+FJKhEktqBOwFASpx0w6f9iOiWKthgk7IBYnVMsLOSlIzhHFgT8E/hHJurW/773///kmUFZVlRldOQgCw7ilJSlAKdhUStFCc6G1RBhPRJ5RRE6IkdVJxECMukQFgZMv59IIJC0rjBIVDWIIVGuNC7DJn6sotIiKVvakHaSC6FpAnnQfrgH0uCyhBBGCf4QpGYEpKUYzGayyExwDkXEyqi7z30IRRI8XpbDF9DMIXBIOPiFaRdkoNv7Z55E7HcudCKtt3x9MVzHpws+OC9X8GaLZvNmqurLet1zc3tjuubS+azCR+8/y5vv/WY1c0lz88/5Yk84+RkwfJ4SdfXCGHpuyb2wejpEpOKC+RWzIYp8ozpZAJI2rYhyUJstjvWtxvwGZtNzc9+/gvatufdD97HX9yw3l1h2pY+ljkuj5d8/zvv8+DsiFyeMJ9pytyjxK8wm1dU5QQhoN7VdMZRTSqkhHq3DSBUmiwRJHv27BlShADmdrNBiixI/00qvBdst7fUTc/qdo2nYbszOJnTdj1CKvIswzh49vw5ve0RSuJNz3Q6Z76c0vUddV1jjAmNw5zldrOhbduhmdhsOuX09JTlckmWZXz00UdcXV7ym7/xY2azGX3fUxQ5uelxfc/JySneaapK8M4779FsL+hMj9CC+fGc1W7N7Z9dcDyvWM4eMC0nPPvyIxaTLVJ61usbHj56wMXLK6xzzJcnHD844eaLL1kelWRa0ZkdeTlh20puerioe+r6muViSVH1TKqStx48RPmMTVtjNpa2gSenj1jvthSTikdP3qFSBZ99fsknTz+lblrKTPPD757xox+9R+1aXqxu+f/8v/41v/hki7cFx8cleb7gtr5Flw1FWTKppiiXkxcleZEjEHRti+k72qYJALsWVHnGZnvLpu2Yzuccz0PlwNHxkqIKknzHR6f0fU/fW26ubthsbqlrw1RDVZXM53OePXtGdXaG2LR453jy5AmyhdnsmKvVms+ePgvmwvvoJDi8DxlQ4xLJceCc1nkpx1lA++0ukJNwi+GDiiFrKrwdnAofAQxr+8H5S42bRewbopWmyDKyLDSxJxk7Z7HOIKKTrpVECbmHZEQoe9ZSxDktSCuWc9H4f4s213VgA0FjpQBFcBZlWkgtygtybykFVFKRaYmni4slTMuKqarwxlI3Hdc7R9N1VNWUo8mMo+mUCYrrW8VlvWMdNbW9KOiUwSiBlQqHHRrohuXd0/k+qHx5S9s1ZJliMinJM4PzOdNZxa7TWEIlldY5tjM4E48kfMB+Uk8F0sJoGXK8R4A80ZcdRu2oH1ACf4Xfw4fOJm1whuybFPg56yBmGVnrYsVTSIgwJvQ7ChUwGSILmaFZnjFfLtlutzSbGiUVVaWRUgX7GsHlKy/I8wIpFT/84Q/5yU/+Ok3b8vHHH6N1qGKaTCZst1u+/OJLnr94ztXNNe+98y4vX5xTVRPKsgrETKZ58OABRVHw1ltvMZ1OWcwXPP3qKdvtlu9+73tcXV+QZRmLxQLvPV98+TlFUbDZbPizP/tT/vk//+f85K/9DdbbLUrnvPvOe2RZNmSQJ7uSiCQhUh+kPcES9mPYf/ze8AzEXuIuVToplR18JhFFB5IiMNiO+6Tn3hQgHoLL+88MQ8S5g+OmjKXx519HBoy/2zeBAcdg+d37k0CBRAAcXgPs6yTGPT1CVlGWZ3vwVEo+/PBDHjx4wK6+pjcO73sQMkjqefaZsLFRszE9t7e3XF1dcXQUQJk8z5lMJuzqW9q2x/YG6yxZlqOyHGMcTdN/7Xf+ZdnuIwW/SSXMfeTNX+ac95En951/HCv9Vba717kP0e4f2WPC577Pj7e7JNv4GH+VKqbX7XMwl+457l8VSEoz7+C1A9cowd3xt1Q27uNd9Cp+YBDyJak8pOqZROIhwtrnR3r1ya9KvyPAOj+cfbgXKXD0ADb23AyS1FqGDEUlwlVI73EuJEEJgN6wvTrn+fOnXF+d0+zWeNcyKSRmu2Xdt5jtLdOqYlJMB9BJCsGkKkEFyMf3Yf1UXpJPcnIdkh1s2yKVDrYnpL0OvjJZqHJKFesQ7HKWafLJBJ1l9F1L3/fYHmzf0fc9XWfprcL5LATfSqFRtC6AHaFy/v6eSGFN48B2390PQnb0uFHxm8bR/vV9Bq6/836oJD20/wdzfLRWDs/1W75F6B44XBfH74df7reRYX3XKK3QWUZZTMjLKkrH6dBHMVYyJRky2PdfGGfOaydCgpFwtP2WvJhQTTL6QvL08pzae7QAkOhck5VlkJmNMYu1FmSOVJpcByL088++4N133yPLCqaTINPfNA3z2YzpdEqW5Tjn2GzXSCk4PT6J161Yb9ZY4zg+PqYoyhhL9pjexV7Tgt5arPUgBLkuUDJDytCZfr1quThfs17tuL1doSV4azg7OeZkOeedRw/ZrW8RTnO7WlHXO9q2ZbVakecFJycPsF7w6dMX9NYGcEpqnO+5vrphkp1SLuacHi/JjKVCUGVZSDLKHyMuLrhe3bKuG1rr6G3I3u7qlrq5wDmYVhNmkymVzrjcbCmLjEypGAOCqVuUFEjfIb0kU4IX58+R6xtEWSKqCj1fsKgqjBC0nWF1eYXIFDJL/TFKqllFFSufpBIoJbBGUuR7gL2Pca2PSKjDUJVlIJCtDQQVHq8ycKFfk9N9yHRPobMNMvkhrggxjrUhPk7PNWpSRbA+gpyRXAp5A/sKfi0OCSYfxx8pqTMRNz4kxgHgQsJCWC8sOHlg15QXOBNaN3hhQ3WDEgGElKBlWFucDHJkToUkY6FUJMXCNUmhh3n4yswVKbK/46cnzCJhiclGysN9h+MKMSR37FfiPVANhAqM12zfRoKpLEuAiMcobB96qwe5Wdh7gIfrUap42G+H6+Jd3+tNfuHdRKG7r0nkAaKTuKpwZfLgs1pJ+hifKqVDPioWa0O8k4uQPP/uO09QQtC1HX3bIJxnOV+gENT1lt16zQcfvEeWCYztaHctQogobWfojaGYFATp9pgsRkZTt6y3u4AN2ICppqR96zzSedq+Q6kskNV9R9O3tG2N0sEXNLaj7w15NQUUbeu43m2ZLR/yFz//lJc3W5qm43/2T/4x//E//AecnT3kxfNnfPzxz/izn/4xz796ytFixv/2f/e/IVeWl88+4vz8OZfnX/Djhw8oywLTtpi+xXsXEitcskUmKFGJ8L2M9eRFwXw+Q0iNR2Kcw9mgWuGsiWMmSOJJFaTjQ7WuozUeH5OEh2T2KJ+XfDJS/zf2cza6xgFLugfOE5JRUjsD5hSd5DfG6gfvyUPvbPx+GsN7SdIouZjIkmF+EAn3cYyesNDwe9d1QYmqabnxtxhj0LljMs2oppos9/hCs1fhiecT4zmR1EcOvMk7XzD87G1fvOfCg3D7a3KE5DgR/NBAnoGQLlZQvw5D9ffO74EQvLPfODnxL2te30gwjRsVhgtKGrYxfhIS4R3WGIoyY7GYY03L8dGc+byiKjVFcYyxW/q+w7mO2Vzzzjs/REhYzCqE7MgLmM0LnG9puy1TkdG2O6QMjTK7vgVCea+KDKfpQ2mizDRC7sv/Qt8mi+sDkNl2PVKVzGZLzh4+4eNPn3N9c8tu12JcmjgWqQRSOKxpaZod85M51vZsNjsmkylFERp1eeeRQpLlGun30kKhWW0gdaRSNI3n+vo6SFKpAq1LlkfHbNYb3K4LIGw+5dHbJxij2O16GtOw3e3YNg0mDvbOhiqEuulwXjCZVCwWc/IiBGLeO9o2NBdVKuqmOz84LL0xbLZbvHN88cUXZJlmu93w8OyMB6cPmE4n1HVwJKrlguV8gVY5Wil0plF5xsnDM3Tu6M2Gpt3StZ6uuWV1DQ+WJV3n2Gy2SGGDkRWettkhlWRxtOToeMHb9ox33znDGMPtessXz16wqjXXa8fNbU/b9BjgraqkKkqmuuD8xSVXz67wXrKYLSjzQCJKVZDlUxQlT7/4iNXNBu879ATaBnrzAI+izOZ88NYxDx5oeqdR2YRisuRyVWMxCOFCQ3g15ej4iCqW0UqhyPOMZ8++4uX5C64vXtI2O45PT5lWBeiCzgvmR8ch+yjLmOY5OstACNp+iwdOT0652bygKHK6ruPZs69474MHwVBZi5CCLMtQWcZ2tWO3q+n6Hu9Dk0xckNUR7LP5o+UZ/Z3maXrN4V1yWBXjINt7H7MHouJx8jOi8Rjl6oLfZy8I2AdrEtAB4NRak+mMIs/J8yIy2xFMtolgSnJUgRyW0Z0Q0UlQIpwjOJA2GuBvDvr9smzCGQbt4uSrywBSgUMJi3KeSsBSa46LjHkuESZULwoBy2rBrJrSNR231BRdz23dc5wVPJjMOJ0vKZAUfRea99ouZGoQK8pEAr3ieaMD4F3MMZIAHudNKLGX6QeEEuRFzvHpMdPZnDwruHx5yeXFM7re4AmVMk4k8jA6BcMjjivX8LfY/9/fASV8gugP16dX1ul7x48YFu+91Fl43fuQ7aliYFWIUM1kmiiN19RU1TSsFdFZkUpQFDk3N7dcX19zdX0VrnIErjnnmM8WMWhUlGXJ8fGSyWSCUpqiKLHWopRivgx9mqqqoigKrLOhgatz5EUWZffCmjOdRnsV52bbNvz0pz/l+fMXVNWUd997n3fefieQv+xtQHBC7RDEJoLpkCg5lKlLm43SnWOCKRz7fpB4fzw/+BDjbMVxMLIntw6vJRFUY9A5VVKlfaWU8Tvpg+8TsldTRuWrIPjdYGjIdpf3gF/3eFev+86HLzJICAcLHuVUxN5xS86oiOWiyf88Pj7h+PiY85cF/WY9ulfBlisdnp+RoTebc4Egvb29ZbPZMplMKEqFFAqlEskYpH6TP5NpRXk0efW6fwm3NxFEd0mZ++iY+wDjb0KK3hecv24sintIp3vP8ZcEWvzYpr76gVeu4+A0Qhz+HoOAb7pG30eqjc93l7xOr78J1Hjd8Q6+w1i2JQauPvo36TURbX+SbQ0vy1gVM/q+JD8pfY5hiKTEMhGBxLCzj0FzRMfSWMBHybcge5kanIelLV6bGJ8srK/pZEoF4Dj4VUFz33tD1za0dU2zWbN5/iWb22tsvUaaFiUdBQJte1zb03QNZrvFzw25zlFak2mNqkIvgc6HHqNSOLLZhDyvqKoKHUFvH0F7OXyPABEIL5EC8kyFJsZJGjkS/zrLIvAoyYWnNxbveqwxIPXeVodvHXqkyJA9P65qGe6kT+vaqwTT8FySbzAaRveRqmncHL6W1g1e6WWcyMS7BNMw58NB7g3mf9k3n77vyP6NMOLhtQMy9c57B7+L6OtFWTStM/IsJysKsqwYCCatRwSTkoN/d1i0vCeYpAcnHMYZPv/8K955tAwZ8OWMzeaCaRFk64RSsVdNGEuhd0ggubyPcrtFRdM5ttsdRZ6jpKLv+7C+FrHSSmtub29DtrgUFFkGUgw9G1KS4N7nAZ0Huf++7/COuJZnZLoEr3BOY51g1xisg7pu2ay3eGsplGQ5nbCYTFEI2rrBOcGu2dF1DZ9+9hm96ZFKkxWKdtuEHk+5x/iOvuuwzgfpu2rKYr5kUk7I+p7cu3D/+h6Nosgr8rxHd47aNAilA8HkDLUN12bblsZ5srpGAWcnx0xj5aOzFt/1gXuwPsQ7uaTuDMJZZG8QvUEah2p7OgSttfRCMj8+xuNoTcNus6PY5CgVwOqi0BwdHVFOF3t/X3hynw2gqU293lTqhxGqPbyzeOlwViJskN5KCWzg0UKEnqcuSPGF2CDYCymDvw9iT67IENuP/w7/yr18PCLqPCV7EqpQ9n1I45wSsZZnyHx3eCfH5YPhqzqNUHu1ES8BZxFJGUCIkGQqw7x1SoBWEbAMb0gUQqg7VaD7WCohykMckP4elt7D7xoBxGFGpp4pIu070EvDlI3nvN9/EYmxOPj727GVVZBrTzFpL0KymDWpWi/4NkMeS5JRvMcjHMyueHUthfvXsPHa9rokqkQc7gmIhGWJwZcK8EJcD4QMyao6zDkLmF1PriRlljEpS6bTir5rcdYhlWZaldiIdwrvWCymQeHFB58iydp3XYuxoW6vKAr63tCbUCAgpKBtO9q2DUQ+Qd3DOkdRlQHrtQ6pA+br473cbNdUZYm1PV3fhb7NPiQdtEZQd5amg27T8vzyltbAd97/Lv/J7/0eZyfHeGNYr1f8/OOPmcxn/OZf+y3OTpZMpprnX/6c1fVXeNPwaO6YzapQ0e56BBItJV0D1nik9GSZpKom9MbT9ZbeOIwFrVQgmIREWEcjuhhLB3m4XATfUgiJFxLnBN7bg15rzhOr7ZN/k8ZAGE170mgfQ0kpBrnSIZmS4AcnX/owFXM/y9/kNw2+g9irPNwXb40rJpPfPdiHWFoVfFIi9JnOt8enkh8Z8JNQbau1xrke68LoLauSbd9GNyWS5SrckFE4Mrj3yYf23g9Ym4ici4ixSoLJgvyki/hAlNJLwILwA4klYsX2fplIkqahLi1IHL7mXkI41hDTjB7wsB/3PqfXbW+uYEonTtnjwwHDNx8au7sQ7CgpaJot77/7FkUmkBpm84rNtgklypmkrHLee+8R1hnwDuEt01nOfFEBLjK/HW3boLQIZJGHPNPY3sRAzmNteBjOWYTtsQhUoQKh4ywSQZ4VdJ1nvdnRtJ48r5C64PJqxa41GOvwMYN+Nq2YTkvA4L1FaYnperq65mhRBomdYYCEMrXQiDzI/gxqtAl4kxJrgtatKnKyIicTguubNb01wfnVBeVkyc3NjsY6Wuu42Wyo+z40cXchE0FqTW8sOsupyiLKEvn9uZ0LREWUw/LWDZnjfdRBxjtevuxDk7u+56Plz3DOcdwfDQ14VaaoNxuqaoYQMmQ5FwXVokBn0HU7ms2Waqa5efmCq80NwszYbBoyackyHwNfj7c9eSaZzQrKUnN6Mme+mNG0HbtPPufzr85ZNSWbNqPugnOZ1x290eH5th035+d0245qMmVSFti+p657ms7RNJ5ds+Xq6hYlPZNpztFSkWeOtq0R2YzZZMGj4yfMjk/ZdhavJxSzM5q+RGiFNW2QFVE5y+WSoijIspw8L5lMJnzxxec8f/ZV/PmCk8Uc4Q0CSyZB+Iq+26G8Is81xpnQ0DTqdIY+TAVZpqjrHV999QwhfpO6aaJMlRxkpDbbLdvNln3T+PszhcPEH016fxgQe8/Q7D4Zr/GPEFGj+k42y5CV5EEMoAjDvA5AZviRUpLlIaDLsoxcZ+R5EWQOUsNUZ3AuC2SAjxqj0fdNTuogvxf1rr0V0eh69vq/345NeBvXQD80vgy6yolgcmhvmUjFsVY8qUrOCo3oFK4Pjv/xZMZ0Omcna66sR7UNVddzVpQ8ms54MJ2TCYGsdzR1TW8dRkg65wJZzsjvF2kBFwjp8NERQcTKuvS7C6RglmccHS947/13OT5+QJ4XlEVB161ZbyxNH/s64IND4F1YT4ZnPAL9YL9u+QTijPYjxlPp32F8Q8p8GZMU+wPGhT5+NgT1enjbekvX9+R5HvtWCfIsp6wsfddT13UMvvMBvFAq9JNwznF9fc3nX3zOfLaIjZlD3yStNVVVMZlMmU2neGeZz+fMZjOc82itKcsyHE9rQND3QWLPukAEpSbqRVEMmZF5kTOfz4HgPNRdw1dfPeXTTz/lnXfeZbFYxIB3T9o477HGDvdm3HtpLBV0F3C7C9gdVh/tgbbU2P3uZ8fnu68K4m5WUrqWu8/xwF6JPRCTjjm+rnFfpjFh9CqIePdaDv/+OmDw3myg9HqYNAfgaPzUCPQUwznHp/beU5YFpw9Oqb6oWN2GyoDk8KfvpbWmlybIPvrwvbfbLbe3a6bTCTqbhgBLRSDHBcc3kLUOKRXz2fSN3/GXZbtL2rw2IzPsfK/7/LrxcB9x8nXk033AtkigzdceS6SB9tpzDNcW/y84JG1eueY757tLesUPDfukY7zpu999/775fHCtd/yS++bqN/cNRmBYDMjGla8jSmn0fzjQ3PAH74RpO5BREahJAZwfB9guyrbtj7n3qjwuBsjSp2qoJEPsR9cXjpTWTnAowLs+iPIJj8TRNzva9S3r1Q2bm2t2L7/C2h5lOzQ2+A8OlBN46+ido+0twkJVhipaVUn63kQApsd7Q5ErptMZQmXovAygsRe4GPPJKO+kVAJHAxkgpRoA0/06EEBXtEQ5j3JmeM85h8wkSmqsl4NtHLJmX3ncwadMlUvJDzgAxTwDIbB/cIfj8e64ffVvR+I3XrHgnnvtyX4t2/vR3t399LdgS3HGHqV5Zb0bUOVhjo0Rqzv+W0yaE1KFCjqdhR8V+i6FnwydpQqmAJKTgK90CsK41VZGqNMhFPz86acczSuW0wWz5Qm33RaVa6QO1SbOe3yUjJJSIOO5UyP0LMuZTKDrDN6FxurWWhbzoFqS5zngub1d4Z0LCXZK4kSQLQ7xuwg9yGIij1Thuwo81gSpHKUUmc5RMsMYibUSY8AagbeCvg24hfKeaZlzslwwKUqauqHe7egttDEb+8XLC6aTKdN5hRZg7Q4pQzKKEAbvHKYzqLJiUk6ZlFOUVChhwIWeuc46DKEXVaZzitywswbrBNb0GO9xMnzPDk/XteADOZPXJV4J8iwbfCZvU9N1h+90BH9D5YCwHts5fN3RIeg8WK3JywlCh8z8Xdugb8NzyrSkLHOkCRVMoZetQGeKrChQMoxRDQFMFT5WTEqcUHgRe6wgY2wsUNoTZDIdChkrltK42PvaQxwvRBi3IlXGhjTL8LeMcnBBmin1xhiA91SxNLYr0RgNiQx7BHEglw6mlQ/JSE66SFwBSobX0yEkQTUjJTnJKGEd0OdwfVLGdhgyXl4CQ0cTK83V9B3S64KBVNvLO4n9fBSpcmm/Vg9L3uGR7/XJDgmmkX35FmxlmSNSwmfsix3kdkOLAmeDFU7SkEP/pXuikv16FsY4Cey+s73O5bzr543JqeTXhkeVnv0eAxAEwl/gQSmcNKFyTslAnIrY460oOV4s0FrS7HqkUBRZQVGUXL54Qd/XVEXOZFZhbAdODckHfd/R9h0I4rohqbfN0GPGG0fb9jHxJSQA5UVByr4NHphHZzm73RbhU2Jfj1QVTdsPtlXrHOM1tXFsW0fdedp2x2pVszx5wG//9d/hr/34t6ibltvbDfVuS2c6Pnj/+7zz1kPKHC7OP+fLT/+YXOw4mRc8Op6SywzTdygdKsOUhKLIsH2Nd9EGFzlShsqmzjh2uw4Ve6AlkmOs9KFk6MkUhBVVUNE0adzsCaX02YS9jOf/8BT9fmQJEqYXxtQrs3fAHfdVT+O4eDwm708AHNug++OCZDN9vIbRlUZTGjGC+PtoyB5sg2RpJF6KIqfu2kA0ekeeZ2z6XbTjoXJWyERwxet1Sd0kogLpZMmwJRf2wNDtzxlys/cObbpNPq4/IpFZkSBObUt8fA4u/nZoK0exnmQQj0o+9Tj2G561T3+82dB+DcEUK5biIBt5heBj9p2UZFrhneHi4gWzWcbffOs3EN5Q79ZY18ZFvkDrAMRf37xkuVwGAL7IEd5RFDk6C4t/XdfRF9WhkkbmFEVGSxOyrzEhO0VqOldjTNCcrco8lO5ZixRBsqxtN/zpn/0pz16s6FzO47ff42effMq2CcyjiIzv22895OR0SVVpHjw4iQNDkRcFusixpgepcQJ6a0OWjFYo4clzjc4zbnc76noHQuGF5PT0IV3b4GSGF4q67dC6oDfQ9eCxXNycc329oe0txknq3oBKskMiZGgVBbNY8g+Cpt7iBAckgbWG7XaDtYFsKrN8kM4ryxKtdMzCb3j69CnPnj1DCMFbj58wnUxCD45mxsvnTzk+eUBZVTTNlvliisoEJ2cVx8cnXF3e8sHjh3zi4dPrq0AUXTxne1RyvCg5WlRkSobAtFRIA+1uFbKvqCjKnOXJCU9f/CEt0BroXca0KpHKUTcNV5eXfKXg+volb7/9Plle0JsNz56voe7omo719Q0vPv8SIVqePDnmrcfHvPX4iPkko2kcRV4xXRyxfLDku99/n4v1jpaCfPmE93/wNyjLBdILbNdxs7lhtV7TNh3GBiesMXD04AnvfecHVFXJn/7xH7K7XeFdi8QgveXnH/0JhawICT+Cm9WKs7Mzzs7OQOWsf/ozHjw4odus2G63XF8bbm7WMCmDAZKK9e2atu2pdzVtFxqyai3p+zYsrlLhzAgQGs3Ou2WnzrlgRO3wSjQUrwLE+ywkSOTSGP5Ivyshg/RAptA6VOjleU4RG9KmHmBKCKzX0YmxOKtikBD1Un3QDJdRXkJFoit8Dxck9WwMJOQe+P62bFLG7IRIwHghoxKuReLJhKDAMteaB2XGe/MpbxU5utHQ52ghOJrOyKsJawtHxlE5y7WHs/mch7MZp7MZyoOYzWm6BisE1ni2tUVaH0gmERUdRMyGAIRKf8clyxmyXOFxtF1N37ccHS04On2L977zHY6OTsmynNlkgncNXz37kovrC7ZdB8SqIR8CZqVC4H4XBIKRM8recQjjWMQy7WAj0/rnoyPkkjSeC3KLyTlKTpGPx5Nqf0xvQ/VSInhTNqkxhqOjJevbDev1hvV6xWQ2G5yNRMwsl0uatuXnP/+Yd995l7OzM7quQynFYrGg73uOjo6w1lIUBfN5wenpKdfX10gJjx49ou97bm5uMMaw2W6oZlOqquDk9BjvHG3bDnJDOtMY2/PWW2/hreP88pzupqPvW/o+BBZZpqjyMiZCBCfCGBsC/AMgbG8X3gSee++HYyWiaGxL0nvjnktJpjCRQHrojXAoj5ee8fi+JuAR7u+TkQj6MUh/97nkWTnYqHH2512A/dCJvb+0/D6QP13jXZvq9zvsS/jHdngfWw9OWyLBEgngsVhjePedd/j44yVfPjXkI4kX4jmDVFWsJHPh76apuby8jA1qgxyk1jlKanra0TMN59ffEls7ft5vJEhkdMPfQGr8ZYnHu+dOP68c55447L4tZfB9HZH1ypr/mv0HX+C1Ad1+Hn4dMTR+7U1/v3KMeB2v+9zwPuP58/qb5cZYV9r/vutJ/ZBGe4Rz7PeWcLBMpQAv7R2V18MxI9AzVGcLSOLnB+eIIKSMJRZ7tQ8/zHEvbHwt9VUALS0aD6bHtDtuXr5kdXXBbr2m321QpiYPhT/hOK4LeJPQ4czW0XYtu/OG46NTEBKZF5xfXLLd7QhJdoLJpGR2dELdeWQb+kL1Nlaia4nONLlWSDxaJRvm0EqHe+dDQqCxJgAzOosZ7CHGSbYTAlGOzDBW4U0ABaQM0jpD9cjoHqeECe+TioeH1Hj+XpBgNBdH+9xdA+4jQ8egg+dwzI0TGvbzev+k0/m+buz/Um2pcesAG4hhPrxq20aEr0hyk3u8IWTqSqTKgmyXCsB3qOBQkXgK1RZCaaTKo4TjWIY3ATBiiC+yGFMLLSjKB3z66Se0HXRG8ODROzw8mtPsbum6mr5r8a5HakWmZMAyspzQ4zb0sFBKM50WdF2HNSE5tKpKHjw4Y1LlSKBtW9abW3KthvO7SMLoLEgte4IPK2IMJLXGtB1SBCImy0ukzHEGTC/oe4/pPEU+56peY5oOaSyzPEcdHfH2kyf0bcvHP/s5bdvTGIPKNPPpBKk0y+NjtM6j2ktG33X0XY+zgWCqdzXHswmZCB2Cuqan3e7IXI+KVUxb46ibDu9DwlSVV7RNE9oPWIvOMnKlkVJjTPBrvJQ8ffGCq1XObDphuZgzrSaYvqN3Ftdb+q0jl1mITXzoktF2lt16Sy8lVimMyqi7Hh0Tv1y0A3muMZmir1s2Nxtq9wl5nlNVFYvFjAcPz5jP5xRlGZPEDL2zeOFwBJtlfKhwk0IM2mzZ4J86rDQ465HCHWT6CyEIMnapGv7wRwwyFeFfEfsgp132GeVh7KcxnBSd7kt9CVZ0X6GV5pQkAMdSunB/tARhDz7rcGGKSob5JVRUKEhkExE4RQyyqsN3HS4iyeLd4+On/ksprhMiLngM/V7ipe8Pl+4n9/sFh2v/oV/1bdmKKiMl5Uq5B7ClEBghscKGHkiRaPI+JMJIeVjNMPiFApIyxfi9tL3qm3HgYB0uuWmMBKI1dvEKfZ7v7JMuXPiQOG+l2Y9zCQhHqQuOJhMeHx3j7C14T1kUTKoZu82Wr559xQfvvc3JyQJrO4i+R+Ehy3Jub9f0rmMyrVC5Cm1G2pbl4gRrPev1ms2uBSReeKwIhNJsNmWz3iKEZDqdUhQF16sbUpy9OJrTdh2b3Q5rHZNqipSa216ybT27TrDatNRdT1nM+Y1f/U3+s//lf4o3HttbmnqH6Xt++3f+Bu+89Yh6c82zL37Ov/2D/5bdy7/g7//7v8lbZxWZ6Olqg3UdSoUERtt3HB3N6bstSnrKoqSuW5TKyYuCPFa1ZllGb0LRwa7p0FmO1j2yN0g8RZEhVYZ1gt56vHBI1eMxOA/WE6T1PAzqZgLwMVlRhOcnRdh3HAcLkdb4Q2IjjR8hgk6Tjf7BeDSNff/9ANv7ggMhfWfe7/cXMJCqh0l9glhRGgko71MC5/4A4bgapUQk5gRCZBRVTt2FhJC+N7EvtUcoQSz8BOFC0rCI/qaEoQLWAw6E8INdD18+nDzsIhBeDdjVwFWlXWNCgpApXggJ6SLK5vl4Pw8TtEZfjldjQSGSv+vvlzYc/Nu0fr1+eyPBpJSKutV+xFjFgBXCVXsbFidvyArJP/0n/1EE4T1KZlxfX7JczHny5BHee7q+xVrL0XIRyhk3G3KtMMZgXQD4pJScnByFcl1rsCYYCeEVSuZoKfDKYK1B+gZjOnZtT9e2zGcL2qal7Qybbcfv//4f8uKypXc5Kq/YtQ6VT9C2xfVB5/Pk5BhrOrxpOT06YrNbs5xXLJZzpuUxAoOxwVHKPMzLOc40XF28wNgOoSVK5ThrcDIaUwfX6w1Pv/gSXVYcPXjIxeU1p6ePUUqw3jY8P79CqhLjBJ0JGeh5mZGXRQTmPMVkwtnZGbkuhvvVNA3rpqU3dqiA2e12KBVIgC5qnGc66JhbZ+h6y+r6Jjaer9Ba8wd/8Af85Cd/jbfffgudK774xSdIrTk/f8riaMmjt95icXQcdDz7Huc0f/d3/yk/+9M/4Ae//mv88MMP+Lf/6l/w84/+LavrK47mJU8eHjOfztjc3uJ6Ty5LMA7XSV6+WGMQdC381m/8Oh9/ccv5ZR3kELXj+x++x9sPJ+Sy5emLL3jw1hmdatl1QSt6V+948VXH5ctz+nbNk7Mpv/rDxyynGdLXvHy6Yl3O0OWC5mqDePac9+sbhNng8gn58SOKEi7XL5j3UKkpmgytM9579wM6Y+lNqGzr+iBNZWxP3TYsTs4oqwpvGmzf0O9uKYqKtrYURcbRbII1HU1TB6kmKfnN3/g1Pv7iBatui2sbmrZDSsVkMmP18pKXL17w1bOvqG87bjcbnPcsFgtu2y19HxZ/N+hfJnnKOwvzPTFr2PfrQKcR4B6zWhhMMEOZpdKSsszIiowszyiKgrIsQiWFkrECKYGmKgT7LulXh9BRRNk7pRRKhipDJWT8Ozoy3oa5bm0w0t8yJ9ERZOoSqClwo/ADcuWprOC0KnlnOee7p0e8lSl0LZHOoISknBYgJYsqY0ZBoXoeF4rlouKozJhr8Bb6aUXLMS7P2a43vGzq4XkPjRNHpE/623kRtL4jkGhMh+kaPJYHD0753g+/w8Mnj6kmMySSSZ5h+i1SgcXSXFzQmdCQXAhBkPQeL3Z3tpGHMiZAAqgfNYC9x3sR+ytZAlcpBjIk7QOpvFsMDokH7EiaxEY99a4LjRirquLy8pKHpw+RSmHxtE3H5eUlDx48QGtN09TkRVhGnfM4Y2jblqIoADDGhGM8fBiTKib0fcf5+Re8/fbb1HXNarWi71um0ylSQtc1rNeOrmsAF0kZzfOX59xcXXJ1dcV6vaZtW379V3+Nn//856xWN9xcXYR+BCrn+vqS66ur4GQrjTH7IKHvDUVVDgHFGDR+HcmUCJsDKRcRqngT2XSXBErPbQy8jT873ufuNq5ISmvcGMjbE0t+OMf437Tf2P8Jr1vgVXLrcJ83VHjcue7x+Q7IiPQ91L4l8cG9TtrM91yDC4M2Ek3w+PET5rM51nicdgFoQw1AtdKxisnbmOEk6FrD1eUNEEDi+dEEKTUg8T5UyAkh4tjyXFyc33s//qft9dtdYPqvut0lfIJv/fXScH/ZbUw0pfl1d76/6TuNCaTxfm8ipv9S13fn3zft93V3Jvk2yc4fuE2j3+XBi2OgA1K+XwLtLJEoiAkzbvT5lDm8T/+LYHb8fMob3ENlSV405HjiE+AXkm2EsMOnhA+VSkoGiNH1Pa6rWa9vqDe31OsV9eYW27ZkwlOWgfzxhMpwa0PPtZCVESpKUgDZ9obr2zXbzqDXG4q8RCpF3TTc3t5S1xu+vLjkwekJp0dLTo6OqMqCMs8phESr9HU91vnYnNujixwQuFiN4fDkUdoMIXB1SIQIY0qidBYB2bS2uyEwDj7qviE0iXjzHut9oN2S3eYQOB0Dse5rxux9Qzid7vCgET0ZEhbSnHDDvmm9k/8Dzo//sW0DgU56NmKIN+IOwP33/ZDAi31glEJKPfyImJEdMm+D/I9SoapIqmwfxAQkJv4pYo8vTa4LvA+V6w7Bex98j93qJV9+dcGH7z8izyStMThjcLJHZSV5rqnKgkxn9G2HNR6tC8piRjVdUrcd3gm08hR5xttvv8XpyRE4w2Zzy8uXLymKDK0E3oWKeSkkeZ4H1RJjQi9QIcl1AUKEnonWU5WTQEKpDO8VXetpWkPfgjOCKs9pbzcUTvBocYyYTKm3Gy5fvGCz2dJ0HZumobWWSkoyGRJhv/rqOdY4uq5nt9ux22xp25ambWnaHu1gt7rlq8+f4nc1J/MpFQ5rOkSUQacIChZ9zN7HO1zXUmU69JL20FrHfFICIYteCs8u13Rdw+X1Fc+ePUdngsViQT4p0XlG12XMJjOE80jrkA6sKmiMwSqFE7CzFmEtReUoipJca5qupalblJLkRUaW69BXquupN1uefv4FWv+Mo+Mj5vMF0/mMLFMsj5YUZRnaA0gR8JnQuh1QoXJTRjIq9jUCgdYhubnrOvBEZYQISBIqgPb1S4mokcPfMiUZHOhLpQhwb2NCIsTYqU0/aZ3yJJmjlKAnlAr9k6IihvcWlCcER0FlB0JCo3c+Bv4SgSI1epdSI2MVlhSh53ooe7o7V8WI7D3srTNsSZ1E7O2zZN+ncEjkGMV7+3tyh8S7a2+k3Fd2fUu2qgrqF1JLBgVIIdBZj+l7uk4gWjCdwdlYkUvsx0v0Ru5JDHqz/zk22uKVd1zCiIc94thPhFOs5vYjZ0zE6/aRdwxqCz4q43gmRc48C8n22hhu12tOjx4gvOL2+oY//qOf8ps//hVOjmYo4djudpR5RdO1rLfb0ItZeKbzirpt6Lab2Nep4na9oe166l1DbzxShevRWjFbzHHORYnTkGC9Xq9pupqiyEBKbm6v6doeITWZLOiNpO8MT3c9u87Q9xbTC5wV/Of/+f+Kv/13/g5SKnbbls4aqumUt6cVZa44f/45/+K/+ed8/Gf/hsJt+M/+53+Xh3OB627Y3V7hVI7WgkwpFAqvgy09Ws7YbTfU9ZrJdIZ3kqbraDtDUWQorbjdNPTGopSgbQNOrKRA5xlaBhtgjKHvg0rYINs+JhvCgCHkgYiY4GPjuHl1zKRxlFIYxzX6+yS78N44iWs8du6OuPu2gwS68Mud9149wljCM0iNhqow59yoq1SqXiJwDlLFCjGYTDKqiWY2D3iKygRSxUrC6It6zGDvsCBir3ofbXWI9YKHFKQQ4v0eYV9pc97HECPNXAaCCRmS88XoxwuJkEkRKsqgsj9uuBZx4IONf08W/DB2efWev257M8GkFcbtpZuIzn7ITEtAaMjcm04nPDiZ8/L8GacnM6zvca7n7OwkZLAZFx/IhMV0hvceVZacnhxzenLCahWqPKwz5HkW9WtDlpEoRaiSsiFYCmXZCul93DdkkJRZRd+2QXfdwWp9i9Kat94+43pt+OzpNUYVoDRO9HTW4oyhmhRsNjfkmUWKM65vrsk1uL7mVhgyCScnRyFrA4HSmrbZkRU5XWNo+46iKqimE7zM6I1nfduwWB4Fmb7eUPc9282GqtwhZIEiYzk/4sXLK0SmKQod9EazUOaf5QVKhfLwKitYLpd478m14urKcL3dIlUo816v15RlxcnJCd57Li4uhoztLMvJsxyrLPPFAu9d0AdtA9j305/+lJuba77/3e8yUYLF0YKuhdvbEBRmxZzT08fk2Zy2runthuOzx7Tbl9ysXrLpWn7067+FrbdI14FwtK2lLGcgLE2vqLcWXcyxHup6x8X5BbdX50x1yYNFyawoOF7OsF3DxfkGLTqchxbIs5xeWHaN5aaRbLZrTs+OWcweMSsMk0LQ12sUllxpqirDKk+z3uKcJ1fv0e82PHnyNnK54LbZcKIlSouhJ9B0OsWNQEznPLvdjqIoBpnBxWLBp+fPuLl8yerqnIsXX1JowdGsoixCtY5SiiLPub5ZUTeGk+MH3O46mtUVTRtLTR3UTcN2G5z42WJOfXvJZDqhbnp2dU1nutA3xaaFOhnvsWO1lxFJr3nvgxP4muqAsQUJJJKMAZ8YmsglcinJN2SZpihyyiqQSnkZ5P/yTA/yJ0EGRmC9jA39JC6CBUSCKTgMKlQkJqIpEUwiXJON0pA+svB8jfH6ZdoSMR2ebNRKFR7vZfwbFJ5SSSZaMdGSXFikTpVHDkEL1qK9oZKGeeaYKU2locKQmTCvJlqwKAvmzlI2Qb40JdmloER6EPERKC9QyUUUIdAP2aFRHkfmTKdTjo+PWMyXlNUUKSTSw9HxMcujJdPrKdlqRWe6AXxTQmF8ewj+xWy9lGHs/L4KL2WWHII1cfw5H5vdjqsCkoOQUjiiTF/KsENiY2PMNM+FCLrpznk2my0IyeO3noAQLF5e8NOf/nEA02xITpBScH5+jrOeLCuYLzR5ESTz2rYFBGU5CQ0/82LoHXB6fMrtzYrJZELTNIHMNobTBw9YLJdAkM1sr6/Ae/Is4+joiNVqxYsXL9hsNkghefnyJVdXV7RtE0gLZ0CHPns3Nzes12sWy2OUkvTG0nVdWFejpKqUd8DtSIIkib/0WtpSZeHQhHgUiOxLyF+VxRsCz1ecvv15U0aRiHK0An8QgNy9lrtguXP7IDUdPxGNxpiBBEvXMvRnEIKUTd/33R4cHH2f8b73bQeZ8REUju+AD0Hv0DOKMLekSs7c6DsO2VMROfA+yNqYPhJ6Do8jkyoeM84lrbDWY6Kt8D7IM3ZtR9eZKHujhmwt4fcJCz5WnX6btrvj6AD0FK/uk7YxGfTvQgB9E8D5gLC8k3AxhCgjQPu++Xrfdt8cTHPp7n1RKfiLsdDQ3gEi/fL6a3/d/fu67/qai0477j8zOuYrJFmy/0IPew5E7/CI/eEx7r12P6xBwyd8oJ4kd6R4FPg0r4gkuUuCFNFXSn4bIYtdeBnkplIgKwJJ4p1FYJHRd8IabBeaOru+w7RbdusVXbPFdQ2VsnSyiz5UjzA9QbMdlPSoPPRhk1JhnaM3PU3TYb1g09TQ9shtzdHxKVIpdk3Hpm1xXrJa18AK24f+npNpyXw6wfoiBORC4L0BHyrQMyUpPSE2yyXOe/o+yIJ7CM3HiQoRsQrE09MYSy8s1kdqzQc1Ch/Xg6GyJa0vSV9+/+AZqzrcHV+vEkr+lTl27zgcnyOeJ+0/blw/Pl4CYt1rEhV+2TehIkYwrIUpO/6++X8HjDzYZw+wO59ktMR4Z/xon7AdAvNJFMfvm5sCit6aEOdohbWwXJ4ynxQo39DFrOSmDytqUU3IUvUwgq63tJ1F+Yzbmx19JZnNToE+VDJNJhwtlzx48ACB5+rqgs1mNUiNW9MhBWRZFjPL+7iWa7IsH6TvvQvXKqVEyQxQeCdwTtA2PX0nwCkyodldrthdXVNJRVXk3G43uK5nu92yqWta57jaNgHLkRolO/qmo69bMqWxxrBdXSOFYFllHE0LnIemaam3W/q6oW869HKJ74PtEF4i8JiuDqS49KFSxliqXFOIEL0Y65GmxW63lNWEoizxzlHMJMYEtZXg44Sxo1XAfjKlIw0DPvrou85SQ1DMkBIjVSBKmiaAqTrY/L7vEFLQe8vx5JhJVmCMoes6fO9YbzdcXlxRVRXHx8csjxY8/eIpUof+01muOTo5YTqfhR7XUoXnJAh9jlE4HyoxrY3kuhNIlQUpYxsIfqGyV+cHYT0VEVMMMUwk0Qf/E/YlS6GPCcNojv7ACI87+Bn+EUgvGPIfki0b/NUwZ5xzWJHUMyzCxRhJxNgpLpoBKJXcSYkfMInBb5aJTBCj9+9UMfi0JsYeTKN7E+z7vqp4uOa0do7mf9rGkl93K3B+mbe8yED4PZ8e71gnU0VxGiexL5MdEYmEcetTHDWMITu6l69W24/95QSYj9fJsBaOLnLAwoMNTwpMY8Dah8Mx9LqPRKEzDrxlUlRUukB56NY7yqKi63pW1xesrle8884Tjo6WGNvR2R6dlazWt6xv1wghyIsiyJq1Xaio9qB1gbWe3W5D1xqMccM9KWJrk96GKsXUNqRuG25ur0PchKMzPdt6h1Q5oHAGurbj+mbNrpjRS43PNLNJxd//D/8jfvjhDynLCryg7XukltjecLu64k8++4g/+6P/ju31U946Lvj1H3zAg0WGba7wpqYsNDvjsBbKPKPMNF5LNusbrO3J84yqLDC9xXpi7/PQ671uanb1lqYzQGhLUpZF6B/nAtZiWkPbGJre0VuiXHEcPJKAS7l9NVBq0bHHW8KTFMPzZsBbhmcc8Uc/mqOOdJrxBw/HzqvjaeSHjcglpDz4+L7X8R3f4wASPZSrG6p0pEQq0Fkgb0OVEuhMoDOJ6NNt8HgBOlORLNofKyUkCREqNZ3bp5shwcc82HCbAu7nYmWT98Ff3jM9+/sthu8Wv5/0IF3siy5ABYybEeGETGRyssH7mzpWcRZpfZH3+8Qp2WBYh16zfS3BJM2+5H9v8qNhGoxN6JF0tJzRmxbvChChEkEricw0XdeFZuVNQ6vDgpsaYQZAK2M2nyOloCxDM7YE/uHDcbw0ocG8dZHVtqHRtVJIAmBtfHBEgkPiefT4Cds2Z1VvgrRdlIbyImQx4R1911PkGWWR4UyPi0FdkIhKHkBKDYiND4UMWSoCjLX01iK1ojc+GikC0IrG7bbYpkEpxWa9Ics8UhfkOgtgurNoFeTHhFacnp0xmc7JdE7XGaxxQYLMObSSPHx4xs4JbAykuq4jz/I0mynLMpy/LMmzDCUVTb0LWfgmZZSD0prV6hbEUwTwo++8w+36hrwvqJyhKCeB9U+OuVB4FOV0gbU1qpgyPzlDVTOkbaFvoN8CGWU5DwF3p+hsTttAVmTkqqDQmkmRoVT4/gJLngc5qsb1aBnkAS5WW0qb0RlY3Vq+er4jo2cmdGxyKpHe0XcdOhNMpyV5oVl3fdDFtJ5mt+P05CSUf5YFpazIs5ChJL0HF4Bia02gSsOMJtMqjIHoleWZZnVzw9VlkCJZ396SH83w3iFFRp5nlHmGtQYlFXmhWCzm5OdXSCXIi5zZrEJnOYhA3GRZhukN2+2WrjMxcyD2GROepM+MEjj6vS0YbMNdzXde+fveLa3kaR47T5K9l7GMXUUJh6LMqKrygGAqijzc+7FTKAQmjknvQyN55yyBzArzSasgealGBNNQzZC+i7V4v69O+LZsPqYeCA/SR/KDIHm4B62DVF4uBRkBiBIyBDFOgHFdlKxwZMIykR6UoJCOzPVIE6oXNJBrQa5l6K8lk6Y2MagA6RKgGHSRlZQRUpNIocKYKAuMLBBYJpNpKAsPOnpIJSmLnOV8wSyWlCfQZUgATo6IYHBQhmHrOVhf/DDmxejvceDkGeFP+30OhtFoYUXs+wWJ/fl87A3V94bb2zXHJyfM5nO0DtIeUoamvtvtFik1s9ksZgIZCucp2pLdbsd2uw3ZqFGatG27WOmjkJmgKiuUVFRlxWQyiT2VCo7yjD42Us+LjPOX5ygZyvKttTRty24Xemgpqbi8vKRpmmCHUpaKCNd4fXPNz372Eb/xG79F03YDQZf6OMkRmD6QH8l5uQOMDVlIB3Jzr4LVdysjxvZoTGbd/fywnwyZnPtrCNlAicwa73vf+cckVkgWsJhIBqZeU4FoSeOBgYSy1tK2bSBsom0ay3TevYZDQJHBZoWmuum+htckSfY2DW8/kEPDyNy/OUwC5yyr29UwfgjL06CjLqIznPrjWenxNgx+5xy9MTRNCx60yuL3ic9DyWHc39cX69u27cEPcSeaGe3zBtLkLlh93+9fd6z73k9jbUyCjEKYb3Ss8THuu+YE9MQXR/+KYWyK9Dm/v1PDMccB5Buv5NVz30du3XdPx9vde3P/vjGQvRuh3olh0zxKx0iyEvuLSR9N33v8FOK/It2plD0ZAmg/OpccoNJ4ThcWWSH66Cd5lADpDdb2eNvjY/WR7Rv6tsF0LbZvMe2OvtniTIt0BolF0eHoEN4gcVjThzVBhQS9JKNpR1VCzkFnLNYbVOYw1tG3HZvthvV6GysrArjiEWx2NXVTB5shQo9CT0goSpmX4V6GqiSts/BtRRsqqVIGtRAopcly8EJhUTS1GaJgIVWwc8T1PmXlDzbX7df88ah7zRp2l/wJr6c1bzyODknbeIJIXO3HSfh8JDykYNQherieRHyksfNafuWXdNuDLAc37XCfO3P3PpJvWFt9rPP3KVkvjWE/+nGj5x+q28dWaWS+whwjEDfee7KiQGYgnca7HZ2xSJ2jFGjpyPLYE9q62MdSoLOSvu/Q2pPpAm2CBPLx8TEPTk+ZTqd88fkv2G42OGspihxru0EuXClF6kErUUNi33C9BHkeqSVCakAFCaPO0LYGbxVaZGgEV5dXiK4nKxSZh75uqLc7uq6nM4a662mcp9QhSQwhaeqGdrtjWpbkSnF6tKDMM6bTCVIpnPesN1vOn0OhJCLIACCEAqnjGmBDvC1Aa4mXWcyc1pgoUW2VQDpouhZhDT6qBCwWc4QUWGfpTIcUEutD32mlMwQCHeeS86HyqbOGXgj62OPJZmA7A16ghMTqnDzTQe7eg+8FTddRqoy+66P8nyNTmr7r6JqWze0abywmVksEsFCyvt0yW8yZTCdUkxKVhZ5c1rjQZ0VItNSRYAqJgclnTL64koq0UiQsLSUn7FfN8E9KkAuxjdgXNA3skBjAymGZSmtTWngOJlhMwPMg7ko/xyApzSfvfZAuc4SeyELiREhe9DHh08ekQxeBzbH/OnwfH3HPlCMqwndBjFc/v/8cqffO+No4IMXiYhD9kGRIBcOvafUVsVbsW2Ros0zhfRxjMYZ13kWAfEzcCYSwpP8gxic+4VzJWTn0w+4m2x1so3gdRvacvS81kH0H/ut+G7lWQwzo/T7eEsKjpaTMcnKp0A6Es5TFhPMXL9hutgjhOTs7JSTheZwFoQTr9YbehqIFpUOP47bvMdYHvM9B1/c0XUcXK0W1lmipUDr08rN2r3viYkV433exTUDAf71UoDJML2h7w3bXYWVG7z1drD79nb/5t/kbv/3bnJ6dBdsqBNZbml3Ds2df8ItP/pxffPRTaC45W+S8fXbCB09OkLYNhJg1oVJIBGwuqP94rO0xpkdGKXQlJaYLWKIUkqLI6GwkCJ3Fmh5PSBIWUsa11GJd8M+cs7GSPPhfA9kiEombMOGDJ3jwrxRj+cVkGA5jkEO3/DD2HVAaMY6R7wy20Xtp7Nx1sMR+8A/77ONsP/j2h7FIYGqD/WZIpJdxzRYyKDvluaZuCZKq3sUKaklKhPKwrygSDH0gBxvoQbhUi5QsYeAmvHfDLfbOh4TQRJQd3BsCNC/Sj48xRbw/rxTBpmO8ah/F6BdBWIv8K3Y0XqcYk/mvt7VvJJiyTNP3AhPwmQDIeTncIO/SahMW69l0QlVmOG/IlEAoRdd1zOcVzkHf9azXt+w2W6bTGbaa4Kxnvd4ymUxYHi2YTCcUZYFSsN1taZs6SBYBNoJFvemwvcE5g/Kh35LONM44irygsS3Oe7TO+eCDd/mzj1/SGwtK09QNNpb9FmWBN5KmqfnOe494cDylb1vKMqMoc6ZVTq5F0F5WGmcdoXlXcH5Mt5ciM9YgpAoVKJ0jzydImWFsMxBO8/mCq4s1eakoCoUXijIy5FpBOS3xwvP++28znc7RMsc5yZdfPqWpW5qmpe873nnnXWqvWG93tG3DdDLFOcfNagUeyqKg7w1VVZFlGdZaut7Qdz0i9sFQOjSJ703Py4sL1utbPnjrhOt1y2Q64Qg4PvbkWmO6DiNs7JmSofOKanqEeODAGJ598hGzXJJj8P0W7XZIb6iKikxOaVvJx598zvHRjKrIeXR6TNP2XN56WtNSdwHYy6VAZhLIsL3nenVNPvMYn7PeOn72+ZoP35HstjdIt6U6muK1QnhPmRcsjxY0XmLqnkT5rm5W/PDDH2KdRwnF8fFD8mJKlmmEdXhn6Pukn548Gsd8NqHtWpztMG2Naz0XL55xffWSvtlQFTkSQde0VLmizGcsF3MuL18yXyxQeUk+mSJwaKUoZ3MePjpFZyUy18ymc6aTDZvthpvbFW0dMg6QOvbLsoGUkQEI7q0ZwB0BI+mQQ9Ao2BD/ykL+KhAbDIXzewlMmYyqVkEOL9dUVcl0OiEvc/Ii/uSaTEVSAoEgAvUWhAvEmHPhJ2S1BmOUaRUazctAMEkVG5vGa4bgEHkfgi7udUd+OTcvQ1ZYKCNPa4mKvcajZIwHLQJBpFwob/XC4kQkJW3IHgSPwlIJi5eezPVoIwM4gwhyIgSpOolFp8yvBDwT1VV9qGSKLV4DYBbfXSwWzOdTurrDuaA1n+mg3+4dUJRorZjPp0yiJCfOo9Li7UMvJ6lllFiFAMKMwLsIIgAkici9c+NDtYdjABnSfAjVKKPA6aBp4f6ej+XdBCHYt1Gnuu07tnXNd7/3g8HRLMuCqirZbHasbm/xPlTkhmqRUPnSNDsuzl9SFVXMmIK6rofeZalySOsgoVFVk5A4oBWL5QLnHE1Ts93uODo64pNPPgmJAnmw49a5IWvaWstqtQIYnJ9A3obsx5ubS/7Vv/7vePvt99jsasqyYrk8CtcQn0MiL71PYM2+n1AgaPZBaeqhlEiK9Fp6ZvdVMN0NUMKzPERv099SBPIyEUHh3VTF5Aeg6TCrbn/+JBE7Ppe1Qcc7VFGb/VlH4GOqcOr7nqZpgq3KsqGKa0ya3U9sBUfOu8MBNr4Ph+M6BcqMrtXHrD0ZnV4/XP/V1RVt08Ss5m4PuI3OH4g/j1SeoFAT5o7pDbvdDmdtJJgykjTXXtbQo+TXtOP8VmzBPiZZq7S9iez4OiLkm+57cL47zv8hueQHmOh1hNbXnf/ea/AxecyP/x6BxKNNSon1hwDTwaF4BeZ65fuMf79LEt095pu+59cSa4zhLAawLWX+DUkyQ5DrDvHwdM7R1N7DZCMpjgEgYYj2hAwydTJmfIZahAQUph8HogHvgqy4F3jT4Zoa27UBiO072t0aa0JfFNs3mL5BYFHegrdY1+F9hxIGpRxKSBoTQU8p0TJDiqBIQUweUVLS9S5UCXkPKlQMbTcbVjcrbjdrFosFCsmkmjCZTKjrmu36FgFkSjOdTkFlSHzISE2BsdAoVaCzABIb4+h7G6VNgwy6znSQPVMOLzV13+JEhvQZwmmci5nofu8LpISvtGaJgQCKcysmJDKaa2ltG54Ph+8dZt+Ox1RKYAkVa/iQ6T0eTxCTB+58NoC18sD23ze2f1m315G+d9fC/T5p/9F8TftJBVHay3mFi9XG1oakPKks0oYKZWMkWtkB1Ey3O/X9TLbTOYe3HcKJUKEoReyVIKN/nNE7z2Q6QwuDNw1a2egrWGzvUEL//9j7s2Zbsis7E/tW483uTnf7JjpEAAgQCSCTKVaRElmkSTLJaJRJLMmkepL0O6Qfo1c96EEykx5KsiIpY5JMZpLZIDOZmUAiOkTc9vS782Z1epjLfe9z7o0AWKyXQsjDTtxzduPbt/vyteYcY84xKKspSos3R2ErplPFfDHlzskJR4cHON/zxRe/ZD6rmM8mlIVhs2mzBJus/U3ToJSW4rvsURlCRCsrRA4WUxQizZY0IcC26XAuUKgCqxTaB65Pz6iUokiR2Hna9YbVcoVL0PvIqumIxlCUFUVZY2xB67eomCiV4mQx48G9OyxmJbPZBBK0fc/F5RLdB1RSWCWdOcpaOZ+K7O0CaIW1BQaFLaAMUQqbsk9VZUuu1xKHtb0jpcTjhw8p65qYAm3XUBRlJnMlNw3OkxKEpKSTUWlC8nil6IOnR8igvnOoqLDKoArJZ5ORceRi4Gq1YmYKgvejvPLh4SGTuhZ7Bh+4vrpmMpvSO5cxp8j52SVFWTCZzTg+OeLB44dMZ1Nc7+j7Dl1ayrJCJY+PHjRYbXLcqFBaUVibCZvcca/kcT2A/2OxUEIpyyCnJzfEiDLmkbvLzcZ7Jv9vn0gYYUylUMnvJT/pRhdyGu+7nG/n9CoFkc8Toiih7NBpJOTSMA+O8ave9/DMOVeWwNgRDDsQeOAwhuXydpihB9A3pSzll0bgdpjf1YDYDtN9ykRVzmG/LZu1hpSGTu2hs1eAcq1FoFEpwVq0FnKWXvLfseMXREaFAXQf8m71hlLFjiB4E6be5X9xHFuD+tU4pMf/5fdw6/JrNRa2kkT5ylhDZQts0hitxQdPWV6+eElVljx8cJ+jw4PsUyzzR9cFlusNB4cL6klFURZoa0hOCJYQoWt7+q7HRY9PARciGEtlS4wVWUjnnRT/w0guKQVlWeJiwIdAWU+JqaBve9atY9U6Tk4ecrpZEhUc373DP/1f/5fcPbmP1F0rcdiOjufPf8mf//Tf82d/8vusz7/if/r3f4eP3rnHg6OaWeFot9cYlfAx0XaOcmKp6xqVRJKzz7YcdVWik0ghppTo+o7JZE5dTQhbUUUywzoYHPVUfKOid3jn6b1gKFqB0VlFE5mntJF5QwU14gbjlLLnbzRe0z1/r7SbZW7EX/vDQGVSZX9U3MYJRpJo7383cprxlx1GcHti2SdAh9e+EZ+ljGuOkxM35nNtwFhFVVlsKxJ0iSD40VBEq6SIwNihcFaRsk9aCpmkSZCUqEQMSKrwKlnRiCjFogzzZL6JcriqMtk1kkr53lUDwZTJpX2CcPezO3fDPLtPMo9k3ZjXDDfwHk6odx2rX7d9I6pQ15X4+XgPMRF9gKh3C2AQCYbpbMJisWA+n0slnZbupCJXfb98+ZqyqJlO5tw9vs/V1RVGG7zTbEOQG9VD0wSca+j8FWVpMVajlEGZihR7lustzWZF37YCTqIojKcsLHUlIk4xiLTR5fWaxkPNASFGfAxs2y3KiBlnyIBtXdf8+Ld+RGU9VntS9BnAyUGsh+ADDx8csd02GVScsV1e0zuPtSXVkXQPqaKi7Vd0feL45JiXr844mB9wdFKzSEeApapOcS7hfKJpOr7/3e+ybpYklZhMa2aLKbiOy7OGvgs0jeP12SXz+QExJpbXW/7lJ79HpwvW25bNZpur66X1G6TtPviely9fjQOpLEuUUhwdLDg8OGCxWPDLX/4yV9kbiIn/5l/8c/7B3/+HpKB59eKUT3/xBVZXPHnyLtVkCkozP1hQ1weURcV0csDh4V22mx63PseWiocnT6Fb8c//P/813/3x7/C7/+C/oLRz/pv/0/+Zv/l0zfHRjKdPH7Jar9k0JZiaclrz1VfPOF5U+HaDUYnjw0OuWsXrL79ifvSABw8/4PHTQx49vGRqYVpYjhcVE9swPzhifjBnMjvgi8/O+M53f8IvfvELLs9e8+jJI56fvuLRwUOOTibU9pjCzmh7R5E8VoPVJaBFZct7Uuhpu46m3fJXf/Hn/Omf/BHtds0Xn/2C0LcYFakLzd3jAx7cv0PX9pydneegMzBbTCnqmq5vee+dJ1RGkbxjMa/45bNnPH73Cdttg+t73n//fdbXHcvLDW3b02Vz1zK3CQ9yIiYHcPvJ2T7QpMdkNuaAy+xFb7ttf2IJuVIpTxl4pbDaUBSGqhZZvOlsSj2d5o4reU4ISp09ASBG2Z+BsdHPEIlh8MmRDjxtRNYJJRNrunU8Y7fWXhXit2XLcXwOqiDp3EauJTkLKYEyEv2HRPIenb2tYgqE6Eg6UKBARRSO0nekpNAqgg5E4/EonLX0MdF3Lb530mWqh87MIWrQY1CfkM4q5wQEK6xlMZswn01paOjahs1qxenpKQeHx9S1LJWGQAoypyaZSGXNk5UVlMJo8EqkvnZ+SXvBC8Cw2I+LcJRzkKtscqNcHjOKoWp1qE4e9sFeyAM74iBGqeYqyzInyUa6S9AsFgtev35NVZbiHXh0hFKGZtuKTn3b0PeddFQWMsdeXl6itebOHZG7s7YB4Pj4mKIo0dqOHTKLxYKiLOi6locPH3J+fs719TXL5TVPnjzm3XffxVrpduzbjpOTE8qi4PryivMshbpYLPCppXUrrJVFvyorgg98/vkX/LN/9s84OzvnRz/+bf5Hf//vjwTOEPjpLN+278V0myjaJ3F2hMtwXvfPsRoDmPHRHIRI55O+8Rnj5SAnnvlHKnv3QcS4B63vyK4Ywzj/KaUl2Ve7SinvPeLRJd5axhgmk8m4n2HdHLrG2txpfLvaff+Yd/vfy5L3g+thlO2DjSlijB3JoRSHeVq/8fqdB5P83TTNnsRfAox41TGcJzAmyZzsDY5AjHFHmjU9m3WDCyLZWJY1XScgynBt3uaf9W3ahnT4thb9r0N2/MeuU7/qfd8EjbyNXPqP3fbBgqFwYSfs9uZr3/Z5YzHLf8J2e59jR+mveM+vC9IrFCrrlUuumeexFHcJm96REQNNMaZLI6kHqGxAnCRre/P7D30rGRxRg7+GPKcRj0VDQiNyckRxdQqqxbtOzO29xzUN3WZN7Ht08BgS/XaDFOtELAkVugwEBWJ0RN+KHIaJKKOoU8WkLCQJVQpipGkaXPCAojIFZlqwmBmiMriYaFtHu1zSbTbgHZVShKZBh4BvO9Ykrq+vefnyOdtmw7YRQ+uirKirCpR0qpd1STlZoMuapBXBD8VTRoC/DGgVNoPIEVQRaX0DyYpXQZfofSSQCCngo8pz386bMpGyr2J+NCV0CHtXZG9spZtrG7Dn4/f196TZS7KBUQ56uPi3/Qv3t+G520Ua34btV5Ho+9v+uVOQw7O912Y/LiFbhGgKEVQA7wfpV/KPousVNkYpYhuKcchr7bDe+UBZyP3T9Y6yqGi3Dq0COjmafsN8dohVLSYlwBKDo2kagpP4NRDYLDckD6GPLK+v+c4PvsuTxw/p+45XL1/wr//1v+KdJw84PjzAFpquXVPaHRg8jA2J8UqMLkQKUBu8C2glMpIKi3cQk6J3ib5TVKamNhWxcSzPLmguLzgoSpbLJevlNaen51AULDcNV21L5wNlXVGXFc16w3J7zsyW/OCjj3jnwT0OphU6eg4XFQqR0k9th+o21DZBshRDnql0llqSuKYspnKpknixaQ2uadBGCnW0sbS9w7YlIfZok6jriUhGW/GUii4wKScYY8RHu+uxylLVE7oQaEKkD4EEeB/oCNkjK1CXEwwanaTwOQaRu04p0cdI5x29jxTWjvFO0zSiooFUavfO45pOYsoQx3vcdZ62veTs9JRXL1/x+MkTDo+PKArLl198yQcffEBpS0orOUJhBFYzWSYuhIgu5JorJQDu7Rh5eC7pW10eucNktzaHXBa/m5d0plOGvUmR4l58naVSh2ejVSKLlUTRwvtEkQx9dEKEocSOIivJBG2ILuKNKDAYLUok8iVNlqQSsDOlXTn9vufdUMgn5NJerJ/XA7ObUvcnBumuGM7QfgFXSvK99mJyRcodB98cQ/2mbZLz2bHAcMCGjdajSszofZuB7l3RxC4PTAiJrPbA/KE447ZvLrAD/PdB/hvg/v4mSjaj76QSG5NcH5LXc8WQ9RhrpXkgyppZlzZ3LiXKquRgOuP3fv/fcHiw4O69Y05ODnGuk3wvJrq2Y7m8pus81li00YQk/pVKF9K55B3L5QaIKJtDOx2FJC4LQoq0fY9Oib7rpKDc9TRtw6SuMIWlbT29j9hyynLdstx2JFNy5+lDFJb+8jV/5+/+Xf7n/7N/zOTgUPziooboCW7Li68+5f/2f/2/sLx8wd2Dkv/if/x3+K3vPuXe4YTaRPrNNaYquTi/JkZPWdZURZXVTFpS8NRVLbGjy+peIYLR3LlzB5GCTXjfE5MHHSkri7Ul1li6rhE55pRGqTajRQIuGYNKFp8iAXEUclkdQzD1nazabsxkgiITWb86T1FjTnyDENojM3c4QXzjufHfHKuPc+AYo73989+GLw5rsdYpy58OUqHikRdCyPUnCqUi2EA5MWiTMIXCpw7UTm5eG5NBUfkZSpPGotzdhM3OW0+KYdWe9F0+Ym7OaruiBJEEijefHshdvVsusmXlr7XtsIjb50+NudOv6l6CX0EwTecTQpKqDLYQfZBpIkRiAKuVyO0Yw2a94vNPP+Odp8fcvfsIay197zg9Pec7H3yPg4NjrCmIznN4cJe+71gsDlgsDmjblm3XiMyLNRxMFphC0zRb+r7LFSY9YCmLGSoZmmYLSuNcR/AB1ycIsuj2PmKKEp0Sf/Snf8Kmq0BP+ODDD/kPf/M5IVcypxhZb7f87Gd/zXtP73HvjpAvptYcHiwIvqN3LQfzuVTfRTFznM4OKKoLDo/vEH1LSqKjebVumcwOmEzFZHS97bi8fEY1qZgdzGiaFfPFAW3nsT5ydHKX6XxKogedqKcVV5eXVNWU88sV16uGenJAUU746quXLJdr2q5luVrSYeidvwE8DUZkTdOhFPRO5H40sFlLFX3f9Vyv1sxmM8qyIiEVNrYouF43/Ls//ik//Fs/4OmTxxwfLHj1/HN0chzfucvh8R2Sq0CXFOUMU8/QswPe+fC3OHv2KevLV/zVp89I7SV3n7zL/OSYxjV0KfDgvbvMJ48prWa1XLHaOLaN5tXFmteXa5KBynsODk+oiwqfFJPFnHjV0DUNvlvxwbsP6C5f0/uWOC15996MQndM5xMgcnnd8ujhj/iXv/dn3L074+Pf+gGqSjx+/0MO7r5DUZ7Q94YyIgC3LkGJxOCQbHZdx/X1NaenZ2zWSy7PX4N3nL58QehaVApoTTZPTlxeLOlnE44ODymKKYeHJ0QtFT7zuqKsJmxWK7brFc4nlC6YTufoy0tCCFRlRVXXmKJDOYcK2d9FaVSW4NBJXJhuy0+VhRaAPaURnLl5048RwBtAKTm407bEaJnQlEpYaymrClsW2X+popqIJvjwo40w8oNxj9YCTuskQeBYvZKZe5W0VKXoXfA5AB/pZmQM6FHK5esWh9/ETaMx7KQTJNCKufovEY0iWY1LERcCISSMUeiQSFnr2+hASo7kI8o5it4RkhB72vrckg1N9Cy7juW2o+t7FOWNsRP3Kjlighg9VVETo0OniFGJFDxloUiVxveJZrtku55TVSWKiHeGaamJvkMlR6Ejk4lFdxHvIinb5jqfRoLAaDOadsMwVCzOOUg7I8LBo0ckbrLsWBTQXvwcMngahg6orGfOzXvopvSaGKMrpfNcIBI+y+WaxXyS7/eAMYWQQkWB94GrqysODg4JQfzliqLg+OiE5XJJWVb0zvHZZ59zcnKHhw8f8vDhQ+7du0tVTXj06BHm9JRXp685P78UD8IQRj+o09PTcW6SNU5kZufzOQro2pbDw0OR7GuuRWIFle9Tw/HxMR+8/1GW6wtcXV3y/PlzfvjDHwq5kLueBjJuIGDquh7nQ+/9OLcUxc4bcTiHt+cdAYsEzBly0P3kZAgkh6TFGC169kMnmbrpeXQT0BdR+uGaSSeVdILtE1M3u5MkIHZeCCS5hmb8vgPB1HXdWGwxdC4NHW67z991dRljdprn6evBs9vdGrtt5w81xs8joSakZ/BOwJjh+0TpyvahzZ8Z8/kXWSk5hyl3OdlxHHVdJz5MhfiwDMSryscg3+fbAXyO2x5IDEo6R3h74rF7y5sg9O0OnF/9sb/6tTEN+tp7if6vsZ9fte/9sTyOtb08Z9jH8Pztfe+/d/9NbyNjv2l7G2m1/7m/an+/7uellNDR3XhM7ZNGCcmaFeyMd5X4x7AnH5Ovg45ynyWMFOaMIdBATOWkL0VU9NIJ53spWotBKsmDo+sbgu+JoYcY6fwG17e4viN00jFfIHGfQea5mVXjeidQkHxuiBEXHISesiqkiAeNzccaYyTmqluIGJ0LqVLAZEkPZQwTZVlMZ/gUsSYyqwwhTrDGokLH+vqSzVqz3WywStM1HZeX12htQSuOj48pq4KqLLFFRRsUOoBFQC1lRDEghEjwcm7quhRyyEeS92AsoYfeBXqXCEGDkQBRIaCFBgHF0iDrRL6AN6/97fFqMtiQMqIVchFTfvXegNgff3qE3m7OC2qcs7lFzg+VngKavDnW0x4B9pu8jf6CN85byvea/C4Py/W4QewPa+qNguYEyu95mkHUCh86jBfAkhSJPhArkZiUWGVP4lbpLFkma2Xf+RxjapxzuTc/EnxLs7rgwcfvgk+Qu2iadUPf9agsq6e1kfhZJ7puw5dffMbkcMovv/iMs7NTrq8uODo64P79u+Lf4DpCCNhc0ONzN40QNJUQIgig5fuAUgLmGyUSWClA2wa6LhKdZjGdYXzierni1ZfPUDHQNdJBf3W9ZDpfsM1dXqF3JO/YXLVoFEezOQ8f3OfxvXs8ODpkVhhM9Ojk6TeOolToFKiNYVaVHM7mJCy2qCitpawLoqoIwaGIGFPhvKNzHueDAI+mEIk8F0nO0XqHVxCyBJZHcb3ZEFEyz+iC9XorhVopUWpRu+jaTsjpCMl5rFYUSmNjpA+REHo8BoXJxIoh9AlNJOYCPJey6aVWFBm3AsSPJsdhKaWxmCeEgC4szvX03pNIKK1pm47Xr045Oj5iPptxfvaaupzw8NFD5rM5tpIYdQBYVUrY2hKikHFSbKBADXOxAMJDTDv4LImcNCgjxHqIcfQ0Silk/yZNEix5FzuHiDY7gimlhC10/p6yP6IhhF0BmTEaEzwqQEghy7KTu5SBGPG+k25Uq1AqQExobVCZ8JeOE43ek3EaKvcHBZPhv2E+H86FUkLk51VX5s1c6KhzWVlE5vCkVPYMEuB0mPp3xFKuxP8WMUwjeTTOoRVaa8oi4rP3Yackt5NCYUtjOthCSo5ctyHjQSIgkcfai7PeiAf1QGveLLIYtl3B87APIS4DMc+zWaY8Sf3AKBOmJH/3MaGTotAWa6B0MC1rSqVFUu7Lr6jKkqdPnjCZVSjEczYlWK82XF9dc35+zpOnjyiqaiQgtDE0246uj/QuiD+cD1gl6LstLdP5lBgjXdsRQ2JSlpTGsGm24m+ZcTKSqPT4oPEukXTN3UcPmB+eMD845g///R9TlIbFfMpkOsF5R+96iHB5fsZf/vkf86/+xf8LE1Y8Oip59+GC9x4teHAyIYWebdsCkfV6S1nPKQtLUWjaZi1kUQzZG9tkfEQ61WwhpEdRlMSk6due7XbL5eU1pERVFVhb0veOqjQUWhFMIAQHVmGVxUYFDrQqCSrhYk/oekLIVIfK3TMxAXqMd1BC8vrohpF0g7AcqfIRy9kvAh4eG4MEdu96e7w/vvb260fCipxj3ywO3TuEG8UsQ+FYTP7GvqQAV2QETWFRBSgL1bRA6STxjgasFDnsZ2xyeANBpNBafk8Z65I6s/1O+h2WoZV0PA1FqtJBNUj1pXGOjSAeTPuEU/7swZ9t2O+OeLuJCWst9+LeF997fphfdL5393y137gqu+0bCaaqLvC+2knI9AYXY66+VRhdCmuuFfPplIcP73L3zgF957m6vKJtWup6hnOBvvOYuqCaTLIUkUi2hJRAa6bTOSpXj1dVybbbSjUEhpSCMMVNi8o9vNaWBB8gyUQWiPg+iS9S9gvqXcdqvcVj6FLHum+BlGW4hoVc56pyke2qyppiotFGyb6DyPxZWxC2Hc61bNZbmSwDWVIJ5tWMyml61+GDIqDQ2lJWFlNYXAKXpE3VVjXVRPw7Zos56EjXN3ifwUUvEk8hRFarDdsucHZ5zWq9oeuddECRgzhlxkQmhD2dfNTYlo2SIMV7kadw3tN3jtl8hskDOaLpveF6ueXTzz6j2a545/EDrI50Rwe06zKDEYqJOqAUkyq6PnJ05xFWG67rKa9D4NX5SwiOkAIKz/X1iqM7hzTbNZv1hvVK/LCcd4CnrjV3H9xju73m8OSYSTXl9PQSFwLvffAupTVMqsRR7fDzIwp6FhNFaROlsfR9AAM+FZy9OOXZ8+ec3P2Qk7snzA+nzA7uUdSHmGIKusD1Pt+shqig96I9KkBcR4iR7XbDp598wuuXLzi/OCMGx8nREWRJEkWksCW2KDGmBGVxAV6dX1FUhnpas6gn2ASz2RTf9/R9x2w6R2vDwfyAOycNL19fjIlszB1LyoguKkkqNI3aBWhwuyKSMTjIs/AwO9yaPN4ESoeyJqUVRglhURRW5PGqQiS+6izrlWUVjbVjq+gwV+Xpcgz85PDyQpIJpH1ySYqA1ficvF8ixl1jrbq9ZvxGbyYHyLm+RyoPVLY1QIgelxIb17PqOjZdR68ME8B4eYE2EU0Q8Ct6lA9C7qVIIOATtAk2MbHtOpq+o+07nLIMwychQXxktxBFEhi90w1XCWMVKfWAg+To2g1Ns2aynaBSFJNcNH2/QeGZTCxHB1O2W4d3omNPTPRJ5461gWmMuUFpB0AopQhZDm8ftJFtqKiAoV58d38odoDPm0Hy7aqsm5XNckGurq7wrkMbMcV0zlHXNUVR0nc9220zrg9939M2DelwR6L0fcd6tWQ+X8jzbUvbtBgFk+mMorwmxshqteL5s+fMF3Mmk5rJZMJ6veb8/FzWxLIkBkmAZ9mzaXFwQF1POD87w/Xi42GMRcFoFN33Hc22xXshrD755Bf8+Mc/zmeHPMcIETHME8P8IN0/uyRjv3tJ3norMLt1w+5XGO2e3/s3+3lJ0aO68Z797UbXQpZKtHY3p93+nGETEktl6TlGbfyQQT6l1BjbDONBpAv3g8o4jp39AFVpUGE4iTe/7wjcq/Es5wB8ABsZ/705JkXDP2aScQA+ikJkUkMMGSjl5rHceAyGuX94f9d1dF1HNZwv1Hi/Mx7Lr0eQ/Pd920mH3wywdxnS27cbVfZvmTO+jty5kdB8A3l14xi/9hj4b329Ejfvo/FYxkTvzeP/OgJoeG289fxAju5/3s3jfzMJ3N/n3hPjPuQWUjc+/z9m0/sfqcYawpvfLQci4yN50VVpqO3NaXLKMIgSgMWoRIoeQgAihc4AWwzEKEVxsZfupOh7kutIoSe6lhjcSDy50OBcj3eO6Byx78T/NoMiXkEcgLUkQGNR2SwV5mTfwdN3AWMN1hQkM0i6ZK9aq7LnZ8hV8fKtQ5YYNyahDFTaQpzQWui6jpQ8Rmm6Zk3IxRyHhwegFW3T8vLlK5q2YTZfsFjMOTw8JNy/z2S+QLtIkUCrJP4pg3rdsMZom/kFT4gJ5yNN6+l6cEEksUIaivj3rv8wb+YxvLue8jPIt9wcZzelUOSXuPea/bE1jLx0kyRJ+/PHXmA2zAEwataPe7o1Xr8tfaI7gHEPTt47F8P8k9IA6tx8TdrzHJAcYZDlCePcEoMQrS4XycQY0Fo8y4zpMdrmYrUhRhRgZjSoVgL6p6QoSqnoVkRc33B1eUXvHlEkIZp939F3HUarUZZZa4mOtSHnby2ff/4pfd+TYqCua955+oSyLPBOPIf03ndXKIy2VGUNCOkiXfkBrQshl7RBJbmPuzYSvUZjKbWiVAVts2ZzvWazXHF8cECzWqOsxdY1k/mcdrWi7zr67RZS5O5iwe9893uSmypNZTW1VhQKCqVy902P6xwxiYToZDJh0iW8TySVpHC1y3ORzjhJFDwkZb/mEPzYtZhI4u0WIyl3DMWUCIjs07btUMoRQ6BrRcp5UpVURSnYRO9IGdsojcXGQNa1FxlvrYnOC5mkDRj5/Oiyh62KGC1SiCEFdFT0ueBIke/9GMdiriHuC9stPgTQipAiPgSKqkRrjWt7fFFSFRWff/o5wQUeP3rE/fv3xJMrd40YrUkxUNiSseOdKF0DClAaVQxjIpKUzWNhWGdjJlekUJC0m9uUErk6oxI6G7snpbJE9q7YyyY9dkYNOVLw4YasuM4FASGJ/K3Emjsp7JQUSptMJgkhbJQQQ0bp3LW7w3oHHEqNOaPa4RDD3wj2AKKykSmAsQgAGVqZNFIMD8s13cW7Csbvu9cH8N/FNPbfi22IE4zWRKPzmBaCVaEoCunqcfl1ISUKH/BFGCWyYxC8cZcU7Ao6h20/bxrLOM3b88H9bR/UHnO0lK8pjIKQciSKQEKFgMVgkqJIUACVsfRty3K14nJ5zaMHD6jqClKi9w6DYrMR+fqmbZlMJ9iiwNgSpaWL2YdE2/e0nc/FrQpjC2KW4rOl5Lhd00neiPgxJy+WLCoTzYlE23aEID58qpxy8vgRdjJjujhkMltwtrzm4b1j7t+7x8nxMVprri7P+OqrL/ni07/hr//8j4j9kg+eHvHeo2PefXTM0weHGBydl5xdkXK3kUYZnce9pm16iTeNpmlaQoQMtOVYOaKNeLw77/HBi0SbkbnFuy77Syl0UqjCUBSOejYlYmldpI/9XiFO/tnLNXViDLBjHCTsh/BS3Xj93mgY89UR6ctzBjHPWfmr7HLnPZRxLwcbc+D9cbYbjTJXcvP17I2/HUapRAb0Bk6xR46S/boHQtuIPx86ogs1dk+LgmvOrcf7aIdnjh5KQ66VpDBG6b2XyQ2BHrQPlOQrojizB+8OVHDep862COjddxgwxH1M4GYKNuQz+/jG7joNnyfk0nCXDlKb+5j0m5jNsP0KibwC78Wnp+8LetvjXdjbnQR8JM10OuXx48fMalitr7i8uKZtWz768AFN0xLjEh8CR8UBpS2xhaXrOlbXK7z3VPUElMgUlXXNZtNkDxxHjJ6+dzgfsuGmkEIpdDlJCcSImNFqjYuRrg+0ncP7hFOBTbvl7Gqb70GR0oOE0Zq6riiLgsKWGZiT56w1WF0RnJOW7E7aEI2xJAw+JHzIOu7KUlYTVCMGoL0LoC2TWjx3YqHQTlPPD6iKirIomc/mFJOCbbuh6VvWmy0+RKKKxNy+fHm95HLZsFo3NF1P33uUtsTsezNUaOkUxkEyAG9am/FGlXsokbwsJN4JOlaUVm46bQmpoHOB5y9eslldoFLLkwcPWV7NSSHSbFuqeoIyhkgUaT7nqes5d+4VWGVYL6/R9ZesrzasNw3r5TXL1YaDw0POLs65vrxGR8V0OmG9banLRFHVPH5wyOvzntl8grEVfQ4G33/yBIujW19Sqw2pnjCrJyzqiFIdRlnaLpI0BA2f/vITiioynZVMphNm8zuocgGmJikBX0XXOYnOpVL0Xs5d20klu3M96/WaVy9fcnF2Rtc2TCcTikzEpBQJrhct7ggxaXyE69WW6/WKxcEEbQ0ud5iRpAKp7bI3VFIs5gt67zg9v8Y5lz1aAn3v9jwgcmWsQjx6QGau/arJJBUDcQi+boBgQw3BLhhLaZg0hkrANILHRaEp98ilelJR1VVepDPBZAaCaSBDonx2SuIHlISQGM2Y9xaKgUMY5o/MQ8lxjQvPboLU+usnrt+07SbnlsbH9AiYJPoUWTnHVd9y1ZfcNSWlSeiQUCGhU0IlL+RNECBJQa5y9nQpsiGx8oFt8DTB03qH036UIhiEyHZAiZCG2NxRpwAi1kIMHTH2xNTTd1vaZkPbTFAqUsYCkxRtswIc09pycjTH2pbopGovxohLJd4PHnGeqLPXwvDZe4DSsHDvEqwMGI5Bz9CWfbOieKi+2Cesbo6vvRUtyfyYYiJpuLq6outaGaP5npvP51RlgTXSxeT6Hq013vW0WQ/ZmEKOI2mKohANZ6VwzrHZbpjWIv1RlhVaadq25dXLl5TluxS2YDqdss5eGNZq6rqGpGjbVgBGa5lMp2g0221D1/dANk4vSqa1FHKs12tcn+h7x8X5OVVZ0nVdTsgGYESqaW2WD0lpX3JzCGBEHmMI4mLcVYCPVYlvgMA3k8vhWsiLhuuib1yTr61SGj9pAHiR6vu3gNY74FzluVNeM0gDDiDCUOgyEFHGij9Wijsg8u0dWilXbt0+vr1gOMlx7sbYrWBz73jHR7KOcow7ginGQdYlB7ljZZIa97Ij7NIYrA+BtUgDCsFUlFWe/2Xmzni5HMcbrfC/mdu+bMt+Bv1NBOevu72NePp1tjcSczWMlDQOmf39/TpdPr/qc/bJpf3n3ngNu4RovL9vAfhfRwq/7bu98dq0+0VlEHl4n9wTKieK445v5GLf9P1398GbSe2NpEjp0dPyjX0gaJZCqsIFGJH5QiMETwoOFb10ASZH9I7oOtHG7xuRv+tbQt8RXAuhZyhSEi/CVoyXvVSlKufQFDLnqkyCpyTrOgljLWU9Q6VAioEUpKjEB49KBUobTJG7rEKO77TFkOftYYoix8IR8QfRidJWqGmJUZ4UO/qux6Allo2RoiiZTWp88Gxb6fY/uzinKEqOjk94cP8+tig5uXcXZYyoPmjQ2VNl6PXSRqO0FUmXqAgReh9oOkfrFD5ZUlZmGKDH3bWX8zCSFLKKkVezG/cHN8ZqlgYa1B729/E143Tn33hjwN9Y+3bLnbpxT73xvuE134Lt6+bTN8n2/RiCTFAASe2AZuTKSteekJyDXKICIT5SxASD1nbsXpKCGPNG/KGHeDAXY6UEpQ9Ya1EkXN+y2TRcXV1zNFWoEOm7nuAdxliRU03SWdi4NVZbrFakGHj16iUKuH//Lk+fPObunRP6boP3jhQDWmWpxwhaiQ9tURQ4P3TcR2JQlBOLNYXoGsSE7z2+A5TBKulU1FGzuVqzWW4gJO7eucenV9dgLfVsRjGp8VdXpBCojOJwMuPJ44f89g++T4Fmu1rRrFfoEFBKjNmNFhk+H3L1jNaUVcVkkmi6HucjPji0F+8Xlcd8CsMMLvFciPKjhpgxkx8qd5irnBP7FIh9T4qJ4D1t29A5T1ILbF1RlBZtrewrCcFUpCQetCHKXEwBIZC05C0xRSHVvR6r9oQMlNjKIcW2hLiLoxKjTPKw3g2WA0SRxto2DfODOdPZTBQTfGQ2nfH69elIBE4nNUopglOSO1clKSWqqsoxt2BmwXvInhziHSbgtfjYaUKU7vkQJA+RDvWd/PdAwMS4697RWpG0wpgdAEgi54Vyl+W7Ez8Aobk4VXuFMUIw+RjxniyZLvekGtHVHVFktBYibU99YPzZe61Sajw+NQKg7F7DMC3ur8mKwc8vokauOY3zAbv9s8vxdp//7dn251qT5QpNTLkLCYpCVB7ImE+RItGLpy+Z6PYq5G46WS+FCN99xn78p9TgyZzy+28ue7dJAMi4ht7NwRk0GlV6YqasUka1FUj3X9IUKEql0CmxvF6xXK1RheH4ziFKJYlNnCcZw+XFFdvtBq01h0eH2fO4IKlE9J627WjaVrwnk8KYAmML6fBWYKwUd/feUagspxkiXXBCIuRx7oN0QCVVUJQzpkd3eeeD70JRUtQTtC1oved73/uYd5++S2kLri4v+MXf/Iy/+POf8stPf8b5i8/43d96hx989ynvPz7h4d05s8rQbrdSnBRFbaOsJ3KjKikGTUl8lkxZEJXI96mUspe23nUNGkPoHb13QlJbQ8xNETEGZrMZwXsiUuA8m1XiQRcgKI/pPCqKV3ZKO6UNieDy/9KOiNiRKrt7Wx55M++VQSM+Yai8qz0CaZ/IGlCx28HVGFu8Labae8vX5wg5LxhA0b0jvLlriRlN1vHUVmMKDVpUeETRCfa+8hvbgLPufTI7womRmBqsI8bD0ru5blfLlIsRhtfv4yc65Z+hyCDLgyt189jS/jUZihluHr9C1hM1FOSgUGlQShkIp2+eab+RYJpMxIOpqixuUtK3TipVVMA7T9tusRR0SoKnuih5+fIrFgc1VTVFK8t8vmDbdFwvl2y2a9ruirt370JSLJdrLq8uubq+xjsBQRcHB3znow958eIFfd9itKIqDWWhObpzhNEJgsd3XZaIUriuo2kcWlt8SFxer7lebemjwpNYrtZcrT3LdUc1FyP1FCW4jEm8SKqyZDqdYm2B69cUpmQ+mzCtK4LzfPHFF6K1WVQUZc98UuOLKp/4wPW6oagmKF0QQmTZNrTOYU3JwWTO9PiIU87527/7n2GNHQPUly+f0zrP1bV4mNiyxpSabeNYbnq+fP6abSdEVgiJmHIQ7aWaymRdXLJPh0IRg5iRWlszVDG75Ei560kmb0XXdTRNQ7NtmUx6Dg7v0bqGojBs25bf+73f4x/853+Pi7Nrjo/u8vjpuzx49ITrqzNsU1FPZxwcHHN1veKgrkmmJpopH//W/4Cf/fWf8PzFOVdnl9x7/ISD2TGui7g+8s7jJ8yezun+5M8pTMLUFh2u+OiDh1yvGi7OLuj9ltnBHIWja5asL085MoGuTczKCUVh8L6jcZoQJ3Recd2e8uL8F/zT//Ifc3xwhA+BpOasWkOYRIzpwK9ZmCkuRJKWlTQkke5AQd87Xr18zSeffCLSH3fuYNVd5pOSP/j9f8Px4YK6KtlsGi4vz5nNZhwfn3DkI89envLg4UOMLfEhcnFxTugdz756xuXVEucjn33xFQ8e3aeqKmazObP5nNOLc9598h5Hh4HPPvtcknCTMNpglUbnKhOZWhQpt3zuqtczk50iYMYAcNiGaiNJqvYAHA1ShWawhaaqSuq6pK4rJpOKuq6o6xpd2GwibzG2GP08Za6LpKGd1EvSl1LK7fUx64kqqf7NQE0iBxgEBgBaa5GwkOPVIjGw9x1+07cBGM7Zs5w3xBQ8ZeC514rr6HjtWo46y6GJTKuCMil0RM6xzxqwKUEh3mI9sEmetU8sjeIiOFZAqxM9gT54fEK6QCXtFiA26ydFrYhGg89Ajkoo7fGhJYSOFDqcb2i3S7aTClQgBkvoPKvVGTE0TKeGu/qAsrLZNCGRQiKWx2zWDdfXS5ZhSd8Hho/WSaqZROZMztNANO2hsBlkGkDTm8DmTdJid89orTKgv1ftpxLRi0RljGCS4uLigsmkykmQEvk4HylqzSR347549ozSFvgIbQTft6Qi0XUtVXXIRx99hC2K0funaRoUFQcHcw4Pj1gsDtFas922XF9dUdc1pS2oipIUAh7pruzanqooaLZbfFFQFhWbbkvbdzmRqCjLivv3HookbVHifKAoKi4ur0ApprMZX331Je+88w4qgx0D6SJJsM5kU3HjHA7kE+zIJekMsnugDdwOAvcTz9010+N9v5+0fB3B9Oa9omRutG+aqO/7tykGeZxd4cXwXYf5c9RdNhprpXrN9eHGcdxosdcKabG72RF6+17WqLFjSo5gR3rtf9/xXmUI9QYQVLqNGQkuUOS5di+B3ie92DunESn8iTHSddI5N5kWe2uDVMeqfE8Evh3STcP2RtcMbydx3iRN/9O28Vrtfc7b9v9NpM3Xvf7rOpD2AZcbhObev1+3XxixrBsU6YBz3QCSv+Yc3T6Pt1NFnT9kxJb3QP/bgNEuAVVvkE3DNs4jKeFw7EzTc2o8fukdcDZ4XSp2cl27j8pSxdpkw3QH3hOjw0QHwZFCS7tu8c1K5O66Dt93qJFIimjvCX1LCr3AKVp8OkxoUa4nBi95CYkCKLTFaI1PgT4DkkpJzB+z5JLRicJoolcoU1DbkklZMz2Y07QbqkrWnBgjzXpDSgJk6pzY94iEJkBRllTlAZPSoJMhOg0hEv2W2pYoVYHRuHaLKQo0kb5reP7yjEji6PiY1XrNZDbj0ZPHKKUorMFrRW2lnjqkBDFRGIu2BTF0+JjwAVyItL2nCxqnxNvjrR0/aSgiyUUnUvM8JuwSg8a3j+VMary5ZuT66f1rn5KMl7Qbd4MMef6Utx3dG/PI2x7/Td901j/aB512MwkMsditd8mrxjV9v/tzeL/kDSIPm1dMJzKQXhBAAViNHUmmnXTazfhCgG+N1pYYGgHaNaTkKKqKTz/9jO998IBpkQg+ojGkIDGPLUpmsxmf/uITHj24T1WLr6HRioODOR9+530+/M4HvHjxjM16iVZpsKsh9H4Eaay1hFxJH7JnrdGldFlhR3Cn61q0qtFYDAXWVvjW8+LLF7TrNffvP+Lpu+/yr37/9wkxMV8s6L3n4uKcxbTmw3ee8P0PP+TO8SFhs2bbSOe9ciIh6qMiefBOwDNt6wxqKYiB6dyStMxTCZhOayl6SZEQHCklbFEQkyN5iWm89xK/ZGyiKrK8dwyjNHDbNRRFCQl89LjoOXt9ThNbmFrK+ZT6eE7sPH3vcZ1jVtV0KFzT0LaNxJ62GP1lfJSCucIM6wAE58DuvDVTls4usx+q0juZ5kEmeT6fo5Ti8uqStmlYXV+jdC4ObTuunef+/fs8evCIs7NTri4uOX19ync+fJ92u2FS1xwcHHB4dMDh4WGWj4soVdCrTsgzLZYTKUSKwhCTFAQOUs+F3RVR9X2PLey41u+v5SJDtwP/9uNuHc0Qdeb0UoqDh/2GEGjbhImKmAxFDMRCuktDSlkyPROD2qCUELdCjpkbnyf3VfZkUjd/9F5n1Zv3omEUv1TD+r9f7BbGuWG3ZdBz2Jfae+zXmKN+UzYhIoccRWONlo6knH5UVY21EWus+BHlayikZYe2Dt26vA760dt4f9svMrpx7eKeUs2ts34jxt6PE3d7lXhGSWdeiFKsX2gr0m+9x6pEZSwlms1qyeefPceWJT/+yffRiCpQCBHvA5tty5dfvuDoaM7B4QFHR4dUldiAhBDwLnFxec1qtaIoS4qyEnmxrKCilcEaTdu1Gadi7OLsvc8S8Spjxg5dTlGqopod8v5HH/PwnfcopnOS1lxv1jx4/Ij//f/h/8ikrPn008/4gz/4d/ze//dfcHVxRqkD7z054O/97g/47R+8x8lhhaHnxVefZ89BjbEiZ6i1xrk+x5GCHwzdhSFJ0U6ICWssJttYiMiYxudzo7PHn0siC1vXNScnR8Qohb0Gy53JlHXr2HZbgg9MypKkYN10o2cwWZJTaUVIerxu+YqP97dLN2No+T2CGkjy8VEUom6kskTbrusoP7+H39xev+UVt8fqkAO8JZ95a84wZhc5T4+33jJ0Qsn3s1Zja0OkQ9sksqMZW5V1ZchdUoY89uOevWPUQNQjzKlSLvrMLx9IHxIog3SMkXIxXJRhElW2ItitBTp3agvkkjHivdxql0vtnd80HOOt+EgPXawZV8450yh7+iti2m8kmFCJsioIoSK4iJ8FaZ3WCWsUttQYnfjRj3/I4cGUTz75hEePTjg7O+Xo6JC7d+9iy4IqQVWJDIM2gZh6ur4nql6k4tKU1XLD4Z27HB4fUlYFH33vQ7quk+AleLxrqCfiq5SiwVojshDbgA8eU0R8D0/eeZ/J/Jrp9Yo+Wv7wT3/JttMkpZnUE7ZtS993TCcTDg/mHC0O+N2f/IjKDrrRkXpSo0lcXV5x5jpKWzCfzzk8vst0tsCYgs1yiVY1UQMEiB5tJxyfzEl6xV//1S8IfQAs189f0T9/zbvvvsvr8wvu3LlDURi+evmM5XLJy9enuAhP3vsOf/YXf0lkw9n5NecXS/qg6FwEbaVFWVuU1hwfnvDOO0959PixDGoVmc1mWCueJdZaLs4vuDg/4+Ligu12K9XsXlr10WQw1UkbpFIkfcHdO4fSThkVxyeP+P0/+CPee/oe772vODg85s//7E/4wY9/RN81XF5d8uknv+DBgwfU5Qn1fMajd9/n81/8JQ/f+VssX37J5YsvOTv7lEdPH/Pe/fe4tjNWr85xxRV/9ycfs+lazldrbD3lk89e4LyiVpZHd+YcHB9yefYK1zTQK3757IIP3r3L5eVLVtc9333/CU+ffo9/+4c/5Wp9zeyk4n/zv/uHzGaRSa2ZTQ6w1SHzw2NmxwcUkwVKTYlezN29CiQlklzr9Vq8S8qSejphMltQVRXTukLFwL/9N/+aznkuLpdM6pLJZMLJnbtM5wsmkylFWfP+R9+lriYcLiq0crx6/hVn5+KjYstSdKuTmImWk5LDwyO+//HH/Ff/1Zx/9wf/jpfPn5OiI0QwZYXRWrSJ407eKQ7XCpk44l4CJ4GeGieXqJDkKgeAw6SR8qJpCklgJpOKSV1QT0rms5r5YspkUlPXFVVVkLRBW7PT7FfD/qSuMAWIGrSVCSiiSD5mYiADAVn2T3TQE9hhokq5HTQrOatbTPu3ZUsCLO2up3SKmpgXLy1mq5epR/UNbCI6tpT6gKMUmSTFdGiXVWIt0cRIrxR9abj2nkvvuNaG6XtPeGdxRLntOf35FyyvA7ROupbyopx0jiaUVPkEAsZoqrpkNp+gdCKkHu+3uNCgdWS9XmIKi/ctZWGxuqdZXxJCS5k7FYtSi+RjUqSQWPdzCmOlArt3OBfwwcGQbtyotBjOzSCht/sJWSM3pv3XDmDFANIPRMMwxlI2bBwSFNHDFUBT9uu9Z7ORhK+0Bao2lGU1EhlaKabTqZiIRwBL0zQcVRWXl+es1yu01hwdHbPdrun7Vgxy0wHz+ZyTkzt8+GFitVrx5Vdf5K7HNc71RO85OT5m2zR456hLATW8D5SFeEHN53NCiLx8mbi6PiP6xLvvvIfSFucCiZ6+cxwcHo7BwE9/+lMePHhAVYn87WazGc9BWZYYY9lsNjvyJSfdw/ncbbsCh12wtyMq3kwkM2B3axtIj7cFK29qee/tM8n8MegNy/OSrIgi5+6zhuullBqJtOHxwU9pCLbiHteyD0RqLcS4EPNvIwl2x2HUTuZkCPSyNig7PWOyjvkuKJVqMSGJvevRBrbNhhADRVHKvZGk0vV2eK0UUnSjyVchMfg0tW1LCFMx+hyBPDW+778rAuU3Zdu/7l8XRP/HAsa3X/91APjXkUv7j++842QbOu2+ad9vHg9vZmdv2RJC/tw+qn3i51fu4zbZlUAgpb3xu/d5v/aW0ghevPFU3ukgE31j51qNpJPcmnsnQ0nnMEo6jMZjS6Dp0KnBh5Z2ecV2dYXbrgj9hkorSgMqBrT3pG0jJLzaO8SuIfjs/WI0qrRo16GiJ8acyxhNaRJFgeRZhUG5IdFVGRQR6TqjDaW1+L5HpSRJaAi0m2usMYTsJxJjxJCw46mSWGNWGLbe0feOzrWsQ890UkNMVCqQbCI4jzElRVUymc5Yrbc470khMKlKnj6+L14rKLbrNZ999hmTyYSnTx5xfHTIfFZTmJqirEWWOgbxyC0qcImoPC4lASy0gZh9rlCgLAPXMwKQY5HU7pLuUvg3u5LeuJ/ynHhzoAw72933IYh84P67Y4xj8r8bgkMn1e01bzemUtrNt9+GTY2Ty9d3O972WRwBFYbzJcTLQOTtRw5y2w9kEyIRlPS45ofgRsDVKMPNOEQ2YwqGLmodNVEJ4auVAEVX1yuW13OYaJILWCvdKGU5oZ7MmC8OuXPvLouDBYWWjv6PvvMeP/nJj+j7jl9+8RlNs+VgPiWEXtb2mLC5U1piKkXfB5Qu0NpitKUsapSuiFE8gV0rHY2FKbG6xlASe8UvP/uS7bphPpnx8OEj/vrnf0MAiqoEEi+eP+fewSEfvPMOR7Mpuu+4+OwLDmY1lVIURtF5SMlTGOmYTMC27UGLPKWL0l3QO0/UCp3xhevVksV8jsnzqCPivEMZRVUXGKugaeh7R79tRZY/RlL25tIJvEo02zWz+RyUomla6cZ3LS8vPVehYdO3HM8WtJuW5BNlNaFzjtoYaqOxgHMeF7aYqpQ8uyjELiBFLBpbWEpb0CXpk0gxjV1oPkVUkk4cbQ3F3vjQWtP3Pffu3uPo6JiLywvOz8/ZrtbUkwllWfL69SnT6USuVdvx2S8+4/zslLoqxyKh6WzCT37yEx4+eMCdkyOOjg/QWnNxccFsNuXe3Tt0nfhly3uELLgt3zypyvya3fy1m2dUHtNmHPdDnq68z/eVAi2A/rDvgZiYTqeE7Nc1fGaMUc5HVvwR4Drfq0bf8P4ZCjV2hVgybw5jfL8QZZTJ07vH80yQJ4ldcYDMAQGVzI3AIIx/3ARFv41hrMEwdOYOgdpwnhOIt7PVo2/2MLeKfO6glBDQPufliNLRsL0t97rd9SuE4u734fXy907yi6jG9hedCxN19nvSMaC1otQGfKIuSqxPpN4TQ+Jvfv4zjo4WUvRtNSaTpUTpaF0tN9TTisOTIxaHCwKB69WK6XTOZtNxcXnFcrnFlKLGI90hgtEqJeoWXe/wfUBrQ9u1RC9krFYKrBYf6xiZH53QOc3JvUc8fPo+737ne9x98g6t97TOQWH4J//kH/N//3/8P/nys8/56ovPWa8uodvw8Xv3+ej9R/zo4/f57ocPOD6qUfRstyuK0lCYkhREXsJYyQmn04q261it1qKy4UPO6aTrHSVeaq4NeL/h3oOHvHr1is2mYdv2bLYtk3qCD57SFBwdHxFTT/St4BZGJGnbZpP9vBU+QdOu0RrKQnA9pcFRECJSGOTzXPRGvnSbCN6NpaQEB0g5dh+wGOBG4dqN4slb+7lBNO3teyCa3wj5buUfEquRY8z8yI3JI43/l/fksWzAFIrCKrroZDgrua9CTKjod8eXj2WsoNs/J+P32+OzUu7NH6T3945Z53OUIBe5knEClYmmlP24cjGqSozKe2kXG5MJ/NvnZnfN9q7V+NdQoqdvzOO31563bd/swVRZui6zzMZQlmUmdiJRSzvlb/3obxGD5+L8DNdvubo65Z13HqOVpW06JpMJd+8eEKKYMYbUcrVcsdk04qGkNAeHd3j8+ANMUUgVXVXhYwQdKbTB1grSjMIkkZ/wjqQ8jm48aUppqWPTVswlk2G97fnBD3/M51+dc3qxounbXPFnmE0nLOYzUgzcuXPMfFpiVCCGFp/WNG2Dzvrkfd/TtFt6n5isW8pqQvCeejpH6ykhOE7Pz+hWW5QpSRiOjk/omo7gImhNVda8evma+/cf0LZbug7armW93XBwdMxyteHV2SUJy+vTS1abVhpCtBYATUmr6/zgkI8//ph+27CYz6mrOgNIDUpJl0lKibqumc1mGGs4PjkheM+nn37KcnlN2zXjDWdtASS6rgETcL6mqGqIhrOzKxbTAwKKbbvl7OKUT3/5CfcePeTw+Ji6KEgxiDxWaymtpZrWHN99TPCe7dWWqM9xseXs9RWb6yWxj9xdnFDYxPXFBaqsOJgf8uVXpyyqBR2OBJR1wTuP7nM9n/H61SmvXpxSzw84OFwwf3RIoSPON3z21S+5++CY+++cUB0UVFXFpJwzqxfMpnOUTrRug2rXVFqq/hURkzuXkopUZYWvS2n5NorDw0MAvvrqGZv1ina75sXzF1SFxRQFtigpy5JqMWexWDCZTKgnNb53dErjg6UqDdP5jPsqsW1esm63dK6huLzi9PQMU9ynqEsury756Z/9lFevXoGC+/fucbVckZTJbLSirAr6NJga76qBUmI3ieihunLHLJthstX5R2ZUqdbQGqPFc6kuLVVZUJeWshCpvKLQGCuLjnQXDQuB2vXkCz0vE5YKElRqQ8ITchI/VJIOAb1SCaMTKWjxHcpmdUOCDlnWPn27QE9JiPMErkGnocuLXHUGQSlapblKEdN1TPEcVSXOaI4RcKlA5oqAokPTklgFz0VwXKZAmM2ZP76HWhyxWjYUz08pO4fZRIz2GKNGDy2QMWMLw2A/WxQFs+mUspR73weHD9Id2fUt2+1GTHULQ114YuyBgNYJU2giJQYt1zcmvCrwvWOgK2U9ViNAvn8Ohu6lNGqH39SJTqMx6b63wt4ivdcRpxS53T3/nn8xRqQ/fAp4n0m1qsZoqYLtup7T0zOUgrIoODw44Cc/+QlffP4F6/VaPJfWS5kXqgqlDefnp9R1zXQ6yZ1TirKqaZqWelJxeHTE48eP+fSzX1BXJUqJdFHbNtIlpQ193+FD4PT0lPlsQVmUALz//gfYsqJpt7i+44P3P6IoavpefPa6psEHaLuOsipJseTTzz7h9//tv+HDD7/D0dEJWmvKssyVcFn2KScgAxBizM7rTwIWzWBcOSYzKZFiBm3VvqzeDoTbTzaH6zL8exsAGsnwPXJ8/3XDZ6oxfMrIhb65732ZO2vt+F2H6nXxXRIz6NtA/b7ueELA4rcFwPuV8QoFaievRw74pKNKZfIr72MYwPkjpbvaE4MAzlVd0Ww3eOdkfo+amOVwhzdJlVHMQLbCZHnWlG+cwYfJe08hF2OPXBoCxG+LO8jXb1+33uyTO2+toPsaomh4zTBG9kHtX9XZ8Lbuqa8DzG8n+1+339ufqdLbn/u6bdf9nPchN4I8FveB/9vJZTY2lwlkLBwY95Pjil0yM6wFeS55g0pl3M/+AY1J3XgMCYze0RJpl1ztUiOR17ZG59wrolPCqoTSmWCKIfsqRWJYE/2Krt3Sr66I7RrlWorYo5NIWYW+x3fiqSSk1I7MCvm+hkTUCt8rSvrdHBkDppDComG1MtpgVBASJwZCHynLit6Ll2HKXiTeeawyBB3ow4aubbHWCtkNWKWZzeaIN6CjaXs0SeYEI1XQoeuIxsgVcD2+7WV2cA5PRwdZGjChU6QymrqcsW07tLVUE1F9WF1dclmXudzokBQjk4l4F1ZGippAYYqIsQGle+miwEiwiiZkciGr6aCSgMZyngZgjJ2cb0rE5G/EnTfHGDn+3XWxjs/ldW2YM8fPyOTkuC+VR+o4r7+BZIxjdShSGcfutyeczWuwYvD62t9GQGlYS4dXqOH2VOzdtLmjcCj6uYUDjeCUrGHD+Y5p13Uchw4mFLuPkg9XSkGUymFjipyneILvsESc88SywOgCqzSu9xS2Zjo9pJrMKYopm21LVSgWhwf8+Ec/oO8aiYODo67kXhJJGVmnUwZsUhx87EQ23RqLUqVIyaHx3kl3UzRoXVCYAhJ45+g2PcvlFcH7HGNpPv30c5KPrDfXbJXi4Z071Cim2mBDxCrNfL5ApYBWyOcVkZCSkNha42OibTzbbktUGmUsCS3EUhA/j5ACZVGKrHaQuaCc1NiqpG87gvNURYlVmla30gFjDJ13JC33tE+JPnraXs45SjGf1vR9Qyo1HYFts+H12Us210tqW1LZEuUNRhfolKiKgvlkgut7+izzHFX2IbIGZUVez1jpPLDRZ+JDiJy27USmG08iSeGb0eN1cV5e3zlHzJ5ajx49EknlPCd0TUtwjsE/OaWExuJ9YKgAd33gp3/6Z3yymHFyfMw7T5/w4ME9/ubnn1IUBU+fPuHjH3wf1/eiIZFkTrdFSZnSbi1UeY7X0nkXQhjXlf2YeyezlGNeU45Tz3DvaCNdeENHf4qBEHJHXdhb7/Kqn6ysQzKrKZKyown9rtBEoVR+TKuR4Nr3rdsRUDc7j0ZPnzx5DB0DY5w7xkD5fr/xd56f4zdBnb+5m8rzR9YTRJuhAFjOqoni1WXtIIuY9q77jmByhXRFe5U90sJ+TiD3hFVmjDdFWnyXUw+52k3wP8+7iey5pFBp6HDTow+TybK5VlsqXYCOhKbBKIsm8fr1K7RRHB4tmM8neN+R6Gjanu22Z7tpubpc8vDRfVGiKgrKqmS5PAVl2TYNTdNiCktVWVAJn5VKCmsprAUViC4COisaKbQ1aKsl7howA1OQdMmH3/8uR3cecHRyn7v37ovUfPCsVtd89ewZz375Sz772c9ZXVzSNWtMaPj4o6f8+G99wIfvP+KdJ3e5e2eCRooJY1YRwXtUvresNURg27U0bUPvOmqiFB0GB4gSlkqiGqS1RhcFq82aoqopoxQJVJOaoiiY6wXBB1arFXVZMZlOSEEDUshDxvo1kJx0oJZlleu/064xYQjKRquWbMGS46thTtJajfLTcc8rfozeh+lrj9sYcLD9AhTBEN+eew1vH8apPH7rHrmFL+gd8ANouQ92AeDtNwPSYVtokcTTFvARZRRJZ+RKD7gIu9hw6CC6QTDtxTv5faQh50N85waiOCHeWYocF+dTpeEmUSSylSqrHcn9Fcc4lfGxW8dw47SpvRM3fAlGgm3ACnYY866o4Ou2bySYrB2ksfSo62qMIeqAsZbJbILW4FyHdy2ub5nUBdPpjKIoR2KqnkiltA8K56Fvt6Qk7XsJ8bBRpqSezKmqCmMs3WYNWET9TYwSUxItyIRGKwvJ7S1Swiz3PnK92nJ6dsm6Sxwe3ad8vQW2EgDkNkyVEsE7eufp+w6zqJjUNQrLxeUyjysx8lVAXUv1Rt87bCGmnFU9xahE17d4JxNuaQxVVXJ8codm03J5dkFSmtJW9H3LZr3Gu5YQPcv1kqKouHv/PphLXp5esly3rDcdXS/GtyipAhFPnAkHixlPnjykWW4py5K6Fs3foiioqzp3mMigCFEmrIODA7xznFxdgUrotXh5CACW8s0f6fuGzXqNVZbCFPhgCEmzaTuuV0vqaYXzjpcvnqOUYr44wCjYrK8gtkwnEybVlNnimKqcYPKs8uyrL7i4fI1bb7HRU9UlV8trglHMpwvK+SEpXTKrZhS0xOipCs28NLhKqsza3lN6cN5h7AKlI69PX1FbyztPHzNdTNElWG05OXxIYWaAwphI02ygnqPsDGsCRgWsUWIirDTEQKE1z1885/Wr17x6/ZrPP5NKpKurS9bLa6JzpBiZTiqquma+WGCNZjKpWSxmY2eByfqXmdFhvV6jjaEsa3x0bLcdKSmKomRST6jrmoS0rBbGUhUFZdPggpAvhZYqLZ/PpTDW+10+GWSEMagYwct8XyjFzuw6B3daS/t9lcmlaiSXpE1Y7vc8MQ2TlNpNMsPn7CaqfXCHMUiP2Zh6mLe12smayFvzpJiETBCJitxt8k2T02/YpoYFNseJaZjcGc6wIiVNMJYWz5X3vCbwsuukE81orFZMktT++ggORZsSmxBYx8BWQzWfMrl/B6YHVBhMVaJt9qDRCoOQO/vLjNZK5ESjeNwVZYWxFh96kbwIIUutBfq+kwVYFUQj3R4qDkFCxBiV+fJcmQZ419P3Pd71UnQwJhXciBQGcGH8YfeSHZAzVC+/OXp2C+GYbjFUkYxBQfYXSwzSaFnLP/s7xRjZbDYATOqKg8WC+/fv8/r1azabDX3X0bYtXddR14rgPecXF9y//wDvPTpLTVprRcIziYTBgwcPmc/mYgocAipBVZZUdY3NZsFt33F9dZ2LChKdc5RVneeXkvlswf37D4ghjQFB8JHeSdIqOFpkdX3Nn//5n5FS5IMPvsOdu/ew1o7rACDAZdpJy+2iwPFsMvgL3SRa8nh9C2F08xrc/P1t4Plt8mk4ljfB/l2Vkx6re3Zg9+45PZJlQ/B6Q/5u7+/hvTcIp5QGW8wbxNc+uSSjKo1jcqxSUjJglRIzbyniHECu4bvL9RkqVAcT7b7vpao0j0/C/v25P/8Omv4qHw+A+BE454QwtFmGFJV7JDMI9y3jl26Ps19F4tx+3a+7va0j6Zv2MXzG247p6/b/TfvdH8u3n5dZVr319cPzb/s973CXJH7NcQxVcfkIxvsmvXE8u1hiH5oY/j/kZ2kfWHrjm97cxtBkxJ73ksccy4xrSwoYJf4rpCiFZSlA8hA8BCdKCjGAX5H6FaFrUG6NjS2JnpR6fNcKueQcoXcEH6QrIctLyPcfJGzFcFoB2mR99wzYpph2xHaQwh3vHCHHVMEH+gSuzxXogNXiHed9QKuegKdvW5ItSEZkVoq6oLRFJsoSRnuc8yJHy+6cyNwvXrLeuVxcEYnK4VTC2BJNxCow1lDWFd57TGGZVAWTwpKCZ7tdU5aWqixFXsaJWkJZQp2BKmMtpihRppDvhxp/QmIEJ9L+wh+HNT7msTSAmPmxkVzam5PjzfE5gMTDGBmAj2G0y98CNo2FLQzgCCM4sQ9cDGN4ONZhnH8rt+F+HkGj/TUpjbnCcD/uk0yJ7B/C7nGF5DBp71oNmMgegj2uveM1BcS7Qt3YF2rw9ZI4M6sSkWIkxEAMnqocPGctOlmsNkSt6doAumUyP2Y6O8T3a2wpRaV37hzz7Nmz7AMloPwgg6tGQClLlYWsWJCGcSREUYzyRUOIpKTFq0kVgBbT9sbTNi3XV5eU1qBU4vrqiuX1NVaJl2RhDCfTGTYETIik3oFS6MLgfSBm4CulHL/naxKSou0dy/WGqDSmqFDaYivovRBMMQaUtpiY4zFtsGWV40uJcazWFIMMW0oSo4aCqKSUJRDpvGNSV/gQUVmWrtmsKZT42zkNfdugXaSYzona4PoOVci9JySZxirxx4s5fvUxz+dGlDeU0YQokZtWuwLMoojEIMU6PoRcpClaRCmJnJ/RmtD3OR4biprkdUYbQohst02WnGOcF3rnMToX54XIZrNktVpxfbVku2lomo5nz16QEmw2DXfu3OPkzglWFwzeYHE/dhjW26TFf0trTF4j9kxoxQsq5+LDvzrtlsKBCBvuuUTKXa7iIxujeJGlMEimDRJ5QJbhS0oTka4OrW7G+VrtilyHWH28Pffmy/15c+iO3l/7lcrE2pALjsCxzM0mfxc1zgm/ekr6jd1S7i6QHhMUKpOBcu6iiplgH8ZApAyZYMrjKqWIyzK8EPExirLRrbjudky6/6/kEVF8oG5f57Q3HpGiw4FwSiRR68FQaEOZpGNODiXQtz3Xy2sWBwsWC/E/dr4H7eldR9s1tF2LLUz2DLd5HhX8qWlaIZNTpKwrjFGE6HOelRVODJA0IcjcHGL2tEfIuaQVUWuMLbC25vjufe4+fMzxnQcsDk8oqpqL5ZLzqwtevH7FZ599xrMvf8nF6UtS31EamB7U/PDj9/no/cc8eXTM3eMZKrb0viXF7PGEkfst49Qyr0nR4VAY32w3ONeNMqPGyJwQYpT8VGm2TUs1mVLEROEjtuvpc8ETSPzj+o5JXUMyeA9N53brdAyEIAXHxohUsYkBHcj5ahzHjhDGoAbJWmAkHtQQA8icsxtO0hSyn33sijO5MT8wjuS35ypjvjH+P43j8fZ2AzvIJDhJSWFCkhx6d6cMwJB8RoiBUhu0VWDy+NQphxC5DCAfuzw5/DD+rsbzISN/eEwCHAbRoN13yTjoDaxj2PeN2FONZ0gp6cIeFHt2EMH+OZHvN56nMT4a5tvdGjIU54ykUtq7r1FvPc/D9o0Ek9aaojAU1tIbaf0y1hCMoihLnjx6wJdffsHDeydoJQDjhx9+zGKxoCgsZSmakDEF0AmLRSuLqzRFMWOzbdlsW1bLhuXyJe++9x715EDkffwKawpMluLq+44UHQSPysF7COSuCU0k4ENkvW158eqUz758ho8lDx4ds906+s6LVqdzGANd2+ZKHsXLly+oikRdHXN4OOf1K5GJUEnaD6fTKYuDE1brjpikCjB4MbwVL6eeEKGoJ1T1DGtLbFFTVy3LqyXeJwya48NDLk5P6X1L71p63/E7f/s/p6inhKQpq5e8en1BiArvIy5EilIM3g8O5kymU6bzirJQ2IMFdVVL90xdZznBQd/Y0nWdsNR1zWw2JaXIyd07oAWE8t7jXLcng2RwruHi4gpSwcH8kHp2yPXmgt53BDym0nz/o+/yxeefEWPi8ZMnFFZzfvmKKwOLxSEP7j+irA94+vQDHj14wP37D9g4x5dffU7cthjv2SzXfPHLT/jhb/+I6eKIanbAnbv3Ca3H5mC8LKHfXrNebtls1rSuJ21WXF7KOEgp8dWLMz587wHTg4rZrMTFwKQ44umjj7i+XrFcbZgsPG27wfZeJNsAcNiiwNgKnwKrs3Oc8/y7f/tv+f3f/33+w1/8JUfHRxwfn9B3LW3bM5tUXF+eM59NqOqaO3fvsF2vsFYznVScHC3oug5jLXVdgYr0fc9nn33K3QfvcHKyoNz0XF1fcnh0xNHhEZP5hMdK8cMf/pAvp7/k/PSU5eVlrgCSTrvSGFRwoz9RSgJG3Ayo3gzaBi1UxpBjMOMTAswaTVVYJlVJXQ8Ek6UsxdvEaOmAGoieXXq223bHkAOF3KosC7T8DH5nMSaSSVk6CnI0T1IxS7MNHTt5klNkzepvx2aVHZG0RCJI8xhqmPjTICFoCWg2PnAWPc+3DaYu0WUhXgwx5ao3hUuaLgS2KrBNka4w1AdTJneOieUMu3VS4Z2GzqHhZ6gYkYphFaNo7oZITBptS5QydL3LwLXowcYIzgVsEaAuxfRcF0TniT5kG25JyqIPROdp24rlcsV6taLZNjjXk8impJmgRO1k0va7RWLagUViTjpUVu0DnLtF0OicaCrGAEDd0KvNQUZC5Iq8R/T5yQRBpCisfJ4P+OzpY4xhMplgrWXj1/R9z3q9xHtH33tenZ7y8ccfs9msASGOElk7O0asLXn06DHvvvMe52enNNsNWmmOj48AaJUeG0y22wbvRUqpycT/5eUloDk+vsNifsDl5TVlVUk1FGtc3zOZTilL6XpKMfKzn/1MrrvWPH7yGJUrIgfpAu/lPN2W11RqB/zcJJb2AGO1F2ixBwrtp5D7weMb2WEmZd4C+t8OPPc///Y2JsiDnKHWosl9i0RIaZhv9Bv7vBGoZpDxRvWUGo5197795/Lb8tyWkxkl2GVWitiTbJTnYgwilSKnEuddNgkXwinGHcA2hos3wPoByB8AUlnvBby+GZAOQea3BQh9WzD8TUTO/li5fW1/HeJn/3Vf9563ff7tBOnXfe7rjuWNcbkbLuOxveWduxRpH3/fe+vtsXP7u45T7bi3N99z+71vEGHD32moVsyv2z+Wvc8bn9vP7/aJrqR2SVyKqBQwSYlfUvKo2KNCR3AtwXVE1xJ9n9uIt+A3JO8okyfpQFCe1m3ZLq/w3mUCBFwfqKspGC0V7xkwUyESUgZqUyLpMk8P2fjeZ3BjmHYUeB8zmCtxUtd39J0YQWuloRRZLOcczju0jgIyxUQiCOibffXiAAJbS9s5nA+EMFSiaiF6ghBgIj2WMEYqI6N3lKaAAdiwlrouaFsBGawCq6EsNF3bsl6vmUwmHB4dsdlu83op/kulFV1yWxRoYwkxZRIt2zRmsiAOEjoDkjgQOEm6QcjxzgCcvAGKDcRkHhRjQUDcjaN9kEJ+y6bWw/sGIO7WmFVm5z+yD54Ma943Eda/ydsIU+yv14oxdx/OfBqA7hunZ3+NynEwezIxiVtzxHBn5+fiQDwOz0ssk27kSQmUBzI4lrvhYx5XWsNkMmUymVFVBrqANVLo+vL0gs5fc3jyiDt3H+L7DdPacO/+CTH5sShWY0hJYsWhkllnE3bvAymy835TBjFMl0Ky3nmCB4XF2CkaQ/DQNh3b9ZZmteH8/BUfvPc+EPj8i89QMTApCk6OTziYTlHeE0MA3+Od5Fixkw4kkYaKKJ1woRfiCFDa0HSO1XqLT2CKHlvVaC/KIilGfIiE2KNsSW0LrC1QhaHIZJMvHCl3wWitR7JEG4NL4pcmBJdmMp+itcken4bl2QU+BGY64VQkuigyoVrI+a7fomIkFJXESd6jgEIbghECcFjjtDagpPNe5kSdiWW5BmVZEpyXeNp7ok6Upci3xQQ+BoL3YwwZQqBpGmbzufg0FQVJGVabDWQPpwj0XnzttFZYL9+tKGu861kuN6zXX3BxcS2qA87x+vUZ1lT8o3/0j5jNq1FCsW3bG9LUIXjKqsikjiaZPT9UwRvRyu7FdnIP9L6X3zPgHmMUkmqI35XGmCLHv1IMkd+S9x+yukHKPleGlOyNe3v8l5sE0/58wNf4Lw1g6c1VXe1wzrSbldXozwRa7xHWCUaJavUmVvGbvCkyCU0k5LXeaA1qp76gtEIZ+XfwHxvJgTxeXBB/V1IQWxLv3+i6Hwru9iXGx+PIhEhKAy6rMkmixUNhGBf5390cLTL8E22xUaFcwDcNE1vSbLYsl1e0fccHH37AfDaFFOl9T7Ri8RGjw1rFnTt38cFTqYoQI5vlVuxMNls659BWsFTxjJPvLIRx9mBMEIMhRinmC8GTiChbgjGoosRWU2bzIz74/t9iNjvm8PgO84MjVusNL188428+/US6l5494+zyAuu3VCYxqwreeXifn/zW9zg+qJhPC+pSc/b6DK0DZSl4eeojtihw/UDwStGj1lCVFlLBl5cXuSA0jHlnURT03hGDXP8QE+VESaeiLVBas1ytUSlRFAWTqsK1nag1JU3TePp+M+afPnhCcFRlgUehQpbBSzF3kt+MxVBI8WNU49pPHnf7sdWNWGDvb8GbGHGD/bmD8XVv4gc3cvXhQ7hd2LLb9nOn8b5IA7YqPvH7KgeoIfyLxBTRpsDY3JVsEin7H40FzVqN8WYi5qktr/17HnRDkczYUaQVKmYFSb3LmW7HQmn/XGTYVPa7e7msA8j9llE3mX/JBJ4c7815WI1jiYwGire22Ssa0CPBxN48/9+aYCpKI5VnRowgNYrKFpQzTfSOz7/4hO9//0MKJYnHZFJTliWz2YLJpKIoDeiA9z1JRUKAvtNMpnMB+3WFMaKp23eeq6s1PijqyQSlDNpomRSVYjKdknzHduNomwbvWrSCrtnSty19n0AZrq6XPHjwGFMd8m/+8M84v/o5p5cNbRfQqsTaSFkaHjy4x7vvPOXjjz7ixfNfAonNZsXZ+XNevXrF40cPsDqhYqCYzvDOUZYlvYu8fn3GfLpgu95kYL5gOjtkdnhI23u2TQtoSfaCx3UB/DXbVcKUoG3CloaDozt43/PFL17w4uUZ11crDg4O2TY9SlvKJFJ3J3ePhaTD4bs1V+cv8bHG91K9OFTQHx8fU0/qPOlGmqbh4uKcq6tL/t7f+3sYo3Cuo+s6Drzn9PTVeDMrpSBU44Ts+sB8PsXFAB7i9RKfPN///vd59eIVZVEwKS0HBwteffUcZRTL+ZquDbz//ne5XF2hMVTHT/if/C/+t/ziy8/48z/8A5rrKx4cnWBmx5yu1tj1kgeLKY+fnvBXP/0pm+Ul82nFO+9/xM8//4I2FSwWFR9//z1mh4cs/CVoTT2Z8nf+h/8F0zJx595DDmZTrLXce/CY0lSsLp/x1bMXvDxd89v/8J8wOX6CKWdygxDxrsM5xXqz5Wd/+lP+5b/8l2ybBhUDhwcLfvd3foc/+qM/YrVakWLk7HWDQTRKfb/lw/ffYXrnGK0ShQGrI3ZiuXv3LkEV9N7z6NEjHv/jf8y2hy+fn/Li9ecAOOfoupamb/iTP/sz6rpGzOUd2/WGEAJVWWONlokiagq0+Bhpg9M+B5zSazIkt+NUcYNoutmyrFFYLaSxLTTFQCZpMINuZwgi2aah1Bpt095EK4vLAIAM60vMFS8hia71IIk3VEBJ92AkZLPboZJ/IARiBK3jjWO+vcj8Jm8WQ0wRnxJB5wVOK0zS6GR2VcY+JxvRsiHwbNNIlXNMon2e2+QHCbreB7xVdCTWfY9bLnnoOyKa6/WS1y9f0W8VNiVsAhOlMlnAOllwk3eUlcXrAmsqSpv14ZsG1zlCkAUrIVWOVVJMJjNmM4V3EedbnHP4vidEhes9ruto1g3PX5+yWq3oXcjEUIYQc3XRbnwPnR1pb8wIsSQyHbuKGpDjl0bvHEii8jnc7VP+3Q9oNBg1fo4x4hex2WwoioKyKKjrqbSD68DBwSHvvfcezjkePXiYOavEdtNwdXXFdOqoqpqnjx/x/PlzHj6MlGWBUgdsmpaDgwV974g+cHJ8xPe++13+eHnN5fkZXdfy+NFDANbLFdvNhsPjI6aTCX0nHS3zg0Nev35N23TcvXOfO8dHxOzX5n1gu80A30w6LMuqBKXYbrcE7zk7O+Ps9FSC014KSFJMuFy9VRQ2dzHvwgSlBkBvX+99j6hhmH/2R/dewPY1220gbifTuAOS3hYs/qptCCh3Er8Wn0GD4dhjjKP2+Nv2vfuO6dZ3fDPgvf1dBq+6eONQdwGxxJlqB9bHmLXwRXay76VYZOhA0jZX0UYhQ9Otc6L08EGDTMHNIPz2uYnxzeD9/799A8mx9/evAxr/ugDz15EuX/e+X5cQ/DrySv+agHe69e+bz3zD56Z9wP7NY3pju2EYvXvtbXJv3L7hdcNmMjitlN4ln4gvQUaUJbHsN8RMJtFvif0a320I/ZbQNyTfiXydAqtlnXG+o+9a+q6h7TYE58cDU2imszlVNRmPy3ufVRMakTdJIs+s61z9HyK2yOTK0MGU9mQ6bTE4VRKcAKsDKd73PUopXJZzWhzMIEV0UYARP6PVptl1T0QB0x3QOOlyHYAKHb10IVc1Zd6/0eKiEGKgbVYUdU1VlJRlRUiRSoNPDt9sWF7CZr1icXhIWVq87zk7O2O93RJTwhjLattx/84h9WRKiAqlrUjPpCgEkxo6HdTeGEw34s8dtrjrXBpaMXegQ15D0k3yScEYS4xxwNuGZNjtDxj9gMYhmBIpqxaMvqTpTRLk20g03aaAbhLDaXziV85k6ubexrVX3RR2VZlsVMZkM4O3zafsYhMVGIhDQWhC7liSuPXk5JjF4oBFZdF1jfKOLz//lJ9/8jldSPzwt/4zPv7BjzmYlxRFJIWW68tn9O2alP1ESJB0oiwKbI6jBr8dbQYZK01hS0IUeTYp5hLyS6sSnaaUlWW7WgHQtBv+/R//Iav1iqbbsukdz579kruzBfdmC2wM2K7jaD6nS9A0LQnQRUUEfPb3EGJH45Kn9734j0QISQqffEh0rqW9XjE/OGAym1CUJUWWSltve7oeJhODDY6D+UJARaOIwaG0GYsIlUoUWqNJ9K6HlLh//y737t0j+kjXdmzWax4c3ROfSwumMlRVxfVySUThgqgxJKDdbuhikvjfOXRRYk2FLkt0UaK0ltzEiaddMcgg+0BIcm6l60iuuxTcOtq2vVFUBYgvqVLgHIuqxBgjuE4bKIuasqgIXmwjytJyfb2kKArBu3onKj51Td9LYex0MuHiQlRyiqIEDP/1//uf88d/8hf89u/8iB/+8GM++OAD7t17kpV/PM4J4yNETxiB/a7t8d7hvafrelarNVdXVyyXuWPq+prV1SW9c/k9UmRVVRVlWVDXFffu3uHdp4+5d/eE2WyCUog/VzecC4mZrR3uO0PM0OFtgmkUhL0dl9648WQb5oGRaFB7z6QdyJpuaPkyepZIN5b86+NwTnbEwbdlG/KbIS8GZLxmQlWAdJ3ztbAj4qh2oDGCS0GOl6JYg+wX2u2K1nbx1ujBRb5eelhIh4JYkwkvO5KPw2Kbct6hlaZQBotBh4Dftmwvrrnz5CnXzTmr1TUffPge9+7dYbNc0rcNKQQ2XUtMgdl8gjWlNDUUE/res1yuOT+74r333mPbtugo58RaSEmK7lLUktdXlq7bolJBYSZ0MTCdzbJCS09S0nF5cHLCk6fv8/Tdjzg+fkhZz9g2HV989Zf86Z/+KX/113/N6dkpTdMQgqhGvHMCpU4cTC2/+zt/i8Wi5vBoynxi0cZT11qKyEkk16MiWFMRtaIPjm7b8vSdR3z11Resri7YblcsFvPcvVSOxa1N3xFTysWngel8wenZKdtt7t6KicPjIy5Oz9hut/RlyXc//AhFYrnccr2UeWM2nzOdTVHW07mESoaEwVpFGSEmQyASiPKfC7s8NuVCHwUanX1N9wfqEIJnGTn0jTlBMWB/O8zyZtz09thpVwCaY723YBJvfR+anRA15EhSyLPbMYeWV9a1zJsxZQUmFXck94g3DfeJHM9YLJa/t9LjU2OMoiSYR6tsqaXGr3Jjbs2snPxpEE/ljN0OU6zKss77NLucvaFHKd9/twK03et33Upayfyvtd3b0/5r/hMIJvnig1+LVGKgwAcvkniuJ7iOp+88ZTGfYbXKHhJiUIiL2FLjoyMR8R66DrbbrehhmpK6nnA8P8aHSFnXlJXc8EVR4UNPDA4XffZH6sVDqZRK/fXymthv8d7hgqJtHduVo3eK67WQPNerNdIZKJPwZHpI0654/fIVVxdn/OJnf8nf/p0f8zef/A2LWcV77z9mPp/Tty2mFq+dzWbDga2o6hJU4vp6K5OIc7heYwu5KcSzw2LLCVVV4XrH0dERzaoldGIw6bqWw9mC+eEctObi4ozz83OapqGua+7dfcCr16egetCKg4M5hdX0rid4CTR+8bO/wqUZKZtuffnsGV3TUJYF2kibM8BmsyGlSNd1PH/+HKWQbqzFgq5vs6xbbhUNEZUKkfrL5EKiJKpE7x3aWHxMfPHll5ikOT87JXrH06dPqYqKtu9pm571esPzl885v74ixZrCzvnOhw/4nb/796nqKV9+8gtef/klm+USpjDbzjj0M5SO/PDH75P8Y7xztN0GXRjuH91DmZKoFHfunTD1B9iqIACXyxUTe8DlhaNZrVB4/vSnf8JsNqc0E+azu7z74W8zq+4CJSTRzozes9m0nF0tOTs/Z3V1zmxaS5dcCATX8/L5c548fszr01NevXxJWZYUGg4WM+7evcvx8RGuayB5SIGu2zKpJ7x+8QxVzSjqKdPJhOvzNX1PNtSMWeJqSt97mn7LdDrl5csrprMJjx8/YjGZ8OLVS9peFiifIhNrhEneq84aQNLhHh3AQmBMpvXoMbNjzY0xI1heWktRWgoj8mhaK5EwU5GxUkEPVSohBwUDvz18VAb64zDp6Mx4G1SuelVJWm5jinvHGtGYUT98ZxaqxgD/WxUkhuxTlcErCqm+i0lDUOgIKii0ycEcJYnAtt+y1Iql0awULLDoGCmUwZgCqwu6rqEJLU2R0MHz8uVr1n3ky+dntG2Daww2VeJ3pzTaaoiOiJH23xgpC4NKFmtLlLH0vad1PssUaGxRCtGkcuJqCsqqgNRm2QZNDJ6+Fz+YZr0RWY+loW3F2UGMNkNuzddZ8kKqlFwmoFJCkrmcWOxAonweydWpO3wd2A80pJPFZGkRlQOJoRPJZvm6wWC969y4EA9eRUVRsFmtxmrIdttwdHQ0Vhv+/Oc/Z7lccnR0xJ07J2hjKUvpMl0ulxRlRTVb0HU9i9mUqizYbLc8efKET3/xCy7Oz1itlvz85z8fE8kyexPOZ3OquqYsK/ESUpYHjx5RZwBDKcXh4THPX7xgs9lwdHxMVdeS4Lp+lPcLMfDs2bM8/7zk4cPHdF2PD4HgpVpzWlQUhVRTDiCnnGQBTgapuSH5GOenvbjxJiGjc9D0ZkAyPs9QDR5zoAmD5NFtMuu2X9Iblet7SdAwlwzz5vD+4bXOhfFzQrgpsXTjM1Nkn7SX763e+FzSzWOQaj6Tv1uudo9pTM6G4Nj7MErkOe+wtqFttzjX5zkzj3K90y8fzvtwaWQOz515g31yPvZwy59kOH1Dkvlt2n4VSXP7+V8FDr8tqdknRvZJpNvj+T/muPb3903H8HUk2UCWksnV/fe97TvcBtWHQXP7yG9/1+EeeNvxve24x9cm9gbmW/abj0GldANgftt+VMz3Q1K7fY3EQ+7OjT3tdknfrnDNCt8sUaHBpA4dnSgZhJboekJS9CnHc77DB0cI/e7+NCIrrrQlkmgzmCo3m3ymT44Qe7RKlFVFnwHDFAMGhRaxeqn+1YroPEVRiBG9kkIko7To4ced4TuQ/eQMrXNMZ1NcTKLaoCLaJFFyyJ1CXevoosjkhSBZbdCK0pQUxoIxBCeSoUll7EhJ5X49mWBsQVKJZr2kbTuUNhib6NsG+p6u77haih+BsSW9F2n1+eKA733v+5QmMfURbUpSFBN5jNt1dhhZz0eaKCVUjNk3Io7AY4zZTzWKl4hc+iGDHwfnOOenJJ5gMp4iiSj+K0qNn7MbczcZkAE+GF6ntc7mAgo/gHnjvbRL4t9KkH5LtpQEjLpxOW4QPbvH4/49nmOF4elEIg5AyLhuDcDTTu5FruNAQGb/t/FY9o4Bj9IJjSYG6RDRKqEQ/9kvv/yS9x/eoa7npA4uLq75y7/6Oc+en4Gt+bO/+CuevPuU7WYFsUPTYdgC4vGQ8vpeVZWQwiHQ932OE9P4/cqyygUjCLHjelLSWYatwqQJTbOl7XpOX73i808/4S/+8s/ZLHtePnvG0fyAuwfHLGZzLDAtSqbWMrOW3geSD/gELnQi86QlBnHe0bievt/Sdi29FwnLtoeuddKhVE+YHRxgq4re9zTrFQnF0dEdbGlJytB7ufe2204knaKod1gjvk4hSEw1qWt0CkyqmrIquXNyh0k1odlssSowr2Z8550PKIxB60BIvZDSZU8fxbsXZbluukxASH45qSdQ16iyIhmLB5mb2MVXwSeMlXESY8S5fiSTADnOGNk2IncnHQKJuqpwzuUYUYp8JpPJKJvtnBBITdNI7uIrjk+OxvcoJZ5G5+cXLBYLUZvppcOp0IYYE3VdcffuPbwP/NEf/yl//h/+A8dHx3zwwQf0voOUMNYwqWouL6TDaxjI19fXbDZNLkLyxJByN5iAnT54CiMFAkobtBYf2R15EPnqq6/467/+S6rCcrCY8fTpY370wx8wmUjeUJYFZ2eno6TaQOu+FWB8izT5ICF1o8rqFqP/Zndo3FXxq5tdqTGvj+IBlnKOuCtQ/FWg52/aZrWV2F6Jj0wMAnbvn9GhwG5Ys7QKY741TMTOiUSaUQFLHMfIsGYOOeD++jjkYEbtOpaUMrfWQcEENEPepGUez2SCzXKbykV829NvG77zznssl0s0cOfkhLv379D2LX7wHVKKsqhRqs8WLooQelKqSQkm9Yx33z/GZ0uOqi4wVgi30HrBqKzJ38FLF0iyWF1SLUo2zTU+9uhCcXh8wPsffpdHTz6gnh6SkuX84oqzi8/55NPP+eKXX3B1eUHbNqQYmNQVRVHSNi0Hk4aP3n/C9773PX7ww49ZzCq0jbR9R7fdSqdrlHVHawgpd04lhbEltqh49tVzgnfMpzWTUrO+ukbrKntk7eLKoiwwRYF2nuVySdd7mr6jdz0pJFJ+/Xw2487JCUVh2G42rDZr1psNk8kElKJ3neDxpaUPmq71pCDXsSgMNng0cZyDxKpdk3KsFpMi7iku7f87jgutELOhvXB/JCzlJ96Kp8KN6ePt9/dQhPR1BWfDpvUw7nMutLeH3YfsPquwFpJYzhRFQUo9SQ3xoxBrSeks4zsUrr6Zf8UUURkzu1GgqgWzSqNn5RC/3pSbJDNUcg4RqT6dcxl10/JBYudMLSn2SrV28enNLzs8nq8BN/FYRfZw4+Y8+03Ywa8gmARo1ilJ4pPkoGNK+KhQtmY6P2I6XTCdVBgdmM1qtAVTFBRlRVLQttd0nXRmkCwKRV2JJNdkUnDn5ICu78UYMXUUEbRX6NCTgofkhTN1Hd510hGVwWqXClyQql+jEqFtmM1PKOopz05XLLuGIjnwcrI730s1zqTEqsjy8hSjeg7mBbPagus4OpwRnEMbAXkvV2umh/fFnM5o5ofHWFvSd510orSO2eIQUDRNg3NrlFZ07RYIBDxd9MznE4KPNL2nu1wRU2IyPaRrIlpVHB0csN4IkK+yn4Kx0sIvwacsHpumIalAzK3DRVEQfaBt8xBR4pkSvFQlNgk+/eQTyrLIgKHs0Noim7UBWX96ICecS2y2W+kqSQnnE23nefnqjO9+5wOatqV59YLDowO6rqPre0rXU5cl4WDB1nWsNoGQCg4PNcfzEz56932qviVcv+L+4oh7dxfcmZeUzrG8XhO6SFlYlAbfBhZ1Sew2bLtrtl1Ah4Q9tEznM0IKrM5PqV1Hc/2SWV2wWEzYbpcoazAHc+xijp3PJOBMWkDrHrZbMTy3GiZlgZ0e8ujpE2YHc8q6JMTIYn5EURli7GmbKy5evyapinK2YKILdOiZTqGqFhRFTVVOmM1mNNslqigxhUEbhalnBNdT1QsePnhMcj2zyjAtZdJ6/OAI7zzJdWyXEuC6PoyGoYpIAFTuYgFhqwsr7Y8xifzAMD8Mrb9j1e6eHIxSCqs1RoHRkUInTO5SkflMZWBfE5No4PsEhiyVpgYJhyQtz8OkGYak3wPiQ1WVFu/EeDAkUFESrCGxTCnhgkPrMLZMk3JyZ4bk6tsDeoYURm1VpYbkKaIycYcCjOgBqxzgt2i0KriMmsrDotIcFhrlhcyujQZbsEkb1trTVIH5xNN3V3SNots0tG1EF3N8lKpErWUuxRhCdEQS1pREb9CmoqonzOdTgtsS/ZYQGjSOyaTKi4+iKC3KapKtiHZCKjooHDGINGi7he1Gs1lZ2h5csOPimXIVSEpDl0bMyUOu4mZXLSVmoSAEkd/psKcsdcfQaxwZjA8BIQlSbitW5Moqg9biQ1QUskZ5n/AuZnxQZYLJEkIvkkFKzDa32w3T2YzpbMb9hw95+fo1F5cXNN2WbbemKicc3z0heOh6x3azxSo9GpYrFNYWlKXl8OSEyesF/uyUrm3wzjObTTFlwbZt8TFQlgXz2ZyTQ+lYSoksQ+mYTGbiIUBAGc10OkVbQ5d15IuiJPiAihCc5+z1GX/4b/+A/9X/8p+KQX2MmZwwuXNJZSLNEOLO/GcAdqQTcUgAc0AykEt7Ac3bu5x2j+2CrSFAjOybSN5+fxra9PL+h+12QGntTSmPfVJJfpcAPZG9F+LgDTcE0EJwMoDypDwWd0FiSuyAijzZxvG7CLCmFVlmUcFQ3aRhZ9wpXZ5aG8RnT94bYqBpNjjfo/Su824wV81HyhAkyLnMxFwmT8XQ1uF9oIhS8mSMReU4Sg78WwJ85nVm+La3v7W68dK3E6E3X5+vxx6pgpI63pR3+HVk0PD54x53rOzu+XTzSMf9DseSdmA3KWWD+N0+h7tFnPV2sYE0CN5AePIQ30sIU9pVkoz72iVAIWZYKO2fNxl4+8Np5PrVQFbtdMWHHC8SSKP8Qu40VWm8B98gDLKZ7u4l+aiUAMpDgqWHRAnRtU/RowkQeyGMui2+XdNtl/huS3ANsW8gtKQkibRRSXIQHyBKQVFygeh7UhQjZJslgYkBnVSWyArEEEafD5kiIoVSWGOEsEkKhZMCHyNAzTA9jNC5EUAmxCCxHuJlKBJcZiyy2HldyknxTSeSKQCFJXqH99KZ4CO4AH2AroeQhDiyuqL1CZcC1kR8ililcEm+nwKqsqKs61zJH2jbFtd38n6jMURCkKpy53raZgvKEpVC24IYIhfnZyhO2LQRU9SgC5StUNqLbHIEnRIBn/2zBMQebyo1ED876bzbEOU4KtMASg7nVe1wGRklN/wgxvEPu/lxTKxv7T0Nd7Da+0+PsEUayL/hfvq2bDk33YEs+zSR3PtpnFvSm6dm721DehJGH0PG4orRx2BEg3jjWu0q9vPfeRzHQSkAUNmnBBJRSWzhXOCrZy9Qvef+/IAv/uYFl6cNm02kmCo6D03XU+oOQ4/V0m9njMk+YkI4S0eSFNilDKSRyWOVtABOSaYWguRKAnZW6KBIrqVZrnj58gVffPEZX3z+OavlVohgbZkWJQeTKSYJiOhDpAsRE6HzkT5G+iA4RNIqe6QkGLyhosEkg84FYKK7o4gaehWJweEbj8vzWGEsfQgU2spKEoMUpDmNT5HeObbbLdpoirIU0t1anFL4AJOqopzMMEVNjBqURVvxjymNxRhNCC34QFEUVJMpyQfxZ40OU5QYH0m+xztPrpeX72SQ+Mbmau9h8GgwZqeuMXjApixDFUMuNkgJYsxgLHgnCgMxS5eGELDaokqFKYzkaClhjXz3GILYL6Cy/BLiceQ9XduiUZRVSds0hITMnc5RVRXWWkIMdJ3jerXiq+cv2Gw3xBQw2dt7s9mIxGnumFxeXbNer7NcasRqkdCTArRCwszsNWLy2CdjeNKl5ujdls1GYouL85Kri2t80/Dd777L/QfHlMWEetKz3PREDKQCknTMKjNIO0JKWlQjkhrvfw3EgfgY7kqlxjglhw+kG86/5Ht6F/uM6xqZhM6FFSmmbAsRxs6mbw+1JJvWcs6NDhhtpNiFkOMiIepM0hisnHujScZLEWvW9IgxUjhLUDn/SRpbWiIR76Q4WsWBrM/keZbcko6JAbsYgHANyqC0dMCQRN5XD6QWoJM0LpQY8J7oPIrEZFozW9RcX58xqS3GVmgS6/UaSCLrr2E6n7BcLgkpgTaUVYnzkelixmy24ODgkM8//4zgNYM0eUgiC48cLRGFLSuiD1hlqIzGVJrWGWKwVNWER4/e5/33P2bbB168POPiakXXJ56/eMXZ+TnL5Qrve7q+FaJKQYodB4uaH3x0wnc/eMw7T484qB02eWxCYsMk51U6XSVvVCYXSug4FkaE6KVY2FqirehKTwyesszPe8e0moDWdH3Ppu/ZrhswBTEqfFAEl4nAssZYQyThvCOmQFUWLOZTKeJF5ZgliWJXI92eSck9KHNG7hZU2TIniALIEJtppcb7VfLsQcpPZ+lEI+t6HL+2xMZZ6k3l/Fub/Johx8lYDSDdb7fyql1mkf9Ou7+H/6tcHBpT2ov/hrUwoFLOVqIBk7+3ikTlqQ8UZupJNhKUy15ZesSjULJmMvjM56RnL8zJpFmW90QSmCEXSjnoTxl7SHE4Z0Xudh6+iNx7w+8aJJ/XgtMSEykkVC6iTmogwWLOt/bn1uFayfEPBDBqwMTMHkaxj8UMxNeuA/Jt268gmP5/7P1Xs2xZlp2JfUtt4fKIq0NmRkZGqSxUFaq6ALBRAFpZ84HdTSPNaHxg9x9o/pJ+JB9o/QPY5Es/EEYY0SRBNiEKKF2VWZUiMrS4+giXWyzBh7n2dj8nbkShmnxhBnfYuXGvH/ft27cvMecYc46RxsB4CKbly1FEZTCF4/TsPkVZYayisInJpMAnjS1LbCGDttkHNusdKfXUdU1ZVlRFgTWW0kJtIXUe3+0IKdKHAqWjaOymKBtUioReDHS996Lpqw1BlQRSlq8IWDpOFhMolsy/uOTlJtJHBb14GnVtz4PTh5ydziktlNZT2MjpckbpDLFvWJ5M2e0QPeGk8EmDrQgYtHUszxagLbZt8asVzXaLKad0+z273Z7tZkUIPc5qQugIsafHo8oZ1hRsdzu6rkcbh9YLQi8t8vP5CerJy+y/kIkmLQNDqjQgBEXbRpTpxupFTSUVBl6SKJF2ErmIhKIPDZ998ilFUXDv/l1c4SCJPif0Y0B5qBRJeJ/YbnfUkwKVoO8T+33HixeX/NJ736fdrNlvN2z2G/bbnSwCMdDut6goVf9ts2XXRa4uTpnYkjfu3sdsL7n6vObO6YzFvEIlTXu9or1sePzlBed3zpgtpjhtOZ06Xl5d06z3bLeeUtdMixmTSUf0HdfPnrB0ka5dE6Y1ZX2HelpTTeeUixPsYoF3ljZFigTKK0KA7b4n+hanFPPphKeu5uzePabzmrIqSclALNh117hCM58WfLm9xhWnVLqgNpbQ7aimltmixhVznJ0xmc4whc2bu5gmKlfTxYBxFednd2nXF1gVqR1MXYGtFJvNjssXF3Sd+GY1TYdxdgRJIgE9rMY5kHZWggofhBWXzZyRBR8ddXKwNwA5VoPRCaMSVvJoK8sAAQAASURBVEtyPuipynco8ztkjRIVovh2KQlUBqPdmHReHtIofydj1mOMJFlDwK6SImhN8LLMpfw5hooZrZSkCDmoN9qK6WPuCPk2HJFckauGBFrkOVUmIETbNQfiSQiTkDRKF1wncAFOk+KB01gFZVI4bUiFokmKFohTRTFXGN2hgib2ga6DejYhdlGqipSsuxg1JmPOWILXuLqknk6Zz6fE2BDjnhgbtEG0wY0hRnJloyIZNxJMquihC/jQ0LaKZm9omlLMRFPe5hICMqpcDZPHboqH5ONQiaGzjs7QnefHYELk+oQkRWWRHSVm6SnPhZQCQyWIdN2JP6APnsKJgS1RjHoHk1ttDMZomraR/Sl5rq8v6bqQTXrPuXv/Po9ef42r9RWbZoNeaWZTz0P7mhQJhCiSJSGQgsZ3Hd4YZrMZyihO79xlefYM/cVn+BRQ1uCqElM41tsNMUaKomAxn3Hn7JzNZkfX9rS+o089czun3bdj8FdWFT4GNts1RVFQ1zXtviWFiE6azWrNH/3BH/E7v/XviNFyUVJVlVRBGjMGH4PsnnwHgyQDObgYAKLjysEBeL5NDh26nb5aYZRuPO/wnb9CImvoPsv/HPT1b3SzKTUSTMddS8f/Fn+SQYIxZL1rOfGQEvsQblQRHTydUn7fI0mOoXwov/qAnAkBpEdN5Dg+dwDpBTgweX2Ve+p9z26/o/ddDr6H+xtHQiLlwHm4bQPBpIZAlyQyK95TRIe1Bp2lgGLuBvhWHbdIpq/8jr8ZSDGQHAOYPJCM6INMwTGxepNQPbwn43OGXxyDpIfUaSAehidLZdxAcKWjRIFDEqbCIXlA56KUYS+W9xolFDJZAaCPblLK665S8vo4EMvDPM/XrkeCX8D3lOREaVwn0hhyykDNhU1jf97wySMj28LhmtKQFA7vKujW0d/JcYXOWEaUApkUIDTo2BH7HXG/odusaLdX+HZDCj0qBWzoCb6VNUEN36fE1yp0qNihE5gURk8ZtJUikSRSsw6wWtG2Lcl7AcSUrBeFVihbSictBm1SrsIVX4wUFJAlb3xEO0nTfBTYOpGOCnBy54MPeH+4RwWWbt8Qgpd1IBdx9FEqTBOWsp5BELlXnRRFWQGJfbNBdT3WJKyR++qzMZLRmpmxGFfIOhkibdfRd12uckwYDckLgBmDgLWJQDIGHRON2vPs2TNCVLhijytrismC6CqSsiT8EaDos4zhYT84sOcy9g61symbNaejp6oBaRBQbJg2w1wbxqc6rs487jY8et+j4zAXj8fgAKKlce4Rh6r/o73rW3Ck0Sfw5mceb4Fi7Gg4/vMrR77RUSXCMXl8tB7mCX/0GsXwlRy/6bBbDl9pVIf3Nkm6jgYoJgHOWj77/DG6Ccxer/jwZ1+w2wR8r3G6YHl6F20M1hgKpSmVIiYrK5OO6JjyuhClQFaBMhIv6XydCsVgOpYC4BUGi9EFVpX4NrC7uuTq4iWfffgJn3zyCU+ePMVqx93TU+4sTjibzVnUNfQe72VN9koTXKSNEa+kvKCPvcQC0WAkpUCjMMritCPqSJd8jv0iHYGmb9iHyLYXf05rLZNCsdvvmVdlLpRKaBWIoaXre/Zty75pUM5QWU1ZOGzh8Erh0aRMJvdRScd8SkQUaI2yloQUJvoYUdpiywqjPYqe1EW0NajQMQDdMQRMyhXcBrTV6ELiqKFOSKPQOpA0QmwOhFCKY3W/QlFk2bxhNIXeE5UU/Phe4t++7dHSj4GzBk2idBZrRL6u2YkajdE2r+EBozRd06ISTOpaCgmQTtguF39Np1PxhnYWbSzrjXQW9MGDVlgnuI62RvYKDEErvAKvkLWncIReCgNRQnJhdI4zGbvmU1SCDyVybBjQCfabHRfPXrC9eIZRa1K6D/qMej7lYrPDx0LygRDl+yLnekkRosGSSdMk41qrdBDUUnnODTFyIq/tChFrHYq78v5+nEocA8k5Pom58FDi9pgLpL9hLfkFPZRSGWSWtajvItFL/hGjFNaoqFCyAGGUlvFnJRsZ1icXHFFlqfQAprAUQySWhPyRfGdYQEGZHI/meHK4HjXgT7kIJjGQKJnsjGCUwSVDgXj+6hQpq5JZvUCZBMpTV5aiLOmbhrZtKKpa4iGlqGYz1vtGZGyNo5jO8H3i5PycO2fnnJ2ecnX9khRF/jLFKHGnFbk8YyzG1SKpmaBSiSrHqco6yqLm5Oyc19/4PtPZHT788U/5+LPPefLsOSEpnj57TkoRozXWKlLqc1wmPPfrjx7wg195yGv3lsznliJtRQIvWSHlCNLV7eQmxiSqKehw8DhCOvCNKfK3HbBugqfFaEEHo/eUhfhONSHSNS3eR4xS+d5bKRRPCudKaX7oPU3fYaxmMq3Q2rFZb9n3QkII/maJ226sQ0uIvGrnAzENXUAGYn8YjGnAr44eGGJ1LYWrasCy1CHv1BowQ/fNUFwvXXGjSk1eNyRHGZaP23NdDZPiK+TTzW7nAU8dso2A7JJCCaVkURiS8kQVQPdUC4euOqJV8lhitK8A2WOEv79Z7KRyzJJGPGCIOfPfyViGkTVZIUXVEiQY4VrMoH4i91NlSUzBgxXW6PF9U5R1VieFUlZw/SO8AfxxAjl8PeN9G330BjKQIwsWlTsUOXQp/g8mmJRyQJsTWC8VH0m6mYrMGL/22kOS31LVjvv3TtltN9TVDK2dSJ3t92x3a3zocdZQlhWTyYR237Db7gi954vPPme73ebWXkUiUpYChIipoLC4TosmrzEW30V2+x6trRh3E2naPSfLOaREs99TlQWb9RplxBBys9kwm82ZTqdZu9Lx9//+72HCmt32ik4rTpeLcRNvmg7Q/OAHv45xtQRvymBtSdtH5rMl89mStm354svPuLq4IHhZZIrCydBJW4y11Lpgv2tFciwEnLO8/sZbrNZ7jEGkr1Qi+G70ULJKvHK6Tlqag08ojBhPDmbdwH6/FzA+s8gpCfs8yN+FKEGUMYp9syeRmEwmNG07AnMqS6oBOUmVltjgZcBn3QpS9Pz8/Q+YTComk1qqCqJ4RbnC0fZyrWdn58xPz8EUzOuaMgYoztmt71HPzpgtS5puy8cffcaXXzzjt37zN3h2+YSHb93jtTfvo01k22wxheXeg4KiXlCWc5rmksuXz7l48ZyXL17wu7/9GxgDaIVxjjtnd9DlgsnJfaYnD9DViXS5NR5tDM4WFEXFzz58n7oSQ82f//x9zk5qMXlWmpPlks8/f8If/PHvE2JLVchC+uDhfd76zuvcf3iPSGK92oPeUNWGqhK21znHbrNju9vQdS0haa6uVmy3Hf3eY4zh4uKCsozUs4K2a3n+4gVXV5f4vmNST7i8XGP1UCuSdUlz8qqUbP4DuHno4hhM2gZGeUinBpAxV/Fm4mZYsA5rTMoarlLlNhCc2grIrLXJPwM4duyHk8EoBVqJlxCoPCYRYCcplMpAS4rEJHIR0tV4SPQNUt1r8sL2bTl01iofZF9GQJLbNRgcAZJCWHQxsk+w7zR9bUnGoHBoZbFWY51jUs6oTh137t5nOrnD9fU1fRfQ2giArk0OGMgAu3x/Q6CvlWYyqZnPZ0ynEyIN3ncUhaWuC4q6wjlH33m01vgggapzjqqsiL6nb0W2dJDqijFijZYunAHYGXyWonQcAhBBKyu/CwGfifQQsjpNBptSiihtsM4SPHnsCdhwGO96lII0GknAjpISa21OWqQz0AfZY4wxWGtGKYa+FYlY7z2TyYLr1TUnZ6fcu3Of3/7t3+aTzz4mxsBut6PvPJ988gmvP3oTZw1d1/Hk6WOWS9k7UkqcnZ3ho+fBgwes12ueP3/G5eVL5vMpVVkSguf58+csFgtmsxnzxYLT0zMuLq5GqcAQItvtFh9Fam2QZ9leXbLZbDg5WVJVBc/aPU3TILKumsvLS/6r/+q/4n/yn/4nfPed78l3VlWSSNo8F4+6HQaZzRhvAufDcQMMvHV8bWv7Eeh+W+LitkTWTSxJxupAeh2bIo/z6ohcOpaTijEHXjDq2h/kPm++5rhV/Pi9h8dHuaQ8V9BHnyMdyIchyEwDiIm6UY0VQk+IftyDr66uaduGGDxKiSzkTUm84Z5pqYrSYAyZABy673KSGIMAvkbfAGG/bcfXAb03xt3fEAz+ypiFbOD+15wnk0O3HxvOeXz+20DLN5/2eB8ZAG/GfGogNdNRdpHSTW+mlG51Fqijx7lJoKYkFYEjbjwSWxK/59ztMHejFFUMOY9GpEqGzoQ4FFscv8dwEWrwNIrjfRk6thVJyHslgGWK20z0JYie0O5pdtd0u2u6Zotvd+jQ4kyU2CZGkpZ9KQ2dMwRC19O3LTG0aEQmqSjLPGcPa4S1FpPJH+dc9kSKo2SSNioX2YnEqTEKVdjDdx0iKntdpJgIxuOcJfRyjsEnQTodM9AWpWOo954QA1opprNaKi9b6Sjw/R5lNB6wRc10Puf1t78nxE7ShAR9iPz0r37M/nJP6BucVcynFSH1sgejScbQti1xMiXGxHbfsN21ec/XdEHhsHhiFohXpAhdzEBrYYl4Pv3kC54+e8ni5Ex+TiPl4vQgi6LBh0DKjsdDAcoR+3g0Rr/+R3H7+UNKz9G4km6G2+c7TJojsOA2cHE0V5VKN/bE4/N8UxfjL+KR/PC5h+6Fo7D1VffhiBC6GSNkQFyl7IUx9LgzwDk3XnPo8GX8/zhs0vC6IeQToEtAWGSuZ31f2Wuh7wMXVys+6D/l8ZMn9D2EkKjKCb/7u3+H73znAXRXtLsL9usXTCcTOu9z8ahhvV7Tdz6DkAUqBtrNDptzIylOcbRdIEQLCOk8my0IPnFx9YKPfvoJj7/8ks8+/5zNZs3EOh6+8RYP7t5Fh0hlHApD1+3p+oDTGmc0vpd7Vk1qShJt15GUIvpeyJiUiH1HTKIc4pzGFZZd71nttzRtx9ZHuqRY7fZybdqwsw6/nqDPzphUFc4abFWy37f4GFDIGrc4OaWezVBGZzknja0LtNbSceMDKUSiF984lfcj3/fISqVp+1bi2SDebNo5gu/wuRt/VlZsvVT4u1L87LAWrCOESMgSgWRfKa0szlm0kvOLtJ1gH85ppDSAMfY7AJ1kQ3dGvyZjNMvFXDyWXCUw5dDl5dyNuHDAY/q+5/LyUuSo8vuEENjvJSbX1mCcpayyFBOMvvNRQed7SlWitKFv2pyjSfwYogCTAsqKFLm1lrqekaInRC9KIujcgSCYkLWW3W5H9D0ED7Hn6Yun/Js/fMyzi4f8yg++z+/+vX+Xvutpe9lnCyUkhgeUNijtSFHTdCKJrpUBP2z6iaTS6KsnMFUGWbMcdcSPgPPtHCGlJOpJQ0FVEsWKeBSzD/c95a6mb9NaK2RiGvEa4+yIrYQQEPGPDrKfiuT2AAqbFMlZlC7xvhLCmYAOkbpu6bNXdgjS2RkHKDDJ9h4HIYmx+C13Pozk+XiFQiTHoftaj92CopJimM8m3D075f75OT/+8z8jxERROpSxrK5eslie4ooKWxS4sqBpW1xRMXGirJJQ/Mqv/TKFK3HWURQFv/YbvzNK1nddh+k8frNjNp1ydvceb7/zLj/68c84Oz/HKug2O549f84+7Hnzje/y/ffe47vvvsc//5e/z5/8+V/w5OlT9m3H6ekppbM07Y6ubdHOMK0Vwe+YlSVvvv6Q//A/+Pu8teyweIklEan7FAPe94RcYC17pMR8Q7w45JU2479FUWTv9lYKQOcTri4vaZs9i9mEzWYzSpMCnJ6dcXm1RilFVVYo7Wn3W3QlnZLKaLq+5+GDu1xdrGgut8xmM66ePJN7rCzbfZ+9pCIJwYdCkrXa2oKkDE0v3ZUpDPksudg8Hfbb0XPpVUeOn/RAPt58ouQHKhd/HMaSLHlxPIOSZOEr5z2O3QbsYMyJo6gGqRz7WSMKNilCUTuSUgQtnqF2oijKbB9hhjcd0Lk0cEX/1scY6+T/C2Kaxg89Fszeyh9vKKVwJCGohnxOCLqjzJEBHxm7v8Y/BizjcDUqz9tRqnDAHdXYI37rOf8fEEy+F5IpKU0XejrfYpQihshsMuXf//f/IQ/u3yXGOc5qdFHhcBAS1hUUGnbba9brFb5rmU7rDOBFVquV6ETuG04WC07P5nSdAHZGQ9NuwUuSZq2VVmJt2e+7bDylcXZCF3ZoBbZwNArm8zlX2x0vV9d58/bstw0hQmnlXCfLBeenSwyeP/+TP+H++Yy75wvqytG2HUknqqpmuZxS1VNmsxkvXq7xPhGSIqU9Z3fv0neBs7MzFosFT58+5d7de3jf07YNm/WKtt2jtcUasq9DxAcBj2bTKd//3nd5eXnNv/6DP2W/usaHwHa7IhGlWplE13W0bSv3dJAuUgo/DOiR0c0VnHnA3TYy975ju5NqmLqumUwmkIMfIQISfd8eDd7j5EmqrmQBCzx+8pTXX3vIfDbl2dNnLBeLceE7OTkhhMDTp0+ZLZdM5gsuXmyY1zW1szx8+13+4zvn/D//2f+ZH/35D5nPJvzyb/wGnzx+zPO1568++IDL/QV37pywXC6opgW+T/T7Kwod+egnP8Joxdn5GX/3f/E/oyxzB5vSJF1gpmdMlvdx9RnKnZL0jGRrtClRxhJU4np9xWKxoG32bHZbfuu3foNJafjLH/4Fj798ytXVNZ99/gkXlxe8++47/PL3v8c/efyPqaqC2XzCdDoBDPtmx0ILkLffb6VzLBj6PtC2HVfXV9y99wil1nR9x3q7Zf38KV33DtoaiqqkIPHWW2+xmJ1z8eKKJ19IZefV6pqEQhuTE6nDAjqAKmiFSgYdpdV3YMePv7vxyKu9gI8abSRolhJlASpCCLS+x6SIjU6qlNEYl1Aq3PBGkiDvAAwPBseHRS2DPkKRAfEGYBtlfafvQiaZJJC3xhCCVMSl9DdYsX9RjnR0TznasxKgBIxUCBCoMsEYU6JPib33tBG8tURTEE1JhycZK11oumA2O6XtNJudZ98GXFmSlMJYnUlusv+atN0aROZBa009q5jOa6q6ZLsX2bCyrpgvpsymU5xz7PctMUgbtdYW60Tz3Vkr322n0XGPoUGliu3LFxTOIhJlHu/BaEMMkRB7fJ/B8RBEaiIE4EB2DsCN1lpk4kJ+TjIoNUQCt4/DpqxzVxMpS2wwSEpASiHLysm9QUX2jUjitU0jutMYJpMF2+2Wq8srZvM5b7/9Nq+/9jrPnj1l3zT02tM1LW3T0tKz3e65vLzkd37nd8SEd7OhKAqqScViseDevXucnp7wyScf8fDBPZbLJSCGwSEbBW+3W66uLkWKRJsxgHv69CnGOilwUJrtdstqtWIyqdjvdny6Xo9a3CFIN/Bqvebi5QWT+ZTeB37v9/5B9leS+zJ09vR9P3YEGSPk5TFhczyIbwJvX6+FPH4jXx+BfvXsR6D5EIAO5zgUSRze/0AcHRFMCoHIU7pBLslrb8ro3fZ6Gs55/H4jMHprnRb5ikQYb9PNoDEgBTtDwBiyXyVK7vuTJ48JXjwR5VQhS1Pc4kByR5fs57koQVAzAdCSdDnEEFC5+5QbQee3rIvpG46BxP+bghRfN85vP/ZvMx/+psdxzPZVAHwYcTl7UoAaiNj8+Hhd8cY5vqIjPtY2DLBxQiTx1JhgqmOAJ/8vHL2H2NakIdNDqYTV5igpynFMEhLqQGxlgCqDUmbQBk9Run0JiJW7FK3YGKmLnv1ux3a/od1t2O3W6L5B0aNijw4dKvUiAZ47sCMiy52SdAsDaJOoa41Wde6ikB9ny5HsiYOPEAI0bnZ7iUuVEmWGtmM2mzGpp5RlgbHZ11bHXJRD9jIUIlgpAVQBiqljvV7TdQ1dJ7IlA+EcQhjBxcFf0MdINZnhqoqQgvQEWUNSlsXpOQ9ef5Nf/83f5uHrb6KMY7drefzFY549e8J6fUG3D9jcZWZthQ650t9HtqsNzpaEkLi+XrHatIQERREp2sSmU2hX0AePD5EQE4uTJT4lNivxr93tdqAT9x++xqPXAsV0wdyVQDeCusZo+ng0HjMgRS50PC4cOIz1w7pNJkhvExaDPIoaxnEm8189d14Net58zuHvakQavoWx69EhX9XNjuKUN62B3Ibbu+HN40Da52p8dZDpzqnvAZS5fZYRDRmkcLIi7VGhVhiSaDVM81y8orM6g4+oZLh4ec3jDz6njwYP9FHx8uKa/+t/9884/Z//x0xLj1aGyXSGLXuqYknTdOy2e0IyUn3uRdZIxx4D6Hj43J0HnzQpGYyuKIop2/Wen//05zz/8gXrCyniPJ1MOJtMsNpglaLoIoW2qD6y3a0IXUuMkbIoqHRJZZ34CjV7+lY8h5xzTCqHUaB0Yjar6Jv9SFRbA363p7KaiEPpyGrfMC8KqbC3lvlszmv3H1Bbh9OSsxVVTVlP0UZjrJWC06oUifQ4yKlKkaT3Ae89+32L+Be3kCKFNfgknQaxH/y3Ezvfc3G9Zt97lCvlx4gFQB/E181VJUVZoouCqIUwb/eNyM+HIN1GdTmC3DElklKUk8mNdWMoqo1hEHNNudhRxqP4b+TnBc9mu6Eoi1wsIAoH0pXUjutQ03e5g0LG/q7d03StrP/GYJQUr3VdRx966BRt0zCZTUmIZHdRFex2ovAjcn3Sada2LdYY7HSKzco1Q+dqysVIu92WqhAPPwCfepG/VkoKKlLCOoOtJH61RP7z//x/yQ9+9U2mM0PSkWpScffuKV98uWV1vRZfJ1fio0jgJ7T4pre9gI9oDCrLYA3qG7IGRBi7n5PPBV4pkEgiK3gDwxhKYAbwM58n9IQgEmMhBFIu/Bvi9W8TwZTbIdHKYLXChlKkcH0ieMnbOu/xMWDtoGBgpL9IKdAyDgkRqyxW9ZgkOV9jW7RxGN3R0BKyVOVAmIiMV8Z4lERRIvubQecUiSgCKVt6KFJAVFGQgu6qqASTXSyYT2ohKJRitliy3zfs2g2n53eYzubsm5bee1CGl5drvvu9d1gsTinKGh8Vuy6QjANVkyiwszlvfr9mu92yWW9YrVa8MZtx5949qnrKdtfw9//hf8jZ+R2urtd88MHHPN5E/qf/q/+M8/M7dF3Hv/yTP+Wf/cs/YL2+RivNcnkiiiA6YFKHokN7z3LheP3+A95+8zV+6b13OD/XuKQoTJnz6bzG5Hw6JE9VOgyDR7vHWXMjZ00pMZtMafZ7jFKcnZyw3W7Fk2k6xRjFl0++xCjNZDajnk3RrmDfBIbyyWHNOL1zjk6Rvmu4Xm959P3vcbVakVAslwtevLzizp27dCGya3pCDMzmM7A9q11Ls2sw2jKdT9nt+owHFOxz8YFgVorO96DFQzunmfJ7M/gOqaNdPw0JV/YSUje3ciXkU4o346zx50YRydfHXcc4wc0jEQjiWJbfJ6SIJeFjDzpgC8XidEZRe4SfjeM1DhJ/oj40Bh2Hz8bRw69693TwijrGSg7YgeACIvEo+9ABg82fSx8w1iHGGd5zxCSO7rlC38j3DzFRXrm1zZiSrOKkgTg+5D0DB6O15uvppb+GYDK6INHJRmSkGq3rOuqy5Pz0hOWsxuiELQoBnlyBiZpIoPeert1xcfEMYuTOnTs4Z7m6usL3XlhfrZjNJ9R1ibUa7+XrbtqOtm8JMY1VybvtjqKoMNphjctGkZbCFKjUofpAUVg2mxXbbaRpEl0LfbunawWs1qYg9D2ffPwxz544dOpZPf+S3bXDtw9YLmY4Z5gyoSjExNYYw8XVtegIo0g+0mYzRWOkQun6eiUk2G5LUYjZespai5MzkQncbVvKsiAmjysM8/mcxWLG5dUVp6dzzHqHDw0nJzMeP30s/jRK2u6m9ZROdfg+4PsOfEA70Xa+MSiHgZSrWcithmkAv5S+YTTqfU8MPv/+q6ZooxxQbr2LQX4uL66oigJnDHfOTuk6YbW9l66F6+trXFEQr2G72bHf7Xn44AHF6RmTxZzZcsl3f+lv8/T5Nb7bsWsTyVhO704J9FxeX5MUXF6tcLka1BhD9A1vvHZPOikWM6aTkrM75+zbjoDBFBOWd9+gXtxHuwXYKbgJpnSgNV3fstls6EPHttlxdXXJ1fU1V9cbLl+84P2f/ZTQ97z22iM+/vhDFLDb7vnyi6cY4/i1H/wajx7cYzKtcU5Tzs4Bza7Z432kqmqstsymc5wz9H1L3/dcX19z8fKK/a5lPptJINl1hCBGfX3fcXFxwdMnz3n+/AUAZVXRdaLPLG3IhwqBSGIwaBwSrYFcOoCvmrGCUwlJqDV54cgL0AgW5YQwRVKWn4z5fSJk+YFDBf9xBb2Mk9xtckRIKiWg09Aqn3xuSc0G9xIYSnA4GNuL9I54TGnG030rjphUvt/SwTMs4oMU0EDQDQF3GjdMMwJxXYQ2Jnql6ZXBK4NyihQN2mlUUbNvE7ttz2rd0jSRspgRVUUX/aGDSuu80eT1JYr8YlFYtFH0oaXrGoqyoK5q6noiXj9KyNUej1Iiw2UtWf5Htr52FyHUWNXhTIud1Zl47+n6js1mx2bT4vs+q4BlMB+dgTyppvK5k2mQBJFrzWM/yfwwRpHSQS5MjbqyA4EkwJLK4LxSEZSW5DINUkTScTUEe0PBQ5/nQ1XVKKXo2k4MM1cr1us1v/orv0rXdWw+/4yoDNPpVMgq61jMZ+zblhCl2lAbRdd36C5LkExqHj16jT/8wz+ibTv6XqrYq2xkvF6v2W63vHz5MuvVB1IK41ozX56I/yHS3ZpCzDIWcZTYq6qKpmkIIeCsYTKd8P777/Puu9+nrit88Ddk7IYOobIUaae+7/K9PK6okeMgj3X78fTK538TuXQceA3/HkDxodL98PLbYJ+6QRINRNLx84+Jp1dVwI8ytPpAph0TTOP8jYdqIqUUDL4L4+Pyfjcr5POPksAwEaWyLUi1ae9bnj9/TCLkooADmMrwPkfgWcqB5eF7Q+bC0BVynHinNO4dcju/3YDo3+Q4Ji9fTWDLMd7Rozn0qvP8de9z+5y3Y7TbXRev6pZIuat4iBWSGrp/judMFho7Gp+3p+bYYTv8l0S2SsxpJaMculGPj0MSkkavBOJhvQ5EAT3zPR2KS4ZKyOHpQ6wyHDEENFG8klJC5y77FAMh9mzXL9ju1nTNHt+3KN+hU08KPSkKyVRYRWGMeOIFj089IfW581qks8RT00BUh+vnJrHnvadpmlyp7kdywxiLcyVEcK5AKSUdvJ10GCoTR4k8k7u3u9SO3gfOOVkPsjrAft8AEZ0lmHz2d4kxUWgBOq2z4kWqxOtJa3BVzYPXX+fh62/y6M23ePT6W1STOZL8W2aLCfcf3KPZrUj+hLp0mBTYbtakrif1QSStvGe9WtN0nuvVmj6AjyCVdJp219H2e/ZNS9d7IonT1uOsY7ffs91ucjdFoJrMWZ7tpMMhr5vj2B+JxTT6w5IOkEIiS4kejfkBxB0JqXTYC47X36FbYvCOOBBVXyWZjpP14zl2c34dP34AGm521vz1c/4X5YghjZ0EwycelsvjORwH37BXHFIENEa/4j+awWqdDiTTAaSSYzzf0WPDSi1pT94Px3VKiZxQBOlki5InBSnq6dYN66sd15kwSsrig+LP//Qv+Ef/4HeYvX7GpJ5B1LhJoG09XR9o2h7vEy7LDaWYCL7BoMnWjMSk6NoAusTaCqtrrHJ88PMP2F5v0AnqomC7WuGy7HWhjJBUAWLb4n1P1/X46CnKEq+gI3uWie4uuiyZlhWFczg6rBGC3hIpF1NRGOg79vvAYj5FNy1pJ56ps6oEZbCupJ5MOT095XS2xCCFbtZaXFXn4jcwzlJPpqCg2e3p8lponSOhciwmsch6s4U87UUONMtFKZFp9yFytdrShYRxFW4y4Xq3Z+97PAplHUVZYpz4SfuuJxoRzQx9DzFhM3bj+zAqJ8SUCBmvGGJDrYdYmnE9kBhTj2uodRnk8/LvoXh76KDRWggmsXGI4/o0dOHFnPMWRTF2+Smbx7Q1UpyRY9u2aXGFk8LPtsVoje88XczdX2WB73OcTl5b8pzTOf8B+ZwdiWRNVkYx+NDlOBWKssQ6SKkhxR6tEo9eu8PyvKKsQOTrehbzgqf6Gt9t8Si0D/ioCEm8b7XtIYq/a4YkUcnkuEIdYQrxsKYH6TjyHD73zXksfw4dMcPvYyb4Qhh8DrOHahB7gmNA+hf9UGbITcT2wtkSb6NYapgEXjpmtB4KiCw2iT+SFKtCUmLTIVY0iuB6ylJk2UTyUJMCtHhSFPIhxSQF0APgPEhnDf54aUAv0rAVM5QLDHiGslCXBcv5jElVoZHOmnoyxftIWSsqpajqCQkD2tA2LdfrLXfuPeL8/KF0L2lLaSouLq8x9QJbTwGNrSbUdkqwG6Kdcf7obcERlAJrufvgDmjDx58/5nq9pdeG3/37v4ebTfjw80/59JNP+NGPfkjbN+KrqRLB71GxBTylCZSV4c7JnO++dZ+Hd0+5f+eUu0tLpVuKXK0rUsWi1qIYJJELvO/xUdbqlIQUPM6RNYrg/Rh7hOApqgLfweXFiuurS/Zdy9nyhLbvUFoUa2LjKaqK1HlCHxiQo5gSxloKJ52lyhghCbXCWMPJ6ZLL6w1p3+U8N+CDvL8rChSGthXcQmnhAwQjUWPsr5SQyhLrH0iWQ348+DbHjE0e5c034oXDYzDkMHDY4W/mGUPsdYi50nCio1wtn18N4xCGSEB4UoU2mqQjKQVcqamnlnpSgIsoHUYrizzIR+JGOjCPIozcmIE65EbD9RxHiSNWka9rVBUj38eMdxx8qfNcz1L+YwhkRL5Oik1zEbowwIINJH30WY/JMDXeN410n+pccqcYOrozdZWJJaNUXpO/Gb/5azyYRG8zpIEJTfS9Z7Gccff0jLookHnq0M4SMPiU8L6jb/c0O6m4M7nVz1qL9wrve1whhrA2g48xDW11MWvC9tKWmTValcobVf7xIeGixpYGnSwp+aw/KgRKs/e0jSL4Pge50mnSdx2r6xVdY7Aq0rQtl37D6WJGXRVU1QxjHCmB7z371LJvt8wXp4Cm6yNN09F1Pc4VbLc7NpstzhU83zzjZLlgUtcj+TOZ1PRdwKiSu3fPWG2uKEpHXVdst2v2zVa6vzQ0zZ6zsxPRo/QyIFXKHijaEwgQxIjsGEg6VJHnhfzI7HeQe7LWHgLrGAnBM8jeDT2v4slw9O0PREKSCjKN4FBNI0DwerVlUtUUhSUGP8qAXF5dcnZ+zv7qimbXkpTi7PycqDXYAm0tr7/1Hg8+/JTd5gJNz3qzYrGc0ncNvYeuh7bp0amhcIZJVUBdcOfOKfWkpqorrE1YK3rzPmqSQow4+4BxSiogg2e9uqAPkV3TcHV5ycXlBbvtlmfPn/Hi2Qs26z2ffvwJT588ZlKVLBcLIGGsodk3XFxcMp3OuHf/HvPFjMIZ8RwrnXhmhD4bMEsAW9VCfnZ9y/V6l9cUufeTyQTn3AF00ipLTtkM3Pbsm32u8hmSXT1uDsOCFIfViIOI2iE5VuOCfmziLl0f+XdwIJmGRTINslGysI3mujlwHsxCh26lkc3WA1A0sOfpgFwe46j5v+F9BlmvwTwVNMlAyBvrtyUZB7KnhSTRUcXxHg+gcbpxM/OemwNDqSVP+ARdgl5pvBaCKVlDaLO6bFJcXu3YbhSrdUvXgSsq0CV9M4T4WbYoy0JopdDK5gDDokyi66U6r55MmEynTCdTJpMpMYJppTBAGyPVUk5DsiM5NJ0FCD1We8qyp/JTFFKR13YtV9UKozbEsCWENgeyw+eXtGXoLBoJt8GYUWXN7xHBkI32KGRhMOA+zJUDATCAFYNpqVIKa43otkuPoFQrdgXtvslzwYyk/Xa7Y3Ulnblvv/0dnj59yvXVNavVGoCubSlswWQyZd+1rDcr6nqCdTb7Oqks1eF49OgRJycnpKToe0mErbUURrp5Y0jsdru8p/Zjl9HQcdD3Hp8N2AEpIkBRVRVvvPkGX3z5BW3bZExPUVUl69Uqd0Vtqerq5vjM93uQGpRigshxl+EBROMVj716Lr8KeD9+/m2CimGMchyYHr2OOO6BSukDoBAPpKEEZceEVWLo3Bgeu008HXs3vapb5HZH0yGwHgI3uTqO3g9k/ZNRKNfe953If8RAHzqev3xGHLqWBpReHa5/CFMP3cvHwfxX7+kx4DdE1YqjfeJbcHxjB1FKfOXG3fj17YSG4xznqyTS17z3jWu4fS23iJ/jL2wAv25f06sIphtj9cYr4hgz3DzX0fUkWQOHX0sClA7JHkeJVToej8P5v+7+3vqow1vGOLJQh13uqPIZxYgZ5YRLK0WKHunfFo+l2LfEviX4ntDtSbsntO1O8oDg0QR0ChA9pIDBU2ibE6FAJKCSF7lkGL2itJZCiaQVMRy+uxADMXqCl7W2adqx0KqqJgxV70YbnLFivA65iGGIyTL5R/7qx7Un73NR42OQytcsr9J1Gq0FOAhjB8+Q4EvFMCmircUWBXVdcnLnHu+890s8eO11zu/dZzpb0PtI2zbstmv2uy2z6YR79+5igUlVst9c07XSlTz4d6gohR1t27LbN0IwJQUhiWxS77nebNnt9nRZSaGPUDjHvmnY73YSy+rAZrdju9uzaxq2+13uLBDiYejKH9ZmlQ6jYchvbvw3rm+HefmqOXEAMQ7jeTzv0T4wDtmvmd+396h041wyfqXy86tT/Bf9GAkmOKwZI4B0tFbdXilu3uz8HHJtmjxbYBLJI7RSCKJ9G5i+eQyvGeVjUs5x8rUYrUhh6HwDYzXJR3arHbvVlt22oQ8SeSRlCD7x9PEzri9XtHfn1NnXeLvvaXYNbdsLt6OUeGWEYRxKPBATxKSJUROCwmqLNRUqal4+u+Av//xHVLbAKoMKidT1OBSV0iPBREzs+1Z8gkKQbp4S+hgJvqcJIjtnUDhtKQuHsQ6VOuk0MkKq2cISVCQmgyssdVVhdw3KWNCaNoIraurJjHoyZTKdURkH+bvQSnR5R79YpaVjwvu8HgZGSTSTjooLI52X4im05O8YTYwBtMFYgUG0sZAUAUXsg3TNoEhGo5zFFI6kEInQgICEVsBxrYQ81IiX6iAnPZBA6dZ4DCHIGhSli8laA9gRpBxAesYcQY/k0hD/9X1P1/cjeTp4Yg8FR1KM0I/FnnrAAKwjhbwmaSlCUMh+4PswSrLGTKporeX/Vq4vxXiQJhv3//x6L/sB1ghIHnIXrBY555DnawyRpKWYIRExdpgjHbN5yWSS0Lpjt4ukLuCTycWRiqRatPxNVC8SKCwpCQAtVmPixyR2C7krNkaE1n3VDD5gGUNlvkKAb/H4C6NUXsieTGMxwrflGMHp3DlmC4wN2DCM9YDPthuCswAqSsyT75N0M4naUnSKEMmylgqihqjE1ykoCZ2UIsWQvYsHgkmjsWjk+cffwEA+yyGWK1YpCu2Y1hV1UWRfMrlmlKGsJ1RKSY4dkzQedJ4IVJMJd+89pKymGFcS0fioKCYLlJug3ATrSkIybPuOZKfMTuc4Z0cJN2stRT3l6fMXXFyuiArmp3NmyxlPn37JBx/8nI8//JAnjz+TWFED0ZNCR6E8hYnMJgWnywlvPrrDd964x/lywmJWMXEJnTpiclIorHMxRQgiEZjzxL4LRC/+Vkof8sh8m2RuhGMfx4hxlt22p2lb2r7DGMu+bUgJbFEIEV8UFFEKf1RIQppA3uu0YLZJOktJQlLWdZ1tiYRscoWj3Q+dhSIhGrysP0qLClLKBHeKgrsMJHtUSvYDdUipDjn7Mf54RC7BEetytKWPA+dmrvKqNG3MV4a4YsyHj6bLeIbD+QRjGwo0xSIk6YAtDWVtcaXCm+EaUibQjs6b49ZDKd1AMh3iQwVjTDBcxXGkOF5sjuEHDFVeF8eie7GOEDzsuHBq9KfMkuAC7Qo+eAMvGMm24ToOnWUqE0tkckke13ntFdk8PXqXH31vX3N8I8EUvOhydz7S+yiVKDFyslzw8MFdJlU2qnWOpC19SOy6wH69odutCZ0QEJ3RrNZrJpOK+/fuslqtqMqSFAN9J63b+IHRVKANKYkskStKqmrCyUlFCNlJJoLvA31IYtZmDZqCfUpM6poX15LEdI2QVy4pYr7RTdNwNpmwmM8onUL5Halbo7Sirmru3rmLndT0fcd6u8P7Ndt9T0wGpSy9jzT7jslmw2y2oG079vs9y+WS69WKsiyZzeacTCcSbHQdMVcuPnz4kNX7V7RtQ9NsuF5fs297dvsN+/2Wza7lnXceUVUFiYSzlhjimNzplLBDpf5RQDOwyAeWO+RW7gPANVRh6yy1Iwm6HgH/oeMKDovcIGco8pjZu0SDStJ1slpv2O13vPH6I1LMCw2KZ89fsDw54eLFBU8fP+fu/XtEIj4G9n1PGyLn91/jtbffBb/H0vH8+ROqypOSQStNYeeYQtHtN2gShbXMpzWFTZBaQkiA5fLqGUU1pfOK9XbFl09XzE83nN1rmS7v0Hn45MsvWe927JqG9XbDH/7xH1PVE54+fcbLF5fcObnD48ePScHTdopPPv2EN958k08+/Yyu7+l6z5179yV4IaKMFW+ipCgKIcyMDUTIQStUdcX9+w+4Wn3A+Z1zjK24vlzhbGR5ckJVlhm0d5ycnFC4GWUxZbPa8vMPPyYhBJnNpFAYqn2RRTyM5pgD3nILcBw3qaGCKuWNbehekiA2DRWcZPPnIKBxRIz8QkhoH9EmLyx6CLQHOabBCyCJrm5eFBM5wRzKjpF2bDFhVngver4hJHwf6ftASp5oMlCr9A0/iF/0I4RAQPwfkk7yPZih02ZI0EG+36HiVnafkISU6xK0EToMvbZ02hGtdDXtO0+/admGF+y2lut1Rx8UrqzQrmK92gqgpaJ0zCUJ6I3WWO3QUeMKg1KJvu8oqpKT0zknJzPm0wmTSY33nt2+IUbE78zlzlYdSdFJkjfXWB2Y1AnfJTbtFVVVEGOgaTpmsxVVcQ3pBSFc03VbIVl8YNh4DxrQMt5CQEyVB2m/JFV7YnA5VEsNnUxyv2NMWAdK5w4mYq74y+fWMv+cU0Sd5QO1op5U9F3Lzkink3goQZk7i7Q2LM9OeO+97/Pee79E23b86Z/+qcgbOU/hSpbLE2L0PH78JXfv3hs7YYcq+NlsxqNHr/Pee++xXW/GDj8QDefZbCakUxJfnb7vENItMZ8vMMZwvdqwzx1KZVmSggTUy5Mlf/fv/i5/9Ed/IKRFIu8NUBaOzXrFBx/8nN/4jd8cAcuUkvhuBEaSaZAKeRX4dhxAHR+vAue/LkD5ZhB96EZTN/a3gVAfQIOYpON2kDOJo8/GzfPeJCvTuIcey+bd7rgaii9uvz8c+z7lYO820TOed5AHyQl3SjTNXuYLHu87Hj/5Eh87KVfWMh9jHMxIb55bIeN26DzUGXo/ioIZQNWvEgvfooT8FYeAjl+lRY7v018XTL/qdeN51c3Hv/b5Sg1y2uNAHQDR4Xm359ErQfTj8+Z9Y/ydoE5jknT7M46zd7gfR2TYMYh+bNI7JDBDMnT7Om5/TiBXvEqXc4piBj5kVAJGC6s6RCiHvU9ALGl2iZjk0dGTQku/vaZvdrTNjm6/xXUvZW1XKYNa0plktHjqWq0oDBB6qfgPARWjpFm3JD0EmDASNw1EftfRtR1t07HZbGiawfeipqoqQgjSgV8OHoBy/cfrhSIRg8eniFKOtm2zbJTcI+/9WHBickwgJJbP9+ZYGjQSUiB0LSZFSueYTCbce/iA73z/l3n7nXeYzBfYosDHwGq14uXzl7x8/oJnT56gU+DB3TtUhaOwhs/bHZmCziSbpbSOPir2XYcPgbaHoAx951GxJSnD9WbPvmlGL8YuXGVpp57gPc5alI3s9g3rzYaXL16CqymmS0gClvoUSOoQX8rdOxTTDb0vA3AyrOXHa9ntuUGKqDwfVZ5Y8pTD+n/z9Yd58aq59XVdTQdydxi3+ivP+UU+Qn/wtDocBwJwWGnVjd8e/UXd+BZGgkmlNAiGMxDQBwuA8cv6CukXGUCuoZo4ZQPrXHCZEIIpRLSkRnS7lotnl2xWG0IXKIopMWraPhDagCs0282Oq8trUnAo3fLs8ikGRVk4CudQNuFixPuOmALaCLYRkiJETQiCXRgchXJs1jt++Cd/xr/+F7/Pm49e42S2oHYFOiYqZSm1pcwdOTF6uiR5lXKOPonUZtv3hE6KthTglKG0juBrQhmpbJB7l7tOQ5DOxKSgmk44OT1h0vRM9y2LfcvFasN8ccpstsS4gqZr6TPm4FPKcp5SRGyMIfWey2vxPLG2QClRt/A+oXTIxTQpx51WpLStFFm6oqBp96IUUJSkruesKGlfXHC1XrO5umZ+dobVhqiUECbGsPM9XYyEDIZW2kohZ0ijz482QoSllEavE/GE0TgnEq0hQuh6fN+TQoTkcNYg3jVwLBc9dD312UtlUPfw3o8E0zAOh+cPuErT7LMagPhwVdkbRbgXUaBRMaCVHkmlXveyv44kVSbIYhzHfOEcXS5yGAqLSbmQKfqcB0k3l3RX5evzLSr1EHs0He///CNef2NBXVcoE1G6Z7GccHqmeXkRefZsQ8DhkyUpC9riQw8EjM57c4horJCoEULe40XCNse8PuVOL+lwOl5jj+P749xCil3C2K11w4cpRojxW8UvZXgwg9IG4xR27MQbSFMxJZb9MYzf+yDEL0SsAZOLMPUAMhtUMhA1MSiCl/+Lf53GKDcWRhplsMpK/Jpu5hnDripqfkKwVmXJpKo4mc2kUyeEvEhrmq7nZHkmnYkhcXV1xfVmS9u2nJ6e8e577zFb3Kf3Qa5RF1xeXPHwze/Q+UTAsVje4emTFzx+fs3p6Sn379zny88/xRnL+Z0zyrJgtVrxyaefs1wueXD/jOXZhD//kz/lZz/7CS+eP2N1fYmK29zNnqWYU2BSaJbzigf3z3j9wV2+++ZDZrWhcorKaUySRoBd31NVE6qiomsbYt+jtQOtxiIjIYtVJk6P48KBUEgjcSNel4GLq0v64HMhaMnHH33Eyekps6IApVgsl/ThmrYPGB+h1IcOTQBt6DpP0/eYZCiMZXGy4NmLSyKaoiqplWXX70QOHyAqQtcSokebEqMMxkYUhhD9GCxZa+mHYqQj0oYx3soxvFK5E0of9us8pm/GThm/JGfMOae5iT3IHRtiOjjEFiN39ZX0TTDUQw6ffe2NwocWVSSKUlNNLNplaWaVI9DbiXf2mROCJl97ZriSGstZB1Ytz9WjCOcoTU+o7A2exvMPcv7yc/ODjEWL+bx6uN/5Gob9d+iGUipKbnW4eOlSzF2IRCU5DnktUGZYJaS76Rs8l24f39zBZOSPFA3ea9omMJvPuXv3Dvfu3aWuK7CKJM3SKK3ow5Znz57hVORkXvPm6/cpCsuTZ89o2x1d37A8mYufhoeiqjk/v4tSit1uR9u29F42i+1uL/IPUdqllZYuKK0NZSRv5g2ha6Br2e12TGYli/mCaGacpil3X3+X99//mGfPL1ittyjsaJhGiDx48BDVz4kRrq5XYojZ95R1DcqgjWY+r0Vj15ZMtUWdWK5Wa8qyxFpDXdd0Xcc/+Af/iJ/+5Me8//773L17h/PzM2JMuKhIUfHFF1/knSCy2235+JOPuf/gIaenCzrvefriBevNCqMtKvUEHzEYzk9OaXZ78dO4vib4lqBF210fT85DNoTPlQo6ayQ3+33WALUjiKGUorCGoMQjQpSN+htJ1lCpXliHcQXSKea4ul5zfX3FbFpTlw7vO+bzOefn5yxPT7larSjLijdff5N9v+PLx5/x+ePPqOsJ9+88Yl7P+JVf/TVePv2cLz/9gN/+27/Dv/lX/y926z37fcPFs2vmszmLiaNelhTWcnXxjNXLFlc6ITVTopzPSbrEuClFdYoqLPcnE5rdjpcXH/L0xUt2XU85KYFEDA19u+OP/ugPOD075/TknB//5U8ycRfpux3bzTXrzQ604uTkBEVitbriT/70z3j3u2/x9puPePT6A0xhmMwX+BBp2466muGMYd/suVpdstutOT095e6DOZeXaz75+FPa1UuePX+GcT0nZo6ualxZoPYSDC6XJ/zgBz/giy8fs983RC/VaQcaiEw2DdqqjJItx9JUsngOdUF5Ec3k4tjab7J/yPHilgOSFCOpD2MArrWRqgWt0QbRAc9JgbWWqAJGF6AZARSpvj0GwBQhz21iIkXRQfdZJ5iYiFr8GKxBZDm/JceYeA9Eoj4GhY+qx48kXaQaQZRXe6ABtmj2xtCXFaZeEnVDm+Dl9Yaryx5V7ujaKTClrmeU0xNa3+JDL0A24nGkyGwNWiQmtMZYjbWaqi55+PCUu3dnzKYlVSHdkYWDXd2OwastK1k3FUgFkEOriqpMRK8hGiJikouCrvcsX16z270vhE4G2EIIqLxVpSjBad/5UVLIOsN8NqWqCvrsNbfddDiTQVR10JR1rshVrz7Lqx1k8sgtzsZonDU4F4ghUZYlJOh7MdCM0WfSpaNpnjObzSEpQhAS/+Wz5/zkJz/hzp07/Nqv/Roff/wx1xeXFMUuBw2JxWLGbrfjww8/oK5r3njjrWwAClrvSSnx7rvv8fiLz9ls17nbSIiooigOBvIhZoJOgDLnCrb7nVSFqpq+77m4uMjFAoHNdsWPfvSj0fR0II/KqsJazYcffsg/+Sf/hN/+7d+mzyaxPntfLRaLMZgZAE3vX03A3CaYvgJivwKsPw6kj0G7m/tbGkluYw4A0XAcV5MOWvXHUnWves9jaaSBXDquNj32dTomlY4/07FE3jhtU5Lld6h6PTrHDUIrBpH0Cp4Qewprc59d4IsvPsX7TiBKJeBJwks1f14DxrutFMooTEK6ubXmIA2pxorZm4Do8c///4D/74LAhwpp+fdtoPpVoLXO8dnQjZhune8r5/8aMmc4MqR6/CLIPkWHfw9PPiYkX/2eDFeVDrN87AmJ2YB7lJyUKxgqI0lpjD1VjmGHfCwEPz7vuEBGBrgZP4XRMheILfR7Uurx3Z796oJnX36KCh1WJZwGvHhk2NyBHRAZCEuCFIidp2kbnD0Ux2jE5MwMkqwx5S7SQKDPSg49hbEHYCuvG4M3hrNW5IJS9vOIYfSvO5aqDNETuj6rB0Sur68l5k7kStOCyWQGMBrDi9dnkor9cV3T47rVdR1FLebQk/mcO+d3+cGv/S1O7t2n2TX0XcQW4vX0Vz/8ET9//+c8f/qMrm1ZzqYQI0PpUrtv8rUGYuoAQ+0qZvWMZDRX2y0vnrwgmYLkPUk7tC1o+w4fgyTXSuFjpNltqeuK+fxEvHGbLbv9nouXFxj3KRebPW9+9/sU1UTA/8C4DsseLUNi2H+HdT/EvAekxO0V/jDf8j1Pt3cmAS+OUqdXjPevdq5+09y4TTjJa795jv6iHWOlPNy4b1+5B0fz/xhQ+sbt6JiJUurQ+jBshOkVhQKQNTYP9byDnCIp0YcepzSldeJpu+tZPbtmv9qR+oSzNTEh5FL2WlvMFrz9+lv03ZonT6/QtqeanjApbZb5DujUE3yL9y0xJWxR0XuFpDsGpQqWswWlmfDZh5/x4c8+4JMfv8//6Ld+B6cMRkk0bpSib1pU9KPMkbVaYr8msW0a6rIkIHmT1S57+1ic1mgUPkVKpCtIoTDGMZvV9O1e1q3CSrFjUaAdFGVPVXdU5Rxb1ZK/9eLhqI0AnUopdFHQAdvdLq910tnkXIErqlHyp+89KCXyZjGORUpDzbRKkZPFktVKpACrouSkLPnhT37KxdUVq/2e5Jx0NTkBtjEanIG2x2g9msVbbShKsURod9LFr02OlpSmrNwYH4rnUy9eTlqjrBUw08RMmuncuSSjqigtRSnypH3jRWEmHfw8Q5CuBB+FxOm6LufR5pCz5HjcGMNsNkMpRVmWIvXWy35ic7V4TFGKqtsuFzdIbt02DXVdjx0Eoe/Ztt04/9q25eLigroscU58dqwR/42Q1UNiTCjjqMsS8bZ1GFXyf/hv/i9MJgW/+dvf49EbJ+D3RC44O4+cXkT+xb/8iKo+w6eSqApQhkgkxL34PA/z0BtCVAeCKUlhhBD9WcougFevIpiGn6/mC1YfCsxkTkeiPxSFfZvW2pQgRS17ppLOA2sKkjuo21gnsuYhiC1GiNKxZLIqDUlhlPivGA22LNG6QLNHvF8G+TuLMw7fe6KXsarTgVw9FCdxKDBGQPOUkqgxeDAxMlmecH56ynw+pdlsUbZgt2+5urpmOluCcWz2HU3Toozj+cUV3/3ud3n77bd57fU3eXHRUs+WrNZbttsN9197i+2+p5rMMUXNat1wud7y7/1H/zEvnj/nL3/4I4Lv+b1/9+9x8fIFH37wAX/5Vz/iP/j3/n1OT0/44vMP+O//6T/ji88+4dOPP4YUsEZxWiP5VvRolSis5t75Kb/yK9/ndDFnWpfUhWZaOUqnMUokHK0xzGc1Xd9zfX1J4SxFVZIQcjgGiWNsWeT7dshDBTsT5nAymdC2LVprirLg5fNnNE1DXVdoDS+fP+PBw4dCUhiDLRxlXTPpI31S+LAjtJ3IsfpAWcrvP/z0U977/ruoALv1jtV6jTKaqpwQmo6Lpy/oesVkPiHte/abZlyn2l6IsaIoaLOXoVIcisJzfG+PCJWYDgpJqKzApbOh8G0CeUzpb8YMQ+/OV2OJm2vEjQK/w+kPzx6KvXJcKeSerCPKaHzwlBZckbBlBJ0lZxkKnYRyEQ+mXBjHkI3LGw6py3B9SRlIQwfh4UxHn3S8tgHe44iHGu6bSP9FMkFz9JkzhAWgh6xPCkkYpfWku/BmgDUstIOEhBIYUCmUyUWAQzHgV6Lnbz6+kWBq2y37fUPb9PgevIdf/a1f5dHDe5R1gS6sLBx58Ykx8LOf/gQdO+6enbA4OUXbkl27B61wZUFZSaVIUVSoQjoVqrIWoDy1xGQoioqirJjMInrQJO+7zISa0dx3u14RQinV/jqAsjx//oI2OCITjDVcPH3JarUSDVtj0KbAWQdIoFZVFSfnc06WU+azKdPJBFU5us5LO3WCrm2oqhlFOXhQOO6UJc66XCHustSX6JaWdU3be9brLV3XYo1lOqkxVmGdwQePKxyvv/Ya0/mCly+vgMRsNuXF8xfcv3ePi4tr1ustu+2OrpVqocI5Ob/TNKgxmLPOjpvqALwNXU2j1iURawuMNiItkmVCpAhIWMk+ebRW2NwiZ7VBlxXWGKbTCcv5jGa/YbdZY4ylcCWz2Yx90zGbTzk9v8P5vbtMJhOapuHJ48dcv7xkcT6nWhheXl7gfeTLxWeczs6YlyWFjlirefbsBY8e3mM5r1mvNlxdXHPnZIFKHdF3bPcdWjW4vmW/AWUtxWTKut1w99Ed6vkdbLUk6jl9qvDe4NGcnD9goUBbTe87rHH84Fd+lRgCL19ecvH8OcvlCZqAwmfCcMoDDM9ePMdYSyBJ+2iEsqyxRcV2u4U20ceIK2qMLWnbHq9b6cByBW5xyuLslD5adrsOVzhWbTsCxCHA9eUVTbR8+fkznnz5nJdXF2y32zHhDUnawCVRl+RIxmXM1fkHz57DQpMy2H2QdrHW4IzGWJFs0OZ4Qc6ByEAuZVDFh0jvewY/Hm00Rgug7wqHsxbvA86F3PEh81MrTcqgS7ohSdDLT+fp+4Dv+uwrJsaqwpfLKnlze/gWHGpIflRe79UYqEkiLYBPZABb1LiJkxJRKXqVoCwx0ylmMoNyIlIfxtCFxHbf0+32lG6JdRXoiqQMbefHDo80bELDkaSaonSF+NPNZ9y7f59Hr5+wmFlKZzBaCTiYEtaV2D4QFThbYrTJnTIG66TCw2mIXos3lA5YZwkhYpoW54wkuConTSGM5M0BKDoCLRCN9dPTJScnCyKezWbFF188p+8Gnxmp6hiqXwaz6SF5kfufQVeQINvKnGnpBdACkpLK9LV1GGNRSjzWdputkKUjKRFZLpecLJYs5wvefed7/PAvfoj3kaLY0rYzZudzKlWx2+xICU5OTqSTt1SYVtbot99+W86dBOzsfcfO9zcIj816TdM0VFXNZDLFGEPb9zRtn/069kdEi6frW/7kT/6IlEKucoGqkvWobVuePPmSPnhC6ClcSZuT5iHAVUceGRLEHQhsOCaXvl6GbLj+28dYbXys03r0ODB2BA3A4XEyaYwRohqydKAfE/5hb7xdkCEyVAcw7Bgw/gqQmAFKeSBm0gcGPfE4dpkOwKJ4ORCPOqtu3JNEGrqrotxz0bMOkCs9r64vSER07j5NhENlGGoMPsdEHI2y0rk9yhGMpKAag9dDJejw+m/RWnuUfHwdDHF77N4mFIfXHxWhfSOo8arE6GuJoVvP+abrun2e2yC4cCbZiDsNMmP5+gfSM7+n/H1EdV4JqKOOQHx1RLqS8r04VBSP1zYkmcP1jpjyUDIjD4SUryMNJG46vC4NBraIfF2uKG03F+zWF7Sba7rtNTq0FDphVMIqKI1CeZ/3MU2pFKH3NF2D92IoX5eOoqxGwlrWjDgmxKGP9K2YJpPv51ClO6z5WmuWyyXTyTQX3hQS5zs7evoF77HOQsqV1kDbeBJhBLpjlOcZCaZQ6qBQMPj/TadTSALwDobRbV7vtTG4oqCeTtk1e3bbLc+fPeOLz77AlRNW6x1tJ15OV5eXfPLRRzx/8pjtegMk9pcvbnRtGiMpoo5JrIFjoO9bkrWkFCicJQUvxJ2SKmilEsG3kNccUVloWSynPHr4gPOzM66urvji8Zcix+UcvfdcXFxwfn+LMg5diNoCfqh2R0yY01dBxJHcTIcxeHvcHsilIeu/2a102Mtuz7eb53sViPFNx9fN41/843Bvhzh+AIxv8tmH+X/89MO+JA8M0R6oMQaB7EKr0jeWSNwEmQ4nTxkBUlrD0BUcE3SB/WpNc73GJSnKCH3AJ03os6JIgokpWExnVJOayJxIg3EzdOqwOmBVj2961rtVjtUtPRBNDYXDJkehSk7qJZ/97GM+/9kHrJ48442792h2DanvCVFca3wCZy0mm8D75LHakozGVQXzwmKcRVuLMoYYE9vtNktVSwFYCInW524lFEonrjc7rFFEJRjC5bXIOW+3e1JSaO2wRU3XehEiTSK71EUhuZSCLiTW7S6rFahR9h0MfQwZTdCST3Z7icOM+HeeLpc5VwykkAitx0QocuHi9WrN1dUVIQbKqqSYzVBWS3SUknTmA8a5G4VC3nusNqSYxr3G9+0hHowRozWudHlN81irM8ioQRkO0kEi5yf+PhawGTMxJCuWD7EXa4eQu2esdRicVLUrRd/3IgPeirx4URQYY/E+cn29JgSPtY7KCUYzdn72vZBS1rDdb8XzNXsbazS+9UQdx7iu7z3RhyxvJnfeGPlcUSVwFt91bLY7ei+E32KxJCSFRZQkut7jzJR//H/65zx9+pR/8I9+k3e+ewdtIsvTgrv3a+YLxdXlM4KaEGJJSFbkDVOD0uKLqBIErwnRSodSTCQywSQMhCy5URHUUV/jEdt/XKumjuatyeC0VkO3PpK/DpLW36L11uqKEHPBUBLPFGNEildGQMJ4lX3XDcFrvA+ZOBo6F+xQuZM7NBJloYl9EvIKg1UOzUAwBaIPdE3u9Bu2zoDEr1lhhyjrrazPsj/70LNYzDiZL1hMp7LHR0W779ht9+x2Lad3FvQe9m3karXj8ePHfOe73+eNt95ivliw3ja4csLV1RpjC87O79H3ntPTc1COPkT27ZbXHj3kr370l/Rdx52zU95++01++uMf8/TpY2Lw/L3f/V1ePnvCT//qhzx78ilPP/+Ey4sXTIyFBFpFCqOwSnN6cs7Z2ZJ7d864c7akKi2FM9SlZT6fQPBjvmWMzd2JQizX9QQpZo34I6LP2ly4jQzzru9y3KTF81NLkf9QULrKHs8PHt0n9J62bZgvl4QgmBrId1sidhxd52m7ntZ7dvs9y8Uc7zs++PAjFvMZXS8S0WVVESLYmFit92y3jZBhRrFtWpQyzOcz0q6nCx3aBEiJrvcyytQhvxkl2o7IpTEG4Cg3Mcc4UxBydIivNAeSaShCyWn6kIt/hSZRw+9vEkojjjZyP4cnKhJEKcwcbECMEbWeemYpapFqTUoKzBhybI7imCGuOCKZxngvDbje0R04il8GBmloShr2qhEPHC49ZeWxfCuPY9fxFiaZc+O8G94nHWGF+eYe95ALSa9RMRPJmXCWiDjlAnCVv5ScqB1gnm+Eab9ZIi9Iq7AsJomqnHJ2fs7p2Smz5RRXlTT7jq7p6UPDrtmzvr7k/p0z6rrGlZUEVX0UQ7kUaNsO5xxN18gE1oauy+SHrahNhTGOajLF91HujVaorgPi6NlkjABuvvf4xtOnFm0LQmgxtqA0FdugaPbtESApg7/rO7SKKCsA/r5tuF/fYXFywqSq2Pqe2WyCygbqL19eHoFeEnBMqooQE23b0zR7qqqmafb02ZCtqioxwMtt+CEFNBIohCSVKdY6ttstjx69xvL0Lq78kmfPrrlz54S28ayvt/gQM8EE0gUgMhlDNVYeWV9JZA7SPPLvQWJDerAlyi9yUBazwZxKwy6hciIQRTveOeqqYjabEXwnYLCGqqy4f/8hxigWyynzxZyUEh999BG970mdp56W3L9/hxB6+q7BGMfZ2QmbyxV+b5hXjsqIoVpRGFahI4aG+aSgLjXOVRQFlFVCKYNpHX3n8ShCdJSzM+r5PabL+xTTM4rJHUyxQCuLTWISuttt2O12vHz5ki+++BRjLbN6RlM1hC5R2Skvnn+BNYngNX3vMbYSYNdI+77vesqqoqwqirLEFRZTDlXhBmMcxmo0Xsa6UigibdfiQ2C9WfP8+QtSjBRlhXXFKCl4vVqx2e5omkZ07Xc7eh/w2RBUJwmm1ZFG7bGe9OG7H77vDMSTW5etkELWDETRAWiNg9ssUsUZo8hK9SHQe5mvKWUvnkxUFUHkF0W+0ZBCwlhNMPl+GSukZr6+eNQFkfJ4Cz4/5gMpRFSUCjOd18VsL/ftOTJofEwwjeQSyA4zbkIHcHhYlQIQtIaiwE6muPkcV86lEnA2RW9X+NAQlCNSoE2NsRUoje+9zH9hY/Lb5fqHDMq7wlFWFYvFnDt373J2tqQuFdbIdhVCoO9arHFZMz0JXRgP3XPOFThT4JVoORM1KjWEDFrtmx37/Y52v6frulzlk0Y9/5Creoa25mGPddZwdnbGg4d3MBY222s2mz2XF5sspZll8I4SlJRiJjOHVu68sSdENk+DNioHTlGkgaqCxWLO1cXl0SaPdFT1HW3b0jQNu92Oy8tLVtcrZrMZ9+/d54+7PyYl6JqG3XbHvOskWQQKK92Vm82GoiiJMdJ1HcvlkqIoqKpK5nMMOFeMSXLwnt4fugWGx/vej0RJnxPUwb8jBM+XX36ZPZnSKGe12WzYbrc0bYt1lo8++hAwzOcLqroWX8EMIqLU2Jl4u3NpBHFuRR1fkbg4BrpfVXn0qse0EIVDB9NtoFGpwRuKUQ7gBhB5m9w5In2Gz3Lbe0leN7aIDlfM0Kaeks7SWcj/zVcDP51J4OOq++EaYoiyFmZST5uE7ztikjG12+2EyDIi8RhClhAdq4kO1U5CIEmAeCDS1Ffe93AfcoCtvvp9/cIet8gldeNXXw9KjGP9GBz9t3i749eMuAmMY+6V73X0nq8mmA57gSxZoikvad0Auh98eeT9cqKfXz+QNuP1jOcPDNJ0HJHJx595HOHj3Hk1IZzSAPxKrJrpfiQyEmmfwQ1KqQxsHBFRQjQh3j8IOaBJED2x79iur9hdP6fbrYj9DotnUipUDBiVcDrhpKV6rEANMSf4Q2d4jPheqniVOkhbChgmygMpiZRvSHG8r5JvZbkILZ9HKTUWvw1FXDEcCHOlEZmi6MfPGHwgpHC4V3Hwuhtk7w4eq1K8YzDWyvdqDDoEUuqIsUXljqe6rikLR9s2tF3L5cuXfPD++1hbsNnu2Wx2bDYbdpsNly+fs79eETuR9utDn4FHMNZR11Ns4ajKGqcrAU5siU+aMkbmswmzacW28ygVUQSCbyidAIBD13thFefnJ9w5P+VkuaDr9lRVwXw+ZT6f4pzleiekX4gBYhDpW5XIpoo5eT4UFdxez9WN7u5b4zAhY+AGuXRzjf+q/9JxXH0Ekvw1ZPy/bafTL/Lxqo6tQwxwe5/PNPMxKHTjFh/I5vE1OWYbHo4Dijm8WN1YSRiLMVReE2OS9S2PB5Vzat+2hF1Ht9lDH1AhigeSl7FRuQI3KairkklZ8vTxY95+5z7z+RyPg1RT6BLintB1tM1O7oXSJG0IOJIqscWEQldUFHS7ni8//pRmtaZIUFuLqyqafScya4ArXI4zIimvVZEkklZKo4OMbxURwjcEQudRxVg2BSjxaXKWiKbzkabtmdTlKM3WtHuCDwJWJoXWkQKRQVPGorQQQ/QeH2XnCVHyRZSSTlEjea2PERUjSknM3gafMR8BwX0I2Cw1HYMQyaH3WGWIIbDf7dhu1oDklz4muq4VMqass2+TxIJlWZCyKg3mkNvGGKWLqGkJLuY46RCrhtCLX2k/SDylkZRSuaJbjcNKBk/IXU+yPptc5CnFvqL0YMcYdyhKEPDSAGksFBjWlMGPWIixQNJp7HxSCoy1mGSJMWXLhUiIkbaRYtWhMxaQ68terEqJhP9QBJaSIgZNHzQ+KHovKidN0+B9kk4UFEYboirZrCPv/+wx1moK8+s8fP0U6zTzacl33j7n95/8iKQWxFTTx4KAQukOpQKomCUnDSk5UtI5SpGCCgaQOClU1EQVhAC7hQ4fVgduxl5KMAnJCbKv7rDmpEPnzLfhcLaG1Mlnjgl0ls3UDm2l4xcs2oDRil5pSJ0oJWVZLK0NAzk14AAaSyxBYTDa0dNBVCLba6SDSSVN6HuijwffvahIUefvWLCcEMOBCIyJ2WTOfDqndCVt05IirDdbQkjMFyf0faKPiav1hpdXK8rJnNOze0xnS4wrJe9NSbzWlCWimE4mtE2LLYQE0ETa/RadAnVpcdZwdfGCJ48/J0VP6Rzb1RXv//QnXK+uWF++ZH1xTeoTVknhrDWJSW04P5ly/94pp6cLlssZ00mBNWCNxllhQ0IMsvap7F+udC4IZsQLgg+ZqD5I3pGGgnEveNyRf68Q4QU+BDrf0/meohDZUW0NLomdymq1ygQP+BBR2mJswmb/zxAis9lM1t1eOki1sYSYMGVBURi6EGl2DZ3v6YPEgK50pNYzKoaoHldYWi+FmVobutw5KHu4Plw73Jqzst/qQS1rPA6J0YGMOuQOr1JEGdbiw3mPcYijXGvIv46TnJzzKkWWI1cjLiFShWAMuEKjzUCKy5qmsFlqbuhqPwo7bs3Lcd06wjzG2HC83qMs9CguGu9HUiPhxEAGqWM/3MN50gHaz/neoYsJFCoOliiKm15REk+oAXVNg3pRzn+Gz6hv3sIBk1T69ic/HH+NB1Ouhug9sU/cObvLYrlkfrJktpRKve22ZbsRo9bNZkX0PbPJhLquc/Wb6K9qZfFRAJPpdMpmsyWG7NuCpaonzKYLJmWNNo6yntCZXiTyUsQ6A0oM0mw2qLRlhVKSbIYIxhRYVxJNQVSGdt/TdWKmaIyVLiit6foeZ8UsU2lN0zVoIyxuOalZX3mmc5FuarsOt9oJmDvKfyjKosrVHi1Nu6eu6izxJ+3Y0+k0VyOLvnoInqLMcmLR4nMFz3675c7deyx84nK1Y7VqmU0XvCgu8ohTuftKkWKPVglrFXSHAD74MFblD9/94LM0gIIDIDBszFqJXm/ve7yPAsSmdDhHkqTLmAKbPTckWJH7YLSmrEoePXpEjD1VVUi7ZNvy8ccfg4J75+c8fPCABw/v8ez5UwrnmM+XvPbwET+9+FkGRxQYjXGGZh9o9mv6dstytsC5wGxaU9WWooSQHEU5J/hEHxXelJzeeZPZyWvMTu8zWd5jdvYa+zZhbIHShu12x9Vqy8uLDR9//AU//qsf8/DhfXQyTMopaaJpGkPX7sFpQg9NsyKpQiS+nKMsS1abbW6XFwKlLEuKiSXhUNphtKOuCrTy4mUUEzF0XF+viBSs1xvWmzWn9VAtKwRTWdX03fXYLtr3Pdv9js4fKqK0ElNL4Zdy4BzI1VIDyDOAtockW6mheynrY1uZN8aoDJ6rAyk1Ju8ie+W9VDJ1jSQrKjP71pkR2A/WEKwhuYSLBmXHvVGWrgwGDFW2x7J5YTTnlGBT1A4U1kirtlVSNfKtOoYNVh1vVgMgqo42WzLNLeaZKckWGJVClRV2NqdcLCjKOaXSTJcLiutLEluMnaB0jXU11pU5IPF5Pxm6JBQkPVYfK6UoyoLJZMJiueTOnTssF1OcTSLbleUJQInBqG5zO7HOG50kt9bKam9UInqVNX1FWmO93nC1WnHx8iWXFy/Zbbd0XU8I6ZCAZVkHGefS8qsQr7r79+/yxhuPKCvNdrfk2ZMX7DZ7mmbw3tESdMPRnMlg61iVf4BnJaBSo3awydKAy+VCArwM7Bttst9TJERP3/f0fc/l5SUvXrxAKcXp6al8hlzBuN1u2Gw2zOdzCuuwRjTZN5stJ8sTUkpj0jsQTDF6tutrMfTcb0dN94QEkSCVTl3Xjb8bSCbnLL7pGKQrV6sNs3rKUJnZe892u2G32+N9oNnt+IN//W/Ytz0/+MGv8+6777JYLHJCdxiVQ5A8DN6h2nMgmW6DgMdSF6/qCHlVJwYcPI0G/7ibkjtHclPhIM1zLHN3+3zD646Nl4fHjzuYhnmWsteZuvF6lffIm0amg0H0oCs9JAlw0M4/Bj5jEHJp6O4stKb3Pb0XSdy+73AuB746EXsxXh5k1FJKUoGFBPfS+SC+BPrGfboZjA7AngS/x7/7xT++rgvo3+KFADckC26Dya8av+OYPyYX0+2c59Zc4Ob5blynikcv5DAHbhBgNwtPElq8Z8YYT9bt4bnDriLG5ELIjKvirTl843ri4J16eOtxfeUA/I6dSjmhkfsxeInJ2FUjoQ86FzyoKNeiUoTkIQaib2n3Oy6ffk67ucAkT2FhWhlqB6GLaCJOibCLnFM6D3zfE3wvsXBOv7z3uapf5nqfQQAG/4u8Jvi83krIqsEqjBY5LD+UVxqTMWtZB/wg3aYVymmIPSKTIXO68z0+yj0XYiuO3YegxmEhEnBZkiPHbZGUlRNEFs/mGL2uRDpFxUTse9btFc2+o7Al+6ZlvdqwXq1RJPpmTxz8mrSCEOl8J+uCMdJRXBZMCk3tDGVVgnZs9y1RgQ9TTk/npKu1ACoKfNcwmziKokQbm/eDxIMHdzk5mVMUFmcUhdXUVUFdOgGFU4ToRTI0ROlqz1ryw1592Lvjzfw65z/DWnx7nR1HZyaZDl5Nw/lueQYpZPQmbr3JV+fksJfdLrh41XO/LcdNTCj7A+ijODYDJzlUeMUJuEEQcSN2kCcMAJG8hXRKJtINwGN8btJjd1sa8Bpj8rwL0mnfebq2pdvu6PcNJiEgasgaLdYwmU6ZTmdM6gpn4Wc/+Sn3Hs5Ynt8RssQX1A66pmPfdex3W6xxBGUIygElqApnZtSmxnnFk8cf8fTzLzE+MLWO2HdMXEXsPD5JdXtdlWy3UnCq0Vhb0MeYi8czeJSSSLNlyfEUAoTsj5H10SOgTE1SCh8DfR+xLoo/boSuE7zHGCGxex9JbYdxGmsUShuMtugI+74jpHTo9PQe4ywkLY9nSbyUJFf1MeKseITEJJJuwUP0HkLEKEg+YLWiazv2XcN+v8c5g+4Uoe9o+o5gDDNXjDGOUonCFfggZJJx0mkxrKc+SKGk1gpbiFx2DEMHaZOL2cJIGt3sxmf8++CHJN0fsmdZU9zoYnXOUVQlwJjvBqQ41FqJ0wdCaIhVlZLHBs+o4APKaJqmwVpDTOJfrYCu7XJxqRSvxiw1KPJkCmtszpHiCArH2KKUldy+T/Q9pCReYDEGKWJSLSopnHFMJ1M0mun0jJcvVvzz//5POF3WTGe/zmJRM6lq3nvvIX/4R39M067x0RNSRReRzgYlHWlSXGpReMDkiMOTlOT8ok5upDMWf8PT8fj4arW+5Bn66Hu6oYqQuNGp/Yt+OFORgiJEyUOJSeQgcyeJ4LAJo0SBRiFkkj7uYNJWAGkl+b/WRtL2qDDKYnVPhyEGAb17NF5J12Efk8jhhkCM+d4nBRFUMrIGx5DBaI1TlrOTUyb1FIWmbTtCn9ju9hRlxcnJKc9fXLPa7ri4XLHddbz3S7/E/OQMW9QkpQkpEFFoU5D75ymKkvXlNTUKYx2awG695fz8HJUS2+2GTz74jP32msV8BqnjZz/5OT/58V9htMI3Ld2uo66l8L5wlmltOTud8J23HnLv7pK6drnIP1EVVor9VZbPT4FoHVpJ44LKnSIxDbKhieB7Uh67xsi9iTHktbAfZQajLF7i4WntmNejFNPplL6XbiltDNY4QI+kjQ9JCt+TkEgmd2MtlidcXV7Q9T11PRUi3FiMK3DGou2epu3ovJc1K/uuay36TikThcYO0tARXThiJ35zh47PoUHhqHhTG7FoyeeJQ0yXY8NDtqEOMZz8U47bRNXw9+HfA8Z99PvbhXHjkeNGeS03CCaV4z5tBGdXWrzhD6Xcw/kOcak6PDjudzdWn+H9jj/XkK9xCGLSjdPks2bSPR0BEENupW9RW0NqN/zcsFoaZCOGD62kC5ZMNqn83SmG7qWcf0Q15nA6x1jjB87n/pplG/hrJfL2tE1Du28gKH7rN/82b3/ne0xmVipto3SSXF1ds1pd07d7TmcL6qoUg0ut2bYdxhUZ/Ipsdx1tE3IFh6YPkoi9uHjK+Xnk9NSyWMxo2khkqFBBKuWNsPFd6AldT0wKW9SErgNlCUlTTeZ88sULHr/8nI4J16sNTd/hxdwC5xzVZEJVWhazmrfefoM7yymT2hESrHd7sJbVasPV1RWbzYY7d+4h1c2erhOCpW1bVKbHFtMpvm/p2z1KQVk6qqqi73ucc5iyoHSGxWLG9bUEwLawzBdz3njrO/zRH/4hH3z8Gc+eX3F+9oD9VrpH6no6Gv4aIx2sprDM5lO2l50QfymRjCYlbnSlDK2ZQ7V3IlIUJbPJhKqscFbLeYOSRUgpfOMxWhG7HtCU9YTZfC5VOVqev16vcdZSlpaqqjg9PeXjjz/g+toznU+5/+Aev/4bf4vr62uS77i8viR8EJjNZrzx6G1S0vzoz39CVdTcf/iA87MFhY08f/YFTe+59+ABqW/Yba4xxtOHPf02EdaezX7D2w/f4a3vvcPy7C6bTrEOltn52yzOHzBd3kGXM04fnmGd+Jls1ls++/wxm21P22vKyQk//+Az3nnnuxRl4uXFmo8//JTf+I1fh9TRdS27puHTT58xmdQsliecnCzYXl3z+Msvee3hPc7OZijTk/aR2eKcsqwYquetE/Cx7z3r1RVtCAQCDx7c57VHr/PZBz8RbX9Aacu0rnnne9/j8uWG0MPPfvI+q9UKtCMFAQ9TXgQHf56YgVSfM2zFUCEfxoVJa4UzGufEwNQ5Q+HEM8lYkboKSWGNIyWVJSrTSP70nce3g5ydbHxB55ZpL8nDIL0Xy5LeGVwFNkmV/ZExFCmI+azPQLy4Bgnwokm5kjB39WkhkIXU/DYRTFnjdUgYGTbIA6g+OHERk3z3ajCtjYSUCNphpxOq5YLq9ISqPGGqLIvNCZOLC1yxI6iSqlrgigkoi+/3R2C6fA8gxKTJkhyRJNXGyynL5YLFfMl0OkOrTqSfYqT1O8pigrUlSjdS3GDE9Fc60kAhiZFSBmsEDGj6lpcvn2dC5iU/e/9jPvjgMfsm0nUQglRoHgM4g1luSpGkwVjFW2+/zltvv05dG5pmzfNnl2w2DS9fXrHft4TQ46xovqNFFhRCluAbKgxVlpMQME/kMks8A1GQmM1mVFVFWZZ0ZSfyj0qJFGGKdLkT6+XLlxSF7HsPHjzg/Pyc9WpF2zZstxtWV5fMp1Mm9RStNJeXl1hbsNvtUUozyb5+y+VSOih9x5MnT3IiKr5Ugx9TWZb43rNvGoauxeFe1XUtVZq+F5JaiXrw6dkJm82GbrViv91wcnJCCIFd2HN1dcV//V//77he7/kv/ov/gvPzMyaTCVVVAQdgfej4GQIz+Z4Y31skGfzRc24mgl+V8zr8+5B8K5xzOYgcpOhy4G1yOzdZk77dj+89vO9gxDyc60AIiY9K13Xj9QyPyfcfc1A4gOLHBFUQw+r8mfr+cK1KeYISiYqhICPlOQIHkknQD4l9Bk198XCR691utnz44YdZQiGOa8AwTkVHOceLGYQ1RipWjS4oi4Kt3jFU7w9eAtKRKyQWDGagmhD6/6EL1/9PHrfB4OMxOJKftxOUI2Lp9utun3vMKo6OA6h9OKf6yu+RSl4G8+tXdAelm9c/gO1f8QHjAHIlNdA6SYiuFHLKdACjRGdbzheIEI6yMA7zR2cwf4gZALnO3A2a8vsOfkrhKBZQGRVWCIChcswRYyBhc/o5dGBLAYFKkRQ8bbMi7PdsVlesry6I7ZbTecliNqWyitDt6XYrDD4n7rDrEqTw1aRt+GgJlDGsNutxDTPaSnFY8HjvaZpOFBcyUDhUng4m6lofjH0HuU0x5RUgzWiNVpB8LwCLs2NxWtfv6foh38xrZowYHdFKlAJ630u+ZBJKxSyZZwkx0vUdTdPQ+8BkOqMoSpTWtM2G6DtUCFg0TsOnH33Eer2hbTpiCFTO4fsGowU81ypSOo3vVZYrjCQ8DHlPn9g1DUpbiqqmrqR69v7ZCcv5jD4k2r7n4upagKKzc2xREENgOpvx8OFD+uC5Xq2Ifk/f7Hj65ResVium8xOWdx+gCKTYo3AojZh4H+01Q+fR8FUOCfsBoDh0r45zKuXu5SRSJEOXWEoHSS2GuTHMKUK2Qj+OxQQ0HebC0PV2PDdvzstD5+jXycL+oh7aHfbc28eNziJ1WGYPT1XcftkxBKNuPFceMwPccgTCHL+HZijIYAR3os7zXSk0QRaDGFAhUCjoo3jElsZQzWbcf+01ul5AQt/uuFxt+csf/gXvvPeQk/Mps5MJtqjYr19yfXHB+voSo5x4R5sCrQuR7tcLarvA9Irt5RV/9Pv/Gt0HdAh0XcN+u8NHQEkeZK1ms17RZs+1CFjXAmCNoyoqFvO5AEYh0nXSlTN43PUx0oVAlwsFh3VZG0dtBQJSRuGseCbFGDGokbweRC58jCTv6UJHH6VzKUn4AL3HmILoPV0vHZpSmCjEQkiRvs8ZTA41tNb4voMQmdcT7t29S6E1u82KPvbEFHAGiIHN6pp111JM51Slw1rp6E4K8TKJnhS8kGpRFAiEIBNyybqCpLys9xnXdM4Ry1oIwFyQdBizcvKUknzudOhA3+/3WJu9vLNksXMOY0TeewBPB3ILPYDJh6KqYU07Jqe6rsfkC+/37UhmxQQ6Hca0ePw5nBMv8cGP1hrDttkCuWjCe2IMTCo9Eq0JCB76XqwtUJG+7+j9hmk9BaXYbK4wOnFy+susV4qf//wj/pv//T9lMT/hV3/1Xc7vnPD99zR/9+/8Kv/q93/K9uoS7ZZoHJDoukYktouSlHzexWMGgRMpw9UoJXFA0kNme2vSJ4b/1I3HDnNcMOqb9/TbdjiyEonq8PQyF2CMx5wrsFakIKOOaB3Rpsd3vcA0STxvrBV/MK2lcDqEgC4MRvUoFNFH6qoiK73he4/Oe6QeCY4sZzvI2oZEAFEiSVII/+D8lO++9R322y2XF9cUzvHBRz/l4YPXKIqaly+vceWEf/XP/jmL5Qnf+967vPPue5ycnJCidNw1beSNd97m3/ybf8Obb77JG2+/zV/8xY9477332O/3rFZXrFZrfuVXfoWXz57y0Ucf8emnn3J6suD73/suP/7LH/Hzn/+My5cvJD5UCmcs8+WEqnTsth3zZc3D++e8+84bvPXGfaz2eN/Q9zvqukST6PsO73uskUIcYpJOJqWEdNIQskJUYUWiR6UhVpQCGt97ur4jBE9dVhhr8L3PhauJ9XqN934ksLtOVMB2uy1NIznv62+8wfOXF+x2+9GHEyxaacqq4vz8nKZp2O72pAjz+ZKyKpjNF4QQ2a3XBKVY7bZs9jusK7l75wEfffIY7SwxKrreE2Ji3+yly1xJN6e1hoQh5A42kb7LuS0S66MHV890RNUMu3o6chQSX/koTZc5vpL7JSFUJj7S7T1e5n34RmL5gKeR4oiFYIWY93HoLAN0oigVxmamhiG3kSBCgagXEEZPWa1vrj3qBnmWcSyUEFYqR0EjOZYOr1EHvEGhyCJoWbRM9ubhzMefP4RM6OlhfAnRjD6Os1TmBAZ6SjpbRX5ao6Lcb3W0JoeYJPdIKpvryX5yJKr0tcc3Ekxd07PfbfFdj6FidXVF2/QUlcPHxHqz4Yc//As+/fBjfNOwmE546603KFwp+pFKwOaXzy5EWs33GFOLkaQrxmTZ2oLlSUOKivVmy8urFcaWoiU+mTCdTSnKkpgCOnrwmt4HbFnjmy1JOYpqjt+3nJwu+PCzl+x2DW+/98uUsz0ff/I5XbcCBJh99vw5ShSF+clf/QW/8u7bvPnGQ05Pl5RVybOLFXfv3qWeLTk5u8vyZIG1luTDSLKUZYV1AqAabbC2oCwLHjx4QEqJF5cXTOqZTPQU8cbz2ReXGCOBl7WWO+d3+Be///vcvXufyfSELx+/4LvvvMdf/PDH3Dm/w3Jxys9//vPc9SULz5D6OCeGfiEDCL3vwRqss5TG0bQNZeGwzmK1prDzXA1fUpUCSq4ur9iFSJ/BLakODUJEzWY8evSIq6sVRWEJwXN1cUld13gjcod939O2rYCjzmALS9d57t07oe97ZvUZs7pmu92zXNyBKC3l9++9wfe+/0sCnmog9fxH/8kj/h//9L9ldfEEj6KcRFarS2H6nXT93L3/XUK55PHac5X2TJb3MMWUNlq2bUB1nmkFm9011jq6tuPn73/Ae+99jz/6wz/gxcuXfOe77/Lue+9RVCVffPE55uKa87MFH77/PlXtiNGzWq8pyhJN5HSx5O033uby2UuUjhSlaMxfvLygnNZsm2cslz13795jNluw3W0EQEhivHp+5w4vrjestxtin2j2LZ998SVJ3ePUnrBrOqIp6XyPNobz83Pefusdfv7hJ1y8uGC/3RIV9OlQVZ/SEVvPsEANG7sskNYpJtOKqiqoqoK6LKTVvbSYrEXnE6SosozYIJWYO0ZCutk9MlQkxeH3EWMNzgnQ5Lyj9QljOwn+GRa1A5jqB0I0SueDMYbSFUSTk3Ckis0acFaIpm/bMZB8xshCL10jAzSY6z+0ACajaKfW4qnlHLqq0FVFKhzeKcq6ppzWuEJMXLs+cWIrClejjCYljzVW9MSTVNOgRcd96MIwxuByh6I1dgzkjaoEbNQRVSm6Xol/USaWqqqGpAVoi1lnPQ2yXALC9b7h+bMv+fLLJzx7/oKLy5es1peE4IjJgXL4vmfYyg7m0VGIKw0QmM9r7t5ZUk8cTWt593tv8uTLJ+z3W9p2J+MOL2DgaC6ZCY/cpXRI/gAjMgPGKMpqOgL/k8kMbTRlWdFXffbYK7hz95yUYL9vuLx8KSbwZZG11g337t3LHSk9XdtmM/fAgwePWC5O8H7PYnEiAWtf4J3j6uqSxWLBdrPm6uKSTz/9lLt377JYzAlBAu3lcsl2u8Uay3w2o55O+PjjT+mzbvP5+Rk//slfMXhXpCQSHZvNiv1+T0qR+XzOpKp4FiSIXU5n1HVNxPBnf/ZnzGYz/sv/8n991IEzBIEDwKrH72aUBjkCu4/JpeFxuc8HIO44WBxAumNCaqzoPwIEh2sZpAC7rrvho3L8HkczjJS+2uE0nE/+MnRW3CSVbj/v9jUP7ydrWxSd7RQkSNTmRgdnioEUAzFJh7bWiqK0QE8IPZcXL3j//Z9QFg6lsswMB7BSColyspJ1l6XLVFEWQm7po/lbVRV1VWcPyUTv5V6QeepvEwB6/P0ddx+8+sl/8/MOY+wAgh+tK3xz5550pA2SaelmS/DhBULwcBgTx+e4Pa9kzTWIhIwQHyqKnJnK5xu8I5Qxco3kxXWUgpTPpchy+wmGilcx7pZ7Jf8+dDAlLQVPY5XhON8Cg2yVztcag9w0nRI6RVA9xEj0Hb7dsn75jP3qEp08S6eopjXT0uFsQqWOFBro9yLvgXQ8pqhGSe2EAG8kkfwQdTtZ+43JCVVKtH2TyV4piumzhKy1Vrr/UcQs7ZtCHMeQtQdJJa0gKakqDkEUAkL0TCZTnLXgRZK6rkpQWRopf3+DnHDf96SUsrecXI9SSmLbrmO327NvG/quZ75ciCy31sQQUDFQKIWpSrRxuKKi81LQo5WMnbbbUxbiFWCtxhWWqppQVhVN29J2HfvVir5oxxgOBUVRYuyGEBNN20lh4fKEoijxMTJxmqvrDZuXT6knU+7cu8c773wHpZRIuXQNfrch+Y7Q7SjMjNcf3uP173wPVU6JuSsYZXBWy14zzpk4rspj517WBUnpIPl6GPeHIxLHIq3jjqiBohrnzAiFSCw2jOvbc1YpIfyG2ORVXqjf1mOU7f+G49h34Ph4VUetymuq/H74bTp+wmG9VYzkwEgiZ4BISCaFzp5sSeUOSRKlsxSTCW2buLrYUijLvdfuYYoCnxLNdst2v6drWlIIVLWl2e3ZrLc8f/GSL18+5sWTp0wqy3RSUVcz+rZhUi9AF8RoSbHgbHEPh+Ov/vSH/PG/+H3ivqEmS34ZQ1kWFNrQdj2+7+i7SFGV1HVFiJE+d1P2fY/XItdmUEzqaVYDcUQUu2Yv50AK0HyCshICCa1RSeVumAAYrB26dAI+RrEf8J6kTMZrItHLmldVNToK4JgSggv0ojiTknTVK7K/sxUJqyfb51JsoKUQiZgoC8fdO+fURUHvO4xy1LMpVerpQ0vYBZr9hsIZFm6KqSvWTYOxBbYo0c5hUMTOY5SmsDrvUlIM4Jwl1RUpKbb7hhgT1pqsauMonEh+9cqTYp/3IdmjnDtIzw0FQNaWlOVkXJ+bZjcWUwwE01joy1C9LwUJPgPGWmvKshxj52N1j95L0V5d1zhnabpO7mnrM/ivb8Ss5agqI4UHt0nt3W5HVU6kqyIEujagtDuQNgr62FMUlulMCmUvXrxAo/jv/u//N1Js0anDd57/7f/m/8h/9p/+j/l3f+83efSW5h/+w9/j+UvPT3/2hNUqEZL4XjnjRH1kLJ8fYhQl3Usc1kzS8MdxuU0a5/EYkh9P8hvr6k3CSaX0lbX6F/2wqgZjUcmiUkcf9wz75FBYE1IQGkiBsWB0Sac6keiNIY9VOZ9COrNjiJJfZEJp7HJQ2W9Ra5p+2FOHAhmbSd8+e4EJVmGNEBSt97z28HXKasJ2s5XuJR/oWk9RTUFbLp495cunHxMjPHj4iO+88y7VZI4yjn3bY4ua187v82d/+WP+9r/zd9htd/z0/Q+5e/8ekPji809RwN/6tV/jgw9+yo/+/C9EZaquWM4K/sk//m/ZbTf4vkMrj9ZSaGetR1tPSPDamye8+fpDXn90jwf3z9B0JDyuhKqqpMgg9ATfie1F7TAmEXNca7Vhv9/jQxQM1hn2bYPVmrIs0EDoOy4vr0QpZuiGTBHf9GPsZ63lanVNnSXq+3Ao2JxMpkymU6xzrNZricW85ObPXrxgMT9D7AIlP+w6z3K5ZCjgjCi2TY/V4tPt+8Bmt+P87j0m0zldkAKCup6w2uzZ7LZY67CFwoWET56uDyRMJtjFA67tuoyxZPlKZWQIxXi0Yx/8nAV8Ocj8D5Ch+OANcdnwunRE5pgbayEISRW+IZ9T6igxQ5o9CutQxhJ76Qg2FpQFVxqU7gixx0jUn1+Vr3+YLWoo1Dzkf4IhqYFvZezWUulmgQ2SJwx52OFT3nze8ccZCs8j6YjcAkIgKiGLYlRkpwq5Np1vJxncGuLeLIcuUv8DgWRg/HT5zyj7aiTHX3r4zN9M6n8jwdT34vNgtGKeySOlNE3T42PH5cUVf/lXf0kBzOoJ8+lMdD2Tpmt7mlyt3e4a6cZANtsUNU+fvSAGAQlTAusKuk4qXqbzJdPZFFtUlGWFsQX7psV7jxk0h02J1QpdJYwCkyKx2aGU4fzOXba94fnz51z/v8n702dJ0iy9D/u9i2+x3iVvLpWVWVXdXd093bOjpweDIWEkaIKBNNH0QTSj/g7q/4EkipQRZpQImAmroAEBQjRqAGIwM13Tey1Zud+bd4vFt3fRh/O6R9yb2T3AR3V5963MjBvh4eHhft5zznOe56kjamh20iVzScOkmrJcTDlaVFSFvH9RTlgul3z27JRF58lzoYT7EFlUU65XVzTJZ+PHP/4x7733HkdHxywXS2xmaFuRI/Les75eMZ3OWCznNPWa6+uLREWGR48ec3BwwOnpKX0nja7ZdMbj90uePPmcsiigEET48ePH/PQnP6Tre1SiZlprmc0Kul6Q6rbt0HlG6tqKV4c2kjTbjMmkIk+0xswmjxwvCYl4bPUEJ1NHeWaZTCbMF3OqsuTcn9M2QSapMglCmTVYK7TsTz/9lBAC69WWpm3onePOnSOstWy2NZvVGoXm4XsleV6RZQXlZMHd++8xnc2S7FFkVlp+5/v/MV9++kPOXjzh6s1zSi9mncoYlK3I8jmTw/sUkzl5NcdUM07uf8Di6C62rITihjSzNVDkcHw444/+6J9wcDDH2kdcXlyBAptbLi6v2Gw3ZEZRTOccHi1wrmW73YCKFEVOlhUoLDHAb3/vt1gezIjRMZvNmCyWTOdLqklFWeQoDbnNxNQ5xDGYi4+VkaFzpXnx4jWzecXi6IA8L3lxdonrhGE2Xy756Y9/xtVqQ92KHmpQCp/kOoafcdI6gQ5DwDBGkWWGosiYTmXKVBqONv1uaAhL+ApBIabTe8X42EFK4SgVBDKgEgku4NQuRpF8m/BOdGGtUH+N0bvijpj8nnZByRotU09SbaCSLI5Nsn6Z/eo0PYdgHVN3aiyGGb9w9hsislYFQpAFzkeRuuuDp3ad/JhOsBMzTC0oiJo8LwUwVzGRoDSZzbA2Ez1xZCEWRo9IN2SZTKd578RfLYCyyWQVLfIGUeQ6iZAXOVmWQ5RJ8KCQyUKVpA2iSH553xOCQ+lIXog/29VVy2rtaBr5/TCtPcg3DechIiDn4dFSJDqLjKKwaF1w794Jd+/d4eLykm29peu8NBzTtT6Yw6IGty91u1+R5IhkSkehRrnM4OMoGepcT1EU3L13Qt/1nJ6+YbPZ0Lme1XpFdl6Mersjg0FD0zQURSnTkNoSo6LMW9qikRhtDXmW4XvH+Zs3nJ2dcnh4iLVWYqJSLJfLkYFz584J7z14D5NZfvCDT+j6nrIqR0Bm0HgX2SbP9fUwsS8NzfV6RVVWlKX4qHnnsMbw/NkzfvTDH7FaXTOfL8YC3Hv3VkN7AJz2t32gSCvR3R8K8JH9ME6myzYU4Tca5ew8MvaBAZ986rqkTZ9lyR8ueN7d7FMjuDSwnPYbkgOgLnXsfvIa9wLe3j2rklxV2r9IHGi832kuK6XIrSIZsiTWUvISYcdOUmi6XqY727bh7PR0TOaG97fGMhibDxeqyONIMj80OYqykOem6dlBgnU/F1S7Tt1XpijfsRZgbGwkGTa42ebYNT+GbXc97oNIu3P3NnD0rr8PzWv24nvce04M+8Mk7y6Wxmt2GDNIxyr9dj8+Nu5n2H+6BokePYz0x8HbLl33SsD3MFQTcfeee867EsMV6fjlM9wAmBTCtFO71w6ndHeed42NGAZmSpScxDUyLdls6LfXhHbDxEYybcgtlJmmsJGB9aLxZEbj9+SCtRU/yJA+m0oFmA+yXok0L2NjdIgBw7kQsFgLQJSm0VEqrY+7Zl/0QfyRBoYhIks8Sq8BInYVx2YiSlPkOToz4zCPd54QGgYQv+8dki/tWKkisyqenV1qRIQQUn0kwyKZMXgjbCxljHzGXmRStZFp3RgceSlDaHluKfNcGrKpOeqDp2la8WQapXQ0MXYYJ+oIVisM4JoaXE9UiiqzhEmOzWRC9uT4kMoo2q4n9h30PToEjpczpvMFd+/f5YNH73F4uOC6DXQDCyxEkd0bkIghB91bO3YxeW+tuHW/7Jf+w/l/G1i62agYoNthSvOtfe4fw15jIcabzJ39Ne6rtGl7Q+Dundsvgt/etRSNAPfQFR//PrxoaEqPnLPxO9BR7QFNEo9UBKXVaGVshmaYsVKHzRcUMUcbm1QdHNera5quhSA1ilEiA2mMeMx0fSCzUJaF1I0mJ68qfCygN2SmZDqZ8+rJc5789HO+/PlnnL96RR4jymQYhKliioKiKMmdEwWZppEyK3nvihSaMGK8D7RdJ74aEazWOC9soc57+igDpFGJl4+yEqNkSFByDQEfHETxUBoM6q2RvHuzrXGuw9g85e4e17egdsMBrha2dGEt2oiHkuu6PT8SqfciKb8yhrKqyI2h955Qbwl9T7ZcYpPkPFo8Q7XWlHmOJuJiIDMGq0R0TQOZ0mzbVlQclCI4h85yaWymwjXGSJYXAnhpGSbou8GrSJPZXICmvkeYiiFJdPsb97IP/QjiO+9o+4bB50kpRds1CVRKPsxajZJSg9+x0oq2a0cmrE4KMdKEFMnBpmslbzMak2LWIK03SGBLrjvkrgkYMEakRdNal+c5LrHZElYu31/ohMmigsh8AU3bSG9pOePN2RnWKIosI89K6rbjiy/O+Qf/z/+JZ0+f8zf+1jc5uvMRvtcoMhQRoyzByaKqlZFzy5DApt6UGv8KqJFpNjouj6F+yMnekfvceOxWHB9ixS8KLr+Cm9EF7NWwUit18m+lU24mfkAD81ZrIFj62BGCDP/79PsYRGEmOIheSQ63BzSNPRxEqSF6LczBJAUXfMQPthuAUpqu2TCdFNy9+5jDw0NWV9eJ1aT4yU8+5cHD92k6h/MOtOX16Rm/+du/w/uPHzNbLJlMZrx4+WJkCm7qM45O7nN+tYIQmc7nHB4d8urFc+azKRD52U9/xE9+8kO0Fibkdn3Jj85esN1e0bUNMXiKzKJTr0Prnsw6jo8OePT+He7fXbCc52TaEX2PVgGCeGZKTyAKoKyEweWcS9esSkwasXYxVo8DVtoIoOxCkPjIzV5eCOKh5FN92HcNRV5itEh+eufRVgtQH+U7CFFUNMpS7GXqusO7SN20GJtRFCVN27Gtt6kuFAl1H4Wd6bynbRrOLy7JypJyOsOjePHyJZPpFG0LbCtx2HmJg1JnykLqfPIo9TJ4brUhGjXGNuKOUb7bbvYOFDcH/ULyD5I8K4zMccbzNfgMM8a/8fdjvyz9oaQHKXn7kLuR/OYkvyfZQUTtk1+4Ic8NwQyqLLv8bcgvxmNJPWwJO+keS9f9GJeGuobdsUmBocbj+UWxbsSC4lCOiffZsHaTrhuV+haSJw/5T8qFGIBhBEhSw+cYAnLq0kY1vm73OXUCmofjjmOsSZN0bx33sP1yBlMrGpsKMCpyfHRADJF607Bt1rx+fUbXNSwWSw6WCw6WhwQfaZoOFx0+9lxeXiAeWSrJfXjyrOD6aiU3qZaANp3NCCgyI0ydLM/IctHZjRG6zo0Ak1xYBudlMlMZg7EZeVnRt368Wc8vLvBGtCbzosAHRUiLXZbnTKczjo4P6esrqsmM6XROWU04OjohLyqMzUEb1usti/mSzUZ8EWKM1HUtFEgC1qaLFDF8d37Qy20oCjFw753Irw1TKzHC2dk5eZaLC5XRFEXGk88/49Hjb0jjmMDjx4948fwJPvRJ+3c3pSymv4mqF2VCRaRKlOjDK5XYSxZrDC6mCVTv6Z2j7zppsvld03U2mzFJE+wypdNJ8pVZ8szi+5Y8Fw+iLDOcnZ0yn0+lYO97nHNsNlu0NvShpe86JtUErQ1FXpAVFVmR4aNnVW/QWnypbFbw0Td/C6MzjCnEzFwbzt+8IUaDNhN8zLDVAlvNsOWUcjJncXjMZDrHK0naUIrr1RUxhnSLKK4uLpjNFpR5RtPUFEXB0y+/5OLyHNe2ZCoyn87JTEbwPUWR0YdAURT0nePi/BqlDB9++JgyF23O6WRGllVkmTAUlJHmNXFoVsB8Pqdp29Schz6IJurVeku9bXEeClMQoxijmmT8+fzlCwnabpiwj4JM3wikQyG7V14rhc0MeZFRVQWTibDVskwMDo1RkqSmkIO0ZsRUVIUxpIzvMDY+1S6Qp2RXuRR7gjSGtBNJHZ18mbSGLGlkD/uJcSc5omCUjpF/p+aXimRJeu+rBDAx+AClpq+AQen71mKSO5qYDt94TDIvGmKU6Za276nblk3XMLE5NiSvIkWaOpIGtLFGmvDIfW+t3Id978ZJXIk1egRTFAL49F0n002JzRQTpbnvvWiEe4+xFdYkPXZAmi+e0UwwFRvO92ijKIqM+XxCOZmyWvVE1oTQJrmNBE4S0DpNCqd92sywXE4pS4u1MimlMCyXM05Ojnj1as7V1SXe1WidDDAZCprhzpGGIKgbiQokaceuI88L8ixH5FG7ka4uE+UydQoC1nW96CWv1huUiGFTZDvj395JjBGJkJ5tvUVjaIqGsijJs5wiLzAoVtdXXF1dUtcNd+7ckSRWy/VhrGWz2VCWJQcHBxwdHbHebmgTMI0Gu1knVo9oJEetaOtW/H7yHK1Eh917J/6AUZop3keyvGJ1fc2zZ0/52c9+xu/8zu+OCZ8U/uYXgDi3Lu0BzHvH9i420LuecxsI2j3ux4n/3fvt9rffCBzunQFcGryW3t73HgCRAIkQ31Hwxh1QJjJjqZhTIttCKja01mDEby7sNbLHrBFhKA0ME2NFjnezSSDgUFJHiZmSevvd9atS2EhgUpZlFPkwIWtGVtdwDoZkWeK6JKX7Cfyv9BaHcw77N7va+3MHF91sVu8u4f1r8C8D5xLos0NpuMGQuHU9Q5KbuwFOhRvXM3uvG6bZUhd8tybs7Q9IU6Yi/ahCQEU/6O7IYMdYQO2mjYX1uZOrGtgf+5tCidQjOyBJmCSpMz+AsGH3ucc8YxgYiMkXNCopkvB43+G3a/rtCtduCM2GQjkqq8lNYjnj0SFCFIkkHQPWiCfSmAuL8HvyI0jxAD2eY5Vivt+7L3csq4GNKMX9KK3GDrBPX7GwzoIScCbsgMdxmEcBexPoERnekEl/WVe893SxTTFFJOHaVmRYB4klkGNtE8NomGZ1yfvPJLlrG4XJrrQaJTSd7/C+l6ihpQniiVgjeZs0LlI7agSmFb4XFoNKHnjOeYgyyJRZS6Y1wfX4GNBGU+WWXE8xeU5VlWQKunojDYiuRXnHvKq4d/8u0/mC47v3uH9yhK0KNt1GjN+Ra8Yrdl3J8ep7B4ik2Pv9LtaPv3znOnPzPt6/tkN67i+CSX7xerW/v7ef91VhNd2Wi3nX9gvO7C/4e3rNjQmJW89R7wKnFPs1xzC4NeTYcnkpDBodNRG534uiIifHu0DX9zR9Q11v8cFjtYC4RLA2oygm5MUUpyJ2NqGqJlhToE1OkU24eLOiWW/Qvqa0W5789FN+8oMfcnV6Rrfd0qIIZUmmNFaLqoNFACGbi8G79z55+O0YBFpHwBOS91DdNimfE/k6HwJBD54Qahx0cmLCQ4wBqxXKWhkQDBBVICPDGD0OpWSZlQZcSiOUCzjXjgoHpPs6z3MmeY61lqZpcURU8GKdh9R1UWvpwRiNySSXabpG1qQgkteBtB5ogzFapOhUYuB4n2K8gNvS3IXQ96n3rfAyGYDkbaTGriLXxXhdeu9HcF5pNeZJPoQ9VRhhKY2dPaDrd1LCIXhaV++Y6en6GmTAhyaoSZKo4xo+fIdJxcNaS576CLLWB3onPSo5DwIUDCzzgbUvz5chXACt7e7907mx1uJDL/KBBGJisUQ1/HvweJa+XZ5HqkkBWjOdz5lPJhRZzpvXL1mvHJ988hlXV5dkk5rv/kbJ1VVH30uNo7DCVk45bYxersfhTlcJwFC7AUphxsR0VsyuEZvAttsxIMbh+W/nQzdj71cjzgJole0avYYkrQyo5BmZmt5aDU12jVEalWliAN8HXOjxosuJUSEpLKQiPSjwiDWCCwQnNg0x6iQPnLbUiA8+JoWLoZaKRO9YzI756PEjJlXF1cUFXdey2TZs6pZyMme13rLe1KzWNWVV8eGHH3F8cpeiKFmt1vS9R5ss9bYVRTmhbRuKzMowZRSJ8zwTb/vPPvs5Z69fMp/P6Nqay8tzLi/OJd9RQWTQcmGmKKDIFLOp5eG9A+4dzzicF0wKjY7im2TSNeV9FMlV9Di8F4VmPX5eFxNoZeVVg1S7TrmaSFh2Iyt+qEOHe3Fo9jufhiYBif3COAkS1IkRXPJlExlQQ+ekLq6bhqKU9QyVVL98HAcje+epkzdz2zTUbUs5maKMpm0d26ZhsZwKJ0tLf7Jze35zyR8uRImVQx1tjCFqlTzyhIH+dh4UGEHlW9sQR/fVJeLgyap0IiWoUTLvdu0q6zxpQDg9NtTIe5LGRimMTiA3MmytkjyezQ0mGxQaUp28Xx3upZYDHEOUiDrk/mo4EN6OY8NrbwBh7PLUm+ylIetVaY2W0g2SqECKqypNRCkNKgwDgqkHMex+9GSCAfjX6PHvA9g02B2MZWv6bRzIp1HWWkISJvsF2y8FmJptj0LjXMt6fYX3Hc4H1vWWNxdnfP7F53zn29/CxMhiMuf44A5Pn76gCxdM5xU2V2w2G3ASxLq2pd6u6VuR0dJKpokHGaHlYoHNi91EclRo51HaEhGvIOdEY1RphXMdWrXgamLXkeUF9eaap8+e8tOfPyObnAjjZFXjPGR5pG4FqKrrhsura3y3pbCB78y+w3S+pOlafv+v/mEyaJcz+vSLz8nzgtPXZ/Rdw53jI773vd+lyMX4Ps+z0Tdms1nhQ+Do6JDz8wsJKjZSVAX1tmY2m/PixUs+/fQzTk/fcHh4yHQ6pWk7Tl+/5vWrF3zjG99ilQzqP/74Y85Ov86z51/SNFtihKbtyPMKozRVUbKYiWRGt1dwDgmIBXzXEZQisxbXdXRegk/fdaPO50DTfPjee5jUaL68vKDrOgGdqgqjFDWByURMTrVWXPctVTVBG8ViMefxhx9wdvaGe/fusVwuMQrxa9HgQo9rPatmRRNartZblM6pqhkHyyV/8Lu/y/sfKYwt8QFOXxZ8/vQ1mVHMDyasG89BBOU8NsBifkBE8+r1KettTdO2HJ8c8+d//gNevHiO63u+/vWP+Rv/8X/EP/0nf8TTp8/I85xH793nf/6X/4wQAov5jOA78izjxbPntN2WapYTXUNVFVxcXPLyxTmLWUleZBweVuTWEGLGZtPy+uwN84Mp9+/fIWYlbS2yAcYaqqpCG0MXGvq+TWBTTmYLQlB0rcNMFSf37tNsay7eXHB+fo61lvVmjYqCsHvniNbuJNGGYnsvaIuOvoCUVVVQTQrKKqfMswSAGjHyGwsOUrSJSSsbVJpoHsCI4U9/670G5kCM4hfhHKB66KVJYYzGaAhWCgRtZJpX9j2E46HxwQhCxajTRJWWCcFs1xj9Vd9kojm1IQMEfOr1qaSHGoh6L7Empr5iGBfN3jvqvmVVb5iXBfOiwPYC4iiEhZirXExhjSbi0ASZ5EhmkFob9JCQ6gE8KagmE5SOONfSNrVck1mOd5HgHW3bUddiyutDP/q2iaEoqbHqxiU6Jr1Y51ryXDOfVxRVjtIFde1B52izIbKl3opEkUgdabquER+zGMkzzWxaUlYZ2gSU9higKjPunhxxfHzAm/M3bLZbRDZApl600UneQ4o3paRIGjr5A+vH+56m7cnzkizLubq85vLqiiovKIpC5Itcx+XlRTKCb+l9T9NuU+MyoLX4ChZlSd93rFYrDo+PKfNC/KuaBoWhKLa0RUFVFETvqZ3j4uKNsIuqgoODA1arFWhF71xiSnkentylmk7ZbDb86Mc/kmuh72nalvV6TVnmtG0cG4bNdg0wFq/Dd911HXXTsK0lTtlMJDMuzs/5h3//7/Nrv/ad0Veq7Rqmk/lY9O5PaO8DSkPSLP3vW1PHf8k2NlSDv5G8D78bZEoG36Sdzv3utfuNeCnMuQEwAbumb4pPQw46YBExSGN+J9MUx/cZJENBZIHkNYogQTNNcEVCdAm48zc+gzA7PIGQCkKHtTnaaMlvtMaHZOiqNYNfzngoKUlVkKbwpFGSFTlZnt2QMBxkXlAuxRv17/V9/EpsAzj9LpDpLzkZt4GgfSbd7efs9pcaJTHeAEH32Q9yzew1u9O1vhsyuAVCqVsyYEqlYvM28LT3sdOgiopJfg4xNVd7XojKWGFKJ9kjn65lhmbx7UJuKIpIcXTvsw0rlUKJFNPw/jqJS0SRiBxAHm2MmMiGQHQ97faK+vINoa8xoac0iomJmNhhAlgFXdcSTQJSJNhitQaTo7Wjd078SvbvAd9JMzXu4oPbK45jEJN1YGyyGmNRKGGmx+E1/fjdmwRiDY3JYROfkMH7THKhsTmoNSbLb9SdMUZcYoYOzZJBTjvP85tFN9wo6PtuBzBpIir2Moihd+xx7zt614xN1873tH3LJFRpILDA9w7fCzhuTPIC1B190AQMmbb46NCA1YbcZhRZJp4bdicRZWxO7x1du+XV8xXVdM5sPsO1NTp6Hr//gG9/99voLCMrJkwWM7YORiGOIPKGKcPhxuWsbq0F6T7adRYGhmAciZ779+S7QZ+hEcAODL61vQscugn8Ml71MKwP4cbvvzIAk7n5ed8VW999PknP59Z3DjJJNeS+6sb3NjRrhgb12NfZa9UoJZeOVjpdQlKHaK2I3iVvEQVB44Oi9yItV7ctV6troooyrGdkYHOQEi/KKcvFMWWY4WpHDAatS2w2pSiWPP3yC55//pTzl2dcn51RoAhNQ7PeUK83BB+oq5bCZmTWkusWs1oznVTSfDTCrBHJZpNk7CLBe3KbYyuLtTmb7ZZ128o50VIzaCtDUCEBKsZarjcbuX+thcww+Dr6EHA+4FxPKIox3hwcHo6ejZJzgWs6VGqeEgK5gsPZlNlsjjGWlVphNXQ+0LkeFwK5MZiyJCgBspumTvbikVwbqqLAZJbeOaKS6ezpdE41WdHX0LYNofPYLE9SbFKzhBBQQdhMUUkeFNJ3p9QOxBmk6OQzuFFSTkD4QUZVYmXvxRclxkjXtTgvgrRDTBbwDXq/fYuBLxeySvmVgl6/5UeaaXNjzczznLIqGbp6WmsCXnxwtTCZYvLW1tqQ58PatJOEDsHR+n6UVA9RmPVaW/rOEbwTWXStsZmACN6LL5XrBYjwrsP7wGy+5L1HDzlcHmDRvDk7B5XjfOT5yyv+3v/wP7NeH/D6TUPTaZQuCUFAwxgcIXl66pRMB2IClgZ55x3AK11LI1dC+vxR7QZSbp3YBDLtxVu1F7v/PWuMX4UtRjPm/9aKXYIPGhkfST9jt30AqC06M9JrcF6GRp2T7yIBTJC+p6DAC0umaxxd63BdwDtFDCZd/4OnlzCcQ0xSZV7us8NJzsnRAffvntA0Dav1mhcvXtI2HV/7xje5vF6zXtc8e/GSL758xn/6n/1vKYuKqpyA1vzr//Xf8Pu//west8LCuXfvPp/8/BmPH7+P1ZquqXn18iV3753wkx9+wpPPP+Xs9CWz6YTXL59zfX3FZrOmyAzaZpTFIA0MJMDkYDHh/ftzPnr0gNwaplZTGelNhcTuFGZ6koR3bgTzY4xYLUCyD9JjLssctKZrW/q+p6oqYoy0qVcbQ2A5m4qihuvxyWcJBhl0GS3svEN5yPKcoihFcSrugPK6aSQORkAZsrzCh5brq2t6H8jzUmAEmwkjPA3vbJuOPgwSfYrpbIEylnXd0HU984Mlbe/ovcNF6Sd3fY0PoI3BKIMavYh3jH+tNdEMgLgawfVhMEJy1yhTyVqPwx5j/Y1KDFCT4lpMPWoY5AyHQYF9MGfIm+VtE3M27moped1wz0hvVfKUQMSjdBC7B+WTPJ70xW00eBwaJeoOUfa9U71QY64BITF203Ellb9dXrMfnG79fey7qjGdlXovDejFFPvCLs+RD7NnmaIk59VxBzDJ63TaH+OgmAw6GIbYK32EJI8XU03p43h4ifgkxwmigLQH4r1r+6UAk28D223Dvbt3+LVvf5ttvaYsZlycvebF82eEpufPP/sJ3/32t5nenWGLkp/87FO+973vcXV5xevT53TthiKTi1E8LEqK0mKVRplMJum8ByUmaGVR4KJOU/Y58g1piqoSGYhOpvB8ENkG5zy+bXHbNe3qkqqaM18uefDAc+e9r/PJT54AFqNSYgkotZN4W6+3VEdzLi4umU6nHB/f4dnzV1RlSZaLfNfy6JjT12fcv38fazXnZ6dU5ZTJZMJqteLZs2cCBJ29BkTr8uzNOR9//E0uLy8JIVDkGWVZ8ubNOdaIPnFmLFcX58ynEzIDKvZ88PgBk8pw/mbDixcvub6+5K/8le9hreH586dcXV8kWaB69DqRsAeTshS9XyXGfiDyR12iYq62dZpWT/rNzlFV1Xjh/9Zvf5fj4xNev37N+fkFi+mMN69PwXu6psYHx3w6o+satI7MplMePXrIvXv3uHNyzOHRIQeH4r90enqKwlPkhiLLsIXi55/9iLptuf/eQ6aHJfcfHLI8OOHg4IQyn3J6cUlmcsrlCbFY0FIwObxHbjSmnLC+uiL0gcliQlVUXFxc8OTZKd/41neYTy1X1xtevbzg13/je9j8x/zohz/kX/7LP+YfXf8Rhc0wStFs1vyDv/d3+d/89b/OZ599yic/+AHRO3JVsJjNQFd0bk1UOb/9G7/FxWXD5589ZzGfk2c2yWRlGF1w7/5d1vWaq9UFn3/+OZnJiU7QYGHMLaibhqtNy+vTS16+OONoOiHLKy6v1sQvnnHHRYrZgtcvT1mtNiyXh8xmM1arWjSbXUAlltBeKX0jNGm9k8UrCkuRG/LckltNlpnEBjIjk0oAogheFoaQFh2d0jZNos6noBKTKdz4/reKxpD+49qe2Eas1igdCVlGlos84KBYSgIyby+kWivxYNJgrMIamS74qmzG7EwQh0Uly7LEgFGI7boXw709qHH4r06Lad1sWdcb1lVJM63Ielk8rdGUeYbyhRTo0UNw+OCIXrTVfZpM0kYnKVGdYvaEO3fucHy8ZDYv0SYIYKplasL3jqbd0jUt3nkiQmmKcfDaAoiEmEzcY6KZ+46m2WCsYbaYAoq2jzx474SHjz4ESvpO8+TLF7x6dcqbN+dcXFzQdgJMFaWlrAxKe84vXrFYGFSckGUaY+Hu3WMevnePq+srLi4u6HqXJqAG3XlZUHeLrCQIIYERktgEvFcM+tNnp6c025bFZEaeT3Cu5/zilC+++HwEEKzVZFmO0oquazk9PQXgGx9/zHa74cXzZ8xmc5RSbLdbYojMpzNO7hxzfHQsMnzR0fc9P/rxj9BakecZT58+pWkaXPDj9VEUBXdP7jOpKjara54+fSr+d7MZIYpB6KAPrAgYpZlOp/R9y3QywfvA2dkZTduOk1PWCuNp8DRarVb8nb/zd/je97/Pt7/9a0xnM5RSTCaT3fRm+q6HP4Hxd2ZfNm9MCN+OJW835+W62V3v3HiNeACKyeptffqb00+75GwA1G97NO2mQyNKySTp8N5yT94+BpGkimEo+ocEbh9wMonlJs1w5/pRNmKIhyE6QnCA5EAQ6PqaptmIj2Jh8G1gkOrq++TDkhoLcZfNpuRUgFFrDXlRkBct3g3N8+Szx44ZK+eAEVT7Vd9ug0S3t7cZbzdf+8uazBF/6/Hd78MN8GHXOHknIBQT+224BxIQkw5wnIh8Fxtj/9hv71clGdqB/RaCDGsxxmmRsPQRXBrI9GNjYsidd1K6cbyHZe/DFoI04yAVQ3EoPkENLKjk+TlkM9FD6Bu6pqFravrtGlyDCR3ad/S+o7NQ5hqvIqEVuRIy8fgYPvNwXnzwAiSZXfyJiZnrk/TRPnMR9oq74fP5xJZN8q/yHmGU5VSp4YtS6EzvTkHaT9uLD55WBrQlKmn6KiPHE1Bi3mx335fNMmyW0bYtutcEH5IKAiPLOMsyXPCsV5l4GKR41nVdmqZ1bJprirIiJxu+FfLMUuaZTOZ7Dz7QR8d67Wiamk2eo2LA98nPJMvIs1xijdZEDIM1cJaJeoJ3ouLg+lbMxYNjOp3iXUPXtDRtR9d3ZEaziT1KaU6ODvj6N77Bg/fuoG0GJifYAtUpJnUm37XvQOUyWBPUiG0Kq+hWE3H8DlMlHyMqvAMmirdz19ugj9r777tAqJt/379W9pvM+0Cg7Edzs7Hwq7+96/PeZjv/u7Cfb75Wpf/vGsq77fa/U7xK36bUyPK/sUniEnNJK7qmZ3W9IjQR5TV5OadZ1bw+O6PtGrSBorCiSjLNyYuC9WbDs2ev+cmPP6OcL3n4wXvk8YjMVpTVkq6D/9c/+ef89/+3/wHftMyLkvdPjjk4PEBP5oTFIX3Xc3295nq9ZrNuaOua7WbN8XLBwXx+Ywi3zAq8l7rdp9rdZhm9DwR6jDVErWnaNrFz1KhKMJi9hz4wmU5lIFEbkegE+rbDe8mDbJ7hI0yqksVizmKx4NWrl6zXG1GR0YpJlaWejrAYp2XOpChpEnBmYuDOwQGbtqUPkag1TivO1is2dUPbi5ymMXIM1miijjRdR2Y1nkjnPFebLdV0Ssgy/Daj8ddUxYSIIjpphmfaUmWWbdvShwCZMMxU8tULBDrX7QDLxCzotrvhJJXqXAGgHH3fyXC0VrRtI96oydd0Pp9TFAVlVXB45yHz+Zz5fEE1EQuAmHJMrXWK1zkKTdM0tG1LUwsb7vpqxfX1NVdXV6xWK1ZvrvZek9H0jVyxapDSs+n3GUpp+m0n+1Zy3IPM61C37e4vRTWZEIHOdazW59hM2PBWG4wpMFkmfi1KQEat4Isnz/g8fElwjvpqTZVPyEzk7p1D/uCv/T7vPfwaF9c/p+lblC2hl/wnRI84/iTm7/i/4VbVqfEpXPy3txRH4/6/9mPB3oPqXbHgq7iZ5OGmk1ZFz+C3GYJH2T5hl3HsJWUmR+caFRSuddSdk1pBeUx0Y77a9z0ugUpdF+h76HuFdxrXR5xTRD/4tnhcGlAiMvqUPfz6Nzg5PsK7lvXqitlsSgQckUcffcTPfvYpz169JmrDH/y1P+Tjjz/GmIyXL19wfnnJ/fv3Ob+6ZLFYcHl5yb/61/+a/+Rv/e/46Y9/TJ4Z7p4c87u/85v8d//N/4Wf/+zHRO94//2HfPnFF6xWlxitWM4nrNZX4qmkAl295fzNGxazko8+/BoP7iy4f1Dy4aMP0iBaJAZPu60BUFmSJU3gTpFPaPuWrmtQCoIRGUqtDVWVJXWofszP2ralj1LLlWVJ8J7VdoPvHUWWUZQVXduy2W5u1MdSa09RStH1PVVVsqmlbxBiJGpFXk2YzRZs64bVizPqpkVpizIZ2mZYZbn/4CEvX77g4moFCtpWWKeLxZyqKri6ugI0TStyqAeHx7w8PWezranrjrqVPnLvHCLWpPFe1mbJc8GpNIg51jxxZDeZsWbdmyLZ24bPPLC0bj6uUTpgM6mDFQlAIYy7UWrI13cDJ579nGz/vUBr8SNl8CvTUYa4daCclDLknZhuI9ACKQcZ4lmUWMatwVb2+rRqB4ez99hQy+0/PuSO+2FtHKRJ53VQfRjqsv1NlBPlM4mUa/pc0cugulEYpOCPWmSv0QMDdQC20vcQEwOYOCqjD0fsBzxFiRzqL9p+KcAEirZp0wT2AZ9//hnz6YKf/PjHnJ2e8vE3v87ZS0vdNLy5uGBb90xmM/75v/gXKCJFaTlYTshsJsVH7AkeqtIkXxorUnWTCQGFzUoimuACXdOh9DCFAWUZRLdWQQiOervB+x6lG4zymNyyrTdU1ZRJVVKWBRfnF0yKiqZz1F3LerXFK1mwt9uGtqmxOOaTgidPntG2jt7B68sNVVlSFjl5ZtHKcnl5zdHRIbPplOXygHq7oq5rtNZMqwnPvnxK8J6Tk7sobem6nk8//VSK3djhQoNVVoJ6moYM3hNdz9XFG9q+o2s2fPTBQz768H2qqsIYzRdPnvPDv/iEDz/6iA8++IBnz57yv/6bf4VSHmXkszgvZsgxUaRdjHStSG1IcJObe7vZiPF8JpPN2+0WgMlkwsHBAWVR8sVnn7Kpa9pWZJ6MlaYVCDJaFDkP37tL17V0XUtd12SZ4fLygqapadpmXARms5KDgxlVKdJXd+7dpW5qrFE8e/IF27rj/Ucf8I2Pv0N2qDh99YbDgyXFdMpH3/g22+0KFyPR9RSZ4ejkHp2Hy+s1Dsv9B8c41dN7x2S24OOPv8lnT54So+X+/UcoMn7+85/xZfcZRwcHtNsNr149p+8b/uRP/g1VWfCNr32Nl89f0DRbmiZgLVSzjPfu3eUnP/0Jzlms0azX17w5vyCGmqrMKQsBo5TRzGdzqklBbjPWVxucHxoFltAOOv4Gawxd77g8v0CbAw6ONWVZcXFxxWZTU28b1uu1SGiVBbozRO/RERo/NGMkrsQRLBUkPkvAV54AnSxT49SsNWac4hoaXUoDXhqa4ifA+DMAPsYoYmb2JgV3Mn37k7oRAcBEJkekMHUEbDLdjFLIqUSbVToh5tokimp6PxWxRsAWKYC+OkV5jCGtPMlTazzXMjXto5e8XKkkITNMTwxNcKHGN82WuqnY1gWrbcYkeW9VVcFsNsV0hch5Kll0+q7B9UPyqXZJaJTpjaLImS5mTOdz7t+/y9GdOZNJQYwO17ay5nmZgrdWU1UFvWMEsNXAXIvDxxsm9mVKSptIiD0hBoyxTCYlxhbk+ZIsm2PMlPfef5/z8yuefvmMn//85/z0pz9lUhUslzOOjxccHi0wOtI0a4xxFHmOoqCqMg6PFpycHPHs+YQ3b7ZYK54OXe/I80EWL0nyMCzsAxgheU70gbZpub5a8yY/l/vDiHTIdDrh/CLQdg0uScspZWnbGugRSQqZ7H78wQeATMG2TYeKQtOOqajsWilih/v0yZMnGCPJqFKRN2/OqKqJNBhCoG1brq5WLOZLplVFU2+5urqiLEs65+hdh1KRDz/8gKdPv8T1wnB1roMYaduWru3o2i7FB9GsF/3nSF035HlOjJHtdsvf/tt/m//qv/o/8s1vfesmUJR6PzbPCO5tlsYu6RpkIG9D5Nx43i7JenfxKAwCl64xaRBYa0fJELhNr9/tY7+xvP9eN9gooWfwKBiKA/n90MRMn2YPOBiBtTCwC+RjhuSFGJUj+ARURXBRJFYE6JRGiVIB5xtWby44e3NKCC4VLLv3s4nVqQcJmMTCG3Am+Yzi0ZXnwmJyrh4/h/cqAVkkI9a0tn91Qu0vBIqG3/2if78F2KihzLgpSbffPB2azCGBe7/sWEZG0lDcvgvoksVXpufS88M7nrtbO1IsBwbJz2FcQcU+3a9BZIWUEmneqAhInIyJNYDaAVq35RZiTHI3N3KEQc4Jka/TQCqIQ/CYJDmiEAZs1/e4Zo3rGnzXENsaHcVXyUSHVg7lA76TiXOjFZmR8cC+78ZhAJF43bERc60IaRIdRLY3FhmuVxKvncMPcspD3Inyve7LGA2SPjGKh13bDtJEiZmVpDviUPgphbEZaENA0buh2RNkCj4V3XmRM5nalKsNOZowFkNuIUKe5cQYEjtRQCYdPPPFgrLraJpG2MPbLX3fU+QZmQWdW5SVycToI3lmMdOpeLQ4Lx65TZM8AaSGMEr8RbQGDFhjiEqhk2qj1lDXnUy8x8Er0NB3Kl3nnrZtKCcV88WUvM24XgWuL99QTSa89/5DHj58n+W85PryDbPFAbbQuK6hXnfiQZNyk+h7QjSprtmxTImM05Mx3Q9D3rK/XgyAP3Jk8jPcY3sBbwcG7QBGuf/cO+/XX7T94t8NMWKopX71t/019S97/K3BkvQ13pSJSfcmezDgDQktPTyaGqy7SWDZwTAkpMdc1EaNbx11U1OvN2gM0WtcGzhfX3B1eY13vdzLMRKalvlkAkrTdh0ozavTCz75i58yWR5y9/5DDqf3ubpc8+d/+mf84M9/xJ/920/QQWFNQegDL56/YnNxSWUFSDbW4q2lmi/Jip5yMmO+WHK8mDObysR703Z0dcOmlfxtSE6b3mFCRGsBgPGe3geMzahsnqSDFNYKCGGVxI+Qmk/RaJFyUgpTFGQkGW2rxZi+yPAorjdblLVMZtPRq9cAKioym1HkGZ1rqLuatm3w3lGUJWVupTfherrg8Q6OFwuCDzRNTdSGru8JfYdrLaEtOJhNaZokS0ygj5E3l1d4Jfn5ZDIbmeTeOYIP5EBpM2mGBY/TyPdjDDGdm7DXIAwx4oIDHQl4+tDjE2PJR5ExDsHjosNow8HxnOl0ynw+ZblcsjxYkOW5MFNzlWp7K8OAyHU7DAlqpcYh6nKSUVQZ8+UE55bcf+9u8jMVz83tdsvV9TWr6xWr6zXr9Yqmd4lprMltTp4Xower95462TAYLWuh0qQGtcg3lmVB3yWPjsSknc3nRPrEZtYQDcYk2fQY6H1N5xwRn9RFLOV0znJW8Yd/9fv8/vd/j9/+K99D24zXl/89159/Tt3XaGtoXYsmonXEB8cgyD+A/+L/EdP9yDiZr/AjojSymPZz/9ux9cZzh7gOY37+lwDWv1LbQMtIDWKjM0IwoL3kDcqDMpJ/BbEuIXmPGWXITEZuczpavHM434ufc7L68MnTLbiI7yK+jfgegte43kPMhJkeSd45Iq2JEnB3NhO/+zIz9Cnf+OyzL1ksD7h7f8pPfvpzXrx6hfOee/fv853vficxCHvarsVYw4cffkiX2N3VZMo3v/ktzl4+wyjPrKqIfcN/99/+X/nRD39AlVuKacX15Tn15ooit1grqjh37xxDdDT1luA67p4cMC0yjpYTDuYTJmXB6npFmYt0HcSRrah0yvdjBK1wQeSGTZZhjBql8bWCHCEwtG2DSoBSjJHQJ/WAKN7ObdszKWWAqK5r2rbF2iz5d8aRZdn3O8b8pt5SN/I8bTTRB0xesG1aOucpJxWXq2vycoK2wgjdrLf0waOTLPOmrnHArKqou5ZNvaUoSiIKm3oi622NT0NZNg2oh21/I8MStmjq5+yuwuRtmLyT9tZ7yf/TKdzPtxS/MH8a83KCDIqkiUitQjo+GOpjpXdsJUjqCTHuWesIw0+l/CGmWCXDcgGMR2WRvLQEGmJ0BHwi9Ax1gk75iGffX07uxeGoI8nFc0CU3vpMjPWjhDOVABsz9CQGWXGF1GtDj4qBCboDhfb2PLQR0zEmXIqIjhJ3Q/JrjkpDyq130oG7ISuRC2b3/SZfWDl+PVo1/AKlQ+AvAZikaLIM7IWiKDh/8xodHfNJSb1eUxYTwHB+ecW2fs3BnUM++/wLms2GMs+osowy0xgrkgtlrlHREYNoBxNSczmBIz4N1lbVFO+VGED6gToHO0Ni8WPKcjEY9KGl71suLy/QWjGfTXl9IQHKOZG+0FrhQjIj6z1Ej1Wei/NLdEKJt9uag8Nj6u1WJjpQdF2PsRmr1RoNlEXOStzO8NHRIxTng4MDbJbhfaCqKrrOkRc5m+0163XD3ZN7GG0xyuCdp8xzruuVACmuJ/iWzaphs7rE9Q3WwqQquLi4YDafM5/PWSyWfPzxt6WRXG+pawnYVhtJhtP3FnxApwJcBtgDmRUNn2F6+86dOxRFwXw+Z7lc4p3j8vISnwq2vu85OjyURFhrrCmZTCRQypR7Ttc1dH3Hdrtlu92ireHg4ABjDFU5YTqdAxrnI5PJnLKcCri1XnG1veLy9JTT6VNybcitousbegfYjMXxXTrnaLdr8A6TlaAzvLY0fc/F9RXTxeHYLM/ynHv37lHkE7kZgzRRL8/PyHJL00Q8gdlywXq1xodAWRRMJjPatiaGHqxMVD1+9AF/9slnZHbK8fF9ZtOc6WRGVeUUucVYI81qpTEmpzC5ACIeXBAgJcty8jzHB8N06qimNZevXrPd1ni/wNiMspyQd4H1esv5xQWr9UrMWLVO/mTqHclSQstHMEiP8mHWamxiLRkj3l7aqKHnMTZSNEkagB11VGthwujUwIkmNZcyO4IPMUbcXkMtRgGXgo/DGwzBI8kfiN7vMIWltEy9SVFk9mRoVDreiNHDMfyy6PSrtw262YCY+I2L8m4NUVoLeBck+dtNXUsDvO072ralbhvqZkPuKrQR4+H5fAbbCZk1+CimnDKt16cJhbR44lEKsiyjqipmsxllVbJYTJnPJuL/phIolgp/ay1R5Uyqkm2TJMj6Hq2sLPJDoz44mZJ2PjF+epQK6bqTqZLJZMJstqSaHJLnc+54zdHhmiLPCKFnu10xnVYs5hMODmYcHS1RePqupbNgFGRWdOSn0wnL5ZzFYsblZS33aBik4Xa+S2Mfgh3IBiQavSGGSFM3XF+vku5+SVVVKB1FQmlIclLD0fk0ARZlDd1st0yn0yS7ec7PfvxTJpOJMHB94DpGjg4buraVoQHX8+L5c6pJSYzCJnKux4fURI1iKt91Padnb1gXGaHvMUYnEEn05efzOXfv3uXJky9EmikzIzi83W5p6gYgmV2KFK0PIU1AqRteRZ988gmffvpz7t67y8ndu3vNbDl/g6yHPDaAlHuTSAN0OsSId+ST++CSFOl7ANXQUE9NWud2fmF6r8h6F4tjYDcMlPvhPfa9TUaWT1QJst2bjB8SWIb93WSjDMelEngWoxjYSrNY4WNHUiNLzXDwvk/fhQBMWsn39urVC87PTsdhmh1AF0Zpnpsn7yZgF9L6PUqopORdPHXS+TKGqEwCm+Lel/Krvd0GdIbtNoPu9u9vv3bvwbHZcWPoIu4a4IO0ze33lagdd03z4RrbK9bePpZbnmHDMQxNlr3n7gNMMf1b/JY8KsmjyusS6Nn3O3BJSpJxjGE4oHHfigQYp1wktX6H5locQLJh2i9IjkYQ5pFWMlARgyf0HV3TEtsNuBbtejQOqyOGnWeUQgZXVMorlCJp2Q/TtupGTBBfVJmlJh2r0VAVGSGz0kTpHW3bJhZiks1IxZasrXonx5HiV0z1SN/34z2lTYk2NrFAkaa0FsBeJPhiYh7IYECfpKlnaGzekw0efYTxWMTHYyiWDYOpcQgiaeO8F6ZW8j5CMUoSm9IKs0vvZIesFtlhqwNGKYK39NrSRxlOIUSZfoxDnApJLjCK56JS5FmBc1oaVT6gdSY5SZKZ0kYKTz3IcIzDqAGio8gMs1lJkRnZZ/T0bc3luuF81WKnR1itsVrT+gDRvHudGJuJMUlKyr/fdW/L9R/e2sdYTP+C5oZKQ1z/vs3Kt9k7e83Pr9B2+zzciJ+3miLpCW8/tvev8RSq/cfeBgqHwbv9PaiBiRnTK0MU6f7W0a5b+lpkpPs20jWOzbandSE1siKDf4xNAzfeJSai0jx58pxi+hcyRZ4pnj99wRdffMnTJ8+4Pr8em+zBe+qupdtuyawdFUiiliZvWRRkRYnOcmxRjMO1URswFqWjNGzizgPOD3kWEm8yZcaYHdOgkEwZJ7aKNpjMoLQ0mFxMYFEqAJXSMriaZWAMPiq6tgNtsLkwGKMP5NoQnUeTFAz6huAdPvo0MAghSXOLrUUkN1LXTssC56d0zuO0GoINMYh0aNu0pDZskmxucMh5iMnnch8oNMk/1WiNJYrKoW/HejSmnk8krRfe0bue3vW0vbCTul48sk2mKYqcsqyYzqaUk5LpdMpkWjGZVJRlSTUp05CejGpEdlJwMQF2YbxYBSgbpjKGtUv8p/KxWej9jL7vONgspZeyqbm6uma9XrHd1jTbhq7tabta2FlJEajve2nyJj9crXXyR5U1L8Yk4eW8DKWIwlO6XzRGW3TMRuUVyQ2tSEIpm+4jjckyHj3+gN/53b/C937vr/Lg0Yd4PB9/62PW3YbPv/wclAXVs+MreWLUNz3gI+w/IIOGgAo7QCnl/bdj+M2/72LqvkflLq58dWKtSjLcshmUkjo6YlAEQnTSA1R+tw4O62aUa9eaDI2RoZvey5B/3wPCFHEu4LqA6yPeRaJXEIz0l7LhOokE5wjO0ffCkFcajk+Omc0mWKPouprr6yvxqdciiHt+ecnp2Tn3H7zHgwfvUZQCol5fX4OKzOczIglsQeTTptMp6+tLqtzSbK45e3HF0y8+k/yWSN82NM2WPLdUVQkIG8kahU9s6yzTLOcVh4s5VS6e37awON/tfMMQf3JrFGEANVVAafG6E4EZUbzwQdaLiHg9S26d1qkEEum4qwlAeizG2LE/opR4K7s0CDkoUoVhXQPqppGerLFyl4WItjK02jsvPkDG0LQtsWlSyh3og7CLjLVMplNc8MIUbTuc6yiqifQdgygcucFvTolfp0uszDwXueQQdIqtTpQVGeKPv7FgK7Xra924LZXa+zOtWilmS5679xh7rUUkp4xR+oZDPa3GHtLQ20nrPlILCDOKsWcl7xUT0CTMPaXBZBpjlSglsC9/utcHULs4JH0zObL4liZzyktuffYBYNJxqKPYVVBjD0S4VSr1ZCNx/DwjyLT33jDUnfFGrzdVf+mdh/OgR0BrlwffyJhugn9jDTg0y6SPNnq//YLtL2EwiX+OsRnbuubwcMnzLz9juZhytJzzxedPqOYzUIaL6xVPnz/jr/3+AyaTCdvVhs2qpq8dcZaRFZqyMkwnOd63qeFjBCiyliyrEpJoActivqTtPE3bo71Qk70XyqFWgSwz5HlGXnhcF9hs5Qa9uHgDZsJsNuV8dc16fY1SORGhFnejpIQTaE4FkcebTOg6QZQ//NZjXrx4jjWaPDNcNzWHB4dsN2tc3/Hw/l2IiiLPqOuauq5ZLBYslwvW6y3buqWqKvJMNIW1jrTthpOTu/StIziP0z1hUnHxxtE1Mu6cWcWr16+YvXhC3QT6rmE2nXD65pqf/exnzOcL3n//fX7t29/l4vI1r1+/5uzsDfVmS5ZldE2bpg+leBOpsjRJ4D2Tskq69JGiKHj06BF5nsux5hmvXj4baeAmJYP3798X4EgrJpOKLDNstxsmk4rptKLttiO4ZDPLZDsVVtd0ymy2oCrnbOqGvoc8m2KNJbeWaV7RbztC0/HqyycYFI8/+Bqta6lb0SidzJdk19f0vZfJ7k3L8sERKEXnPa/Pz/jG8THaBNqupm5aHj78ANfLTdb3Ex48uMeLZwfU9YaoIpOFJI1127FqWrZtx1E1w+iID4qiFAr80eEd+u4nZJni+OiQDz98yL2795jPc6yRpkFRZnR9mqg14lU2nU6ISCJsTaQsS7RROK9Zbzo+//FPUc6jlABQRVkxx1DXDRcXl6zW6ySRtSKkRtOg2zxMWY4BYQSHhgJfjiOzhswIwKSThuzQAFcSYohKo/Vuaj8EPbKGjEbAJRg1ywVcUglIkkn4oakagx6bVDoFVI1QJ7USuQKTrkWVZBWMMag0jTuCY5nCmkRd1QIUfJW28XtUWlhKcUgs0tyCFmNflSYRFAIMCLNJftq+k5+uoW4zJl4YFFWZs5gbPBU2syIvQSAEl2QiQGjIhqjF16EoCibT6SgJUU1yytLKtaU1eDVKjiilMaGgmlT0XqRxvOtROksAk8hOBN+hCMQEbPV9J1q3SoDQiADh09mExWJBUSzRumA6nSWLJE+IjrLIKIuM6bTg4DD5Q/kO5xTOG4zxGKOpqpLlcsHBwQGvXl5KUoQW7eW0aEZUMkuEmBbkmBIHkZ8UY9G2E/+kPM+ZTKaSNGeQZZbeGUKU5E6nffiQ7gktdHSlFFU1YTGfc3l5CYhhqHOO1WrFvZP71Nt6BMbP35zxcPI+fdeyrbcYa4mK5NMBNs+xmWWz3dA1ChUDVVVyfX2Ncx3G2vG7GwAZAekknmw2G+q6SfenEcN5pfAuso0tubUit9J1KKW4uLjgBz/4hPcevs/Dh++PCfEvm+oeaPEwNH12yeLNXHOX5NxIdPaKzX3G0NBYZmg23JiEYhyi2H+dH5P4HfgyakbvPS96PSZ4wz5u1Mgx7hXxpE8iDJXhWGRfQ5wUKTyAGCRx9l7uvRsAE54QBFg8O32N0QJQSXI5sDLs3nvukr/98zawtIaGg1JJM3r0Gki8x8Hb7atTi78FAt3e/p1ApuHcx1Sg3AI0h02N+tc72UT2QCDBIsON1+5Ao9vvfXNfbwFlKqGXCUi8vU853oDovnkCLrGV5V4UIKRP4JI0KYMa2hH7DSHZV0jFl8Gk63IQ2FUjwBkj6MSOjsGDdyKNFx0omcqLrsd1LX3TkrkaneQirYHMaCliiOAjRstgk9FamJ8xjB5s3ofx+1XKjAWlik6080dAGazN03Nz+l58B/oEzltjMFoKdz2e9/SFpHMx3FOd61FewH6bZWSq2H0PSOMndD29E/+Truvpe0/bNKOsZpZ5bFbjgx0lPoPz43uo9Jl2MUpi2Lau03DCID8ijdE8z8nKHFvJ599ptw+5X5oA1ZpcaXpthGmZck2FkjUwSjO2aZoUU1PNVUyJMU9DUh6tICtyTPJysdaQ5VmS8+xxriNGT15YskxyUqPEO9HqEq1hvd1w9vqU01XHvcdLcptTZJq67wnjkM3QNlfj4qFugUu3r9Eb98je4/tr1hAz99eAEcBQmkEb5C9j3gz7GLbb6+K7gK+v5PbWx5cF+11iWTfPNYJRjr+T1w5s/1t7HJsgCiCkhszepRJ8xHcO1zhc3RP7SNu11LWj7Tw+GHRWyPqIJypHXmaYLMP1Dk/AakNRTnn16g3r5s95/eYC3TiefvklhEhZFCwmE/FAjsImUEqxaTpi0xK8AEAhKqqi5M6dI5azqfj2OkfXegGwleT+mRV/M2IalkleafJ7TZYXECMusWKMlkGZIQ/IjAWUeK+QaosgkU5FBVHqM6PEmdVHAal658jSRL9IXItcp3Mheb91bNhgAKNk+DJGYeXEEBMrUZPnGW0IzCYVeVFwvd3Sdx1tK0z7LLNoFK53osISAqvVlrbr6UKQmjXLsVkm0nFmUAax9InVq9OSHLxPzd5IVF7OSQw0TUvbNnR9C0DT1jjfS+5mAtP5lIPDJUdHB9y7d4/ZYibHZSToCKDvRDoecKIRJQyiFDfRwgQathARz9gwxCOV1q+h8SigXFFKL+ZE3QFgu224uLjg8uKS8zcXnL+5oG1qUZZN0/EhePq+S5J8woCFnReK954QZeAYLz6+gQ6tA7kVH54MS9NKA14Zhc1yfOixVrwHCZILP3r8EV/7+jd5//EHYHO08fz6b/06td/w6vwZdb9FWwEKBznamPiEY1Ny8D5kYIOkE6Rvxce9YHA7dsYUDIbX38hxboeXr8B2Y+1C8nxJwFJtwf7f5f7wYfDelIeNMqioCQ587/F9T9d2RHSqp6BvPa4PBK8YWG9lWVDkpeQUMaljhJ66DoTY45zlvYfvMZ1UoMRv+OzslMXikEDk8vqK1XpD3XY8evyYB+89HPOOut4ynS9YLBZsNmvW25osEzlHrTW+rbEUvHrxjKdPvyD6jsV0QtNsaJuarm24c+eYPLcCIrcuHZ8js5pplbOYVdw7OSYzStgvuZL82Mh5izEQlENrs7u2xLUlgQfS/2hbRyTI4H0cBp86jNUMw41d11Em6xIg9QOqpHohtbS1AtbJQKnIoGZZNjKYlNa0Xc90LoP7Xe9GOeqBmd73johis93QtiINOkjyeyImy5hNJ9Rtw9XVFW3XypqYcsSA5IODt1SIIr/pvBPmptU4r+hdTIPCHrEakH6Jc/vr+QCQ6Bv36D6IghpXagbwBNQIHN+uxYFRDjImP9mBrbtvuSHPT4NXdhgm3uV9g/90VOKRHKPHGLEjUAl4ggQAaS3ycylyySEOwE0cAZ99gGkAeOT9dvjM7vdDnsiNwDUONqnB62g4f4HhhKm41y9hv4cxKCrsv7csioNH864voG++8e6T3HhsgLTGvHuM4wPpgF+4/VKAqdnWfPs7v0ZRFjx/9Yqz05c02zXKyTRus14znS85PX2DyjTvP37EP/1nf8Q8n/PRh1/nzuKQSWk4upMRTY3SPZmNWBsZNBad77m8OKftIkrnVNWcozsP6DpHjAn59LDZbEQHt69ReCbTkiwzrNanNNsr2s2GoihYzg84vxKq4fJgQfziJb3raDvHZtOR5dV4ExM1pdXMKtEpvr5acXlxxbOnLzi5ewfvevqu5v3332c2rVhdndM2G9quYzKZMJ2UzOdzaQaen/PkyVOsyVgsD3j4/iOefvmMJ0++ZHkw43d/93cxJmN1vebs5WvWqxVlmTOdTlmtL5jNJ3z4tY/55re+Rd06VquO4M/55JM/5fjkPZQWyaKf//wz6vovePzBfb71zY/5/ve+xyeffMLV1YpmW1Nvt6xWK2KQyaEByRVt9sCd42MePXrEb/3u7/Dq9WuePHnCy5cvaeqa68szHj56xMnJCQeHh5TVJGkEX4yawuv1NQ8ePKAockLwRO8wxnB4eAhAvdny/PlzqqoiRMV60+EdPH78AavViuura85XV3zw+D1+/dtHXFyc8ezZl/yP/+Qf8Wu//dt889e+y/LwiIuLa16/ueSLJ8/Ae6ZlwYunz/ju+49RRpNPDO/dv8ers9dM5lO6tuHVyzM08OHXPmZ1fcHq8g3XV+d89LXHPH3+lHJW8P5H7/PP//n/xKpvyYqCqppSYvmN3/gmV9dnoAKHR0f8w3/4j+m9pSoXbLdrtIayLMmzDK0kqL45O2U6PySzBd57zl6fcu/eHWyWEaKmrtdk5aBvbFguHCcnJ7Trc4qiFBZPFBnKk3v3WK9XXFycEePgiSBTazEVAxJAhlt+MLuTRFsCjEfpTAz4jNlRGGF8rcQnhVVaGj+p0RVNxBnPoLag1M1FQCibCnQyBE+SJQpFUIMh5DCfpTEKjLZYYxObSibpldGJwWTRSRLGZAZjDUUmlEythdHyVfEFGbbdd5To66n5Q2osDYliDMK0MFrvFoO0sHVdQ+/Es6L3HV3f4pDFpSwKijoTWzuXmKAJ4PBejxMjeV5QlsJeEjbRjMlkkq6dgDaKPLOoYNAxLVgq0oeeoiiwtSXUoteutRQbzjmausX7OjXSPX3bgkp+FkbMaI3S1PWGrm0IwVMUGYvlEYuFYz6fcufOEQ8fPgAiRkVQjhC3WNMT6SQZ6nuMdmRZyXwx4057xIP7d3n+7Iyrq5YYwyinNgB4qIElmxbYVNSbYITSHSJOebbbmpOTE9Fdn01A9bsFWysshul0zmbboZD9D0DMarNmOpuQ5TmbzYYQhPlqraUqSpqm5vpaphabpub4+Ji+7dBmp1V/dHwskkbOU5QlXEGel+jo6Zst6+1GfJqcw3nPmzdv+KM/+n+LZnyR452A90PjUilQWphOKJ2kUVum0ynBD5MyIidlreWP//iPefj+Q/6D//A/wDufzqNMb+2DScNmjME7dzPZubXtN+9UOu9yfCl5U4zAknx2Nybg1pqxsRdCTAwunyY79Y3m/gAoCdPTjse7L3M3nBO5H+FdTCWfdLWHYx72L6DWwHrQ4/GKWWgYj1FkUcKYEMboIDpC6KkmltevX/H69DUQyI3F0Y9siq7rpImgJNtTDAyLne7+PgC3Lx9YliVlmaO0p+sbmURMn2u/OfqrvIW3ZK8ku7+dJO8aHZFflD/HW5XBTWZZYvfugUKKlIzHAcLe65juvWccgKLxWtyt4W97B6Vi5xbwFNhrvMQBLvfCBEqyjErLVHtEi5Fv7wjKpJZqICiTAMhdETQAwyHJUwQlDCFFAjQT4OS9H5ufBIS5Gjwqyef6vqVvW3zfElwHQOZ7MhOxxqCjwrdbou/RBIrcUhYyOKNg1LQfCksQxj1oikLkPDJryLMofo4DmGwMKEPbtukeDqKEkJUiU6fF+LptW5quG+/zwe9OG5HMnmgBmLr0nM1mQ9dJnDOJndA7j3NBJtBrAer7XtaCPC8oilJAp6u1fB+pwWD3isDBx02n4lkat600OhOInOfStJjPRcqpqEqc7anXGxkecR4lGDYmyuBPpgwxy6m3bZIqsUlCSWKxc33yC6mxVgYDq7KUAZNsStenz+MC5aRisViM8TArcoqioHOSf9T1hul0ynI5pcg1Cs/hwRwNbJuO1XpD22zpGmEwZGVOsIomGNZNYj4Pa/LubrjRVLt9k96+R4T1MEye8hZYtA8I7YNM6ZcCguzl0m/Hgb2XDG+yv4vxEL/CANNbk643Ab+BiS+b2p3QePuUDrBSkqAZIf+3waYb7zk2RVKuXLcy5NgHooOu6VFoirzERUMfggxj4fCuZnkwhzTVr7UIfMpkd+T07JKXp2+YqQnLxZzDozmL6YTY19LWzSxaTbBas207nAt0bUfTdfSd+N41dYdVmtxogkb4o1pBklhrU04j+baV+jFNRokAgRIPFR8xSlPkIr1k9BCTJQdZbbZYK/5qAoyAtuK1ppWmCw7ajthIfCzKHNe0qBgwETKliV0gdD2hlzwzZlDNZiLvEyD2wsYWRoXGaumwzSZTVJYRtGI2X/Dy5UvOz96QZ5aToyPOXp/ifM+qrrneNjTOCZtAGVEFSbFOG82krKiKks4F6roV/wxk7bm+vsZpQJvkYwttklP23lG3MhQbY2A+n/Hgwfs8fPyQh+8/wGaGiBd5PwJBdWO+Zowm+C5dSkn2g0hU8nsfPD6a8XrWCXjy0bEbhBpkbeWS1Xv5h0/XtHi5Gk5OTji5cwLfkDi/Wa159fKUly9e8vz5c4D0OeKY58m9IsNJbetwvULrTNa3zOBCpMgNfSc+NDkBVIEPAZ1pJpOCrlOYzIqyUND0bc/5xTVN58AYdG7oguMb3/o6k4OM6bHlv/lv/2vywW/dKKIb3E2SGG6UPPUtcAlk2PsXDjvt4vLuPt/l4/t3feT2X371t33FhxCk5yegkEvDbAISeOdFEtj1MvyZpIFjZMdaagVY8q6ja4TJE6PCe0XbOrwDa0qysmQymXF8dI+qqoghiH/Q5pJIizIBrQOZVfzad77N5tnPWG9qXID16prf/ivf5+XpBT/56Wf87NOf8zf/1n/G8ckJ5aQiz3N+8IMf8Df/5t+k7XquV2tmiwUmy1FGhh7Pz8+5O53yd//e/4O+61guZpS55fTlS2L0VFXBw4fvURQZ5+fio0cMFLlI2y+mFQfLGXePlxwspuKvXiqi9ZRFjutbAUZUBDzYOMqTCpAAxuYjkztGuV8VegRdQgAVBqBKhs3n0xl9JyB32zTJb32FipBlOZvNegSWqqqiaZpRLm/0FzaabV3LraM0k8mMi4sr2q5HKYNNfs2PHn3A5cUV16s10/lCcuKiEGBGad48f8FmuxVvzrJg2zR0naPIS5QyeC854FBzHhxO0Kbk+qpmtUke8Skvlds5JjDHiMvryCxMXSppJGIT8H9zG+r/gWGjZBYtxrH/qDWgQlKNGVhJ+TgAe3O4b7fuGwZZvUE9RADqgXXvkqpJ1BFtMvLc4hKYMwzgDX1QiTqBYfhLhkZ2TCAZ3owpru9sTG7UatwcCP2FQ7rjZ0gA2yDBGsdHpdeg9F4MGHKom0jWrpe7D8Lt1fwxgUtj2pVy3Rsssr0CkARIerU35PX29ksBJue3bDcXTKfH3Dup+PSzTzi6f8zlecPLF5d89uSK/+L3/gZ/8qf/C9633L9/j/qshiKyLA1u2XDdXvGNu78JzGRa26eJlRFtU2SZxbkWm1t633N++YZN26FNOS5M1WRCXkyZThYoJVTMtm6JnqQlK0Xnq5fPUXZCZgyfP31O13qiKrC2YD6fsFlfU2QGbwSR3bYO7Jw7D+5w7+Ej7r33GN+uoJ8yLUvUJKftGj794gsOD+fMj44gOpr1itV2TVdv6ZoG7wPLecVssaSsptTNlmo55yB4To4PuX//fd6cnRG8Z34wo5oV+N7x/ge/w6tXr9hs1pyfb2iT/1Hb9tD3/Pq33ue7v/4bnL5+w9XVdWoeTrg6P+XPLs6Sp43iw298g4PDY5TKuF5tUcEQQiQzktw120uqIrK6vmC9PuX/80//71idMZvMmE40tcmo14o3r19SZobFtGJ2dMCj97/F8xcvuLpe0buexx9+gDKaut6yWl2z7gNl1EyqKbPphOlsQp7nNM2WyudYWxCj5/r6pZiLZlNcbFh1Nct7H/Lgzj2m9x7T5T/gcu3pnUVT4NqeWTXh6PCYrm3kpi5nNNdvmM/nVPmUdl3z+MGH4HNUCMxnxzx78QoXoKpKHj++z8FVzj/5x/+Yvml4+fwFn3zyCZOyYglUxjDPLctFxovXz1i3PZum488+e8nZ1Zbf+M3fZFLmqKzm69+8z6s3zymuMxbzOffu3YOrFQRFdIrMlBzMH1DZBVfrN1yvL6m7jvc/+jrbuuP07DVPvvicrt9STCbYsiIqS9e2fP75z7m+WnF1dc2rV+epIRDJlEJp6HVA+yw1i0IKcCI7YGLEqkBhFFVZUhiDQTT3o1MEExOoI41XaVJIlDLKisyJQEJoZbGmwBlNSFNdJBm9GKOAS1qRRZPkURRBa7SJGKvxfZqKMQJSSLKrAaFk5kWBMipNnslEW5ZnqSGT5Jz0HkX0K+TB9P4H36aocvJMk2WKzAZQDu87AYySGW2bWJZt00EM5MZgjPgWWOUpMwgamrClDVtq94BycoJxGq0DyuT43uBdiQ89jhKnHeQeqx30nkiJoeTo4D53T+4LsFoCTCDMUCrHuSRZlCQwUJoYDMHlECoyIzKh3td0rqZtN9TNir6tMVEmDOu65vR1R9M7Fss5s3xG09U07RWv3vQEvWF5mANTrKmo8jlxnlHYKUq3eLehd2u6XqR0ul70H5SyxOjwcY3WjkmluXf3kPv3jyFesFl3dD1ocoQkHlFKZJsCSboJgw+DSaSwr7xrKQ+OZfrQRxlQKBZUxZxm22IBnWnKvOTqYkXfy/SeyRSTqchqXK9WPH32jDt3llycXxJ8JtJ5kznrzRXTWUkMcHl5xWKxEK1lk1FmBZtNi9aayWSSAJSAUh7Xb9iut2zWG5Hk9J5i0IjXisPlQia4upaubajKUqRQvcfajGoyZd2mhDFCNIqAo+5EOsR5YebM5zMODpYQI69fvuLh+49Frk/UFlFIY9X7wVtIJmRENla07fXAjFRJtirlLcEPHhUp6VGgVEiFUQKA0rRm24hv2L6M1LANEzwDy8hae2NqZ2jKwh6wFBJoS0qrtAUdJN7ZDJUYz8GLHFVIuYYkl7tm5jC1qrVKk6QKNcoxDmBUmloOAe/71HiRabemXaFMSdttCKHFWAixxyiRxQpJ5lfa/mkeUUWKoqTvZGgnKk0I0LXd6KPonKMoMkSGRBgbIYjEcIj6xtDCr/oW/S2ASd2e15LHEqUzTZ3FtwuA8XWSdI+N7LgDmRSkqeUg67YamqG3muPDsaUi0hKTr0xAJQlH510CFVJzit104Y3Gd4xpWj4KMS6Vcp0y6JiGQwj0riHLSsgzCCLB2RHwMYr8hYr4KI2qYYxBXitnRcWBvaoSgBXSdJ9LcmuJyTMYznqHjslPyfWEdovqG3A9Kjh0jBRGiYyb6EZQR5F5tllOmecQxBcAZMCi8w7n23S6xcMss5qqtKn4BJsvMFqP3nIKDSqybd3O885IfWGtNOe8c2ivMSExUb1PfdwMhQy+GQ1FUQhrAPHRA+g7h+8DJnjKIiPLFGWZE6On62uU8kxnM8qyFCP3usX5wQdTzqVzTqSLEKZ51wzSxRGiSMFWVUY+KzBJ/lirLMUGB32D9Q3UG9qNAMnGZAkIHGJkwFhDOQXVekJUKRfLAEXbCZPZR0de5UzLCdOiIlOW5XLOnTsnbJsNl1cXmNyINItPQJWuaFvD1aVns/YQLHcO7vCtj7/OwXLBfDZhWlj6qGlWa1oXqKZL7s5K8moCeYHRCh8bYnBDoNtJCMfUnIyiK78rpwMRASuVjuO9txsS2C/sZa0L8Rbu8Q584sbk7d69SpTBKr1/GyeJwbee/+7d/8pugyzlfiNpP53fMTX3OZL7J3L3WvmbTg2W3VCENPmHxo38KeEmoDDpf4rooVAZKmhC69lc19TrGtV5og8EB03rCRhcCPjQobUlI6L6HkUkVwYbLXXXYrOcrLTSfHOOGCJWGXKbsQiKwzyncAF/vSa4nswk5QYlYMJiUkhc1wofIqurNdv1mhA7miZisoKNl1ibZRllmVFkBd6JH09UoExMOZYaY/CmXgsTQRmRqFORvncolZpgqMS4kdwkBE+IPbOyRLFjG4rMZWI5obha15RZgULUMLxR9DEQkuycMprcTsCZBGj3AmYnsNnkOSqzrL0nFIat77habXlx+oaXL1/jXaCKGs6uyZQm04YWg88NITqsNri2I7gA3jBbzMFYdG4JucZYy7a7oI8RF6EJnmJS0W5aus4TdURpg1d9GjZuadoNDx8/4Gvf+Iij4wOqaSGeTLqmRWpsdGog7gGbfmCpp8vVRxkww0sctgogjP6EDAMtQ6K7HxWG3DfumpLD4LzYPqScIN0rXavBRO48mHF472t86zc+YrPZsF5v2G62rNdbri+vWK83NP2KdSNDCDYcEEKH1oa8yOm9o90yDn42oWYyUYPXO30byDHoxmFNxBrLpLQURvHlF1/wyeERH378HabzCkLD/eMT/vrv/VXWpy/4F//ij+jaLUYZiJoQM7yPkPoLUTMqPUQV0DbF0jCc5yGX2WVRQ7/i9hb3pfYYYGbFoO7xldncdmyGG50G4JKHVsQR6ej6mugdru/pmw4VwLWeGGRwOPQQtga/UrRdoFOOtvfUrYNoURT4rqKqjlge3WN5dMTy6JAis/i+p+8duu/Ri2OafArTU8rNBWZ7RVlvOG8sL17WnF+c8+E3vsuf/cWPefn6lKv1msdfe0S1mDA7XHK13vLZX/yI3/i9P+DPf/wZd+4cM61m/Nm//VO++51v8fTLn+Ncz8Fizv/4j/8uE92jJobYb3n68pTl4QGLxaGABKHh5asXaBXQCDN+MZmynBccH8xYzqdMS02Zd9y/d0hUkbqtKZTlqt7IYE+WozS4LmCNFQllPchhAsHJz+ByGr34uKUYYkwu7JdkR/Dm4lzkkLVCZ5az81PyLMfHQN2In7y1lj4xDoPSRJWBRnxKXYspC7TJaOqGED3T2QGvzp4xnS0IAdarDffff4QuSihqaCzrruaD+x8RY+Ty8pKnT7/E2JyTkzkuRHrnhSnaR3Ru0UrTuJY2BKbLBTFq2t6x3qxxwaG0R1uPC54sB+9i8l1C6lYfBZzTEdAEhmFLjTaZ9E8UCZxhV38nSl2MEaWFneRCj/JQWUOZiaxoTKCQVgqjSFKFMozRde04XD/8mMT8FQlqGRTQKUfRGnzcoieKYq7I5xkxD3SuR1uNNlaUnAiJxYSwOod8VCHMJdVDNMkjPREAbvQm9gAwbuaGMlCvx57nfkluFHuyg2pkNMck7RdUTCpTcScdvZcVq7R/g8HEMHpfqQEcG94q+b3HoQeTBnJI32vck+fbfYpfvv1SgCl6RG7LgtKeLLd4H7m4vObszTnGwtNnT0QSSGmur66ZTioODxYcHx9wcFCy3Tas1msyU6K0IaQpPdc7tLEYbfAu0NQtJZYQW7aN4/HBXXRW0vciL+ETU8b5XrR++56h0IxpIjQvCpnszqWom04qjL6mSwWiTHmYVMhpIjJdcvfePe7df8B8saDreqrSEodp1Ch0xcVyKU30xBwoq5L19cVIXayqkqqayMS29yKF4wNHhwdUVUVd13gvVENrpbEuhphy/H3v2G7rBLxFrNGoMsPmls16xYP7J7z33j3qbcNms+XzZ88lWdRiOPrs6eecnr5C65wYDZktcV0ynLOaPIucvnol+usG5vOcGAIHhyVlURKjZnZyhxgjy4MDDg+PWC4WzOcz8je56BJXJd/97nd5ffqKyysBCY6ODrm+viLPM4qylMnFtmG5XFKWOSHIhNDV1QXbZktdt7x4ecr3f+/3RaajKDk6Lvj4m9/ixYsXXFxI49N1Pa9evpQma225uDinmkx4/eo189mc6WTKer3l+Ngm6QCRGnBOGtfWiqZqXW+ZTSes+l6+0xCYTSZEF/B9x3p1jestAUvrA9FkHB4u2NQ9VTXh8GDG4WKKjpGjwyWKiLWa3vWUZUEIms41rDc9fdvT9y1omUCYHxxSFKV4R0UFIfLEe87fnNH1fWKiRGbTOddXa5zbFQw6FU872uMwByA/Mtgm0+smTcyLIadJ/gRDcLiZ2A6NXWIUiYY0TT9ORwz7MgYTEiE0Iez7AVLrsMcqSKh+CkQ3kHGl0qKSJnGtMK6yTO6BLMtGBpZKutbysltSWb/i2/GdO8znU6aTgmqSoVVHRAq+EHc+EXUj4HPbiklrnhmsQlhBrgHfUWQGm0lzyPmA85Guk2TROSlS5NzqUaM9xIDSIvcWsaN05mw2ZTqbMJlVEjuTV1bwga6tk9m6RrHz9smzXKYAoyyaIMVw8FLQt31P33VsNhuurhsxwiTD6Jymb6i3LU0XsWbC6mRNVfbkZpqoyxllXhLY0raKrgvCkoo9WmfjxLnoIUtzvyhyDpZL7t+7S9tEgl/hXMMwlayGe23f/2JAG4bGBcOlOTC+/NiYFxZPmo7B09SNSEIhkzPDZOH5+TkA5+fnTKoJV/qKrmsZ/EPu3r0nLIJ0HifTKQEx6wUBTAYjUJm8zzg6PKRpGoYpe7n3do3KpmlYLucyMdU29Gni3hhDnudEElhCHD9DiIHWpSIluhTzMr72tY+4d/8ul1eX/LN/9s/4D//6X+fg4Ahj7CjdYm0mUlsJzJbrK7ErkBi237QPQYw5x2RIkSYww41G/DAdGkYGR2DwJRkm+5WSKV2fmtC3Zff2f+QQ4vjnPtPkBjtk//fDa9LrBsbK8OfQEAtBjRJ9MlWkR4DJuYH2DwQxmw6hx4eOSOT09DXb7UbkCDIzHtNtwF3yWjXK7QmDSRihPogxb9d1o0msHgCRcSRrd753n+FXf7v9OUXGhbcfu7Xe7TMhIK3FSo2yTTGtqcOfwHi93GAS3brm9ve/+xFAivR3+Y79yFqJWt16/rCfm4+NxxIBpcZ7Shibalx3w+jVBD6GEbxMEUzWdIYiitQUlvGCQbpBipuhaFTodPwqBowCaxQ6KpSHIDosmOjRaWhFxUiR2+Q7lmR/XA9WDHUjIRV0OhlRy7kYSAxKMUomDf4/MQbatttrCMh56V1Hvd0mD6VAVRaJoa9G1vSwrzH3UkryxxSgtBbwfjDi1QBJ4jaORR5jLmeNFpCsUGSZAYRpixLGlsQrki9CxNg9D8/EMg7Bp/OUM51WlGWOlY4mro8iJd31RO/RhawjPvhRMkspkcvVGoxVlFVOllsiG7pOpgRi0unXGqqyIC8n4jeKgHQh+csqa+hcR0QmGbXR4hkTRG5wvV5xeXEBBE7uHPL4g0fcu3eX2WxKWRYobeibnoDCZDmTmaHIphhr6Hyg71N+GcMIaxL34m+q9EesCRLIuQ8M74YNhu9/f7hgzC/f6l3G3fuNT4lJSnD43e4+2+OR33i//b2Nd2h8681+JTeJq/H2mbnRJx7Xo71n7D93f18q/XaUahkeUYohUg07NcYQnMQ5rcRvsN00dJuObtvRbjqZ2O/6sSbveg/GEo34lGW2kMFVpDmTJW+zGEUWKESRQSJJsykUmTbMJpNEahEuik5jz0OzSRGptw3LwwOKoiAqJbLIyJrtCLhMptlTMbVrE6nUJAtRBqOCRystzbNU24kfaJLHTOdnx6yVczbkiCFIn8FHj+s9g0pCrgqSuN6Yf262NXmWkWcW55OEdlkRg8e5jhAcTduKR17UCQiLTPIcjKHuOrZ9R9f3tNFT9058QrqOSTkhLwuCEpmn4CNOSawtypIIwlxSAiYVRSHMJCNrV9t2+CDDGEZpDAoVAlmRidSXc7i2Y9tfkhUZy4M537z3Efcf3GM2n5AXFmOUsHYJe6B0HJt2AsyrBALtS2EGiHq8HGVLsWkPLJHL4GaDbj8UDH9XQ5c2DiynmGJcuvpjUlbQUtvM5hOqSYlzB7Rtx/pqxcXFVZK/3tK2HfV1B0okBocBOgG2PNFrnO+JtccoYQXkQXzCs8REIEIMUsdLLQJXV2c0DSwPCmzWM6/gD7//65y9/Bmff/YFV5crtJa+h9Y2SW51DI14iEkazzAMsO4PAgxPGU/RmMPciKbj3/ddTBioBl+RbVuv0MbcULLxoU0ex9IrdX1HcD2ud/RdT/SBvvWEPhBcxDtksL1raJqWJnT0MdA7yExOns+YzA44OHyP+cEx1WxOMSmk+a0zjPHYzGNCzxGBaWnoqoxwBe12y/VqxWq9TupPU37+xRes1huMNrz38CFVWbJer+l6z9HRsXjaHx3S9x0Xbc2dO8e8fvWS4B3r6ys+++lPcL4f/Zq6rmexXFDkGTF6tnXHZnONtcJ8kX5gxmxacXSwYLmYMZ2UlJkBvHiwA73roUrrTLq8BoBIemM7xYzB73PsoYxKGKkuTNJypJ6ETHypUaadtDb5GNIAoQAwyqh0rUu+Mfh1usRiXcwqmq4fFQjqtmExX9L00hdy3nFwcMD1aoM2hnJS0fWOy6srQhBGvTGWPC92+YiSoQJjwDlPxMtAltZ0XY9IJQoZxLuIdmJBkGVpjcOBl368UqJAAEPPMg126j3WzoBhJFBj6MUw1tlJ6m1v3Rxye9kvww7G2lq+sh3jaaht5XmDugjJBiQBW0SiitjckJWGLLcpNqb8cOgZDAedBojGXau92nA/lUmv2e9hjn0Kdoyj3WfYKUXtdpH+rgYPJlmDdkyvpBgTYafAM3Z6gZgkyuUe0FqhjObm4P7ueIbzumMrJcM+tesTxPSd7OLrL+/R/lKAyegMhZi1eQ9VOWW77lhdrWmamuViztmb50PLiPV6w/Jgxt17BxwczplOC7Rx9B0E02NsQFkzFvXpuhLNyEgyvczwfUKLjUzRDItPCD0uBUvvOqw29Mk4NwQJBCazcqPjqEoBHmI/FKRgjRW0M4onjAEOlkuOjg4pSvGvUEzxXgqlYYJxOV/ifStNNx0prRi7Dw0u8S0SeqTzEW1zvA/Mp1OM1jJlUtd0XU+eWayShbVuWrpeAogxhiLLyPOcuq4JXYdRivM3b5hOp0zLqXwvRvOQEwlQSrPabHl1+oazV8/pOk+eT7h75x6r6xWuF8+T+byg2Z4znxXMplMODw5o6g3ThQTdqpqx9DMgUpSV/BRZAs8KfPDYLOfu3btsNitiDGKCmWcoAtOpFI7WGlyvWS4WBN/Ttg2TyVSasiFSNyJNslqtmMyWlKWiLAsePnxI27ZJbrCnKkRvuu97+k7YG1mWsV5fAYosK3BuQ9e0TKs5mbaEKMFwKHL7znN2dsbde3eJ3jOdTTk6PmIymVBva+ptzXZbs9pkFNWMLkSqacnh4R22tUiHzCczHty9S73ecOfRPUGaEYN2YwQADG0gtD0+tjS9YzoV75pqNkcXBTYFZ985zl685OIN9F1H3YiO/cHygKurFVUlJqJd3RCdG6rkvRt+KLEkuTQpoRgoj2PBPf7I4qeTeXNUw7Q6qZkcUkPW3ZDeUem60saIEbh6W0JoWExvMAKIxLEHs2MhiTa/+C1pqzFW/NNsniWGQQp6tzTsv0oA0+HRAYfLJcvljPm8JMaGENokkRhGIKJuWtpW/BxUhCK34lUVHK5d02zXojGsulRcavre07Sepulx3pBZaSBpI0uG1proVZIttECeJicLyqpgUhXSzMpAmwhKvGLqdkNuDCrPAItLYLkAh1UqrEXqz5qMzIrUhoDpDdfXa9brlqZpAUuMBh9boXrrQJZtuLpcsZx32GpIMDLIclyIEFti7IiIr4dWXTLv7WQK3UiMtdYym824e/ce61VP1wbqusf1YTdYCImBkrIGJU1PENBV6T1JnXQvDFJku3tQAJq6rgFJjAaZI6UUZ2cif7larZjkIhHpWym6Q4jcv/dgnJaXyX1LUZQopdIgA9R1Td8LuH1wcDD635mUQDvnRMYjhgQw1cznkxFs8ClZHe47YRV7lBG5zhACbpDL8n6UYpxOSt5/+B6Hh0vq7Zo///M/ZbFc8L3vfZ/FYina0wyJ9uALIgnQrijceb6lDnD6Pek87+732145Q2PHj8m6bMO5H2LX4LM07G+Mjbw7powFfNz5NN0EtsLez+5zwABGDWasMCSwMTIepx6LE3m/YaBEKVAxCIvQd3gvAzNPnz5hu92kkxLHa2pkYEVpAKuUdJPea9BhNsag7M4DKoSQ5PX2PveYfLNXxH81KvLbwM67lhj1jvVOAJt9CbzhOUkiYM/g42bjKI7Xzk0gaNds3rGfEsgbU9My3SvDNe2DT89RY2Gz/1r2rltglPSQRrmC6BmZRunYh0a5XPsypBOUSNvcavekeBjHuCjyeYP/YnpvJdd8UjxHq0hhLZl054kBuuiJ0WE0WKUxSkNi1JHutb7v8MEndoi8rza75tzOY8ykok8Kov1CX37EqHhoCoi0Xj1K5AFk1qZcX7yOVNwDxJXaxfc9dnVMje4QZNDA2DTgk0AnYhAfkJSMGS1+gCKLLFPpAfEbzLJM6pukcy9rliHLrEy7KmlkxBDQGoqyoKokPzcmyZP4lj46fHCEANoIY04azQI0aQU25WNZljGZVDjnpeEUurQWRlTw8t1Yw3RSyiR/l4aJ0nnpWlm3u7bHYLGZTXmxZ9usWa02hOiZzybcf3Cf9x6+x+JgSVWWWGtkGCxElMnIC6gUUC7olKZvnXg4prwUpVHsZFXU3hDAMMU+sPpG3fzhPtgHhNjdc8NjQyNg/34drvnx/hxev3fPMq4He4/tNZl37zPUurfB4K/2tr8mw3C+3p3vj/VPYNfwGRseIHSRXbM5s5YQPcorgvO0dcv6fEW7bukbR+gEmB4kZCMQtMLm4gtrjJVGuheIxWhhVoaYYor34KR5OzhzqMS8sXkaBooiDqa1SVL16ZhjYmvHgX2dWjwmTbXbDKwVHxwvV7VLTCEBVYdGU2CQw1Fx+NmdwshOYnW4fscmVMpJQojozApz3Yuf0w4gTzlRlMZZ56QXQoxkxpBrkayLCnBKvEC8I9Mam4AwhRo91HrnqZuWbWzoifTpnBRFzmQ6ocoLGZQcgAclsm7WmNR7kHw1ptpXG00Aeudou06k/kyGU8jwaPBEJQwOF1p678gKw+Hhgrt3T/jgg0csDmY43+ODE5BFgdI76eL9a0ru/f2kSTE23NT+mp/WXrkq2PWvhn/vXfNB7V4x7CDEcch4lNHbyykGf97hJaIEUkicj5HZdMJkOmGz3lDXNU3TclWuxtxBvBYljgt7vyci7AWtxIMwhow8k4E/N+S5yrBebXj+/AWT2ZTGbTi5M6XIS8rCY9SWrz064re/+zVCs+bn9Zam7RjM5IlB7kmBbFFBsRt+3Xnd7edXuyt5OOf7UWE/54JdFFc3/vVV2Opui9FiM2CTFYFPHkCuT6ylXgYGfeqnud7Rtw7XOVzn8Q76tqfpatquo/EerCXPSiblkvn0iIP5XQ4OH1BMZpgil3xMRazOCCbggkd78Tfqc0VnoQ01V1eXrNdrUDBfLPDeCwCJZrE4YLk4xNiMzXZLRDGdTgDJPzbbDV1bs5hOeXN2Qd+KV/mTJ085OZiPd6ixhvlsQd+3SdatoWlqDpYztI6URcZsUjKfTZnPZlRVKT0ooyEEmlpo4lErXAiYpHwxXIfjkBK7td2n+hgY884hVx/6aPsDi9Lk18TgJY8KwtB3SZ0GpcQraHxd2m9ad1zKv7Q2tO2WLEmcdl2HVpa27aQvpGU4qXdXIr8/mdBdXnF1Lb3TGCJ5UWK0pmkaUSpg8G9T4/DW8BlEetqgR7sLjzWaYEWhSIj3g7D2wJbR4y2slMH3HXFk5+xqm11NrZJ3NWMtAWk9Su8x9FgY9jL2Z3YgSIhhHDC7IXvMMCSsUEYGyAR0l1ifFRlFkWGzQW5fJMR3WExSckrqUXsrwd7fbsb3d23SW5V9qf197/VMbzyf4bMpEYKS7m+6NhNLXC7KBL4Niga7Ix4AJpXsVG4AZ7eArWHwfFSeioN88fD5huTg3y3C/lKAaT474Pr6Cm1bjo5nLKYHPPn5p2zXDVWZ8/DRMd451uuGvvUoFA/fv8vJ3QV5LmyfkzuPmFQZ2/oaH3o0YkQfQsQ1Hb53KGVZLg9ZHh5RlFNC0FxeXlKUFXlZpUKoo+u2gsQn89g2eNp2Q/Ad+MBm2zBbLDh9fc7FVY3KF6jgZB3yihDAZOLBRJqaDkRc11PkQgF/9eo19XbC8fERXd/SO8d8OaNtG7SKBO/ZbrfYWUVZVlit8d7RNlJwaZthbY5NRsN934tcSAicvj4jBDGaHMga1lpiiFTVlOPjE5GyCYEvvviCs7MztNZ0reNP/s2/JiKyHCcnJ3z3N77DbDZLPj2GN2+u+F/+v/+KJ18+R9Pz3W9+xBeff8HZ2Smr1TVXred73/t1fGixVnHv/jGrlSUER1ZGlscT4rqACLP5nCzPxctJK+7cOebgIE3IrK8JMXBycoc8z3jx4jlf//rXUxklSdnBckFZFlxdbrm6uqSuWx7cfw9jM+4Yy8OHj/kHf/8f8b//L/5LJpMZzjkmkwmPHj3i9evXbDZr2rblD//wD/mv/8//J+q65sGDB7SuZTabQ1T0XU9VTrg4v+DOyX3yosKHwVxPtEM3mxVPnz7l+7/3PYw2Y1Pi4vQMbTQ+OAH4omJhFU3bg/YQLY/ef0y7uaKwGQ9O7vLy+efcO15yeLjE5mK61/qeo8MDFmZB3y+5upKAnpsMrUQuYDazXK23rK7Ff6ptW44ODui7jlevXnH3wT2WBwc8fvSIru04ffWaF0+fUTeNTJoamUoLUa5fCR5m1CAVVolw2yMRHxy9i6nhuV9sW0zcBYgYIsHLtELvRHrGOb9jMmmFjnosoOIgUzKASYMsVGokK6UIoyxJCnZpOtkMXku5Gdkc4newa9xwqxEMt5hQv+LbyfEdjo4OOVjOWSwqUC3Bi0dRJCQ9cNhuatpWKOkhBMoix2ogOLr6mvXqkma7JfY1ihYfCnwvEiBt14OS6WV0una0xCCNl8LaFFJg5DlFmVNWBXlpsVnE2oDWIoHU9Ru22ytClqNiRUjgRkS0iIuiwBqZXCvygswqqiyj3W7pWsfqes3p6zesVy3bbUPbeuqmJy8MLnqU9hiz5ezNOXeOt1jTUOSGzIi8SHQGYy1ZKGSIIAa0blFKDNQ73++BAmKm+d7D+9R1T9d71pua9aqWRsBe0qLVUKBIQmJQZNYmjfDkhVQUiU3rWK/XktAVOQEBdfq+J7M5+MgwqhNC4M2bNzvQXIOxlqiU+HLQpvtJkp8sz2iajjzPRx3kalJxvV6jtebk5ITf+q3f5I//+I/l+8s0mclYr9dkmbCI+gQyaK12DLIoWtB1XUMU/7RhqsY5We98GHTgBYzK84IH9++ymFdkVvzgur7nH/2jv8/H3/wGy4MleS5SGF0n/k/AKFMVoyak6dhhqGNIXkfsXN2c6hl8q0jPDSHQu35sCsEOXNpPJAegfAC19wEm4Eb8GgoC4q4h6YMH/AgqyeSlTJcNDcxx4CW6tB8vFHq9A/CH+DjExv33H943MzLN1ncdLrRoHfmzP/tTtts1JhmYRth9BgUojY8RPa4FKiWXWiZQlUYn6RNrbWoYpKaHD2OTWkC5XZyP/44J4/+/b2FgPgz5yjv6vb+oQBi+0+E5N6Xphme9u5Esj/mxqX37ufsN8YFNM3hnDIzJEMP4NmmYetzv/nvu/7lriAPBy9QyHh08wXmciiI72ba0LqJsnqSoBnG9OJYVKjXUYmqeyn3nknxE0quPHu2ElZMZQ5H07kPf0bc9XRT2ksZjjbBfjYbQIwbMAyCHZ5CNs0ZjbTItdztpyizLRI9juHdTcd803Qj+x/F87gCmvu/xvmcAgAfWu+lkOlURUt4exyGBsixH0/MI+CjnxTsnJu7WYJUCY3DR4Z2jdj1KCbiUZwZbFcSoxviojKYsKmZTkTxt25btdstgeA9BGPGAzUBFjTWK6ay6YcA+NtWUZpAV7TpRiBDPEhkyMcZQZhl5IcMj0+mUpmmoJmUaxjDpuR3g0SaioxOpFqQxjdKcX1xxfnkhJtJdQzEpmM5mxCgTwOdvLiFqHj9+wHvv3efxBw+5c/eYaiLyr20vTRJlC4rC4LUnZBFVzWk20uTabrf0XY/3UZ6rIwQBkpLB2K17bJCZGu+Q8R5QcQAido2LUYp1+N2NPTEW9SExCuL4vDheo29tt3ckCOXevbh3eL/imzbC3IU90C6hHWMr+Eac3TVo9nrxt369NwE9vlaYzPsvqbICkxvqdc3lxQVPP39GfbUl1wW5yTHRUm9qotbY3FKUJXk5ISsrYJCxDbS+ITg3sjBNVDjXj+tpJAHkVqO11H3bVnojInCpsUbyvOA93smwx2JxQN85nFsLU9QHJvMFmc1kAFZLcyd0vTSE204auWk9N8nHFiMAt0eYhZ1rhcnDrhFVliXaSDPfpPPXgzQ4Y8A6RXAdmRkAbZHIVHrwZgmcX75hNpuzrWs2YctyOkNHBAyPQXpAdU2mDR6PRlhkmTJcbzeYPEdnGd3K4YHWOWrn2HY99+/fI88KdFSEvhd2Z4yjnKvWGlyX8iwnzdc2UhQVLka63uF6z3SypCfiOvGNW62v2PQ1ne9xMZBlmt/6nd/m/v17TKcVTbNls70myzNQHu96dLbPkNkDl25chLsrNTKYnO8x6NL1HhNwODTohm0ES9mPBXtBIb3tjZyAPYByvIEU2spghvNhhFSy3HB8Z8nx8cH4Xj60dJ2sLZeXV1xdrthsBXzqOo8O0HXSRA4EOu+xmcJHTfAaFWVw+0c//gn/5k/+LXfvHfJf/h/+U/7z//w/4vr0S9qsZ7kwWBv4g9/5mEI5Mh35kz/7KTrPpDGepP2NMjgXUWRocmIQaXWlnTT4b4T0ON7X++dqdwpvx4J9LulXp3fgfStD7U6PsSF6P4JL4v3Y4wdgqetomoauGWS0RebctS7JfkZCLJiXBxws73BwcJfl4oRJucSYCRhhD9rMYtPQj3OevncUhSKqkt5EOhxtf80Pf/oDmi5wcnLCgwcP+Omnn3F+ccHXvv4NHn/4kfTt+gBB1KLqTc3dk7t89unPmJQlZZHxs5/+mAf37vPjv/ghl5cXHN+5A8FxeXlOVVUsl0vyIufiomazXRGCYzGryIwo/UyrijtHSxbTiqossEYnL/GIsZbe9eRFQVlVtG1LXlaj/3UIkSwrxoHsqNjVjnvNeef2FCPSEI9zDqWRISpSPqIVoQ9sNxum04o+eRTbpEDiexkMjREWiwVKGVarFd4HjM2JCOgzgNbaGj7/8kny9azI8pLL6xURKKsSpTSr6w1N2zKZTDG5xaQh/7ZrCUGhdMZkMsGHlrDXAwghJNsKGIKTMgqTaZGQ1RFRjzKgQfuUh3qLiQOHWdMHI6xWSCCNqL4MjKABFBrz/ygSpUbteoNvtwMTy0kN6h67fSGnRvyJ2AE7sirLc4MOBCXy+FmRU1QFOoegd/0L9gYeYJfDyBcfx/fhRi6zB0Ddiv1vAUh7w563a0qlBohox34SIE6nNR1i3A0wKD20CLT0jlH/P/L+68myLM3uxH5bHHGla/fIyIwUVV2V1V2NRg8aDaAHYHdjOBiSNkY84H34z5E0EnwhjbQhzIYzAxBAG1oZBi1KZ1aliMyQrq46Yis+fPucez0yq2DGx8pjFpkR7tevOH7O3t+31rfWgoEQy/3kiLceEkwH+c37/SmTSwght/8cQlyMCr8Hn/arx68kmABevnxJ05VofcXV5bv87Gef4PqOs9MF87nl1atrYoiSE1HPODuZE1OHNlOqakLwlqdfvMaWEVvmZrGq2dyv5STagr7zFMHx05/+jBjh5PQCW07EQs9KQ1RVJav1Hc51aJWY1DUh9BRFgSPS9R3aFNxev2bX7DAGjo9mfPjtJ3z2xTV365bGw2qz5sMPP6TrWjabDdbAq5cvefr0KXVd03Ytu+2KECMffOt9njx5h5A8kNhud3Rtg+8brp8/Z1JZguvpu5aqKDg9PcWWNbaosGXF/XqbG0ZFVZa8+8EH+G4IDhZLiuvra64ePSbFIJPLaG5uBYg8PT2VADjtKEspUl3X8OXTz1nfrgheQLh3332f/+l//tdYXTCdzTg+WmJ8T3d/y0ld8p13fpOrR+dsd/fcrO4JSQi1995/nwg8e/4lP/kPf8pv/fYfMV8uuLo6p64n3NyUmKKiaVuc72jaHbvthifvPBbLP+/5nd/+O3zy6S+YTmqqUlRH292Gvut4/Pgx3/72t3n69Au00cxzkPzt7Zpvf/s3+PGPf8z1zS1vv/0OH3zwAUopuq6DFOnahj/5k//A7/3e7/OTn/yYv/iLv+CP//iP+Zu/+UuZmqlnHB2f4V0cM0CstdR1zXbrs4+95v333+fzzz/n/v6ek5MTPnj/XT775HM++fjnrNcbtruOl7eOl9evWR4dc3J2wqSuqAtNryOrmxt+/Ld/y9XFMV8+/YL7+1umsxnT+YL5yQmvr2/QRryNdWFxQcBGkyXpr1+9xvko2Vpth8Lw6WefsVjOOTo9ZrE44ub2lpASjx+/xR//0R/xl3/+F3zy8c9p210GhFIGW2QRMuqh3HFY81KUpi6hhZBKMoWclNjcoRSJwXYpiP1k73FOgBk/ZJ0MAJwaFuvMng+LT5ZpDhvpQNyJ5Z5MWg/EkrECDhkzLHB5Am0gxjLTOi5uD5j1bwboCRIIWGSP3xSFSA6aDIRFZpMK5yNMC6zdA+2TTDApAn5SM61rNpsVXbODtkOZmhAtPnpCUtjCUpQGkzRFrzEGoveIvVZJaSuc0xRFmRtOeYxWEZQbp+JTbIm+pYtChFlbohFbhaIsqetSACo0fRfEom23Zb1e88UXT3n18hW3t7dsWgE31Vax2hQsjmek5CiqApTi+YunnJ89QilFmBxTlTORaQcHSmHLQvzCNThX03bieSwY3mD9mChLw/FxzePHPd4H2mYnFqWtZ8yJVzJxKtY8snlrLUSSkAVCWmDEIlN1Eix/fn6G8y0hePq+F6WVKtAmkfLm3bbtSP445+iV4ujomM1mR9dL4ZcUhBTGYb6BjFiv12y3W5bLOX3zWu57pSiKgvV6LWvuZkvXdGhNLmqF3Nntdmw2G9quQWtFXZa0bZsVUYaEPL5v5bwMzbHvRVVTVgVlpendjp/+7EdcXV1xfHLK8mjJbF7z4x//LXVV8f5735LJtPs1ZSnWTmInAD64XDw+JFoGBUI6sLgZyKM3FUwDcXRI3FhrH6gUhnVoILDfJJcOm/ZxEjkK0SDr3WB5l5UeKUGQ7KdBwSLFbyBEn0N0B7WUHgmEFHOWTYzEOEwDKXQS4IUUScERUIToiMnT7LZ88eVnfP7006wW1BnOZwyvGKHT3PhIYW2IQYESIiyEQGHF3nIxm6OVxrmOsiwwdg/Wh6gJIZNUWqjUb8axt16EfXN42Ajsv8eDrz0kjn6JyukBQPWQ5JEebQ9Y5weMNs/D40NwWHQOjM1E5kAivfGcA3AevqKSeviZdIoZLA2obE0n90AihSQgUs5dEgcA2YuJkpcw8JspBsRuIoKK6JSww4Rhfp3KaGZVyaSqqKsCS2LjdsRmjd/tSP0OkheiJiaiisTgKTOpKjkXidm8yrafKiv8jGTz6IPJxLwuDErsQcE+ovmZoBvs9eReeri2NE3Dbhdlfc9rR4weqzWFFRvfqqwzYT0Q4JGubHFOVKBiUwxFtq4w+XwZqyhtQWEFvB2mRLNJfFYPyzkstEEnCaMfSGxtoJ4UmNwoG2OYTEpIEig9XFJKacqyFNu/rJAIMcnQyKRkPrdiW6gSVVUym804Pj5m2zYUlQDr0+mc4BOvX71gt1nj+pagAmVVoIsKbWqKcsJqteX1q3t2XQMKQtJYKzbmznkmk5oPP/yQ995/h7PzExbzmeTN5NHKkBRtHwjKoquKqhTAZdMjgx/bhrbpGbjYkVvPSoGYcxNjvtdSSoNr45CDPLCvD1R34z0Mea1/eI+MR266VQYO4oPH7deNlNIvgTHVgHUcPOU3p5Ydjq+SQRk44dA+5lAnqR4GNXGwFsN4QvWD593vWwrBfEIIdH3PdrNhu92itWaxXCJGj1YUd1VJxIIWaymfYLte433I4Br0fU90PQaoC8tyMqOeTYg+jmpqsaaVafeUEnftmiaWFNpg0OgQKRJURUGhZf3o7ldZZQ6eCErjfSMgoy2YzxaUZYmt8h+m7HY7eu/pXA8uA5jGAkkmxrU4svgk1oDj1LwX2ziZhJdz48nuLRp8DBAjyejxd2CMQVvLtmm5X6+5X29ZbXacnZxwdLSgrmR4KqYo94m1zBdHbLdbyKuSiQlVGEJKuF3Dru95fX/PzXrF3WZD6z3TxVKGsUwhCgxjUFFsPgOGqC1KJcqqGAeOJpOSajrBh4jrPX3nCClBCESl6PqOF69fcLO5IZjI2dUZ7337Pd7/4AlaGUiB3m0pKskUcb6Xga5acoXHS/VQlTTYIh0O4STIjPcb16t8M2VC9MHqckCKvPHFg3/uawd1wMYOE+SH/1cokk6kIA4I+e44qC3kHglxgy0Vi9IyWRzx+MkpKSlCSAQvKtBm17LbdTS7lmbXsLrZ0HS7fK8qum7Hcrnk9OKEemL5k3/3/+Yf/r23eOu8YKI6/HpLOStRref7v/GIo/mM+/WOn37yDFWUFFZTEPG+p64quX98DxSoaEd1Q56XOri/D/8+fiOfh697jP4q0f9rfthK+lAXIr1LqCiDitEHGXhsHX0rQ4rDAORu19C2PX0eVnUusN00aGNYLC959+3vc3F2wXJxRllKBrKmlnwWLdel0bkPMwUdPTFqibTY3YFe42Kk2e1EHSJpJKxWK37yk59wfHTCdLqkrudcPnrEX//gh3z3ww95/Pgx8/mcf/Nv/g0f/sZvcH39mpvra95++23+zf/8r4k+UNc1la348tlz3nvvXWIMrFZ3PPvpF9STQnKsjcK7lrqseXRxPtriTWpLqRNVVVCVlsJqppOa6AO99zS7jslkQorZmi5GqrIEGB05YhT7cWstg1JUbOtleFPl69N7n8/Vfl+L3vHixQuccxwdHTGdz9DWZLW7EAk3a8EJqqoCY4kJWu8xxuahILGatLYkoXn96kYcv2xB7wOr3R2981xeXuGc5361Yb3dMZ/PUcbSOc/9/YrFYkFShq7zYqueYLPZ5fo3sdttKcoSa4tMZEAInjIr550NQlKngCmEeLJJ9kETC6QMTzIQ6RgzmnRe15ROGPTBPZ/t7hJisaf2w5Vj3Z2ylfXBuilKOikUQxwydmURkIExOQYeSPo/T1CBqAOYgK0UpgBlEklnF4ZhMDcmzGHqBwOWmvZ2c2rQSI2VzFeOcXD+K8T4V8mnQ7JnWPkOFUdkcu8N/b0Mj6q9BaBk34lNt8ptx5BJPb7OgWWf/Bmc4+SFxZXqwVlEWSX7YfwlNXQ+fiXBVBSGOk7QaJqtY7tupemaVByfLHn89iNevnwqqg5To5RlsZjl6XOZDEyxZ9f0HJWzXDSJ4gdtJA/Ce7Qy3N7eMZvNKcsapTWLmRQRSSVicLg+MqlL5rNK+t7oqfWU3sVMcFUEbUkqg0sKJqWi2d5idUSrSNe01JMFr65f4/oe53oJg/OBL7/8grKsaNuOD959h12z4+XLl1hrOLs4pevb0V7Ih8BsNqNvd5BgMplxcnKM915CKsuSejJhvW24uDgHFMEF6mqKnkxRSizSbm9uePz4Hdp2h+s76noKRBbzJcdHx8Qo7+uHP/xhVrKIcmWz2ZBa0MqilOLjH33ErKhJMWFipNSJqVVcns65vb3hi88+Zn3/ktu7O1x0KKNZrRre/+A7lKXlg299jw++/Vs0veXJkyeklGi7lsl8gjElTbcjRE9Kkd1uQ9vuKAqLD44f//sfUVcFzvUsFwvef+893n7rEa9fv+bVy5eElJjP5swXizxZbri8vIAcGtd1HR999BGr1Zrf/d3f5fT0lBACm9UapRQ/+tGPePXqFYvFkhcvXvDkybtMJzOckzC8u9tbtJKQ5iIE2rbl7OyMu7tbtts1nfMslguePn0KMXK0XHB5eZknuyNN0/OXP/iY6dGE6XSKNYa7u1f0zZbvfOtd3nnrgovTIwoNl+cX1LMZ1aSmmsywxZRalTIxtdrx1ltX7HZbyS4Kia7raFzk1esbml2L6yVHzPWOwhbUZcXt7S31bMInn33G9etr7m/veP78udjIVSXOdfiuB2xueFMOC5cFJaaUA6wDPmmSTzlTIZKSGYHPFCGahMqKhZA9eEXx5cccJvmzX9AOLRNksZdGJIQ80R33C1NUkahARQGktMkB99mWReXJ+VHBNPiBDmv0wSI+MPjflOP5s5cYrSDbI1lTk9CQshQ2afquF1AYIaKyQ3puZoQIqqoFzoNKJUl5TFGyayXMN6IlXNgo8FGAwiy/trbEaIvCYIylKstsvxNReLSJkJxk4AAQMqnT452jLAN1WVOWlsIqlIpiZRo7uk6I6Vcvn/Pxxx/x2SefcHd7R987Gt9Kc6QU1lmSFsuGyhWieDWKl6+fUlYVwxSLNhNQKduy1Vitsu1iwNpK1kUszvVSICQhoXVQHJ8saZqG+/t7Xr5+Ld7LA+iRAydHMDWl3GgKCDBMkRwCVVprynI25hDJ5s0BmSJPNkw8iYK1xYAUfEpjtGWxWGSQVLKVpKhL3Nzc0HUdWmuapmGz2TCdT2mahufPn3Nzc0PTNAISKwFiu77LYFxkNp+K/UeK9C7Qd2JRqI0UxyFEIdzaDvI5QGu0MpSFEXvEqsS7jqZd8/o64UOHUpHT8wt++MO/4fTklPPzcxRWGsi6yvkl0gx7n22qjB7v668rSg7JnzfB8kFpNDxuIJAGS0EpiuPXEtNvqkT2v790QG7tyYGYYq6G99Z4iZiJgJCJJZ/tsTJBlQR8T3H4Gcb8EIVGY2TSOPpMvit61xKjp+sa7u6u+cEP/0bU2snhgtRQqOE6lFIyxmEdHpANmeAeri/vPVUp03NlVeBDiTGK2WzGfD6nLC2oSO+3HKIj35i1NtuiDZvawC2PxyFBow7K97HaHtaE/eTZQwUSAy2YG4M0XkMSxHpIJjFec3LdD88x5LslUs4U+/rrd//6g2VXfOO+GQ51cD2rIbiIJEMpHDQ0kQxy5WnDmIEuJDJax6wgwsta09VqAAEAAElEQVSfXCNowCpFZTRH0wnTuqAwChV6mvWKfrvBdTui61DBQXSSeaEig/rdRZV93U3O1VSoMVg3oQM5Gy688RkPSJ9W9qMEWTmk9pOIuQWMPlvRZZJe1qSDZ8tN1qCQHGqWoemU/UFRlxVd1xNjj+s7gt/nPSkFVmumdT3WOtZoqrrMjXp+D0laMK0VKg9IGZ9rNhVBR7QWq0FrTc4SMKRoSEky7oKXsG5jNDEqfAAwRO8z8aUwGQixhaUqKib1BGNLQmgpqxnT2YJHV49YrVZcX9/gQxbgKotKBpV7q7bvuV/vWG0ayVzRKmfPFpAUxbTkrbfe4rd+6zssj5dMJhVFZSFBRJOSgQSdc3irKYoKoy1GR9a3N6y3O9q2xwcZiDHKIDmUIUOdQz7ZwR6dzzdqMNJL4z2h3rzPBzRjCJUewODDJUAlUrYTyzAug3pvfK00tP7DU35dkz2QYA+vrW/C8XXkkhxjopZY4gx5NsPj9VcfL984/GcG/PN9qNSgXsu6HaWoTUFhC2azOSenLXev79mtdvRtTwqSwUSsQGmSUoQYcFHAsCQomFhK+YDJRPV8iljZKbENJhjJzdWKmAHFje9pU8SgMAlMhEVZY7VM/KM1KkZ673GjBaTUQ9aKGtP1MnRlIF+rov6WvFrpA0OQ+lpAuRxiLhU+1hisFgwkqgxE5Rq07RpcFJDJaE0KjmlVjoMOAGVd0fWObdOwbYREnkxnuJC4X2/Z7La4pqPMPUiMAZQMYIUgWT6LxYIeRfSSubppGnadOLzMF0tmSjNdHLHdbdltmrEPNSoxnc5Al6AjVV1m+0BZw31MaBe432zpnCNGsNMZKFhv19zc37Bt1iyP53zre9/i5OKYyaICEw4sBBMupJxfJxarIfg8LBkygXG4v+drbbR023/9UP94+DdzcKWP0+gHBNO+Vnjwg8M29UvXk2Hfln/5TJYn8gsy5M4Nr5ESiNxdQERDjqhIWpwsKoXCUFYFi+UcUBht2dxv6XtP9BHvPHc3d+x2W9ymxXvDolLcv/6Si9kRSicK0+K3GxQF0fcs5gX//H//v+X/+H/7f3J9t8KHTnIY6Yk+opWoDL0PBBVQOo4E3HjeeXPQNA+C5frl65bSQ1Lum3J03S5b4IlKkiiYaPSR4AKu63NdJHa4bdux2bX0rQwVCzEVccFwdnrBxeW7nF+8y9HsiLqcYVQJqUDpAm1NxnFkiFqGLgtIGq0sk3pKoTzdCrqmpXcyqLhcntC7wGdPn+JD5Hvf/g7vPHmPxfEJ203DP/6Df8Jqs+bLL57RO8mP+uGPfoA1mhQiP/zB36JILJcLrDa0bcujtx/x+vUrnOsI0TOdVkwmBZO6oCwMpdEcLSecny5ZzKfMavme1UoU8QqCl0FrozW2rNAFefgy1022QBtRdQKjO1JRmNzPh3EgylorvWH++uBeMfS7Q81+eno6quLX67Ws+0oJad61zOYzjJF4kq6XwU8RWxhiSjRNh9YW5wMhSsbc8ugEFyPeR8pSM5svWa0l06rr3Ug+ra9vUFoznc9osuuWMQVVUbDdblFK0TsZYE6ZIJeMX8mDEucNK4PJSQwETN5PZC2T89S2cspCSMTg96SIEgcmlXHMgT7xUfp7UdoICZNdr0fcc7/ayjU4LADaHNaChwS9HMNrSxc/jmWRdIQiybVQMPYiQ+0nP5sH08Yy5EDlk8GiAerRGlQ8ILQO1q4Hz/c1C9ThgP1D1RO5rh1A0v3Xhz1Flk3BViRHLxNMA2l/SNgPmVaHYOvXvY/DveuNtVYNPy8l18PBizeOX0kwKZ0oy5pJXVOVc37x809RKnFysuTi4oy6rphOa+azmrKYoFSBLQWMikkKee86yqqmniyp6oJkOtm4kkJpK7kemUWbTGsm9QSUpShEMhiieHsmVPYrl6mWtpUmPEaISTbMmHRWsykg0O42LKYV602PSp7BVX63bcaz3nWSbbJZb5hMI1VVoY2hoKDrOu7u7zg5O6GualJZ4J3FGpgUViZ/oqe0lqIQH9yqrimLkhgj0+mU2WwGSdF3EsrmfC8Nr9YUVSWZO31HWVbM53O875lUNSpblywWCy4uzlEwZu4UhaEMUwgidQ/e8+jiDO8dWkNlA7vNa6rCM62loW53K6LvUQgYa3VB2weUTxyfHnNxeclq4zk+PcF7IX6cD1T1hNVmhc3hmpKTNCyCQhZOJ0tuc4h837X0Xcl0UtP3PdvtDqW0FKhOwNOFsTLp0PZ4f0/XteP05W7X4J1jPl+w2a7pnWOxWHB1dUXft3Rty267YzZr0VoznU7zwiYLvMqLYlGWlFXF7mWD0QLmlkXBcrnk+eY5T959F2sM223Dy03Dq1cvCT4SQk8MPX23xfU7mmZD0xQsz0/RWjLCtC4JSdNu2wzUSmPfd47gRDklf4bQPJ9tWUSZVdcVs+mM2XQ6qr6UUmy3O55+/pTVapWtF4U9l+mzQ9BK/sQkVgKDn7J4du8BI1kM5N5JSWHE5UssIELA93FvvzOQS9nb+6F0U15ZwKTBkkrCTePBJJE2CplPEKBe63ENZpSoHoA2eiCX1MHimfYF+a9ixn/djrvbO+qqEEDRO1JaYK2SYs4M4ebyewRQGLSKpKiF1EMsMLRRFEWEWJKy/HvX74jsiBiUlk4kJilOUhT7IJNtkWJMo70YSYoDUiET2UMgY5400QZwOROGiDFKNnuVSNHjQ0fbrNnt1tzd3fD06ad89tknvHj5nN12JyQsHSghQn00sE7YQpHwQiIZy/XNS46X51TlhKKQqXZFzoxSkldhjcHohMJk8EHTtg0hiGI0aLFomE4qFssZR8cLJpOS7QZ8GJoSuXuUkgwRVC5plBQ+Oo+xaL1X3Y2EqdbZu9+OBdnYgObLeLBs6ruOzlgq77FFwWw+Z7E8YrCJG56zbVvu7u7EdrMs6TrJX1JIBsbL5y9o21YIHJEqZpsoj8oFWVkWYuGW72cJZJfXkMk1l7Oz5POnDN4ZYzE2UpUFRSEgX9tuM7gCZWGZL+ds1x339zesVnfMZ0f74kPOQF5rIsbKZ0p54uXQbuzw/8M6dPj1Qcl1WJcNQK7kgqSRYDq0pDt83uG594cUu4cg/aiQGkiiuJfrD4qCoaF4M9BVkUgxHHxtsGPbF6hKy/lHKUy2oorJsd7c8/rmFdc3r6jrgtBJHozACcOKv//wwx5HDp4dAM94QEaMFnnWkJLUNZNJndVLLj8RPEQ3fv2PB+qf9MY1IF88eDA5u+jAYks2qLw/Dc8ZMzm0v4/2AMigsJDJuHigNFLsbb0Ew4zjc++D2Ifr8Q0F1QFwPj4/6eBa3V8zCoghyNqWBgUXpBiJ5HogDecm7k9BGl5nQL1iBjsjKnm0ksbRKGnmS6OZloZZZShUBO/wXUe3uce1O4LvScGhYoCc/SAJ6gMAKs0nWf2s9WDrGPIQQhht8KIU/vkSTuOflOsglTsv2R/sATmg8c6BH7ImB7DvIbk9ALdvWnBycJ7Evs/gtZZw+pjJtgxOWC09i82DYdporFZSr41ESZDgdiTDqbAGbQpi1MQkJBwqr59WmsdhXU1Zde6cI8ZApW3eOzQ+A01ohRrW1JQoraWuKsqywsdERDOfLzk5veD4/BGrbUcXoI+gsIRk8EGhC+lZYlRsm5bVekfX95SFRXKsU+5hZrz77hMurs4lI8oatMkqoKDwXuFSImlLH8E7GVhpXOR+uxXL6pzXKlmEethI9/txtmgcC8axH873Jvt76UENqfbN9n7elP3SOt5ah0qn/V42PPfDe2MP9+7X64MfeWN9/SYRTOrgBO97if3nH6xqvopP7Im7EaAbyJJxYnZQQuVeZVzTlVjEIBbKYns0RSmDsQW7zZZ21+FDT+ydWHTl3TYwOD1ACsPvf7DEhNY7lHNC1ud7yvmIMXI9+hBoQwLfY1BYFEUChSZpTR8Tpc22pzFK9kXOp9HG5BxnQ8xWwBjLoOiEhItxVCrlCmcMQd/3fFoQNyPOEruuxeTHkMTWLikjtUlIo22eymtuWVXDM5MQ1VNCgRY1UvQeHZDc0GFKOkUgMqtq0FJrRm3ovZfhpb5j07S4EFHaMp1MMEWBqWpRnAa5c2SAK2CKgqSMmO1pPb6HNNSTzuO8l2EKrfDRs1ltuF2vaPodRycLHr33Fm+9fcVkUaMK8NGjDu75FFMe4FHjQJHsuebwEjz46wA6PpwZHx1Kh+f9mnvhsI49/Fo6uGb3i48a95iveab9fw/65EMibP/zB6+DzdeMDOil4Xeq8iCF0mLXncRSqrAlZVFk67RAcIGq0tyvClzvULFns9nxox/8gGX9LYpHM4ppBHrQUFjD0dGEs8eP+If/4Pf487/8j7x6/RoFFEb2SqWC/DEBlXu98cOp/DnGkz+ci7Fi+tozLZ/1m7G+Hh5tuxV8yQ0Ekww4By+/u67t6Zqe4MU6t2k6mkaG9r0HFxKdSxhdM52es1hcMp0eUxQzCjvFqEJ6dFsIQa5F0WGzAY2Q3rK+FsZQVAU6RUIvgze2kDzh1XbD65trFssll1ePmM5mohRyojoJPrBar7i7uxHLShJN5+mahvV6xXQ6oSpLUox471BO0bQ7yUPXUNcFdWWZZHXSpDAcL2dMJyVVYURFZ7XUWMOgUJJct6T2OeYxirhCG8FFxCVCXC0GfMR7DzGN+UhD30x6WIMnDuv5QQFUYXOf6pxnGNpWSlGWZcb6suI0RvreoY1kostwUsRYgw8BHwJFWVHVNd1mS4gJbURx1DvJsux6jzKWJrvF2MJS1RPBjqPgAQlF2/UU1hKcI2Y8NaaESkHIpiS1VkpRutPsqmTsgcX6oDxyQgermLPXtDx2yNBTOacPsonIgLPkvWjYdx/e/0OOUsrFwb7HSeTBUPbLscrrxfCzY6OcsUhTKFKlKCuLKUWZl9SeoB/egMr4mnz8A8LocD1X8lr64Gu/TJU0PMcvG6J/+KX04HkGJeceVx1IKNnTtJFhtQHj2X+Ow570jSHcwxL5DYJJqXRQW7xRkx20hr/s+JUEU0oea0uWi1NOj0/5N//631NVhsurc9566wpi4uzsLANgFVU5I0Ro+yjWOsbQ9lvOTq+YL07QJtF6h/eJEJAboyiFpFmU2KKgLC2TyYyu76nKGh8SqU+j+mFo9mJMtL0jBoV3Uug5Dy4HY4bguH31kkeX7/Lqeo0iUFjDEKZWlBatE7utSBu7rmM6m3FyckoiMZ/PgUTbtHgfODk5gxQIweHdFI1M/wfnIMVsDTETj0tr2WRJYmEtKI3Sksmz2e4wWlEUltl8LgoubSjrmqPlAuc6UopsN6uRYPrN3/xNaYpJo4KJHTTbhrZpsYWmrkti9Djf0jUbbq4/o56UnJ3WHB9V3NytqetjfFIUdc3Z5RXbbUtSiXo2Q5uCi6tzpvM5hRUbp1evXrM8OuLm9obpJDCpyRPzO2xhWCwWvP/+uxwtlsQY8N6xXq/Y7ba8885jprMpm6bl5uYGpTR9JpicjxwtT6jrmknvMKbgnXfe4fb2lpcvXxK8562rK65vxLZuNp1wcX7O559/zg/++i9pz1qmswVGGS4vL/He0zQN9XSK1pr1Zi0A6GxO0zQ0mzVvP37M6ckJdVXxyS8+5buPHmGMYbXe8L0PO1TqefXqmuA904klOctmdc+XrqHdrXn7rUesNxuSKQiqgKDY7lqmmWgrbcndzS1Ej51NKSpLRUmyiaos6VrJILi/v+Po6Jjj42OWyyMuzs652dyzXC4pCsvLVy+F3Eu57UkxT+oPU8eyMAUUKipCvsN9kJXGYlAofJAQaXwgoghRofXefiqEQOzFDkKC5/eZSuNCk8GSYZrjAVmUK9V0sKgrpUQdk2cE9IPid7/RynOlYUU7WOwUaQxp/uY04wCr+zVaadq2Y9fs6LuO2bSmrEvKqpR9MZXj49WQBRMgIKSIygSLsQqSADemsLCJREoSUiimlPDe4b3Y2gy5WCQIMVAomf6OQfLMUqowWZas0jAHkjBGJliIiqLQ2GLIgOiJIeHcjvXqltvb17x48YyPfvYTPv/0k0wii9rDFT4rMS06yATOZFYySI6V3vLq9SvOT++p6wVVOaMqZ2JXpGwGIsWiRJNQxUBuCtnc9wbve5TyhNBTVZbZbMLx8ZzFvGa1MtAnYsyNZhqkxTLh5GPM8mwp8Iwx4qGcBAAzWiZKTbZAknMquRmS06PGa3/wZ+6do+06bFNQ1TXzxYLF0VGWiw9WJbBer1mtVhwdHY15flpr6qoihcDzZ88AaQpd9DKVyx4gHhyhJMdCgbWjoUyKiqZp6boOH4SYGRRUiZhD5EvKymKtJiXJGbQmsdmKbdd0NqGuFmw2K16/esmklv3uEFgSBZlYQFlrCf4NhdJhnfMmIDhe63uA97DYEkI8Pfj5w2NQNP2y51YHjzvMZEoP1JxSIJMJgBjiaE8pKqa8/qUh/2nIiNn7VyelSQgQL7aNUls51xGT4+bmNc+fP6NzLZOZKI6Eo8yExuDfLb9sec6Y78OUQWcveQwuB/oarTLBZPM9bsQmz0DK+TJ78upXVIi/ZschiZKSTHe/+f2HX3j4tTfBInm+hwqjvHnlhjUDIjHltSCMJNObgNMAiMt6rDPpEr5CMA0E41deE7ECC4ONKUjTBsTgss2akEwRmZjUSRT5Qx0QxcCCURGQ8yUUCZ0CKgYUUTL78KK2tTCx0tjPq4KJhdC39E1Ds9nQNduRXCIGef0UUIRc12cAlEwQeY8ucns4KAa9WCAN5EEIATKRpIR5YJi0M9lCVNQ+irousupb1vGBpJJ9Qo3qbXVITpDGgS7Yr1lDdkmM0mdYI4BFQrKCiqLAap33S/L7AWt0VgQHmS6OoiSLMaGDlrpHiQrJYAkp4aPOdqlxVMjKNRGlh3J7myhUpLCZ2DKWvmvl88RhEC9SFJZJJQODRVHSdA50wfz4jKOLRxSzI+53jk3r6YKi0CV9doEqlQRHG1XQdI7VpqHve2bTmt7JFPDRcsHV1SVPnrzNfD7L1iVwMK1BiBEXQNuapulptzt6H2mc5/Z+TdN5XHYuDT7nLw03IgdEwgA5q0N+KI35ODy4Lxi5qOGR+y3qoEYdyIsk/0iJvcXN4XMdgLcHr5z/vs9aGNaa/et8c4amhuGyPVDxVXBjv/wNNX964zl0Jok1SSdRYgiXIWsTQhirYaHL5cRQn2mE1K2rkrPCUs8mQkTc3BM1uAChH4jBoecZHBqEKLHGjtfcru3wvajBVc7Di34/2BhSxCkILgjBpDUBcG3DrndC7hYldWlHQkNURJ6yKMQ1QGl816JjxFpk8UgqD19uAUYiqLAWq83oaGEyqKSsRWmF7yNts0MlyYGz2RqnKIoRb5tWFVoJoFpNJszmksumjcUWJUVZ0rmAC0HqiTxSboqShKyfRmtUDEyms0zYyET6umkE5Ox7ycVDoZWhKGvKSiy/p9MZdT3Jqm4tdbEx9Enhsti4c55x4EYrGU7IRFsksW22PLt+TuN6qnnNt771Ph987wMcjiTxxCO5onMtpbISXAS7MlCmlM617leJ6fGvapiAzyuSUV/dx7/mePPrb77G/u+yT33d8zwYckB+/rB8GfI41BvrU0gC6A618zAAJ818HvYEQrbId6HDFEoA7ahJtWE+v+D04pjtdstudcvu9S1/+qd/wfE8YXlM8daM6QRIgcnEYiZTVF3y3/7v/hm3tzf03Y7drsHYEqWjOKAkj7IRhUNll45xLYjDR32zbh/W2jiUWQeff3/+vklH22wlxzUTSkQlw+c+4HpP2/Y0254YwLlI13q8V/hg8UHhfcL1kXp+zHx2yXx+QVnOUaqisBOsycpJWxCJI8FUGoUmgjFYpSmVwupscRYDse/omh3T+QwXIuvNltV6zW9893ucnp3hXGSz22Bsyaeffoo2hq7r2KxXFNZwdnrCi2df8vLFC+qqZjaZSo6nczjvuXt5k5XdkuU5qSxVaahLqUWnteFoPs3kksJmZYe1e2WRDB8BSiyFvReCpqiqMY8ZFC5IrydrZcFq1WCzMj6lKPhsysouY8a9fj/cORDo5HswZGcSsaMbCP7pbMbt7T0xesiUeB88k6LONqxDx6ZEwZQi09kcrS1d6/AhUVaWTdPI0LsLtF0vqsTtTpybUDRtl/E6yfT1ztM7T1FWkAfEi6Kgcz0h7kkObVQesJRaWGmps2XATtYcrSUjSMdIQFw/ZPBJikGVB8zHYdIUUVk1ZIzgjmog5A7quFFzow76k3yrD1nIKUVZ49Wwp+9JGdQ+r8lajZ6Aqg3VpESXWqyXs3sDI6EEw8CsOig2VX7yRMzEGPk1D4mg/TH0KYf2eL+KXBqGHx8SO3p8HSGZ9kTTMKSnDWg71AIqW9gBh2viCL0OPewB+XVQD0PeIx/CNPn6UOO1+P8/wYQjeIXWNbPZKdYUXF2dcHa2YL6oqaqKb33wG6zXdxhjmU6P+MlPPuftx+9TVYaYOlzoOb08I/iCrmvoOk9KOitBBLArqgKNYjKt0Fqz263GgsoWJUUOjPcx4pwsBF2fSElY3N5F2j7QBWHDXd/j24ZmvWUynTOfFhwtJrjYszi7pA+J+/tb1usNs7rCOUe7a9gUW45PPf/Fd/8On3zyCfVkwtHJMS9evKBtd1RVyaSuWCynTIuC7WaLC5IZZKP4yfc+UJmCo+UJr29vmE6nTGdzFosFu92O+XwqjWoINLsdm6ZlNp+jFGy2W+bTGVVd0rcdRlvefvsdbq+vWR4t8jS6TMH/zZ/9GcHfU5Zw9eiSptnw9juPUDrx9OnPURo++OB92rbn1ctrdJG4vm2YzZbMl6ccn55iC81v/vZvUU8ntF3Piy+e8+itd0gp0XYNu6bjncWSxfIYY0Vp44KnLEvmixmz2YQQPK+uXwkx0jZsVvd8+OF3+PM//3Oub++JKL7//d8mRskDGezxl4tjLi4uWSyPeP36mn/1r/4V77//Pu+//z5HR0f0TcPJ8Sm/+MUv+NEPf8TtzQ3/5B//AcfHx2Iz5/q8sEWePv2Mo+MT3n3/A5xz3N/fSwEXA1dXV3zx2ad0bcezZ89Yr1b8i3/xL/jTP/1TVvf3GGv5zre/xT/4+7/H3e0tz5494+cff8TTTz/h4vSE+WxKXZX84rNP6XrPo7ff4fLR25xdXPHWybn4/rc7vPdcnh+zWd9jjchnb25vUOWE27sbrl/dsF1Lg3B6csLF+TmnpydUdcFZfcpqu2Eyqbm6vKTZbDLMI+eq71tQ1YM7MyUhVIORaXh6UUgMZIEt8oSEHxb3h3LdGCLJBR6Avfk1I1LIq6gO1CxDc38A9GowyGdVWqOzddDwXDoDQuPiP+aZ5KyotG/0h4njrLnka9beX+tjs9qSgth4NpsG13mWyzmzmagg9XGdC75CNrwkhEjf9cTgZYIjA1gkS0qePjhIik0T6ZwiJYuxNTHug+Ml02GC0RbXSYaQVhXO9fR9h3c91gyh74PCIwBi9VVVsi6UhSHhaLtGANEQ2O7uefnyGb/4+cf8/Ocf8/FHH8uUVZBB+BhSroVD3jwFgNdGAPQQPDG1vHp5y/npa6pqTl3NmU6OIBmw+yIioNF547Ml8n7HSefcjGmVPZcLjo7mnJ2fcHNzk89HHJsa+ek8CZuVCdZqJhMhgzbrDX0nlqCPLq+YzipeX79gt9ui1HBdZ1ulnMEUfZDBAMiFJzRNx/n5OUdHRzKkUdTEGOmGUNYQmEwmOYfEMJ/Pmc/nvPfeuzTNjh/96EcURtM1Pc4JkFhmC4OyFGLt/u6Wo6Ml7W4HCmyR/ZSVWCn1Xj601jYXtZJN5J1jvigzyCpNXWkMEOj7Btd3fJISjx69y88//ilaaZ68+z5FsVdkKiXhrzqrv4a8uOEcpJRyMfj1DfVXJj7j8F6l4GvbVsjFbMc3rG1vklBfLeT20+3DXjzkKYUMgo/2B1kRRBI1hQ+SvSQgtyiYSZE+P+8hSb+37MugffaPjtHjQ0/Csd2uePbiC168fsZ8PqPttnLOjc2Ty/kKHsj9EXyQwlwmwkTF6J3H9zsUBYUZLCXlXMn93KNNwvlO3otSv6o2/LU8YvIP1HM6/HJw6Kuk5H6BSF/z+AGEPlTKybTdHrh+qKLLP5ZVSsNhMiiWyCrTnDmT2GPc5PshZqAzJYHgkrAJ+bMOVFGEEEg6yB6eJGOuitnKJ98zBiWTmqNFn3xmQw5cz/STkEwehZBWU1MwrwzTylCZhG82tNsNzWZDs93kUOOe6CVLCmQiX259LbY97IkdkmRDdNt+BHoHpTdBBm5sqcTuKqUxeyxET2HtqJQWUlVl5V4eokBTlIaiNDlDRdYZ8dCPGRiXvJSqrEQBSML5Pg9WCNngnCOSsEUhSokYqeuauigFBB32Zt/jUiBlEHrIfhuUVn3vKJIMJ5gMDG/bBhd6EkFA9SDgdmHFdlDjiT14L/am3nsSjl2HDHkgc/guOKJS2SpQM5tJYLY4KQTaLjA9OaecHbNz8NnPPuE//vBn3FxvUCkyKQ1VUhwtZ8xPLlgen1KXc376s2eY8lq4F1vSOkdZ1VxePuLdd9/l/PwMYxU+OEJWWSYUPoIyFWWl2Wx7nr684/b2nl3b0YeIi5AwJK1hDGcmA+PkHLJs2TIQqLkOGu6rwzDtg4tYYlRGcGC/Tzw4huZdbpF9DRr3IEdifz/vFQj7mjgRDsClA3LrG3ZYu/89PJzifQgKP3BqSXt9AkM/ANmyEIYLW2UcesgAGM9vfq7e95RZteiiuHGUtuLobMnx6RGXjx/JFPxdpN31bLZbrm9uuLtb0fVdViMeDLQiQJcKCZUzR8bp4LwyJxLERImmmM3l+buepmkotKH3jm3fgV+zmE9zLpuhMBqdIr71aKWY1hXT6UTWQOdJCqqiFGeVDMolZG3fNk2OA5A1aRj6K4ymyErF6Wwu0/JpcCMYctymVFWF71rqMg8RKbjfrKnKCcGLVZwtCsoasY/Sg+InYasK1+ecNG0ojKHzMgHugmO1XtN7l8FQjakmApcqQ9N07HadkPFVSV3VsvYZUT4B6BBJyXG/3cq9lMSGqaxKUuYi2r5j22y53dwTTOK977zL43cfc3Z1Tq88FiO27SSsLRhTpg7qooF31vl1B4BNQLf9xfl1gODXAYRfN4Ay/P8/X18gRMvBgvHmGvPm3/MXvlp37D8tJmTFQCb7bbF/7WFQIhLRhUUnSIONsIpCsGeAsS4K6tkR52dzeHTO3atP+R//v3/K06eX/MHvf4/v/+YTbBlxzQYVYF5PmS1q/vk//2e8/c4V/8P/51/T7FqsKXLNL6rc6DwCRe7PdxpspwcQE4DBxeDrqtaHwOg36QiupcsZS33viQ6iS7g+4PpA1zr6DoIHrUrK8oijo2O0nRKjJnjo+8TJ2RVvP37C8fE59eSYEs2kmgrBr0AXBmUtWkktqGKkLEqUlUY8qUShIq++fIlrV7h+w6vXz/mH//Dv8K//7V/y/OUNk9mcd568x9XVFV++eEloA08eP+b69oZnz75ku91QFSWL5Zx/92//LVrB8dFSsEbnWK/v2aw3tG3D4kjiJqqiYrmYMpuWTArNcj5lPq2ZTitOFlOmk0oIhYPsTqXE4aEoCnrnR8LFmIKyLIGE9znf03tAFDidc6z7juPlkqbZSu0VQ65FUiZjGPtKnRWrfSdxMHVd43w/9mMiZJC+3BjD3d2K/FSyp2jJU0dbGRQPWe0VEl0nRJtSBX1Wou2altvVhslsgfOegLAOLgaaruPs7IzJZALAZrOhqipZj5uOoirZNrv8+aHre5QypDRkUAte3ztx8UiZ4dVGcWgZr1RBUdhcmw84IWKjPCKb5M8pRElZZIxyDDuSm1kn+ay/hLbPzxHHXh0QJ5/B4SRbySutGd0SDJLxPbeoqVjPJmJ2FgiZKMoLjzooLqRJGbFKJRfSWLMM+kr1Swq+/9zy9KAueqNmkv/nhThnoI32gez3MUyS7xvJZmRQrCY14lta7bGy4YcPSabhnQ5/NyZz/w8+Qdaf/5KBiuH4lQRT1/W8/fgJy8URu10L2vDorUecX14wm0/p2p6itEQ093drvnx2x2JxSUqW19f3uLDlyfvv4EJm16ylCDUpQDUX8Mpqhc7Td865kYE8Oz+haT3OC9N7s1vT9Z6ynFCWE7SZ4PoO74KoM0zJyekZi6mlWd3Qru/pZ1tOjo8IdLQObteOelJy9+oaaw1HR0tC31LXNVpLQXp3d0/XdfyDf/APRBnTNkymNScnx1SVTKiv7u9oEPJreVxSFSVnJycSChplKrHzAhAeHx/jQ+DZy2dM6gnW1qJQcU4yqcqCb33rW2itefniOV3X8tFHP4MUpWjrOi4uLlitVjx79ozXr1/x5MkTdt095RSWR0vmRxVFHWmdWBgtT5ak5Igqsmt3rLYbTFFxfnXJdut4/eqaL5+/5tGTt7j/0xUXVxe8+/77fOc738cWFU3TonXB5dVb3N9tKIsJdlHmyduXvPPuk1GxVNc1m82GejJhPp9JoK9SXF5ecnp+QUTTdR3vPHnEfLHk7m7FF198yd39ht///X/E1dUjLi8fobVhNpvx0UcfYY3h9/6Lv8fl5SXvvfcefd/hvONnH/2caZUoqxJbWNq2ZTI1o61h3/ecnBxT1iWfffYZr1+/YjqpqWdzOueZTmqePHmXV9fXfPvbv0HXtdzf3/Pxz37GbDbj5PiY89MTKvNd5tnHdTmfs1wscpGrOTm/ZLY8BqXw3jOb1RQm0eIgeUoDhQFlLcfHxxTTBbao+Gz6OT/70U/RZcnV5SXn52fM5zOZLK1kczk7O+N3fvd3+Pjjj/KGFUjRZ4uRNIKisG/cpIlN9ICKChcTWntsyJkBg5/soEQy2TszJVE3xXjA1CuUyf8fG+wBIBClTEoRy5AzMDzeyuIeIxBkevdgkSfF0WNbDenXw897UTqhFCkXAANwMKqcvgHH/f09MUaapuH162uev3jOdDLh+PiYy6srvvPdqdhBRgNKphpjCPSdTN3EEEAFurYhBPGOF1AMbu+37BpPTBatygyWy+4j04MVWhm2tFKgRo/v+4OMPE3fOpL3SIZXwBrwoZeiLQa2uxaQplhsLDesVnc8f/6M27sblILz01NevrgV2wWfxN6PgFIWpQqUspAMvs8bnVaoPuFc4Obmhtl0yWJ2zHIpn9H1OgOJBXVdy7RpblyUqahrGLojrZVYg7lIWRrm04rFYoothEBRKqu2kskb8fBzmqqqKYo624xNePbFc9q25+L8nHcev83Z2Rn1ZxOKohytPoOXqfWhCvDeE6JI24uikOIvxmyBesHrVze0oR1tUsTCTqzM2rZhu13z8uVLTk5O+P3f//scHS2ZTqf8+z/5d/R9n/MyDE3fMZuUY4ELMGRHeS+F8Gw2Z9v0Q8oKSukxv0cpJUBpXVOXSnJUVH4uk0M0o9y769UtJMXd3T3OBf6b/81/y2DharPlRt87dJbQixXKwyZca509rL86CfqmvDwe/FwIgb7vqSqN1hICba0dm2x5/TSSPIMt52AVtW+w93lKh8TQaDma0ggwDnZlw5qrUs7AyyD4QDANjw3BjypQkfCTe+gwkk3rzT27ZkPfd2gjRXxIAwA/kENhLO5jlPdnrUGhCV7OifeiZgjeEaNlNpGBAxBAqesbtluZ0I3JH0yB5nwgvW/uf52P4PzBHpMEnxwm3EgPrs2Ux7OGa+DwOFQvDJNxo2rhwC5PHex1h8TW0KSM11Xaq5PkmpXGyXvJkVNJCUgeZWJU1JFxbOqGe2P8XKPFY2JQQacBpI+iWOpdLx73MRKCw3khNDVD+5DJJQWGhFHSMAzTeEYZ6qrieDalKiyGiG9a+t2Wtmno2x2ub8QWyvdZvZSyN3jKyWQKkxRWG/oYSCHIwEHOyFQIaWBQI/GbS6FxMl8ZC4UlpjKT44GU7fO0yoqjFLJtTMT3XXYRKCmKQib6YbyvAVS2lRyUp+P9nJUSYVRuZyuTbNvng4QXyeBRM4btxujxnky6x9HehJQgDnbFslbG6BjIzJgU3gVKa/HIBKxVcr8HH/K+H8U3fxewVvKeYvAURki2QSFmjBAgfXCElFh3nt1qzfPVR9ystvzko1/wxdMvqa2lKgyT0rKcTzh5tOTROx9wdn7Bzc09d5sNrQ/4IFkys/mc3/7t7/PBe+8IuWRKyCrnFL1YZUWIqgJl8DHx6vUNz17csGka2ReLEm0tvdtfI8aSSfTMFeV8A1Ia69WUpzTRjITr2ODvS838z7QHbobnzDdNOrx/HpAg+7ViD2js14mv3NNvHON7GT/EN+Mw9tBC9AAlHmxtDgZNxtOmDn9h+/M95MqFJAkKWqkcyXBAIJLPtYKy0KToZfgi5zH72JNikBniXJZNTi3Tk4LjNOWsOeLli1ds1jvapse5SCnBDFk1JUNDMcqAyVAvFVWxr12MovKa4BwB0GWBHsjorERFJbahpydCFyAElvMppTZsfUfoErOqRCfwUabiVZQBrHa7lWl3oymzCknntTgmscUySpGi1Fq+E4LK50E/pRPL+TJbXSm8c/goRLPpGa2LiqKm946oEKVS52i6lqR0DgzPKp4YxP4ziYWgj4Gma2k6sbnsvANlsLaQfn3XYI1hUs+pylr2Aa0FVFRAilSTCS9fvWLbNHRerPDKspb363tumw1lXeGSY9ft6HzP6VtnfPt732J+NMdWhSiXFCgtYDhIba+VH6+5CBS2GIPnBUAtMnA6WC8yXFXjv/eg3KCmPbzqh/12/5Xh4aIZ3l/6KQ33wgDu7a/kw58fhjW/unSkERQkg6Ey/HFYBwxPWR6Q3nEEJtOgRjEqW9/K16JChk1iJuLz03jv5BzoAq0rzipNEddcb3b8yZ/9Db1r+PC771NNhUy8v3nK4gwuzqf8o3/0u1xeXfIv/+X/nbu7hpT3/NAHVEwE5H6VN7G3gh8/9tesrVrve4aBDN4//JtRzwK0zZq26ek6R996fA9dk3AuEZwiRYtSNcfHpyyWpxwtzzg+ugAKUS+5SIhwefGI2XRBWU/QxQTlQh7OEeA/GfDJS82mLBapJ0xhSSqS8FQW7q6f8erFU+7vXmM0/O0PfsSL19fMFkd898PvcX55wY9/+mOOjk+5uDjnpx/9iKdPv+Tk5BjnOr744gsury6o6pqLs1NOjpZ88cXnvH75Ktd8hsm0wKrA8mTBpC6p64JpWXB6NGM6LZnWJbNJxXRSMsn42jB4RMYJYlI0zlMWJbNqIqWYFyIG8kBjEqcWlKLtOlIUNfngmhSzEt4YRdu1iFGIYJJFUbDd7fbDL8aw2+3ynqepqynk/axre7pcZxZFRUpSo8cAk8lk7He9D6DE0cgWJboo8THR7nZiPWksBsNms8NFGfxW2rBZb5gvFoSYshWeWMg2bUuIQrKI28V+QMY5Nw5mJXIGU9+Lq1he5yQndRhgF1LbWosympgCPoDwj1KnxyQW0SCCDBA1XFHYfR2eZAAerXN2bMqPHXoPBMPijb4riVPKHkvIgSGZjImZSFcKsAltE5iIo5O+IYrlt9jLDQMH+iFhdIBTpBGfHOkdwRbGh6rxuwdufvvPMb73OD7PsOc8GJQ1GR9VQjKp/HnM4BAw5FOlHH9ghLTjcAlM7DOZohoJJqX2xNNw7A148z6hQKU98XeofPrPHb+SYCrKmqqqWW/WXF/f8PbbbzNfiJJGG0NRWSl8Ws9q1bK6b5lMCroeun6HsZHpdElRloQAOiasMcTRl1yCb62BlAJlqYlB7Oa224bttmW7a9m1PUoVoAvK0qC1BK/ZUmwb+n7Hrgk472WR9VH8gqNsqPP5lNnGkeINt7fXrO7vmc9nzKYTdsGNk40xRHabLU+fPuX09FQk4UYC2IcwO5GYl6TgwYA1hqIsaDsJV++7jhAj2ujResN5R9s2qOzJnpIAjdOphLX7EMCLRFFkk5bgJbwNF7i8uKCqaowVwqlrey4uL9EqUpYlZT0haU0iUFYFF4/eYr25p+sjuzbivCYlza5pcUETgibESF3NmM6mVFUtVjtFTe8iKENZT8Xqb72mrCe5SQ7YsmKxOGK7XcsEuYLpbJZvlgGyhGoygd6zbVqub244O79Ea8lxms/nfPr553znO98T8iKJHNM5x8nJCfOZWGBdXFzwtz+IFEXJ1dUVq/t7yqqS608r+r7j6q23QG/x3vHq1UvOzi/QWjOfz0Vuu1pRFhXzxYLlfM5sOuWnP/2Iy4tzyqJgMpny1sUl292W9f09IBk4Z6fHBN9hTCKFHqUlpFXYck+hq2yHZfHe0Xc9nWW0V1J5Ed1uNzjXU1UlF5fn3Lx8zYuXL0AnIoFHTx6jgmaxmI/y4OPjI3bbDcH7/WLFQCblojMHEcsEZyKFXIOFDGJEI9J/nRsyrVBK7rkBeFIZDEMJq22MRmVwXfB9Aet9kBBEnfQIruwLTym/B4BymPTcW9dnwC3bT+kgkyRRy/1mQPxd80KX8gzAsMh+Uw7nHJvNZgQWm6ZgW+1oO9nQ54tj3nr0CGtlZDPGhHeiivGuH21/ttutqCwycB5S4ub6HvEVroj5mpCNM2f+DAGwObclZkVH8E6md2ISr+Ioku8QPX1yhNhnElAk4tvtFteJ73LXNnjvsEZxcnTEfDLl8uyS2fQV16/v2Kx3NLsWH12W4UqhQlL4oEh9IiHqO9d7NusNt7c3zCZzqrpiOplitOwjZSpR2hGLAq0KlCqELEKUskUh9qGDzaMxiqq2zKYVdVXSNEKkhagyryTXXxxJDrkOtZaQ9n3Wj6ZpGu7vVyilqKoqA76w3bTZ1sgSYVTCCOgpe4m1FlAEvydBBiIlZEK2LEuUEu/mthUSr+s67u7ueP78udxTOv9usp2Uc2JpF6NnOpWJqRD9+Bpt19M0rRA7A7GgoCylwNNKMalLjBZFU4rD1M5e6ZiSNJy73Qbv4f7+juvXr3jy5NsAWeUjdhzKaB5gTAdF2tdNhh4CdgPgDgIAq0z69b1ohtLB44efkcc+zHLaq4mkeR1srsbXAYiBmMGjEEIOa43j/8fsF3gw1b5/z3tyaZgMHdZXpeU8CvjvCdFhC3jx6jmb7RqUvL/EPgPmzc8kX1cP3rNSWQkYRc3QdwHXix3fYJEHiZh6uq5HOITwQF1Fit+YtTZk0k2OPanz8EgDAiPEYIwHv478ez/8kQPAWf55OE2cgag4KPD2aNKe7Nwr30T1KKSDy6ofschTB68/7LoHr5vyFP3wf4bUCvl7PLyu1ADYBkxWDaScr7QH0xSaRKnFfsRqhVVAdMQQ0UChDbUx2Q5FFH/RdfRdg+sbgu8hBSG2U8z3bg6Z1RabSV+jtVgI5lwNmQSU86a1xuTfRcjKn+F3UVgznm8Aq0GZYsyvlGlPUdyGTG4HL8q/ocEuqzJPbKrxdxtCPhe5kxWSJr/PXJeYnPXX9j197/BZ2e9y05zIysmURjWkEMP2oEkVuxHlowABSfKJfPIoa/IenVDRMJkekaKQzV3XS72Xf78pLwRBTPsBmcivyhqJuczXFwkPpBDofSJoQ9P0PH3xjM+fveKTz7/Ee89iMsGlAp8SprAUkzmTxTFFPWO1fYGPiaQUk/mMx48u+Z3f+Tu88+QdTs/PcjarykQ4ks8UFS4kAYljYLtzrNZbmlzbJGRYxuYMqQSkHJJtzb4JTznr5eBOGPdrg7wnIZgEQH64jwxL9eHaqkZweXicAEvy3EPzPYLGKTFM1o+gb0o8IMF4uJbIOp0lNwdE8K/7sbe6HtYcGM7Z8Gt4sK8Nm9l47BUJg5WrXMtDd7AnlIZ/M+RgDAgUCNEUYVCWgyAm2miCDmPgdaEVp1dLFiczfB/om0DsEr4PBBeJPhD6INdrjIQkOZcxyKAQCqlzgiYMFrpBLIsll1QLUARgFEmL/aMpLY5IWVS0wdG5nm2jqYsCsSUFmxRFKbkdUclaYbTBZMIHJWC9QomVaIz4JAR+TIlkjKilbJGnwT19zvK0Wvr60tpMyCjW2y29D/jsypJQ+0GMbE1njcG7nj6ILe/EWnwK8u8QaXohr5SR3541lsl0IbaF2o6/B1GBi8rIRcdqt+F+tcKTAcbC4lLA9wEXvUzitw5soj6acnH8iIvH5yzOjjCFIelMSKrhThSCEaXzqkDudxUoO2ZTyZWhJQMwX4vDGq0OIUbF+C91cJ0PwKJS+7/vb4bEOAE//BwHxPX4Xsn7/IPiQn7mEMzM17c6XEtUxhl12l/+Ku9E6WAgVCuxBU7pYF2S8zPca1rvP5/cugN4afM703g0VtWk6PApsG63/Ognn1BWlovLU+bHS0qt6XY32PqIxbziW99+h//6n/1T/uzP/oqXL29ptj1GF6MiUXjclDPUDghq1B4cHTOf9+s6w98PENWvI/t/XY9mu6PZ9bStp209vlcEX5BSidET6smS2eyM4+NzFvNjZtNj6npGWdSEkIgBiqJkNluI0s8WaFtjbcy22qJCiUbqHg3opNBJcATZ9hJaJUJoaJoVd7ev2axXTGdzPn/2KcaWTKYzyfY1FlsUbLcbNttNxg0jXdeiteLk9JjNes3J0RGu7/jyyy/Ybjak6CgKS1nIEON8YoRMmtbMJjWzqmQ2K6kLQ1VoqsJSGCN7hkqSqWStxKgkWRt7F3Chz30QEPd18jD8kJSBeKjqV6w3Gw5zgZ3zWUEas/KpGQmEwd54cBgaSBxjDD7/XPBDn52z13Mu8nDdD8IFGY6ToUxtrMQq9L3UUl4srkHROQdaEX22fUeNA1M+BNqcez8QBkpD3/cUWb00vMdBwTuSOIjtvRr2nryX7gldwRh8lMxXnckjUs5zUkP8QrbaHq3xNBl8lE9gBiJq6Pn3Fm46X3OKNOItw5DkIRmklEINqmjZJtFKEVXAFAasJ+rsAqHEvWBY9x8OEIq1nTpQwKVMBMl5GN6NPHbon/YE00NN0/C9/evss/T269a+Tn0QT5LjRWRIZrDIk88n18uegJJfyaA0GvYWstfP16+V49/HFje/d73flw4Jpv9cOfsrCaa6FqD/5vqGzz//lL/zO7/JZGbQRiSR2mq8S6zWHXd3DZtNT9Ot6PpIPS05XiwoyqkEksWepLxccEPDdkAydX0Ybby877lf37HbtjRNR+cC09kRk1lFUU6wZY3SFrSiUI6UPLQNfR/Y7FpC1+NdyI1fYDo95ugoMp3WPLt5hesjKk2xGVDV2hKTbG591/Hy5Utubm44OjpiMpmMIJ9MjAho6UMgJgFGfYTQispms93hXJ9/RgnoGjw+eLbbDXVZZo94WeDquqJpGlzf0zQ7Upad7ryjaztUimhjmRQlp4hNz93dPRcXV8ToMpNdoW1N17fYsuLo+Iq2T6xWtzQt+FgRg2W93oEqiCj6mJjPjjk5O2axnFEUck6dl0XOFgV1PWG12lKUNk9PB8qyFqIt+4GGmDg9OeVWqayeiLSuZ1LXNF3PdtewWW/YbrcsFkfUdc1ysWS7/SnPnj2j63rKUibmm6bh6uqKk+NjQggsl0umkyl1VdPVNd57jN437n3fMZtNCSGy2mxZr1ecXZyjlGIymTCbznj14iVVJUTSdDajMAUvX75CK1jM50zqmsuLC1arktevX9G0O4xRzKc1zc6hksf7Fq2NBOD5Dt931JMpIQbapqVvO5wTObLNIIQAfo5t17PdtnjvKKsS53q+fP0K7x1Fabl6+xExRmazKbvdlpTk78F3dHhSCNIg5YZrKGKHElYCSkEsk/aNsck2D0abA5JJiKJhozJKFkWtNNoI0aPTMBmVp0gT6Bw4KwtqGgHJwQJvaPREzaJzUJ6sQClCHACtEDBeE7Ui5gllIZdkRRsnS9lvat+Uo+87nOvzJi5rgG4MXe+IEZbLE6aTGUUhBYD3nr51bLcbWee8kNPr9VoyYoigZRpvtdpSFDULMyEMzXYu4GNMeYMUC7myLOl78TwPXqbBg4sQpMmM2Ya0dw29awFR2Tnfc3d3i8uWfaRIVZWcnhznaRANUTGpjynsU16qa4K/o0s9JEPCkJJGISqmFBMxKMnY84m26Viv1lzXr6knNWG5FHK9KEBXKB1IyWL0RMhQK6SG1jJB6b0ZAUOloLCauiqoqpLCWlz2BYf9+Rm6xJQG5UrMU1CGyaRmMpnQti23t3eAoiyrDIBqXB9zMS35H4OCTw/ggLHM5wu0NmPIqTFDPla2efVe5NuZDDHGUFUl2+2GuzvHl19+OYKWyQchpJPkazmfyf/JhF2zwTuHLUuMsbS9kFVBLgYppDWURQn5tcrCgvYZEIsjYTxmfyWBrZ3rgZb1+p6PfvYT3n//OygEyHd+yJoR+0OFyNQP1TJvFjdfRzwNJMDhVI9z7gGZdHgMa02McVRvDQWo1ocF8wGxktUgMQz5SoMdZHxgoRfjkNOyr67206Fp/F0dvqcRwM/WfDEFYvR0Xc+rVy9omi2DB3UYbMLYr39DcT0AZLL/xYPXlrcSQsD1ksFUFTXT6ZSiMChl6Z3LlpMRpaSh03oofdVXzuGv6xGDf4BjDqTlCCYJ+nOwFx0q1Ibr5oCYlS/uz1+uTWRafYBGkcZ1UL7lbiENNhPInkqMGZDL153L9qcHhbxSCjUQTg+IrWFfjiPwLiDSQDDtwffcs4qqJ4NMKkVUEvWIVhqrtZBLWlFaIZeMEju6pKKombSmIJKcxydPCo7gOlzf4l2XlTj5ntEC3gnBJE2mGYKVSTn7LJ+fnF+kD8C9FAXkHZsuJdZvAk7GEbA2mpwDydAbyjkJUl/4IGuZtRI8PUxoPlRP9uybqfxYY7LCVWpenYmotu1o2oaUEpPJRMJ+1TDIYEgjKT2sQQZtjXy2QfHkBfxQSGMeVKQ0BcpYtDJU5ZTTswt2m4budsX9akVpBTQWAEChjARRh0xoV6VMt6qRYPP0IeV9QuEwqHrCdt3z9MsX/PzTL3h5vWI2q7BW9qxEomg6orJ0PnK33vLls5d0XsCN45NjPvj2B/z27/w2F5cnTGcTsWCNQfqpqIhRZ9wmihuFC2zbns55otIobUWJF1KevMyNVt7XjFYHxGI8uBH2955Kw72bQaH89QHo1XmIbbgoxnvy4Bga+OHel/V6GMba19yDleUhsTu+lnTiB/fj8MTDVx4S0b/Wx9ijpOGfBwRffoh6aNEq8NUhwKL2BNIBgCx4SgZdDn6v4580PPcw1DGs74OqVF4jGE/IhEGyitnRBBU1KYDvIs19j+s8vgv4zrMJW1TYgz2JhI8ykCh5twoV9xPVkDMRjH7we9e5J7PGYJSRXGeVcF6cA5IPzLOFXYXCpITRiumkHu2CxE5zyOYdPlPOkYgyfOhjRKouBdqiTUHbe4KS+2iw5JOaRNa1mCJt14E2gm0kIW5RKtsMafl3JtO8cwTXU2ipeX2KuBjpgwTDa5RoGZXGlgUq9xxdL4NlPskwcEiBPjqub+9xoUcXco7QSjJLXYuLgWSkX5zNZ5y9dcHV249YnCzIIxRiEzveczrXnLKLpIOpbQEjs1Y3g2cpkYcI5Io9JJgOr9zDr6ghr0Pts4/Ga38AI3nTGGr42TQCpftD82ANOXj8/n2xv/DjG/dT2hPwjMDrWFHup9NVdr8bbSn1uP4J2J7EQWIsPmLOEMy1pgYx1S0wVITkefr8mvnyC3rvuIyeU2PoijuSUthqyclyzj/+L3+P7brlh3zEl1+8JMW9WsknMuiciYs0rLNZ5ca+VhtrtgM7/UF59k07dutW8gwbT9sGgi8wdkpZLJjUxxwdXXFy8ojF/IRJvaCupmhtmE5mDO3GdDrLamuVQ1xKKg3WKoxO0reZhNIGFZWswVEGhHw2CFdE+m5H26zYbu7puoaTsyU3tyuWp2/nqI2ClGA2n3Nze8N2s8WWJVqLdbc1luViwYuN4I639ytWd7dZja2YTArKsqCwmsW8oK5K5tOK+WzCrC6pSk1pZJDfmhzbQMzXufT1znsSJlvOCeY7ZPlpYsaE8/CdykMhmUwSzDPQ9j1GDeuFYCJlWUDS4zCoVhpblCPB1PeOuhaRwjAs7n2QIfaBhGbIBN3jcGO/PQxI5M8hjIiIBbyP9D5kkkPWVYMVpbzzouQ1MpAVvZf110h2dSJKXRgDla1wzmelY865G4CRB+RN/neuvawdFExypOSk68i1NsnQ+4hKMuDbB1n/JIMVjJb9GRhzEPf5TGJ7N5Lgw/6bhsFdDgiv4f0NtYOszSm/ljJKbEJLTTBkrHIYyhrqyF++hih1YImnAKXld5RXcj32NEPN8svJpa8/hh5/f8oHbEBplS28FUoPhFhe//JnlwGC4b0NIoFhb5An1UrEAnvXjP3v9gEpd3guhicczu3BdfCrStpfSTDN6oWAb76j7TZ87/vf4+bmBdoqooKu72i2gS+fXXP9eoMxNfPFlOubG37zre/x4W9+CNrQupa230LoqRTYqpTJazk/cnN0AefaLD0PfPH0BcEnymrCfH5MPV1wcnZJUVRoW6B0Qec8XdfgMmggExAanzQuQNM4tLbMZjMeVwtcqvjkf/p3nJ5dUZaGvu8OCCZZbGIGC7bbrahp5nP6vme5XJKyr3rf9dzdrbIaSX75l+enYCz+Plv5VRO2uw1fPnuOtoZI5Pb2lqPFkuliQQiBTz79Bd/+4Ft0rmezWbPd7ri6POf+/p7dbkfXtVRFwXq1EfVOWfDOO08EsPUN3vegPUkZzs8uuL65oe97Xl1vefW64f6uY7dTpDTBmApbKNbbhvVmx3q74Y//6RHzeslituBoecZkMsvZLOI5WhQl2+2O4+MjyqIihEBV1Wx2O1KCejKFFDm9PMcHD0msQV69vubJkye4EOi7jpOTM7z3Aqgay/16y3vvvcv/8p/+F37v7/19/sk/+V/x9OkXI0CeYkSjmM8/4A/+4A9wruev/+av+Lt/9+/y9JMfgYbpbELTbokxMp1NpbE3kpOllOLu7o71Zk2f80zao47SFrSp5erqiqZp6Nqeqiw4Wc748MPvUlWW27tbrIXgdjiTsEZRllpsSkyC5AheJouVKrm5vkerJJJ/U1BPSopS44KjbVsJU24bXr58ybMvnvHlp5+jY2R5vBytH4xR0rhojS4sXdcxndagImHnUUbuYDMWwrIZDaoI8Yl9aAflEYsnYy1G7wGUAcQmyVQZyOtrUs78iOOiIzJMKaCDSVibsGnvcx/SMP09ALl5iRz6PJWlmkqNioAQDCbIhu0Pp8nV0I8bBjDmG9OMA6vVPUVREJOATgMwPp3MiAFOTl4zm82oSrE/6/ue7WaHc46+72nbltVmzWqVJ2t0wpSaoqhwDqa1oaxE4RCtwvVCwPe9g9Kg1ZCpVGUSWeeMJ8du29HueowNOZzSs9luadoNPvSE4Aihx3WNqPsKy3w242gx5/HjRygl908KCmumuB5iNDif6JsIFISgSdFQFhOKwlBWBluAsRGtClCWvg+s7rfU9TW+71gs5kxnE1AyTZqixSqI2qKSlc03b/pa5zDoJOHqSiWK0lKX5ZgxJTXJgQd6Bpa01vggkvjVekVZFpyennJ8dJTz4BzGFFhT4LSjrgcSV2FNQVVP6Jz48QOZrI9cXFywWCzz62eCwDl22y2b9ZrJZMJms6HrWpzrOT4+ZrFYsN1u6bq8dykjk0jKj8BYShHXO0gRozXb7ZamaZkZUU2ZIEBrCPFBDokxQn6RVWl7PSoHZ2UPsAwnybmeF8+f89//9/8v/uif/tdMJgucC6zXK4qioi4rzEhQh9ECEDJ5FNVICA376QAuxxgJzgtUkK3BfBD7gLIskSwkzzD5dXi8qU6JcbANG0icrDjymXyJwwSVYoDmB+WS935P6gzYodbokVgalEsHKif2BJD3PSASdpkItHzx5efc3N4QQoexipAO1TW/+vDZF9zowaIHUpRGZ7dzVHYrRKuuR3tAmRDbK3CEYJTGyeRr8Nf9iMk/wG2GvVAAJw5jlsb9J4U9oTSQHaTDx+yB5/F6G4DoAcwcsrwOHpPiQzUVSeYP40BmBp/f7zDNqzi4tHL9cKDoGCzzsnpuANNlak/jg8te6HlCOAYZQkliuxYzwVQaRWU1s6pExQDBQfRCGgXPpK7GYPfYOWyRLfuCo212uL4dla4hBYxSVNmmJL9xrBIFc3CO4B0ohVUWbfaqJu97eUyCiDyfSnn6XGtc7AQoHYCRJH75ArpKXWMLCwmxG8n3vXjvW4y1D8hunQkr37coJcMWxmiGDD6ZPk3EnF252W5ZrVd0XSfTqN5jioKhFbPW0vqce5IHHXRWrvoQUUHWMpPAB6mzlBUL3KQsZTlltjjhg/e/y2JxzBeff8Hd/ce8vllzNJ8wm08wRpRL2lhRisWEQWF1xbaToRGSwntIzpO6HcqUmGrK8fGSuy8+5/Xtirv7Lb0DdvJZxKbE4rqOl6/vaN2PaNuWn/zgx9ze3TGpK956+zG/9dvf450nbzGpZLJ5yHaUEGjpdAUcCNze3uGiJiRNPVsw7w2b7Y7Y9zAMcOTfpTZG8q/ikNs5kPaZzHnAM8lGnTIQKq858D4CAicY76EBSM1MxXj/jACrsGNyb+UsqJErUg8JhMNhAqnZHu5BMQh4P9Tl3xQr0vEYwH6lUFGIbPlyBi/0g2ICOCDvgCE3Aciz84zE0qDgeDhVPAyjyLoooJIRe95MnpuckYtVBEQ5qY3GUIy5h3Vd47vc100VvvOsNxsB5q3GKotre9BgKpNxDFFMilOJzSp1ceaQqfaUiTFNVVUEL5mn1hZcr9bjwF5ICQvZvrNiaW228ZfsND/YccZE71uckzVvmIpX+WS4ECkmU8lcS+A6yf1ISWr0SVWCNlRFges7ts2Ovu+pqylFLUqeFPLvDiU1Y7YTtlqLc4/WlPWEoixpuo5d19F5J1lVRYEyBmUKfFJsNlsqW8hUfXbnMNbQBy9Ek4oUk4rSTHDB0zlH3zn66OhCh08elOKtR4/5jd/6DZYnR5jK0nsHJGIm2cZLR6p/tJLhskHpOXxnANBUHvfWalDEqgNS8gDs4817N4HK9fOb3zlYI9Tw0PG7ml/e346j5/vr+pf0wQLuDYo+9cZrSj0RkyjWHoLUe7Jq/9R7AFHcTQ4+Q0ojkSVK2IgmYChQoSJEIQeNnfGzT19wt17z9v093y+KbMmfSL6nmniW0xP+m//1f8np0YK/+Iu/5vPPhGSKWo/grNYC/u/X75yFlk+gDGjvT+qD8zTWSt8g7OC2o+16+i7iHBhdsZifc3R0xXJ5ydHxFYvFBcbUlLamqiYYY6ireux0pnUtYL+ChMWrgsKANUmGunUEbYQ01gYVNVmaiSERcn3ouy3r1Q0xujyoYmm6xHunl7z95H0uLgQLnEwr5m5K1zU8+/Jzdk3D8fIEFzq22y2nJ0f8zV/9J5RK1FVBCj1VbZjPa6qqxBg4npdMqpK6LqlLQ2U1k8JQFlbW32zprnRBDJEYPM4LqeNjICmDLUp8FyhLKyRwSLSt4G9aS5/edo3gIVEGKr13MhC+3UIEnYcDrLXZ3UsTfBBHE9JoPT8MAShlUCpmcsk+vM/Q40B5SjLAVFWV3IK5JtHGYAohorwXO1dbVnS+oet7fJTMuUE0EQFry3EoU2vNbDZjs9mwXC5xnafrW7HiizKESN5LgDzcmvOq8n41vBdFzszLQxMiEPFjbpXR+X4OktU0rKvyPlTGVxSKgNFm7E2VUWhjJZpHmu2HF30mjwacLJ/ZB4ovLZJntAafM4dtYSjqGlUijY8SLOiB8mn8ux5Jov03BxRkn8WEeuOnh8/3NWT3Q2IpZfJo31sOJPr4PAeEkUQ5CMmkjVSl8n15H2NuqBqeN40Y2P6ta3Q8UHoNxNSDzygk1PDtwfpwvxEKqTpcsr8qyuRXEky7XUs92eB9jy00fd+xWMxAeWJwoCw/++hjXr1asV47jFEsjxOnFxfM5ktIluAT1cRSYXBtpN1smc4WVEWB94Ft27Ld7CiKms2mY7dtaNuO1bolhIRuPG2f+N6jJxwtj3AhyqSP96Bkai/m5qwsS84vr9itKxprscrSOrhfrSnqOW+/dcG7j694690P6Jxnvd6wXm24W61p2x6tZKq873vu7u7Y7XZ479lsVlw+uuLk5ITT01Ourq6YLZYC3m22rNdrmj6w227ofUDbgnJSU5YlWsNmu2GzWfP+u+9yenLC/f09fd/zve99j3bXcHt7S9dK6GVIkWfPnvHOO+/wzjtvs7q/o7IF3/nuWxij2e22nJycsdusUV2HTYn5ckE1mXCsCm5urvn450/puhYw9CHR9D1vv/UWtqyxd2vKquT49IjdbsPF5Smz6Zzl8pi6rlksFtzc3Iyf/ejoiLqeEIJnu91yfn7OixfPqKqK2XxOcBIEtzw6Znm0ZDKZ8OXTL/j444+p6xlXjx4LaJ4Sr25uUMj0+Xe/+yHORX72s5/x/PkL/uiP/pgPP/yQ58+f89nnn2OM5tvf/hY3N685Oz/lD//wD/nzP/9znrx1ystXL7i7v+f8/JLlcs7PPvo5ISZOzs5JSTaIyWTC2ekpz774kk8//ZTb69c8eecdfut73+P05Jj1/T1FYYkx8NGPfywLPXB5ec7xyYLXL77k0eUpKcqEVoqKzomX/259z6vXNyyOL5hO5ywWC5bLBZWGFAO9W9O5jslsSh/h8eO3mdQzYkj84D/9Nb/xwQd878MP+f5vf5/F0RHrVgCN2WzG48ePmS8XvHj+BX3fMiiSxIbjzUVW7f9oWQhilKwVYGxCSI5BGTFkvEiTlW2SfDiw5xrsk2Tht9qgpgabUm7TEVNVyM3/IHE16KiEOBr8nHMxqwcQW+/nuJTS6EIRwqBEyEDtQcH4TZmqB1gczbm/v8/SZPHqNYOdzu01H30sRdxyPgciu2aXiQdH13U0Tct2J/lN2mpsYbClpa4WFHZGVUwYlCRDFo1zjt1ux3brMUYxqabMZgvqekIKEZ0UXdNyd3NLXRmWyyUxKbrGsV1D2yXJgkgRpQyz2RmzaUVVWurKcnV5wqQqxZNXadqm5/i45/3336EoRCqut3OMrlAUgEWrbINq5DKrKlEjaq3QlHin2dz3EHbk6Ei0KqmtkuEClYiqy9PQAaUCw7SmsQrt8uaroa5L5osp9+sdu8aJjWtu8FJKxDwdkjJx3vUNTdMwnU6ZzWY5v0oTY6BpdkLAl2UmfwqxBC3rsZhTKod0JqjrKSdHx2glGR9KDUHzSSZXSzlvm82Kuq6YTGoArq+vefXq1UhGDcC1MYZSV9lqcU1hNVVdU1YlEz+hKCpA0bQtTevHSSyX1RntbkdVyfstraGqDV32lx4LKYYJqjfVRYG2XfOjH/8Nf/NX/5Hj0wum0yWTiWTXWSufhZQImQQfftZn1dUhAK/Jknn2BM9AnocQc6bB4fPkKdLDBvtgimh4rUF9MhwDWDhkKgwApg85SzHFg58bjTuRQFA3PMtIsg8g6KHSSuw/8hBAdELgJXC+5Ref/QKlRSno+jgGoz889u9f3nOebBs/W872CYP1H3jnWW/WuUFQ1JNiPD9DUSu/zf1zDbYov/ZHONyb9segOErD9w6/n9K4zw3fS2l/vUhxnwklgBGS3oPcabTeYATDUzpQRgmdiTaiZg1BwMcUhud9mGkSsi3X2BjEKGhgDDkvZP/+hSgVckmN17unrGVylBgJ3Q68p9AKGyPGB5LyNNsVhEChyYBkQvlWgKsoIGj0SdT0XhRX0fVCVpEoR5tGed9aaYqykNwF50RRBsynM5lOh9EiNPo0nuMxd4Wh5MlWVUFqGmmChnM8gK0aY3NOXzr4XaQkFto5B68oimxT4vF5YKOuawZ7UMhDBt6htDTaIZOOdV2PVpSDbao2YjdsjJZ6K6sVrLV5gC2Na4TRlpAkP84WFlVYuhCw9Zyzq8d88K0P+c3f+l2+/OIFq93nvHi9ofOanYMyCiGVNGy6Du+UANn0NGnA9rOiR1m6vmfXNlT1jOmipklr/uqvP+Lps1s2u5BJak3X9ITO0ylQKfKf/uNfk4j0TsAfqzRvvXXB48dXXF1d0DRbrK2FSAqRtnUoLCYPFkSlSf0Gn7S4PSRIyqBNSaLZ28YlUQsak6dRgZBzecmEwQPQNh/D32MGjk22UElqryzUwx2pBjIqjqDv/k75KvArQIkaHTeKbDmKzP2O+8YwvKCyXEBUWbKmFEYf7EMPCahf5+PNPVgs4h6CNV9rzzJOBA/ghhyD3az8I69945cG4Fx+h+ZAuZyioqwLNBai3CNFYcXqMeVQcEkW4fhowbScoqJmUux4/eKau/t7VvdrXPREnUCLGme5OCbQo42iqiuOjpacnS2ZVLM8uKqJIdF3jtX9irubO16+eMX161uc77GmwBSGvutJShNIolicTWlCoN/sMEeG0+mc2902Z7f5POEecE4cNLz340S8UrIOmTwwUbZttriWa7MsS2Z1gQb6ENBdSzCa5ANgmNQzTFHSOakN+xBZ71razlHWtRD2ADHSug6rNVVR0nqHKi2VrjGxBKNRRSlreYx0TnKRWueIQfZTbTSbZoetSkxVYgtDaeHZ82fsXI9PErq+azcsjudcXV3x5IO3uXryFn10uNRJpEB2CdgDgqCQoUqdOUxQKGs5dCaQEyYguc5T8wqTsbRDMC1fcm/UluRa8Gun0dMb9ptjffXwHvjq9a8HpvTBOvTLyKZEeABkSh2d90GlJbOGkIdRGJUR+9fc/32w4QIeEEzDaw41ekoBUkeyij6I1WLQFagJIRmeXffcr59zf9fy9/7e9zk97anrHV15x/K0YbE45w/+0fd4561j/k//l/8Hd7dbrJmQtPSJJJ0/kx7f4OHUf0x70vnw/OzVBembxC+xXSm63pKSobBTTi/e5erqPWbzUyaTI6pqyaQ+QmtLYUvKss4DLzYPFaqs0M77pLJYXVLoiDVhtNsSIL5ApTwEEw0xZfKhrInB8Yunr1jf31JVFc73/OSnH/Peu7/BkGlTVRNevfqM65tX4njiek5OTphMKnabLbPpjA/ee8K//7f/jqoqKExWpVtDXVusiUwqxfHxnMv5RDIntbhgTSrJBLVWPtOw1xot2J6PkvcVlcJHIRasLQlhy8uXr5jWNRenRyMGaq2hKCQzebfbyPkqKrSx3NzcMpnUhJxnulwe4b3j7n6FAmazieBdfughh/5VBk+9F/JoNpvlfhZgn7vsvceHSFKM+MAwxIiR4UBRa8peWdc16/UO5yMRIe5TkrwmlTN8lCro2xajNdPZhN1uJ2ukNdhK1uy+8/veF1E8Gls8GFK31oqlXyJjOyb/X424ktKJsrSIwgqcSxhymxJz9nHykq+qNWVlKQpzoEgSZ7DsOgjI7J/JXMdwe2sDaYg2UDJQldJe5ak1YGU9UVZhSk01L0k2kgj5Wb+eCPpKjttoHZofrx/iC8CBK8PDtf1w2HXACx6+4FDI7B+jtahrx2HBgVzKb0vrPQGVJ+8yGf9mHt3wWfb7i3Dx6mGfOzz+gCST2teMGNC+P2bYJL7uKcbjVxJMVVWwWt3TNKIM6dotyoqTd0wSwPjs+Q2bbUvfJ4wRwPLJu2/l3CKDsbBa3RLTDp0cZW64QoxZXp7Y7pzkKO06+s4RnCcGw9nZGZPplHoijHvbtVIgKLCFFrY25GY2+yA6l3ABfLLYak7TO0yR2DT3XN+tOVpMCb5lu97kaX8JJSsLCCHRNDvu7+/ZbDZcXl5yfHzMbDbh9PSMyyv593Q65cWLV0wnE7S1zOYLtNEsliccH59kGZswjnd3d5RVzdV0RmFL2kwmWGsFUPYCMiyWC+azKa9evuDx24959OiK+XzG9etX1FXN85cviCFQ5PDy3oGyNYW1+KjoOkdMScijkyPq6oLNei05TVbz3nuP+Pd/8h+4vrmnd4F6OuP29oYPf+tD6hwiBxwEmLp8HmRivygsk2lNc7NFKcXFxTlHyyU/+uHforXi+OgEYzQheq4ePeJ+vRK/+Dx5P5st6NqeGBMnJyfc3t7ywfsf8PLlK7bbHScnJ2y3QtZprfnud7/Ll19+yUcff8T9/T3ee87PzzEmcXpyhskA9atXrzg7PWPXtrLoTwWoL3K+0nQ6xWrD0fKIuqpYre55+60rTk6OJNjOaI5mc+7vb+nant3WsVrdUxZ5uC5PMdaTihg7TFGzrGY8qufs2kA5KbGlTP17Bba0JK9Gomez7VhvG25e33J7e8fJyRllVaG0BLanJAB6ScL5QPCR8/Nznn35VCZTR/9NWSDGgaIDaXxKOcAuytdjGsCXiGSxpKxW8JQ+yvSusQQjDbBWh4BxkDYts9jBRnTfU0QjxWmUcEQ9As55SYyBGIbNIwO+ZFlxFDB7VAOEgI4B4x8u0DJtdagG+OYQTP/df/d/4C/+4i/52c9+xudPv5RzH3KuiuvZbte8evWc1X2O1gxij6e1wgdZi33wVHUUX3Al15PWFoUlJtlMVQZdur5n1+zYbDYYk4MpywnWWiaTCa7vCUGUlS+eBfpux3x2ksG8iHMa1xtilDy8SV1ycrygrixVaagqLRZ3Se6FGD1d31GWBWUpa8nJyTGd7iFqlJL3KUSVTGZbC0WhMbmILGyRbSoTfR/Y7TqMtlRFzU71GC0qu7JIaBOBICHvKmSVSw5B1HLNlkXBfD5nMtlSFF1u4Pf3Qu450VqJFVLTMak3XJ49YjKRczUCx4kxZFwG5RUpCoHS9z3GGOZ2Kjl9ThSxogbraNuWrutYLpe0TUOCPJygRjLYGJNt7QJt2z4gZnTeTzsvqkmlFVUt02l3t3coBV3Xi1TfFnjvJbA0A2fee2azCednpxgNXStKtLElVmPZw5ud22AlBBEfev6v//L/zNXVO/zW9/8uf/SH/xVlNeTz5cerPTkipMtDZUc2xBpJ0GEtkKKV8TOPYD8PC7avI5geTjgO7z83zoc2ZQePjzGM2Skpg+XDz+yb7v3PfXXKNH89ChQ52AzGGMSGpm15/vyZeGnrwSf5zTygryOc9oC38PJyPoZ3SJKC0AexujFGo3TCFgfYnGAP+f1JgfhNIZhiVmfLuZKv7YtnNe4/h5d5SnGvHiaNpMNoR5f3Xnmu4Wcevm5Kgy2RHv9OEi/z0f4r1xveObx3eXgqjL+sgXyJA3CVsapxz00xW9zl9zEo65JMoaaRhJKMSBM1sfMQPLFrqbRGxUj0HT0JbS2FihirKIyiNJK/6PoeonwWrCYFLypA3wvBpdJ4j2utRrWd1hqrDToJcUCSScshiylp8ZaPOQNtsKYcmnOVAYOQ12TJiNf5/EvdaqyQSmZQwAACPB6uCzqfx5TVBX5cy4f8lGHNGn6/3jv6viMmyTONMVIYzXw2BaWyQpNs+ZEHbrIi2BwoV4KT3mkA+oqqZFKU0g+FJBlpxYTWKV7fN/D5Sxr/E774/Dk/+tmnfP7sNX3TU8+ntB58JonXO8d21+Ccx/nEzrVUVYEdABoFm92WpnGU1Y562tC6Zzx7cU1wkdqWxBSxWkHIe5lWTIuK3bolqZ6QerRKkpkbA5v1Pc+ffUFdPqKuFclYyXK1BSSLtRVRCWiybXtsWUm+TevY7JpsDd7JHqbE21/AfsndStHn/eFAEfo19/TediQ3x1qN97cQPungfsmIc1LjmjtcC0mlvcI1E84CWADEXMcM9/beN99oIbWizgMT+e3qTDaFTKKq4WvfgOOXfc4BtJC/f833R5uaw8fndc+ErC5GSDwGvvCAdSKDHuoAiVLibJIQoEVbw2QyY1rMUKoQEE1pup3Ynd+/fs3Nqxv61tHuGlwnGWtYlddisTKdLmqOTq+o6pKitBSlpSyzGl0FCSHPdk2n9QmLkwWnl6fcvrrh1YtrtpsdXdNI35RA3Bt0HqLxUFasm5Yv4mtRM5UlwYPDEVDUR3Nmp8fEmHC9Y71e07U9AdkHFOCdg7y/m5wDVIS9VXPXO2bLJarIQxAxSg5HiETnIPRYa5magphPswwVOGxRQEr4GOi8kkFMpUla8jN8s8OWJTFBH4XMj04sm4a6tZrWdKnHNTu6rcMlTxc62pwfW01Kvv3Bb3ByfsTieMbsaEofO5ktG3pdAqLbHCbZB8rlQLmoEinuVdr7+vCw5oqj2jA/6qAOyBPbCgZbqMEu/iFhdGBvN9azh9970yJpuNbVvk4WJvxrCaY3rZfVwf0wrHMx7uvSmC1kEwfZoF+DCA4/tx+m2hM1Q02UDQhRREwK+N7ld6Hpk0GZKaSCmEpS7/ny+Ybyrz7ie995j8vLU6bzwPWXv+DooqeoF1w+mvKP//B3+R/+x38r94AypNw3Deu42JULKD/s9Wk8B1KPDefzsPb/ZaqvX8cjRcEOJ5M58/kxx6ePOFqeU9VLimpGWU4oq2pUURelFWDfakoj9r9WZ6UxCOmqyYrbAYOSPkJyuMXSPiphpLQyGCMWxy+fPeP27hYIdM6x2uz44PG7XF1dobXis88+IabA8fERish6tWa33VBXNcv5jO12y9989gkpeqbTisJqCqsoi5rjoylVZahqy6QuqayiKMxoIY6SQSco0cZibUlVViSEkFFku91sHOp94ObmBgWcnZ1RFzIU0DQN9aQmkXDB0zZbyqokRrFoTklInBhjvv8UnevlfkhiiTqs48OhlNSCXdeN96HWOSs0D6fE3MsBolJFbOtFdZrvQSVYWkIwPR9k8DzERBoK/5TzNkMmmVWkaZpst7/vp8tS8Gi0ON30XT8SGyCEMkryuVJKorbPQ1TCHCgKK8NdUmbtHTxsIe4qCQ1ObFN1hJgdyoZ+XmuwVlPXVSaIhvpKk1ygLAp8tgwUxfKAQSQGdU5SD/t3GU4ayDex3DRWo0swhQwaR8KYSzusv4eHxnylQHlAGEEmcr5+nXlz6OCrsQAPcQoO8FTYE7rD18eyKdew+zJq32sd5qofkkSHat1xGGEglw76nMNaaq8y0xl/ljeZGEQAPMBSftnxKwkmUmR9f0+z20nAZHRSdCixdthsO9brjkTOcMm+/svFEVUlE9dGK7xzxOQpNDLRlqBtO9rWsWsko2az2WX2NOXcmIKyqJlN58zmM0gJozOQngZbsC4rIBJFYWnbhrbrSarAllOadsV223J6/hb0nq57xdnZEXfrHX23IwZHwmKsoUgK7SW3pu97mdSzlvPzczabkuViwWw2oyxLmRhK0HT9CP4bW6JUGr0ko3eUdUk9mYgEH0XXdszm8hwxSDO73WxznodMB4XgJasnuDFIzgfPze2tBPDO5pRlSUgKg/gqW6vo+pa+b4gxcLQUK63d5p7Sasy0xLktbbuiae9JyWCLOZvNigQUZUVVTYnB0ezEQsoYRdvs2KzXLOYzimJKWVi0kqm+siiYzWYi23eeuq4x1rDbbjk5OeXi/ILruzucCyO7XeTPPQBp2+2WEAJFIcorrTXT6YSUEk3TsLm/l2vIiMT97OwM19yC0jKNUcpUvi0sujcHk+iBGGWC9NGjR/St5JG0zY7bm8RyNmE2m1JXJZNJzayUnK37+zu2uzVtt6NtHWZSUJcVVWHlnAeNshWmsJLTNJ/ikoD9zmuChpCyIUcSUNr7QNO07JoW7wKTyZSyrMW/v+uZRQFyEmJJWFW1AEnkSZ3E6C063ujDlNYw6YRYwMh0RJ7QDTFPtsnXB3InRZWt86L4pjJszkOhK5umZM0I4ePcYCuUGXAlNk/jZFjK8ak+kfJrKbMPVdVaoWPM+QcBFTzKmYcqhHxfp7FI/mYRTL/3e79PWU1YHp1iy7/m888/p+87tA9Y79g1O+7ubykLLWHmRNp2K9LtvNmWVVbfKJni8FGhVRQCyajsSSwkYvCS1eK8Y/AmHwJWjTEEreg6T9e0dM2a7eaO6WQnZGhVoEzelIbphlRi9JTCiD9yYbTkceiA16Iy3e1a2kbsQnS2CZnUWsDZKFNR1lgmk5KyNFirx2kNlW3uSDLhLx60CasVdVlJ6LkSIjzUDvAiKdYJVCDFfmycBvlwkcm0uq4pipK268VFbLjH4jChmDMk3GBpIlPs1lpCvjdkI9e54ZHmPSHgb987UQPmSfeUEkdHR6MCCXImidZ5QloIv7Ztxsc8yGfKoOhA0oAUnUNOUJnBUh/ksVoJyJtQ2DzNNYDUKYk15vHxCYvFnJQ8IXRi3/UQowHGmmT/fyIkD0jh+YMf/A1Pv3hGPZnxR3/4xxSFfN44KDFU2o/g5PMzFrVpXz4eTmwNFnW2NON7HqTxh8fYHH/NBNHhcw/k0EAk7RvTjPvnr8sfzzBBv/+5PE0/kBFjA35QcKk9WSEAeS4EtWLXNLx89ZKu60BHIT3VMHEGKYOfD6ejDoGKfZF6OJG6589EySrqRo0ttIC+7MGWN49vylqbkh8B4v1ZzdDUAUiTHw2IGkGlwZYl5zYxPHbIAFIHP/FLXzx/P422XwL8hD1YlMTKIwQ/Braj99dTjCnbxwzKFAVpyKgRjbOQL9l7PH8mSxS7vRhRKZKiJ/ZZEx0COjg0mhTD6Dc/TCEK+CCkQgzZ0i6BsoYYeiBmazRHij7XwAMplrIVYCbosvIoxiDAhjFYnS32IiOxNFyPe3VjFPIK8hSfpihk2GIgIJSWQGFRm8gkXxiVZ/JuYv5/iHF8rXEyNMnvRU5Jpmz1oDbr8qSpIiWNLSx1XeUGXvbPru/2wespjXvWoMYRcO9wCCiJL362Kk5J1MBtG1jt7oivt3z2bMXRZ6+5eX3Pl0+/4PrmHkLP8mSJMgHtZN2/udtmcinQdp7r1ZayKChLme5VKrFrGpkkNR5937FtHN4lFvMlxhj6vqXrG3QmVAttZB+LMqRhDEyqihQCIfRsd2tub1/z9uNTQvDZ4sugtCiLk5JJ4bbfZy656Nm1PffbHU1WX6QY99OhSo92rNELuT8QNvt174BQUA/67v2a+aC/P9DzjbjuAEHz4Hc2NOzDQ4eyd7hGDocLHjbgap8Ldrjt5DycYf9R6Zuxzo45Ll/7vcNfTnrj6+oNrOcQgHmYZDPUIA9W3bx/Ss8ktbBkFSG1aVFRFVLvFfYY10ea7Y7gO1b3K/q2pd3tuLm9I0XyoJXsy6oQIMyWhqKyTOcVy5Ol2CsZLepOtVezkSSz0xqLLQ22LijqgsmkRlvD6xfX3HgPShTIYtGmxL4J6emaviclx8IayRVVkn8d+0QXA6oo5d/GowpD8nlCWcn94322RcJQGAHpqpj7xSTgW1KiYBB71oP8yf0JhozjQBqHBpQSQqrLjhnKGIq6xGhLRDKdUu772r7NdX6ij5mwC+SBYEcXehrX4pKE0+uqZD6dcnl5zuXjc6aLmqI26AJ8cqioxhnwMS/tgBCJDOr7PRg5aNBlkGMgJTJpkq9VqcEOiaH9cIcAt+pgDUoo/MN684BwGoG9g/VqIKUPr/dDgmlPiu1rkPFvX6k18/sfHhuHejbu32+MBMK4bh0STG8SWPJcI4x48PU3h6qinO0YJIsbySZU2og1OQUkx7Zt+fLZPbPyBfjAo7dOwSaa1TU1iaqa8p3vPuHP/mPNzb3CuTj2UBzWVGm/bwN7tfjBOrHfFcYOgm/KMZ1eMl8csZgvWSyPmS9OqCdLynJKUU4oypqytBhlMNZQFkKoD5hAkXEBM1phCRE91FlKSU6zCCUO99JsUcaAUUVev36Jcz29a9m1LcaWLI9OmEwm2c0h0nU9PjpSiBTWYGxJDIGu79ms77m7uaaqSqpCUxaGqjTMpjXLxYSqMhSF1H6F1YJJ5ixZea/ZThHpcf3ogLHPmROCJl9bMVJVdY7WAOddtjq2Yz0wkAku9CPJZKyl916Go1TOdUoxE3lDb5pzT3NdoPIw57CsDtmf0oPH8Tof1l2t9nuhH12ADCEPv4QYcp6UiC1QQspGl10a2NuvDTbOQz0aY8RoQ9M0aGvRRtb0sizH9yQuAHLNDFhiYSwxDnnGOltaq3EwJ6Ug/YeRYeEYRa01ksAw1veFNdl6z2Kt2AsPNqXkAWtjDrKCxit+34uT18yDSzKr8OQMhJTQOlEUGl0qTKFJZsAW47hUKHI9wX7LG+u/8ckPv3pYJX79avMmyfTw3/tn35e0GeAdaprc4ytFzl/a2wo+/KNGzHYYoBsJJvbff2CVlzgAcshY8p70ekgwHWAPDPtu4mvO0FeOX0kwub5htbqnd71I/lQkhB6lFc4Frq/XdG2kLCcYE/Nk9oLZbE6RfRrJgXB6SDZQhqZ13N+tWa93bHadZHqs23xBGebTWjwjg0h7izwpU1clvXd0zuH6bMkRewHmypLVZsVu10pgnSl5/uw1q/sdv3N0itGK1XrN/4+8P/uRLcvOPLHfHs5kg89+5xgyMpI5cKzqLnax2VRreJO61JIg6FEC9CJI/4H0oP9C9dwQ0AKkhkpACdBLAa2miCKLrInJJHNkZsxxR59sOtMe9LD2PmZ+I5ms54wTuHGvu5uZHzu2z9prfd9a3zdbzLm6+QlGBZq6ZNsHtDYUGKxREkBjZLPZAHB0dIRzg2gme892u8P7QN3MWK/XeC8ESjNb0HZb3CA69UZHmnnD6ekZ3W7H6uaWrut4/PjRxFyH4Hn96jVHR0u0VqzXa4rCslqt6LoWayyzpqHre9quw42jdDJVJdqWRMAFmFc1m82Ku7tbtPKcnRwx9D2b1S2KyHxW8enHP0XFAas9aM1iUdMPPV3XY3TJyck5q7Zlu+mo65p5U7JZ3bJZ39KdLKkr6X4orWXoO4Ze9O+Xy6WMqWszTV0cHZ3w5OlTXIi8ubphHD3DsOb8/IIYIi9evOTi4gF//Md/QlXWPHnylL/6q7/id37nd3j48CGbzYYf/OAHnJ0c8ejxYzbrFV9++QVaK677DdvtDXZwLBZHHB+fcnsna7RpGtF3bWqGYUSh+Na3vsXF2Ql/9f3vc3V1RdtWGBV48uQx81mN0ZrN+o5v/sa3uLm54vb2htvVLZ9/9hHzxZxmsWA5n0kCqkpGD93guF1f8ez9D7heregHB8qhjSIER6UFbO3ajqKei5mesRRFiVKGoigZRyEXl4NMfgUitig5OTtltd5OG2UGWlSUjoccgJQGFeQfmYnPnkYiMSObj3e5YJBA0PuRQTmMEWmZHOukQJYulTy2ahKJYNKUnYx+yAYbok4BT6OTNJQfIsElALhIUiIKdFBCCDgn7LcSQC+PeOaIftil9XUjmC4fPOZ/8N9/zDe/+R2ePHuP/+a/+X/w8uULkTDrR7wfMRbmjYBGhYGiDCgVkiarpp5VdF1EGU2ImnE04AxNVUyTRYUVz7uQtNSjyqR9mEajfYq7Y9+z267pug1aeZpmTdPMaWY19bymmRWiaesMRMduK13dhSnEQNP1jOOASj456+2W66sVw+gZBiE8ikIIpuClqKhrTVlGZnOTdI+9EKTe4X3EucjoOtyoib6CMGK0oq96dCKYht4S/JyitEm31qMYiN4lgEcKTluYRO431HXFbudwaeoOIkqHlCDuN1nnZFrMGLmPVQTfJ+kzGwlBZFGqSnT/QxDN58IKoaqVpm5qTk5O0hi+kFyqrmWPq+tEaHnW6zXb7ZYYRQIvj9Nnn4t8TuM44lMM0EakYnfbDc6NFNZOHVDBB5xyKGUm7yiXJgQuLy+ZzWvR0R4L2l1/WLWxr+/2xbQkoTF1anlskfah9Yb3v/yUrm+ZzY/35BIRLVZMKSGV+33q7klgeO7uyjEtE0zG6qlIzkTd4fF2d+YhQTNNpUxY4iGJfb8LUiUPKpFB20uO5H+Lb1Fmc+7L6O3Jm5jA5Dy9JD83WrNa3/Hzj35OURR0wxalRaoiZNBE7w059x9CnBLGw2I/hgMPGlTqwGUimLRWFIOhbmzKCScW6q1r96sTxV+XQzyN8gRTFAAykUtKHvAWmJL24INEO0aRjsigTAjuIAlXX7m8GUCKqdjJ5OW9gpLszZa8l5wjJLmI3LmYbo+pkzzGlAOkznOVAfcogIFCCq2YpHt9zJMUERdGxl2H0hoL2OgJgwfvsdZQFwVVoanLDDw6xkH056P3aCP3ixs6REoukbHBJ3lQIb3dmKaXkjSr/FFJPs5OxtJuHAhBi79aJt2Nwnt5/+M4EtyYCnMtzTE68xJ7ObqmaSbgUHJsECl5uf7O74kln8DULMuRO3iV0hIz0+RsJOvoR0h5j0zilpP0i/dB3kMiqQKRaGQSJ/j99DYJRM5xLipN240oYwlavJmev77m0y9fs9r0jEHTNAuCi/Rdx9h36Og4OjmmdxJb2nbH6zdXzJdH+ABtH7hdtfi4oa6keFdpjydKE5tzO8YxcHZ5wdMnT6ibmru7K758/hk6Qpnk4IIXsslWBVVVsVwsubu7RUWPGzq6fjd1r+ZJs1wcj97RDiObtmXwgcFHNm3P7WbLzXpD18vakPsugNJpwljinHdOmjxCAnmmxoSDJoL8NexJnEQkRkSWZYqn6b6PkYn0I90jOu8L+XtpqtTHtFclYDd4T2S/z+QiPEvoVVUlz0/TcD4GtN03RvB1yWnTlMe9PVodgkTqrb/T06aH3wfB93XDIayxJxQ4fFoUEhggBkWhSyKRopwzny1Zzpfsti3Kl2xvV3z++XM2qxXX12+o64K6Eu+gojJEHcBDIFBUlpOLE5bHC5pZjbGKmOshkuSOVtJcl2JyCAptJJ8jRpRVHJ8fU5SlNFzGyGa9xQ8BjcUHGNo++bSNgEi7lYBJzYhKa6L3XK9WlEWHQmRxjZLfPcU6RH5Xa41VQNSoGAjRTAoyVVHgvKcwSVrPwM3NDS5EmVCIAgj2bqAfhlQfuJRreWIyke+9Y75cMKukmRSlUTbiYqAdOta7new12jDiGZG87uZ2TdQRj2cMI8FErCk4O1/y+NkTPvzwmwRGxtDjs9SbCowuq2+YtA5SLoaSCa60GLSKBLWfNDjMX5W6/73D9Ubcg3X7vVfi/77rPAJ+eq1pZafnZR/RqX7YI/Molf27Y8r15O+ca07rPq3xnIcc5ppKqTThm95/jEmpIj0zJuWS6FPs2zdS3LtdYoRpGvvwOrxNLuWzj9KEoLRMrEXS/WZxeLkP8Fhdcbe95Wc//4J2u8WoyMNnF2zXd3itqY3m4cMTnrxzwXa3oduNsp+mPFgaVMWTxmf84+Azevua328o+3rkswCXD95nsTxiPlswm8+pqgZbzijLSv5UlUz6ZFLJKqxSSRpPYdN+K7Kaub2DRJiTgGswqfEtRIUHieeJXFAxEL3jzetX2MJwdbthu2s5OT/l5PSMEAbmdcPF2Rk///nPePH8OSEEZk3D44eP+OyTT3n5/Et2uy1VaVnOSwqtqSvDbFZxcrygrvWUz5hMjtm998/k7ZsVPYYRv93JHa4NSotFwDh4TPLCrAq5PkKKjTgvkz19Un+QpveZKJGM4tWrtaIsCtbrtTSfF4UMRljLbDZHAW3bTg2otigwthCFohAFK00NUNpaGETy3YdATMSR5NCKwTmUMfheGgVsUvYwxuJG8dG2RSVyd6lR2HlPfUC2AZPsc1UUE75AylXdiEgHpro7N34bYybCCSRWSJ3qJlWVTHIExD4kEihKJb5XUSHTpffv3Ry7isImdaxi4lW00SnP04xjQI9evj/Fz72X6uHOL7WPntZrJE5EiDKi7KUrBUUkKEc0qe5H6Jg9trGv8aYG/gMMJHMy+2OibeT/b5FK06Om2iK/0sFztGQ1WUmDg6natJVOWKvkm/tGhb0/0x4DyFgusiJS41fOx9IHptW9PtOJiFL7ydGsvHB/ciuio7onP/13vWf4ewim0hiOlksgsFjM8ONIWVsCitB5tuuedtdT1mrSdf+t3/6ugNRaUdmCq6sXxOip6wqtItvdwIsXr3j1+g3D6IlRo23Frhsn/cm+H/ngg/eZz2fM5zOqylJWBS9ffCkX2xq0MTS1JXrDMAzs7rb0bUeMiqurFe2u5W4zUNbHfPr5c85Olrz/3jOur6+4PD/lFEPvNV+8vOHupqWp5sJS9z2g6LqOn/3sp2w2Kx4/fkyMkbvVmmY24+LigsF5irLEJGBms93StS2LRcNyccbRcsb52SkvXz6nKCoePnxMXde8efOKoiiYzRqa2YxvfvNDPvnkI9p2J+bx56c8nDUUVgrYsiwZup66rhnHEWuMyPQ1J1xfXfHy1XM+/vgFpycL1jfXdO0W37W8fvmc7WbN0yePePrkMT/a3HGyaDg7PSFoy65zfPe738a7wGq94fR8YDGv+MXPf8Ll5SWLxYK+W9O1a2IQuZaRSFWXVFVB1+1Yr+9YLBapU3qYPrsQAkfLExaLFVfXdzx//pz33/tAurQ1LJfHPHnyhD/6z/6I3W5H349sNhuqquIXv/gFu92O999/j2fPnvKn//Jf8vrVS7qu5fPPP+fDb7zHgwePpLhXhjev39APPVEpyqqmKkrKk1J8pLYt4ygjqf/g936P1eqWTz/5iDdXrzk7PeLnP/8pfddyWs9ZLCy2qlkuGtBg7AdoDe0wsHm94vjoiKOzh0wyBii+ePmKi8sLQvS03ZbZrEHpiOsGxhHmR8ecXjzk+nZH1w5s1jtm8wWffvo5i+WS8wcPePHiBQ/feZq6CAxlWXF+fkHXt6xWt2y3a7puh44pfT64mT0S/KZgZDTDME4dGzEmsmnqco+E1G02Osfo9ybjOgWlQ0ku4yPWGJQaCSFSpI40bxTW7zf0EMQTLYxK9FABewA2aCMBjWFMUjBCfmkto6v3AliM09hw9nL6OhzDKJNl7773Id/69m/x+//JH/JP/+n/hb/+wfe5unrF0aLGp2mjIiVgoKln5d5rwmqiqtPkCgydZeijJJEFaBPRBnSMROXwjEBItiSafhjZbrbiQ0Sk61s22zWr2zfEMFCULVU1o2pqiloSIJEFqZjPZqxXLSfHCxaziqYyWBOAAe972q7lzZvX3N1t8FEn4iWw7beiyU72O9qhbYOyJdaLJu/Q9QxDmk70HuKI0p7ZrKbZ1tytX7GYn1IWTfJJMJyfnzKfN1SlTUTpQIxJTjV6rFJYq6mqgqauqesGa3uc9zJqzr6LM98PWsto9831DY8fPaUsC3abDbvNNiWshRTdMVIUFcHnSUIBIYZ+oG4qjk+OCc5xvFxOxZL3PmkW7ydoY4zJf0qmvS4uLuj7FmDqKDLGsFqtpOtVQ1VVtO0OQLyb6prVaiVksxdJum50Cc/TlFVJYWccHS+whUqEtEOiixwSOgRIzelUPAT5dI41DltAv+t4/vwz/vW/+Vf8l//l/4oYRItZIYDD9JqIhrOxagLvvPO8PaGUwTvnHH2fdPfT975CInG/2MwAYCAQfQYK/QGwfL8Q9X5Mfxw+OLI8XojSTZ+/l/W9YyrqQwJYBfzMCSPTyH8mslarW65vrlitbhid7Oshiq9kICCSlvm67yUD8+9SCSpJ71SS/qmLXqd1GpM8Y0BpN3ny5fw5xJgAVUkkMxn2tTgyIJOPg/UTDr4/Jc8IeO4D95LtmIqBGEPyG9oTlCKhdz/pzs+bJqyzF1T6bLTRaItMWmbNJHkEKqaJ5lw0HXRfhyBklyQI8rsDHhWEMFFpHRJGGIUcit4R+w5NmqBREecGcCN1VbGsGo6Wc4J3uGHApenIvu8BkUjSKhLCkE4xTb1bxcw20hjgA+Mg17Cum30zC0KkkaRNiEFIK7X3hnKJwEdJTqODRgeV5Olk2mUy9zWWoiqoqpLZrEmT5smfLgjomPqt8VFia98P9+79CZhI7EMkMvaesU8yHkqurWjwi1qDSA3GiZnIMcE7J2vDGPw4CtyWyCyAomom4G90noAnYvHBMbjAzbrnxz/7jDd3O3ZdYHBgi53IejgBdEsDP//0CzGUViL70g0DF0/OKcqScrvj+c3HRBcYvcOr/STw2Le4UYD32WzGP/id3+bd954Ro+NHP9xyd6OZ1Y0QYyEw9I6ytnz3Ox/w9Mkl3gc+/+wzHj285J1nj/ngm+9weXEm0mBREXxk9AMR2HQD265n2/U4ZfnixRXXqw2rrfgATsCBXEAgUBgj03JJdjHfm/LR/PIi/rBm3/97T6Tvo+i+sJ/ojQyGq/2Y1DTRBnK/JOJKK4Up7J5smgDfkLqKI35wqTvcUJYFBDs1hcSvC7lE5tEOOjrylxlEeeuI7Jsz3v58RXE43p9Kyw0j945DgAiCg+gjtjQ8ffoOpanZrlv+/b/5G9q2Zzm7lDXrvABwTQHK07kxSegozp+cMl/OqZuGqmmIBFwYhUw3mVxOsqBqX78opTDJnyIrQCgtck99GDDzgqcfPOPy8SU/+eFPuX59S3CB6CJFMBAjTVkSUQwhsu0dt5trjBJPr6IosGUpRvLeMw4ikS9SnqP8zhCp65nIdKYctipKVPDSze8CbexpipJBibzybrNhu22xVUXUmjHJPI8J71Ba4fyIUSRQ1dDMGx6fnNMnkHbdtrgY6YZe4o/3uBDo257tbpvIYgGpiqagHVo8HlNZHjy65Hu/9T2WZ8fYyrLp7whIV7zIn1r6vsUaA0qnyZYAuInUzEuNFF2nmYtJ/vr+unx74v0+gaGSv5NAkfsXV2m9Oibvp4n0FnAvqCxbJJOdWml0TAbrMZFe0z6fJ6VEyjxOMUwd5I/3m6imGEQGi/NrhVT/h688/ivH1EgT3/KR5F58u/cUAl0EpSwx1Y5GieR/YWqCGxnCQABmas5q3PG3n1/xxatX/O7vfof3v/UBuo6wHSh14B/9w/+ILz77c54/f0VZVihl8E5yHTlluZ6T6+k9Yin/MXxdj4dP36OwJdYKkWGKmqqqpBm9MFgj3jWFkWlma5VI3aqI1kLUKqXJl1DHiM40bZYsRZrvifs7wScpfmUiITq6dsft7TWXF6e8eP2c3vU8fXDO4njB9u4NL19+yc9/voagqMsm2VaUXL2+4sUXX7K+uyVGz6wusESW84r5vGKxEHk8yRV7UWYpC/rkU5prwbKuJEcf0z3DXv3IKI0xxUSelIXgFlob7u5upZa2+waRcRyJ0WCMwjmRH0XJRH9VldzcXGONISYCfjafQ4h0/ZjqNM1u14mPNprRize8toLpgkwVDa7H+YiPk1smSltQGucD282O+XwuE1WpoHTDSNcPk2SdKSz9apTJcQW2LFBJlSvjBGVZslgs8KOobpVlzWa1Fusb5xm9YzabEUKY1FGqqmI2m7HZbJLiwL6mLYrkKRqk7vV+n1NrLVNP0Uei20tvOu8nCeqiNEJ4lTZdY5f+Lc35MZKa1GQyXlvDMCb7h5Sj7xt9JAhoLc1khU1TlQQMYEtD1ZRQRrwecTiiyg2bZk8RxT3lRNrLc334y3IWYJKcu4eH/ArCJR/qrdedZB4T9nTvsXof57Tey9lniUGlch0vmGyaZ5IWB5UkDdFTYJ/afIRVYq8wmJWrZK+alGUOj5gvVJaP/tXYwa8kmI6TT4SPnqou6YcWnGf0sN2NOC+ASN/12EJzcrLEh4HjeoFS0HUdQ+eYNQVj37PdbHjz+pqhd6w3Pf0wMrpIP9xgjEiuNXUlshzWsJjLaOc4DKzurjk+PUnAjwB269tbPJIAtW3L9fU1IWraztN2Iz4abtdbdpsVjy5O+eC9pwx9y+r2imhrKGZC3CwN/XYguoBRQi4tlwucc6xWKy4uLqjrmvOLSxbLI4qqJoTAerOj7wfGcWCzkU4+lyZHQLHd7SjLisoUlNpy+fAhb968EV+VYQAVub6+wjnH5eUF77//Hm3Xsrq7xbkRtxvYbKS7pKxKisLQ9yMR+PLFJwxDR1FG5ouCX/z8hxRGcXqyQMWRSmsoS4btjhdffI7rW+azkt5JB+/p6RHvvf+UoEp8lABzulii8BgdiWHk7vaK3W7Drl1jrCzK+UICqRtHxmHAGgHEQgg0TcNsNuPzz79M/lWnbHctn3zyCd57Pv30U7Q2XF4+4OXLl6KRn4r+p0+f8v3vf5+TkxMuLs4ZhkG8lErL2fmZSA2krvVxdIQYWa83rNdbrm+uMYXl5OyMsqhZHC1ZLpeTX1VRGJ5/+QVVWfD7v/8f8y//5I/ZbNd0ux2b1Q13oWUcb3j07F2a5TEYzeL0SAKzi7jRcXW7ompOMMaitOi7npw8AAzWFBwtSpTyWKMxpcYkmcaf/uRnvH79mt1OJt/cMLJcLnn16hXDOPAb3/sOF0+eEJSMtVf1jD/6z/97/F//q/+K9XqTvGN0CjpZX1mut49SyOUC/KsSHlI4H05ChQRbQpwIXZVkXrQSMkqHiPEybaH1yOBG2ZALy5D+lsTFT92rzolv2jTWrtWUvGY5g4DHBIsNBhs81lhMNOTOfGAvXZMmRb4uR99FQNMhgNvx8QX/p//j/5m//Mt/y7/6sz/h//fH/wLvPYvFnMuLY05OGmaNASUSG2jRe++Gnn4AOyqsqVDKyVajpdsO5VHKE6Kb5IAAdPIE67oRo1uMUQx9z9C19N2OGB0halzoaAeNWmuUNpLQ2hKrLa9fXXN+dsLp8RFnx0uKIhJDzzB0bLZrvnz+BavVjr6XKZp6NqM+mxGjdAVZozFW0cxK6rrAaCUj1mOHUn46f3D40NN2I6Pbsd2t2G12FEWNNSJf53zH0dGcWV1TVhZrIlENaJ0krvR+V9RGpa4og7UxTXWpyash+4cpJZrD6/Wam5sbvPOsVyvc0FNSJIAh7A2eQ+7EF7BJKahnMjF1d3dDjHtJJ4mfx2w2G2KME3H/5s0b6UpyIzaNqud7fBylKWMYBgIRXRiquiK4keD24N1yuQRlWK03bHdbykYkVDe7LZHIctnQDR2SWEWq2uJGkfqcitIpIcsAUSZ/FHvNdy9JelmwXt3xl//+3/Ff/E/+F0gXosQonfaRHI/kmusk37n/3mHSkguItttNyW8+cmEfwn4K6Stj3Wo/nj+BB0hy6KYOzTCRgy6RSyRyKXdhhegm8ikEkWDJiejb5u1T/qhE63vXbjk/P+XjT3/B6zevhbi0liHJzqBI0lIkkv6tjsyDIxNNh2CdTACKNIExcZKziVPnakoEU1I5+dpkEOVrwjAJQfhVcOleZ3AGd0AIuZANej2ZODTGJFBH1o1SepKolafpNDGy7w7bAz1hig3iH4oYJ2Pwfry/j8c0vRQywSTrfJK4DCErmqRzloIvSuN9gmYiaujo16tJrrkuLHUlYGP0Ios3q2tms4a6NKjgponPA1EUub+MQSlPDFEmiaJ0klujqYsSCIxBciFVlmijqQoZXcx+fMMwCOmk5BoM44CPappgkkJV3pOxGqWrVNCKXw9pAmqxXFIVWWbDMo7DwWSiwoVI9IOQ60n/XSY4dbpeWXrCyJR66q40hZbucAIxio9KURTUTU2VfEVkckvurbEf6ZPkWzbNjt5MnjGHfnfj6CY5O200XfR4DP0I6+3I7Xpg00YGB0EZYioSVaGxZcG8abAKNu0uTSgYnIePPn2BMnLeIY4UpWK5nFE3JcYYttstrUImj21JcIGPP/4JV9dfiMx2u2JWaapS1tEwOAa35dnFA+azEqsjhTb8p//493ny+BEnxwvmi4qysLhxTGtWEaNl0264ultzt9mxals6r/jy1TW7zjN6JTLmB/uIUmC1oqpKQgiTV0G+P/VBbJ/WInkuIQO7THT8/ron6FbJZxCilNchihwTKhGxb+0RKoq8irEWHfcx3r/VzS9hWH6/c44iAVoxySEaY2iaJjVPyLr/Ohxv79P5yM0X8aALGTLBBHnfU+nfeXoE9j3JU+qWQ/T0eHkOSqYeVDSURc3jyyf0m5Hnb15zd7NmeytybVvWKA0uDLRugzGexVHDfNlQ1Zai1kkOWhMZGcmAPnsAKsqUnErzKj6A1YXkCz4whkHWaaqTRu9RPlJokdXTjeVbv/Vtbl9fc/3mhtXtmt16R9sOdH4ECrQqGYeRru0wCqgqFvMl1WzBctagYqRf9PRteyA1rLC2EHJzlLjnvSOOI61zOK3w1qKrkuvbW4mhaWqvqErxTpLNj4iiqGuUSedsFIWWqVOf/F9f3V6hlJbGxeAIRAbvabtWmpuiNAzqqgQlTTmDEyzj8uklx+cnnJyfcHSypKhLnB5xYWBklMleBcE5umGgNJZxkIlSkZ7ag3J5rUxfTWSQIpKl3iUGvJ0HyHqdNLLlMUrdI64mkgkmUjznBPcfs8+tFNKclrvI99kn0/kQsxa4n8humQqSvO0rk0RxbxWR3480QiWyiCw579NP7ud38ZCtTddIZQnKw3OaksbDQxOsYRwGKiXSa7nb3/dOLrcpQCm6OOJVzRih7zv+9N/9mJsWnr3zLpePLM3Y8I2nH3J6/DPK8oacwyitpWdGPoQElOZzf9ur9Ot92LKgnjXUZU1ZitdSUZSURUlRFJTGTlPfVptpatwmgpxUC2TgWseAjY5R2wTnyD2gopTfQUXBG7TC4yit5ub1Db/42U9RRG5WN6Dh6OSI0/NTXr58Qak8ZWFo6oqXL1/TbjvqoiQ6x4/++odcvXnN6cmS+WxOUxfMZgXLeU1dGerCMGtKjFaUhfjdKyL0XaofLbaQyc6uH+iSYoexYqNRllWqhRWFrZg1JkVrmczXqRlFQ6q1XboWMREdmmZWiW3HZsPNzTiRLzkHDwHJPf2+2Wy323F0esIYPD5J6+/rRbl3r2+uaWYzjM6+TbJv9n0vTYcKBu+m6e3cfL3b7Shr+bydj2Ld4gV7KKoaZcTPTGSdA/P5XHCRoRfVC7v3NLNWo5WmKOU9KiXXtCyr6V6z1k7xqqqqpA6jCR76oQe1r0NkKjPV1Ok/8V0SUkwpxGqhLAV30bK32zSNlhuwlBKlgJhkGAIjzicKKGZEVIgWq7VI0RZWbAYS+YktwEaUhailggrBgU1WPGlCMrU4T3lmzKSNApFXZZ8fsq/p5DhsaL1PMP1y0umwgSEm+Tu93xo4eI4Ckk1D/jOV/nl/See6l0BMLoRRE2Mm0NJ635/YvRiSMVh9IOut1X1yaa/qkVR+pkaMvyMw8fcQTEVRsJjPCHiK2uBklo62G9msOtrdDq01wziKL5zRRGSD7FLxU9cNu90tfb9it9vRtSPXN3dstq0QTMmk7MHpxbRBlqV440BkGDqIYhrWdzJmHYkMvZBKATGz3m62aUHW+OhwQRODod3suLq7ZWg34HuePXvIN77xHkM0rFrPFy8/o+vkCllrKY2BIB1Bu90OiHz++edUVcVieUTVjPgI1hasV2spQowlxMhyviB3n8wWC5GXa3eU2lLVJUYbmqphdANDMuUsq4LT01NOT4+ZzWfc3F7TDz3ByWigMSYRVeLnVNcN2+2G11fPUYh8xXZzyzjuKHSJ0ZrSWuazmnZzx2bd0+7WXL1+xdHZCfNZDbYEW9B3LbYuaNstr9+8Yr60bLYr5psG50fWmxVKBYa+Z6cF+FwuF8zmDTEEdtt0XnUzdY1aa1mv1zJJUJY8ePCA1WrFy5cvmM8XLBYLrLX8/Oc/52h5zDCIT4gQMJ75fM58vuDu7obVasW7777Ldrfl6s0btDG0mw2FLajrmrbtaLuOxWJJWVfUlZyHS8RJ7nrP454hBeYPvvE+Xd+CipSFQQ8dN9fPMbXhKAxUiyOUmoHW6FIkvxZHhjFoiqpBG0vXDVTlfNJ6tgZJIpVM7EgHiGc2m1NVaxlpDWK213lPZM7oHNudTCQELyILMv11zHe/+z3UjyNfPP9cksaQx/73gNihRvF+9FSCRfC5g+lg3D7/nRLv+6BisqL3Hh0jYQoyiZxKPiQQkixNIHiVQHUvurbeIu6rOZ3d/26RBbJY63HWUBQGbz022HuAcJbDyl4zX5fDjbJRRlIn9xh59Pgh3/veb6aCY+QnP/731LX4tR0tlywWFh87IYtU6u4wgYB42XmF+C4lk3ORmxNZNO9HAdETYCnj8fJZj6NDpWQn+5opFXG+I6ikfx7AhYjWJcYUaGXZrFv6tqfddPS7DmsiwXf0fcdut+HqRmRRnYOiFImRKmisrSisoSwtTWOpyloMyq2ekt+yGJJklMf7DuclOdIJdPJhhEExqoG+FyPHGBxu3tOMJWWl0Ubkn4ApAfKTJxzyelpPJKxCNlnxkBPg0haW6DTtbkdwgdXdHUaB0jMBW1OCIB3LewNJrZV07FQVWmk2mzuOjo4m8rfrOqqqmuTsnHPsdrt73kubzXoilSbvpdTFxCQLAuvViqapKK10Y3VdlyTpmCZ3hI9Q0xj0rt1hVIVGfBSntpYpRGQ9Z5Wgu0PTynTtlBDE2Q/x408+klistBSrSoxkc3KtuC+Pl8ORvOc9yH74XoHJ/+o+QPB2EsdBTHxbWi4/Zx8XD2U5D2XxYpIumCQl07oRXx5SwRCmc5DX2xNo+fVBvnd7K/ua9x5BizIhcQBu8tX3oZKfTrz/gynj9EHkYw4LGKX35Ju8H33PyHPq/jo4x1/3IxM7eV3s8Zq0h2Z/JZju3el65m9GCLLxJVJyv89O+7KKky458T7BNO2LKnJPVoyYpjTD5FUZ0mec18Y0xSy/Pq3dOAmbSD2UyMQY0vSyR+22jF2LBkxRJEAxeW8UGqVKKmsprUyQBO9F2jRNJ0szmU4dmbLOrBWixqrUPZiIy+hT7qo1RmlUJuPS5csS0fupVU+IHuG5ZBJEJ18A+Wwkf4vWENLUtdYaW8iUv7FmktYYvcM7P+URWWIvk3bZkDgTUPJaJgEJJsnkRYy2QAkxJNk/TV3XlGUxEf0hBsZRmmuGfkyyI4EYlACiechJa3Qq/pz30rjhRPLVBEPrYfDQdoHrux3d4Bld6mpNI5A+QmEMZVVwcnbG2He0/ZDkbRXoEm0rmlktTT90oAIXlyccHx9RVaV00Cohl2LUvPj8SzabW4ZhTVForIk0M0tZmqkJQymZyo/BUVjFo0eP+eAbH7BcLLBWAXn9y6RPiDCOgbv1irvVmtvNjtV2x6pzbHcDYzDJR0aapmLaB5TWydtQGgpjSOR+3IO/X20c2HeQKqWSj4qsqXCw9+7Z/vz4/LoTVLAHAtJr7UdP2Tda5G1RZSnVVLanl9cpJnjvBHZWQrYVVrxrlTXAfpLv1/nYX//DY7/HHO7reXIpgziw38+D2j938smRFyCDJvvPIX+2EoMLW1Dakujh9uqO1c2adt0RR1BohqHFxVEk8GeG5dGMZl5S1RZbKpSFoMcUh0HF1PgSM50kjTN6WqOaGBVBxdQMkGK4yqB/OpTcN5oE7Jaa4/MTbFEwm89Y3665urpht9sRxkgMAjL60WOKgsIUzKoGjcRa8XuSSVYdSX584H1ks1rJJGf65WOEQpEkzOVzGJ1DxShSfNbSzGagtJCpXmNQMgKRdFe9lwlZ593UCLhLMk/OizLG6B0e5O8ENI7eQXBp4rRmOTvm5OKY04sTZssZRVNSNQVBRRwST3OnuU6fb96zVerIjjGi8uRNRkDVtEo4FGWM9wjNfNtmMocEMU4fUnqkPviuYjKE2690Oa/8mEgidXT6qNNnHcz0GyWnSGt30l9SKVT56ZxSQfhW/X5w5m9PRE7yxzkORqISmbn8tHsYwHS++/c8fXv6vYnGP0gPg5I1rUwBCEgrQ72ybwYVCMoTtCJEg1KWGAt8DIzDwEcfv2TbRu42jne/UbM8uqSuZjRNwzAMeB8TwC9AaX6bWuVpsnwc5qy/AuX8NT9mydfdpiabwhZURUVhC5lwSaRSJpcywWS0FhKS1HCp8roJ6Ch/xzTWJCE6NXQo2TtVIga0gdX6ls8//5S6Knl1/RJlFEeLBVVdslr3lJZpCKAqSxazBW3b8ebVa8bBUZcVpZW9srCGWV0xayqa2lJVBcRA8BFHxEYjdXzOB5SoMoRRpjhNavC0RUGeholT7IhTzAte5KiNEuk3pfc5urW57t5jJoeTjUVRkCdcJmBfS4O1yKNCVdV0Xb+/15TUtj7VmT54bFGQrS/yxKHWWrygkv0KMNWm3oeJbMo14zgKCR/TqIvWRsQlD6R7rbWM/YCxRoiGECjLgr7v0NqiTYEPYhdj03SSMZZx7KfXAQjjQFFUqUGLtB8IjmRMliwF50MiuDMXIbYd2fspT9hZI5Jvh79DLnNqXlM13om0tYkm1W+yx2r2Hlc6EajivYpch9Ts743E1BBCik2CYQoukL3i901GSu33GnIecrh7HMagKf27X7W/TSwd/n0Yz79KlN//3kQqHcS6rEqxP1+9/6y1EZIsakj5iJDDB/LCSt0LnblxWCVSKb/m4VTu/pzzPvsfdvxKgsnakvl8QVQebQPODygDXT+w2e7YrDfJNC1iAmRvhxA9fdcz9I6joznrzZq2XdF10nV+e7dmGB3Oy6i2LQua2Yy+3RGCAGZlVYjUwuBQRJrZMbt2S1FKZ0Tfdzg30o8DXd8zjCNVVWPLGT6MjKPBmZ7Bw7odaHcbiI4nTx9weXlO78C/WdFt1oyuoLAVylqU1Rhf0nfCto6jgLUXFxccn6wxtqQoa2BktVqjjSRkEiws3o2pIAnc3t4yDAOLumFZzxn6nqqqiCoK6Np2LI4uWMznLJZzQlTs2g4fkiR5lEDXth2LuaNuRPvzzdVrNutbGXu1htXdNYUVEDkGR4w6BbAokh3Bc3N9zcnZCYv5DFNVdCPc3V5x+XjJOHS8evmc0zMhrzbbOT54hqHHWMPQdxMQ4oNnNp8x9AOb7YaT4oS6rmi7bjKS6/ue58+f8/DRI07OTrm4uOCvf/BDzs8vOTk5wfvAy5cvGXqXpKksL1++5OHDh9R1PRXw19fX/Pbv/BaL3Y7Vas3gHOv1lrOzU8qypG13ONdzcvqAZjbH2JIunQekhCQBMLNmTtftePXqNR+8/4znX34hWvM60F6/xPme1d0VQcGJ0dhSUdSzqdhcLJd4h/gpacPoHKXRE6BDBKMsipAmH0DhOTs74+Zuy015S4yRtm0Z2x3NrJDPLI5o4mQ+6IJHG8OH3/qQ69s3vHj1QryVMsGUAMU8tZRLlxBFYz8HwIh0aeYgz8H3D2WX9kXZARAaIzp1j2ol0jQqSUCQAKKQTM9V7pgm+a0hiUqIGdTM4Kr4c9lCY7zBB0uRY8fB5pJ9G0Y3fq0IppevXrBYLtP9UDCOAaLi6OiMDz/8LvN5gxt3FKVjPi9pZg2zhYwNhyCdRJIqWsZR47QQgloxabDGIF3JQt75tOHHlIjalNSLn072FhED+pBAK5eM4hXeRbrBgerRuoCoUWwZ+p6ubenbHdaID9Mw9olkGthsB9AWtMLHghCMEEqlJJKzWU1RGKqyFGNGFSmLGUM9pMTNM4w7nGvSlInIOHqvIApwOTjHdrtB4yEOhFDhQ0FZmmlTDzGmxLEnhJGIR7x1EuCERitJBovUvRO8p7AFOnXKj/3A7d0Ns7qmKC1KVTI1SZzMlbMMhnMuAWjFlGQURTl1tYcgsSET9X3fc319zfHxsSRnXhoqROJJ4ltOPvNYdEweB6vVhqosJ6Km63sBIWGarHLOYzWYwqAItLuWyigKK4Wd0noqpqXuiBOYM6Hb5L8OO4gFHO6HjufPv+TNm9ccHV9gbS2djiqmCYWc1B36L0myY4xmGF0iRN005u/zFFlRTg0DcJho3c987k2n3PvJQRGe3sTUcZUmUvJ7C+naO+8mLxX52d5I+e2kEPaxL79uURrxp1rdstttiVGaQ/ZTYXtj1f3LxHv/nAiP6WcKAiIf5MNU2OTfaw40uKdCkpzwp/M8vCRfiyMcfIa5QYKJXCLGCcSQa6WnrmCRCdlfM6XYr5sDQEbW017CLj+XidTarz+m/TnvkyE1Y6S9O53nfWgp7eIp75ApDiGZdEx6+CFAmgoMYYSxRQWXdOc1pTUyMVIYylScaTRkv4Y0YRC8wznxFioLMbgPPmAUFIXArNboVNREghOCJxP/CiBPc+ZiKF10IZ/TegxMMnLSnGRFGjAkADWt/ZAa/bQWg2drRI8fJeT2OLrJJ885R5b2hNQpyB78zrmJDFuHJBEsxEdZFPLvKNfAWk3T1NPkU0SK6H4QWahxHPHTtFcCdJO8UVQatEEX0oXre8cQRBYzOsdtF+gGz7YdubrZMYxCKIWcqQUhh1FqknHxo0tGylJw26Li/Pyc4+MlWkecu8H5geVyxvn5CfPFHBUV8/kR1kp9023u2Kyv8E5htUEby9FCPBZzrqCVZjZrWMwbzk6O+eD9d3nn6RNilI7UTJSFmMglF9jsBm7u1tyttqy2LXfbHTfbnqDLBAoZAjGttfSZK5lIsxpc+plW8ro6r5l8Hx0U9ZmEzAX3RNgehtH0ABXzJ7cnLvbb1j725vtbk4Vio+QGcT8VPPmgHdzbEqAP73lZ2NK0IZP6ucHl1/2IaV86qDTg4N4IUUj0e9h9zHt2JPNFYf/jiUQPB6i4PnwBlICiXsCV0oiSxGa94+b6lm47EEaf4pyiHTp63xHCwPnFCacXS4xNn7WWWmy/V0gumsmNmBtsfEzTcBmISqSAipOMqo9CNpEeozGMyk9WjspD3TQcWZP8TRuiUagbRb/zjK3CjS6BaVlOJ+KGEdf3Mh3nPXGQPCnkJoUAt7e3oJRM9idfbF1ZIkZ8FKZJZrlmShvxJHFp71AC6ka/l25zbkTF5DnnPaP3MhXlxolgGsYBrCEmn11tNaUqCIg39dHxkpOLUx48vqRZ1GBgDI6ocwOPS9O9OuVaQjYYYxKncz+3y/+f1ttBPhqnCaT92jpYqdM+MP0sTjvsvbV1SPbsX+ur01Ax5v+lXE1J7nWIzE1yn9PvyTl0yGg+4Kdz+Tvzsykp2L+/OF2AfA76MNMjTxXsv7UHHFU6t/06zy+fm1bSXRzBmgIV8mVTBPbeqHHaAg1g8USRd7QVL662rLuX3G0Dujimnp2ilaWuG0YnPpDiw7cn96ZGsbdi+/49TQH5a3fM57MJXLZGUxUiGWzVXurKGCM+mGrfOKmUFng9563qcE3sSYy850YiUas00Cf+Zip4NIrt+o4XL59TlKLwsThZsjxapi1RJNnbdstqdcezp+9Rlw2ffPQJz5+/RCnFYj6T/d8oysIwawpmTUnTlFSl1KjBi+SvTIZX2LTmg4/SCDWKl2VRWGxRUNhykqbNOcDoRWkny7GH4KjKign58KKOlT2KszS0NEAFtDJUlZB2PkTJfdMkmNZSh/so5HtZVqx2a/IEUJa09yHFa6Cu66Qes8/3RcpeMgtjRBrPp9gafJS9IU28SEOw+DCpXHcg+685IB3qqmK73lDVJUrBOIzYwtL1TASNG0eMFTn+ImELXTtSFCLplz27bbH3+ZuaRRNhaYwhhkjvct0if5wbk4yw4BZFabGFSX0LMclO79dhhCSJahi1Jwyj7JdaQch1rAjcCXmafeMlB0AplEGkpY3IhofoRDRVM/nAx6n2Zh9bDv6o1FSRe5Ekpzu4TfJecRCT9hP16e9DbOIt/GT/vf3r5cfI8w73m/1UVX7/OTfO9Zb8O8sM5piYf794gu/3i/zKqV1GHTRy5QTslxxvf/dXhdxfSTAdLR/SuxYXWsbQ0nUdddkwxo5NN3B9t2K1aTG6QKua0i45mj/AjRuU9kS144c//pFIBARYbzs+++IFhS2JSlHXc8qiYhwdX376BcfHRywXM1QQEKrrWoyBsjbcrK9ZLGaMY59G7Ry2CKzbAW1Kzs/OGPrA0Adc27Nbd9ysd3z2ao1SC46PK/TZnD//mx+wsIHKVOALnjQN60Fztd2wiR5VFmg3BzRaOeYzzbvvnFMVJUM74BrHyeKIH//op8yXMt21ubulbVu+6HY8eHiGd55//Rd/yu31He+/802qoxpba17fvIQSjLbM6gWnl5e8evWG+dEMH2tW60DdPBCiZ71mvbpjs93hRsXN7Zr1ZgMxUBSGppjh+p6xH8BF6nKGtZph9Ly+uuFv//YjfuM3foO6Kul3W4qrG+bzJbMEzpVKsbt5zYNv/yaj17x4dcV2dUlZlKiUgM8XR/T9wN1mS1k6ZrM5r69vUEbTeymql6dH0skZRlz0qEEKqY8++oSIZrE85vTknCdPnlKWlZCMbcvlxUPatufhw1POz8/5Z//sn/HBB9+k63q6rgcMP/3pTzg/v2S5XHJ2esnQ/5DXNzdEHQiI2XFdfMh2fYNSipPzBbuupes7Fk1DWTVopdjcbSmKBc4Z7nbXvHh9x+PH7zO0O159+Tl/89EVf/RHf8iu3bK7ucNGxWI5cFKLj8quHdiNcPngIUO/IsTAYllyc/0ls1mNQuNHUKqkaWZJ4m1MnjleDKGrBmsqMV5XA2q8o/JzvnHxIbVvGShwXrq8ikXNy7tXOBwnJ0dcv3J4y9Sl7oJ08ebk2sfAGEfp+iIVN0a+Hw1Jrk7L5qRTsoaatCa8Twn6VEDtA5hCYaIhBpEIclpNhoNZdzwn/uJMJR0Yfd9NEwdaa0ZvsD5ivUg42RGqWicvp2zELZuVcwHnIsP49dGs/6//7/+UP/jHf8S3PvwOjx69S13NWc4veP1yw3Zl+N3f+c95/OgZv/j4B9zefYFzt9hGM9ISRvH1sMpQKkNjSoJxdDpv8tJBFkLBbiM2rENvcK4gBktlGyorE0PWRopiJNIT1JZoOmyVpoisFCpj8JgiUhnwfmB0LbuuR0XLrn/D3bbh6vaIebNAxnQlaepGTe9K0IrgNOUIc1dg9ByixY2G4Jbo0GBVTWkM2niqKjJvwiQHVxQxdaePiCxbAD0ScPihZ+xahnHNtu1B9YTQ4Iaa4+PjlIQCNtK5FZ2/Zgh3eLZgBqIvUtoiQJh3I4XWmBhRLrKo59R1DRp27ZZ2uKMsNbu2x3tNXVqKskBNUoQCQu520MwXVI2mrhuePn1nmvisqprl8ojb22vyePyLFy/47LPP+K3f+l4y2jSMY5gmmDJpVRQF3nusgbIwWF2iQgGxwHvF4AbKuqLrB5QxmKIUAiW2zBoh3TQ9rgu0piTWJbZoMMWIbrvJ4FW6lMKUTOci1jtJxpWGYRyp6xoXPEM/0N+M/L//P/+Mf/Jf/C+5uHiUJAIGaVRRBm1k+i1GUkK973oeho6ub+n6lmEcRSLMi+a/gHUyBZmnqu5JJ+Vka+qISokwMokX8kSSc8ToBKSNjuBH/NhOHgoo5L04IbxjEP+unNiTU9SUfWbgWikIfv8ZGQvHJzV/8Rd/IU0MTjrJvPPJt0vOLymCJckXpnNP74qIwisFWGzygAljxOFQUQkG6hxuDKmQFEDUGjP9e//S2S9oD3x9LY4sD5oAlIkoDfLPgHjtuDSRodS+ScKoBGcmQ1yZbBQ9+2FIMhZKCnAfkYYfLS9sEjBojQEvjT/BJeN3JcV/LkJD6IVcTXK4EQ3KYCdDbenwVVHOhegplcIQUNERxh7CgMoTNdFTzizLmU3rQFNYT1PVQtCo9J4Qf7FsDOvciHe9ENFGU5YKpTy61FitsCpJ9nqRhBYyVggPlJmaTFSURgCtNAqRP2uahnbX4UcBEU00wEhRFtRVmQySB5kCUi7J+EnXf2EtVSlT7MaqJNMZ2G072m3yqPM+SdC51MFpUmwd0SaidCrknUsQXAZQpZnGagGUUfLZNU0l3kDRiaR09KzanrYbEhgrkEyRmjGMBqUj2pREW0A1pzi+4PTsIcPLa9Zvrnn95oqXL19zdRMZRiHF2nZgnbyrtA5pSgEKqzFeMWw7Pvv4EyEXQ8Agk2an8zm/+51vUNdV6iYeUdGzWd1RWkNVFBwtllgVCMOGYbvGD3ecLktOjpcs5jPKwnI0X/DuO88gwm67wVrDe++8w3vvPuHhwwuWyyWBwDD2aO0oCoWL4LD0Y2DTOl5f7Xj+pme1dWzbyLY3jK6hqEu0tUSY1qhJ4FdhNMtZyTh0eDeQO6V18olQKqIIIiWZY1UCPJXOch57oNiY3FzmEyhwEFORaduYp/ujyJzFmIFXubZyyO82b4XHmAjEvMbz60LEJE0+weECw7DvAv6Kpv2v6ZHJb4DcwMH0ZZ4IVZNvzL6LVojV3DQnh8yUh+QNmvdJEPJmf0Sy1JjWGu8UY+d58fo57bbDj0LZFmXF2A+0ux1RBxaLOefn54AjeEdQAQL4JDEjd7YmpH8r0oQiPoGyMlkf40Qj5aswDbzsCQWFYry33yqlGQYvv6XWLOfH1GcLTtcXXL+54/Xza/ztjuh7Bj+y2nR0wyY1QMUUxwKuH/CjIychAdCl+JhqHDVJ3s661BQgWcXF8Sl1UWGUJjhP7wLbtqfzjiF6tmNPn2SadOpcd+PI2PdS53rPFsmZfPCyj5RQ1AplFUVV0Mwbzh6ec3p2StmUFGVBUQv8NDKkLWM/qWuioUi5XWZYFH6611AH6hhvkQt50m36GPLXOhvWxwMSZ78m7wGH6TNT6fMB6QJXMUp9kPLDgLv3u/aTkGZ/Sul/kbCPWdNnn5+Tml04IEv2Z3Lwz0OgMsWS9LLSH5Np2AgYlComN1WJb/krP9X5Sb8xRywiibjNaOo0PS9NjCYq1CBqRSGKgHSfFTSc+JsIYm+AmtFbQNQRiIGiPmLX97z89Iq/ff4v+Ye3W+62I7Zc4HyL0lYA4ER0CX4wyp6qSAS+mvKt3HmfL8bbnlG/7sfC1PcmVcqiEM8hLYoR4usqriwqCrGk0AQveZ5VChUNyu0JPJfWqU4YUYiRQXmR/4yydooI0fWAo93ccHPzmqKMgOV4ccLx7Ih+fcf29orWSF784NFDlsen/OAv/4br6xvabiD4gfOTCltF5kvN+XnN8axgMZNmqMIaSlsRnCjlCOYUKIpazi0EgvNpkk5hQkQl5aI65X0hqVJ1/UBVNcmzqUBp8cScPJ4ZUQrKokxYlE8TdSIDbLSirmq6tuPoaEFd1Sjg6s1rFotZwuc83dCyS95Heb8rU9Pner0mhEBd1yKZmybb+zHJ440OYyuMUpP33egdIRjQ0HY9USXyNRGvTVXhA4xpKCKOjrKpGZXCA6UtGMsSpZMfsVEErSmaRmoCJCeGSF1oisJADAwa5nWRbGjEKsMoJU0TaarK6DJNYWUEMNCjiVrhjWaMI7frFUoJ0TVbVJgCTBEE94uBwfUJfypQQZpljdbiI1wkn2FGDAE/BAgyLVlpmdrTRpzDtXKoAoIJeBMJBmIBTnmcCjgVQMu0V4xKJMCVAnNIBKU6XsfEBeWJyn3TwLS1HEbrnMNwr4V/OpRWhIQf5Lh1r6kp5obTQ3IXOV8gYpi0dVJs1kolz0+7nz5CZj9R4MP+vGS/EGnofNbyf2ko1lr+zoSTvKW8//r8FkHpiVT8+3CDX0kwNYs5ZlD0DsIgYNZ6u2XX7ui6jpubGwhi/CgMOfz0Zz+mLDzjsCOEkbOzM7bbLavVivV6h1aiSe39jvV6zdBfURQV7777zmRgtVwu+cUvfs75xbEA+EpRlhW73e5gM9bc3d1QN0u0ljF4KTQdm+2a27trtt1IUZjk69GwmC8oGsfTyxNKXdDtHG33kupoiTOwGQeiUYyxm7pkfHTcrV9ji2c8ffaAqprx6Wc/57d/93ugPTd3N1zfeM4vzjBGYywoPCcnZ5wsz3jnnXcpjOLq6oof/PBv+MP/9I9w6xWb7ZayqLl8+IB/9a/+DGsLvve973F2epoWo6YsS87PjjleznFeRvnHQXRAtdEEoB89ZTXj5YsvOFqKFEbVNLRdR1mWlGWFHwdOzs948uwZL1485/bVK+pmweWTU+7u7ujGyHqz5vXrK/phoB96yrLk7OyMV69es2t7iqISSSdtuLw8B+D6+prdbsfx8TGvXr1GKc1yecS7777PJ598xtXVFc1sxre//W3+/b//S4wpODurODs948svXvCbv/mbDMPI559/zu/93u/xZ3/2Z/zhH/4hDx8+5Ic//CHee37605+yWCwoioLHjx/z8vmXbDcbXLfFGAnSbRfYrDcEDNqKXJQ2mrouZcxzCKxXG46Pj3nn3ad8/NFP+PjjjymNoapr/vCP/jN+9JOfcHp6wsXlOfPFgo8++oiA5ejonMXymMvZMZtdS1QKHyJX17dst1tsUTBPclQqgelBKXRRMC9KVq+uefP6Dau7FWVZ8uGHH3IyN3zrm894/OicXbuh6ztUKSBIbSo8npOjU85Oz9jcrdhuttyudlMXj4Z9gI+R7D8iHgSeMBVt+3tZkvEDw0+QqSil0Cmxz52Xb/uZ5C6JiTgzSdYu3a9Wp8mQg8Q5Tx3kIHX4etZaMbcPgSIZ+2XZHOeGe50RX5fjT//0z/mLP/93vPvON/jd3/1H/Ef/8B/jvUz4PXn6gO32jrOzM84u/hG79ptcvfmUjz/5G5yzeC8TRNoabjdroo8oJNHsdyO2KPe+QF46ENtuS993k9xYXc8oCpPGlR0+JLmjKIVjM6uZNaXE2JREbVvRCdbOoQw4B34UWVM3jmzWq7RZGZKGKoMbsUXBMCg2G02IPX0/slwcMV8s8D7KdFQ7ELyhqAyzWY02YE2gLKRLR6awekIYiIygRpQORDsSq4bISN9tGYZeJGsaj03yRjooootY0zCfHdEtFX1vWK8DzmewOUwgcruVSbqiKOj7HucCplAi5+Bk4mjWSHKktfioVFVFCANtJ/HajZH33q8oy5JxFLJeqfw+BHDYbrd470X6NQTOz08nkiL7UkhMl86sruvYbrcsFguqyhDCyC9+8QsWi5l0SiWZLTGZF/hLK+mwms1mNE2ZpkWl4zV7n2RNYKM1WQ6OqRDeA0Ix/S0SmvuurxAlFhld8s//+T/nf/Q//B+nzu/9+RS2mMbpQa63OAYHwBCCS340HmM0t6sV2sr0KMjr77slU0zL8fFASmn/8xzTBOQmgAv5PWf5AT9JqsrX0pV7aHYcQ07ED/3usu+WmiauDs/BOcd26/jJT34i4IkVvXCVCagc/4JPieYv15jfJ7WH35QEMMQo/nUhg9NiBF5VJVVVTr9DCJN98vh1kcZ7+wghSbnlJDl1OetEvGX8aer8DYmgRIDpSTqWmDxBRYomps9B7iM9AUohhkkP30dpxpEuULDGUKT8eRx66XAMea/O8mpCpvoYCC6ItIfWlFYzdg4XA+iIIcgU+zhQWCnOrS2JfitrwlpKKzE/uFSsa4OxGjf2SbtbpvaiD1RpfxDJDJ2KLY1WAaOkA3QcDyT9AmmduQngL4qCED3Rp0nE0aG1yO/JtL9MLdVWuhoLo4RYyTrq6XPQWlQVisKmtS1yY+JtM4pHbPRoU1CoFL+0mBXnuGN0KffoKCSjUTZxCVECv8nSyuHAl0/Who+RcRjph471rmPTelz2PtMGYy1WSf7pQ0Abi/Oa2XzOxeNnfOt7v8fi9CF/+dc/4upmw5dfvuSTj5/TOSXygFHklYtC+I0QwQUorcb5Ae+FoCybhtPlUjwz3cDQt4zDlh/+9V8m4npA+5Hz5ZLlrCb2LR/95EcQpaNTIaTc2fGCb/3D3+XsTPaZ1y9f4McBaxXn52ecnX7I5eUFDy8vaWqZvhqGga5r8QQCCh81ow/crnfc3G24vlnzxYtrbtcdIcqkh+R8EUKahNCyVxYhYsxexiUDFnmNTfdp3E/+KRUSiXAvuU0Fr3y5h/f3KgbpE07fT/CvTtI6iQhQ8lJyy6bnFSYV9yHci5Uxrclcj4qMmp/2n3zkPTW89fxf9yM3l90/DqW21Ft/53/vr9F+f9KHH15qDnh7f7y/JkKIuNHTho71eo0fA24IWF2wmFVURcnWbzGl4vj4CKMV/TgSlRd/EQPBOTFcJ5OIepJ0hJgmFl0C7UN63P6MInmSVb7KxIJS+8lZEBBXBfHUBSVd3VrTNDMeP5nx8PIR66sbrl6+plttGdqObmgRWdbka+c9wae/Y0xd9BFtZX8pbQEqikdeGFBAVRScLI4oipLtZku7a+n7HltUFE0NNvlKjZ51u5msiIIPuHGk0CZ9YuJxUdWSa9RNxfL4mLMH55R1gbZausmrAo8X6d7MjURPnirMe3GWhX6bKEiZpxCT086ciZHDezMDammVfCWVUgffDPCV+/Lw5zD5GE1SQy6NMCq0fSsfy7L1HOZwav+gPeOUXjut57we7v/qg/N569+pRslP+Gps2ZNu+ym//bTXfhI0TXaqmIBNNT1mf46Z9rITIS/r2aQ1nicnBHsIB59OYVSS0teiXMGA96BUJVYD/cC//3d/TdBzRq8Yh0hZFpIzJVlvqSXy+0xvnn3Olq+jHAJ0f52Opmmm+ybnapKjmUnFQKXpJX2vPspYqpoa4+4F2vxleqj4joZpMj3XPtvtVmTatOHm5jVHR0ccHR2hjebV81fUdc223YgksC5Yr1dcX18zjqPEi6rh5KTi9Ljm5KjmeFmjwoD3o7RMx9Ra4IPkh8lzU6sqNVtKE4jWhtm8Ifv4jOOYbFSi5ItlRZ3WhjSBCSHa9z3DIN5hutBYY9jstkLWJU/Iu7u7hEPX1E3DcrlEprgFF6tnM/q+F5IqSamP44jWMhEkViI1q9VKvEcRabv5fM7deiMypQkPOMxZiqLg9vZ2L5XnMy5RTJ/PfD4Hkmy0EiIhBCZ8DSLr9RplZQJesycIrLVT41xWU8mYwzhKI9ih1ch8PhfvvMzhK4Upk8xfWijjOFIUBdtdy267Y73ZJh/qmlnTMGtmFKUBXGo0ifdyJqM1VVGm/XB/nlKzjNIwaWS9G4w04GrEJkJ70GLXg41EE8THMYGTOuEW0gGYCKO/o94+PN5+zLRXKX3v63t7fFpn+f7az2Pfe+WD19z/kSlljdKSXewblHJ+ILLkVovqgsl+akw38vTS+5xDJ+Vn+XeMcZp4OowL+i2C6yt7mQrTPfb35bS/kmCqqgIfDBZLpSq2gxjBb7ctq/UapaRzGSV6jsvlgs8/+4TTkxlHy5p5IkZyYKvKkuPjhjdv3jCOLhVhBu8dXdfSzCp8dNzeXVOWdpLICUFJh08CvrwPdF2PmJEVGC1dGrvtju12jfc9Wkd8GCgLTVEWPLi85Ld/59vo4YZhfYVVGrwS2bSXV9RHxxwtarZDh61kqiN46Uwcx5FmNuPV61fU1YyzszOUDmzbLbvdjt1ux4sXLyEq5vOa46MFl5enNFXNZrOh3W1od3f8g9/7h2w2G5GeMJa27xlHx298+9ssF0vOz8/5+OOPOT872y9opTBFQT+ITF1VVSL/lHQXY4TNesd8fjzJzYVouLh4INfYO7p2J4VhPyZG0xKi5tXrN1w8bomqEMO+GLDGiPazD8wWS05Pzxjdm+kOOD09Zbttsbbk4uKS2WyGc56+79HaEqNMujx48IDVes2LFy949uwZy+US5xx3d3cMw5BuCPG3+slPfsLv/M7v0HUdq9WKR48e8Xu/93v8xV/8BW/eXLFarVkuF6xWK548fsjt9Ru873n84AEff/wxy6Nzjk5qMRuOEVukIt+LB9hyKXIB/Tiw3qy5vLzk6uVL6qbhZDHDxFo0Pq2maRqKoubJs3fZbHbYYs5sccowDtRNw916RdcPaG3QtqAfHCG0lNZzND9mcB5lREJuvdny6tU1m9sdrh+nrvLF0ZKyblC2oF4seH31mqMzRVHPsWjaXcfZ0Snbi4esbu/425/99JeSLblwFQPrXJznhDknD2H68jAYqLcz77gHjg8DafZKCUoS7Ri1dA8Yg9ZKJBBSbMtdixnMuTfWno4cmPJrO79PiKRjJMvifX2KcYDT43OqqoYIP//bn/Lq5SvevHnFd77zHR49foQxkaZpWG22KEouL97BaM2nn/0tb14/p23XVMc1Zbmga1uR2KRkPpsRqSYwX6cuitwhHKN4yBVFRWFFFEaSx5TkKNBWMZtVzGYVxojBvA8ebcXUd3COrjP0/ciIh6iw2tLUM6KPbLc9Xd9ibEGIUWQQlEjSDYNIqe52PUdtzzCMxNNI32tsoSlLy9A7mrpOyZAVH5AwEI3BUxDiQGRAxUBZ1lTlghAHutIy9DuCH+nHHr3dUpaS7NmqxBrNrDmmn2u6Fuq6E/AskSo+eW9IR7rBmAOJECNbpzZCwgjZCqg0WVSq1HghcbquC2yRyVRZ+7vdbiL42nZ3YG4vSWnTVPe8hrJH0263m0iMqqqm5MIlacDLi4eUlRhoKick9GZ7SwwaYwqcHxNgvDe7H2OSDHSGIgg5EcYR50R27SsFyFfI65iKQAFGBcTUspcEARGy7nSM3Nu/0qtMtYych5uuByi65LWXfTrKsryX5BzGx0NyKZMAU5d5jIlMu++5lP8cJpLTz6KHEIhevibcBz9yQXD4xyc5PWsN3TDwk5/+LS75ZWXA0tiCENz+eSHe0zd+O+mVZJx0jeO9EBlD3gvk76IoKcqKqiynYmQPyqXrkrwi9vvFr/9RJRPkcRxxIe01U6IsibcbXerUSsDQIUAd056YC6J7qHTq8iKmbuJEWiRQJq/FtEnKGjAGo1PhjwDwh/umUgYfRc6DKMSATvehCnJ/Wg2u7+ndAH6kMJEyTRgZLSCPLSqqsprAGj86XJTfF2KSt82yVUjRZ1JH4aH5biZiAzFNworcZl6LEYV3ImsXyWssXRPv0v0f0QfpjOj4W8pCJLaFi3ao4EWCJYqfpdGacgIY5LrFCBhNVRZoPcPXNajkdTQMBDQqKinMnRDLGoMmEGLyLYsBU6ZJSi/XXuT6hFCOXjEOPgEAI30/sF1v6YaINgXayNTrpAkPqKgYR8Xy/JSn733Ak/e+yeNn7/Hyas0nn3zBp59+wfXVHc5FmQZL7dkRpPYhdbUOI5FAVPLZl1XB+cUJv/ub34MYuL1+w+effky727BdX0sBahTniznvvvuMs7NTtNZst1uMUbQ7mQqFyIff/JDvfvfbjMPA7e0t21pz+c47PHv2LMntSYNf05To1LUYiQxe5MMEVldsupGXb+54+eaa65sVm91A70hAsgKlpVM1NyiEvWlxlo3N+9E4jjLVEoKAkiF5yR3sE3lqNB6i9FHu1aytv79n9wV33D9sylNzTh6zMbVKvyGqvcG5gqCyNOK+YSH/yV3fWu/LaXmqSrnzAcn1NWmaynKXcuz3nek4AOKna5hhaXX4SDXte7kRQEJyRE2P2hMKkSzvpXDe41zHdrcljJGhc1hdUJe5abWgqKWxbxjEv0OswSKDGzFWpJRklxSSS0XJf2X9eETGLOZlsieT0hHeKmP2K/HgUkQhPL0XQD1kMDc9VunI6cUxy3nNdrVhfbfm9uqW9WZL9IKnC9DlKWyZGsACoR8lZpTS2KCIuHGgLiKFUjIR6wNY8RatmgqMIijFiGMYPJ0f2Q0dYxRLAxQURclsthDiKk2SVkc1zXxGWZVJ/qjAlmbPBWvQNk0Zqv19GKb785BASOtFGTj8elo6Kq+Mt/mae4+Zfp6O1JCer+p07eU1hOX5ZUCjeNiqfT6Q15va4++kFCDcy6V+Wb2dJfvunez+96qDpx+SZNz/Hip7kiXAfPpdb5ErSmoXlS7UPYIov3rOVTLBlD6cwL6ej6mhSmefp5Dvin1MjHjxOCEKoAtYrVCTT7UiBkt0TuTVNJhCGu6ihoimKBqssQl3yLFdQPEJ1J7eWj539vtAtif4ewDjX6fDFjKlIzVq9gPSkxyeND3spfLzqk3qX28RTEzLVmuZUpsm+I0m+AOCyUvz0OpOGiKbpuHl6x2Xlyd0fceu2051LmiOj5bM50t+8Fc/wvmB4B1aGWbNjKow1FWZiCPFyekx0Ys1BFFq26auCcEJZjAMaDWmyZJ8rtKEOTVVBk/dNIl0QUgcrSmKEu8DwzgmtaSUt002DeFeg/QwDiijqcsqWXhYibFOPOjEB1lT1pVYeQwdMUaKqpoaqouimPyVxUYmxWjiQTOZHIf8aG7ezFhNromLoiAT6dZaIloUD7zc2/P5jNVmAwhJ5UOQ2B73EuGCJW+lSfxQbl8hCh8hgLX7nEkp0FlOTnARHyQXU3ovmyfYiXwWbddNSitlaVMtoVLzSF6K+fen66AS4RQUY3RTFMwSeEZbmVZT0mxaFFqahRTS9mQRo0ELwSiZqE37Tva78n8PvniIW+aGU5X9yFKOqVWe+Nk/h7jPBw8nou4f8eCeU/v7Tk2XY/o9TPdvvl/V/ed+ZTL+cB9F4uHBHitNj6JQliXx1MG5aq0nX8D97hPJcvLT5O7Bmv1VE6O/kmAy1mAKK2ORvsJoy27Xsd3s6LpBpESibORGi0TP3e2K89OGshQgaLfbTMbJmSFr2y7X3PJ9JQBS3RSpeA7J5D0vdp86GaqJXR0G0bgsbIlSFu8l8DgvBZkx0DQFITqaRsiHcRioomIcZIzcuxHnOpzraOpzdF3hlWe9W2HT2KlGpInW6x273cjpqeH99y8JRFbrFW3XopSQXn03opHOoHF0WD0So4CwLkBRVFxdXWGLUsBXBTYqZrMZVVUzjEMigoQJR0lwq+qa3W4DqKkDPowOpQ1V3eBHR/SOul5gjGZ0W5ZHRxhrcG6gHweiUrgQpLuzrDGmwJRV0v0UgFRpjTGWruvwLrA8PpFrlQOKkp87t0UpRVXVVFXNixcv6LuBuhbN1xAj8/mcm9tbbu/uePnyJRcXF9ze3tG2Lc45FosF2+2Oq6s3vHnzhhjFg+Tq6orVasUHH3xwAPaJ2d7UoVFYylLx8OEDrt684eT0kqosBcQIAWvKNHUzUJYNZVlRzzx+G8T3qrEcHx9Ld6JSDGPg7PxSgNfCYouSuSnxYYcPMj7bLGapUBbzO4jUzSKBCjCMnm4Ycc7j4oALjn4M3N2sWd9t2NxtxDBPOXYnFdu+Y+kXLBZz1te37HYbGhRFNSOOgbqsqcqawoqcQD/06WZOCfpUWEdy4jgxylPikANH3AfAg+D2drnzy5KyOL2+fB2CdK7KQ7NcRHpe9rA4AHwPOzrvneP0+gJYTR5MSQP365QgAjx5JGDQMIzc3N4y9AM/+tFfMZsXzGYFi0XDOBqG3gGGeXPMxbll6APRW25vX1MWBU2tCF7ikdY1QSmMrjC2mMj5GL0k9yZLEOw75CVOgwppisVqtLHMFzV1LUR0CEHkQ0zEOoMdDaicGCiMEgnQs7NLoou8fnONv3aE4MjG9s4JgDf0EsvFE0o8NFSEopDO8aIwzOYzjo4iTT2jLkuMFk1gkmya8x4wUtQaTV0ZlBZT8tYoum6Ld06SyahRSroqjZbrNcwVbReYzbZsNwMkrflA9uUwyQBU7innAuZgUiTJ4kozRAImQzBigpqWel3XE6kC3LtHQvDc3t5MyWOMQkzUdXWgBe0nsskWNp2HP5gwlE4skY7dG4fqNF4dghBFWfIge0Lk96B1PGjoEKNPY83kczXV1zHeix375EjtcYHpp+ynn9J7HsaBrIk/PWbqUk/XMfhEMLm95FY6T2usNJWkQipfy/2124Pzh5NNGex3LsngZJ+bBJj75LGUC/U9+ZQ85tKfEKWjLidVmYiQx+2LsUymGQzDMPDpZ5+RAeQpssXMPewllg5C43Tuv+yIGdFQ6mDiLnfKy35tjMXYgqIo0MpPSeZEfhzsI1+XaKsRMC5ojdcqc0IHoIt41R1oCd67RvfADPb5a3jrcfLYgIph2mCDd8RgUKQJqCgTTEYpkeCKUQC/Qxw2+4IlWRiUdLERA9E7vBuBQLfb4IcOFT3FTKQnsy+TVYamqpg1dYoXUTTN87oLEJOcitJZckbejzVmkp/JkmJTcREDg5OJ0ymHiOw15qMQTIUJSV1AyFrpIhTaScj2OAFQOhlNi9efE0nK1BBhjPj0FFbMqjO6aI10nVZVgfcheSP1eKdQMe15PqCiEsBLK1SMjKNIEgeV3htCWmjlCdog4LGefM2ks14+fjd63OgxUWoUZRRgJqBOaU1R1Tx4+JQnz77B5YOnoAs++fRLPv7kM169umJ0npOTY2azRvxeIhRlxdHxMetdy83dHVfX14QgZF9VlDJJPKs5Ol4Q3cDQlpSFQtUWoyNFoWnqmofnJzx9cMmDBxc0dS2kYPS8ePGc9XqF0vDBe094/PCM1e0d+A6rL3n//fe5fPCA5XJJ09TpvYmkoxu9+E05L7J4IdI7x+vrFS9e33B1u2K97XAeURPIElfcB7AiMckqC/CSCSZiburbgyq5OfFwTxHpwlT4HgZTUgGeN2ru57SH8TW+/UelvviYv95X+YdFv9AaQUijg+GHXOzvJ52yvIme7nXeagr4dT68PwTXD9+04u34Jt9Oe/VBbnHwKGKKFfKcg1icXn8fkhM5SATvCYEE4KVpMh/p+iT9awV811rjR5HGy4B57vAOyQuDBKzHoKYYcPCPxD2oA1k/9id7+OUhihv3azaqfbNMvnQ5Z4oqYsuCqphhC01RFdjSUq8bhmHE9Q4/jPhR8lUfgsh2prS8LC1WSbOR1oraFtS2oLKWskiNvMGLcbo1uBhw0dP7kdb1jNFTNhWlUZjCMpvNmM/nQl6lmFQva8q6whYmNV1FXPQpzssHFkQWJgGWuSZNMmdMN9h+nUzL4ED++DASKO55Ih4eidq9t4YOY8j+MOyjwGFWmrOB9KwEsB3g8/L4ePiqeR3+kmwq5iT4/s+ydNE+jB3spZnYuveEfBOkf2aCbMIxDx+fY+DB6x/cK2/noRM4iSKG1PASc9wM9268GCI6YwMTyRQI2t/7CHWWNk05D9oQjUt5k0ykOkY8BUqJB19WGdjHjez3nNfNHgCNHK6B+JXr+3U4svxvBpqz945IEqfJhQwkc1CzHRz/IXDLHtzOV16mhnY7aWDPKjSL5ZJdu6brdlhr2W63NLMZALvdlpvra5SKWKsoC6nXq9JSVwVFViBSGmXtNMot+VeSKk1f++Akk1Bqitn7lSBrtSiKqT7Lf1RwB57nUmsfEsb5HhwTgdR1nUzgVCVFWU6EQ26CzJiXc0F8kmKa8jda6mwtXmbDKFKgmVASr+JhwunuTckkAka8mxP+kLxIBUeXz1ml6e9RNLmn1yoKS4zi/WiMQTuJs+HAFz0TF1POr8WLVTCA+3V0JE7S7fGA5ECLP1aOE+IFj5CAo/hGKaUoq0pwCbP3g5vWkTpsPJc4ks/pkJ/JHk9aafJ/07rQEhcCiIqVhWDkmgQOcrKUiGoOm5a4d+1/OfZ4v/lAHealv+TxmYjJ99YU0w++J/vJPledLJMS/hmJ0+c5/Ze/nv4+vCflPPMvjqikHCOydzkPT2NV07lrrSZZ9Pw79jvf/f0kX7+3MZa/6/iVBJM2YvioPIQhoLXlzesrVqstwQmLypRoOdzYYUzk7PyYqjSMfcfQdWnzEmLo9rYjhr2Obwie5WIu0lghUFYFZ2cn+NAxmzVpEkkkhIwx7HYdbdvhRs/x8RFlVTO6gBsdfd+ljvOALeDy6ASu1hwdL9ntNvzZn/4ZF0vLSW2orGbsB7QOPH10zvLsCFUWFJXhi198zslJRVHUGFMydIGf/fQTHj95yvlFzWx+xGaz5u5uhQ+e2WxGXS1oNy1KS3fezc0tV8Hx7Nl7nJye0bUVP/jrH3JycsLFfMny6IiITCV8+eWXvHj5Eu89lxcXtG1LTojatuX09BGruxtikMmn7W5HGB2L+ZzzoxPOzy745KNf0MyWGKu5W28pq4rF0RHbzQoXPFUzw5iSulmALolovvGt36AoLG2fSDlt0doyDlu8h7Ks+PzzzymqmsWywNqC3balKAq6rqfvB+laePky/XueAFeD1pa+H7i+vuajjz7i93//P2EcHW17hXOep0+e8eWXL+i6juVywTiOrFYrPvvssymBvbm54dGjR5OO6XK54G++/xlKKc7Pz3ny6BE//OEPOTk+ZrGYs2l7olYUdoYfHbvBYUyFNdJ5EGLA+Z7Ves37T5+wXa148+olq+vnPHhwiTIF2hYYW7Lb7Dg/f8DoYbXZcvn4GW+ubmiaOVXTcLe642i5hNQN753jbrNDBbhav2HwA+cnD1mvW66vb7l+85p2t0aZEWUG6kXF8vSI08sLmtnAZn3HOIycnYu8i/IwdgPjOHB2fk7btnsQNYg8w3Sfqr2U3dS9Tw7aGdyRTgOtmdbWFNhSQZ4NjKdNJYO1ep+MTsFM5c1gLwNCiMlU/L403mEQOuyEzuO42rm0Gb/1Hv6e4PXrdLz77D3ef/89bm5vcD//GY8ePeLTTz/h7BcLlouKp0+f0XU7RI6rwLuCsjjhg2/8FqenD7m6esnd7SusnaFVhWLAjYp1t+bkuKIqG5QyDMMO8BijUjIhHiAxpGk0ZTCFRnmVSA6RmVwezymsTD+NPqKjIZoS6x1mlC4RmWTVNPWci/OHfOO9b0JUfPbZlxSffs7N9S2DS2sY8ZyIIdJ1Q/Ld8my3O/p+oLBi+GkLzdHREUMfWC5gubAYPSP6Ajd6+h7a1qFNZLksUYhMXdNoqkoIMmUU29WacRjRqkBrj7HQzBpmTYkPhnFUnJz0rFcttIOsZSXNE0XyWsmyL/sOqdTNlSQ9uq7FjZ7ZrCYEQ/Qel0fom71edAYqxVsJNpstn376KZeXlxOxEmNIPxdPpnEciIis1OXlBd57Xr58KR3fBMaxZbvbYKyhKAsh3XxAGzlXmX7yjG5MkkR6Snbka5HG9MHhvUkTUBbvRpmGO6hG365jRWJTEsPUSkJEiDNtmBJh7wNt21JVDftiPPm2pDillJbE1A3Jc2skhDiBkNbKBINMX5npmh7+nc8TDsCtmIkr6ZwLPvsmeDGnTl4C+XFCbrmJgCL4iWTay+FIZR6S5ID3MvmitCS14r/Vs1qvePXq1STVlUf+nXNC4HEQK/Pr8tX4N3V9vfUepbiKB0VUTCSTQhsjBrBJWzwcCJgo+A9KEn+djnGQqSUVBeT2SdYlo8hKZdMM0mcrn4dm3y8/EZZBCiGrNV4nYDwl4UalzsSpuUoRnScW0k1sNfjoUdGIP5MieYJ5chf+oTyYSQWJVhGdyKXgBtzY03Ut27tr8I6q0OiZTNPoCDoarIrMqpI65VHSPToSo8eQ8gdEPm8yi4Vpf85TVSF3XHqfiJyYAFyVJvakq9p7z5jus0igKcsk1SH3jbFaCkhI05GpkEr6+hCJfoTg0jXdSwmWRYHR5h4IbIyhKIR0HoaRXdvKZJZ3oAxukOnxwhqMsVhjGKyhbWEcB0BNTWxEeQ/WKPIkU0CaLow1yY8SjLEEP4LyaJOADaUJQQhAW9WcP3rCB7/xmzx4+i66bPjsy1f8+b/+t/z8o0+4W2+o64YPvvENLi/Pub29Yxgdl48e8p3vfo+f/vwX/PinP2W9WeGco6wKFvOGxWyGUpHXr58Tho7d+g6rAyfnR9SVZbGYcXK05NHZOfP5nIenR5ydnXF0dMTq7hbXrqi0p6wKnj46ozKR5bxgPrtkufwGDx4+EkI6oflDioH9EOj7kbbr6EdPVJZu9Nyud/ziky958eaKwUdCNDLtYzUo0YwnAS4mNzohk79VVUy+BEop/DjihnHywJPp331OmuPVfprgq+DyVF6nnFYlACODxDliBpVvcbn385nlol4nNHma8MzInIIQDT4qosqxNt2j2hBQ9/YhnZ4z5dNfk1Ab7k0wHR4JxJ72nMMLEpMa3i8DbNIjDkmduN8rxScnewwkBQvkoVVVEa2ULH6MdEMnsbGAsrJpOm8vPySjLoqhH8neEjlXiFGRF0+eRNH5bcHkm6cO9ot9LrIH1FReVwmQO1ALBgIhsUxKbiO6sUUHhS4Uy/MFZ5enhBCleXG1YXO7JjipQ8fRMzhP6Uv84LEolGjmMa8blrOGeV0zq2qOFgtub1esd2tG5zFFwUDAKRjwOBXRleX4/Iz58ZLZYs58OWPWzHBemgWM1gxKGh0c0mhDhKAiyuTiUWpWnX0EyY0Mcn1VQuEUeZIw3cn3lkICRLl3sf7u/EXtiSO5R+O0jnKtK8oc6bEq7D+3BEjq9NwMc8nL5tdVKG334DAkn76vTikpzLTU74OSeh/TQMDVuAd3Vb4OhxciAYR7UDatx3v30v45h9PC94HP/WuKYsUemIw6YwBvve5EtObrnqab8uc2dezI64fo5J5OU/9aFwmDSLl0CNgkzxcTkZTlTve+d/Hg+sC9M4pxWib72MD9sPJrfhRFMa0VrTVFWpNTA+FENKW9dE/NpVfI/35r/bxNjscDKbMo9wvAer1ms1kzjDJ0cHx8zHa3ou97Tk9PWa1WWGu5ur7ii8++JEYvE5PW0lQlVWWYzytmTUlVKIgDu+2GWVNjtdTv2WezLC1aF0LYDHGql0OqzQqdJcHl3ihLO/nQoBRt17HrWowpxIu0lLrS52bDVJ8rrem7jq5tGYdBbDrKEmOzfGdkdGOqsYRYW63vgIi1RRoEEEn7qBSjd/TjKDnqOAjpUpZsNhusLRFpfZ9IspzeyPur61pkuKN4EKso8c8WBbYoiAHavkOl8zZWpg+z9LAxBmVE/i5/joLHD1RVKWsjEegiVeynGjXL40H+Wdh75SF5XEgYoA+JYAK2u91EqFVVRT2r0yQo6fWlqTmmcWCRbtNTg3kIesIEYpDfZ6yhjOynbEKEqNAmhcQUC3RpiCapJyRfxKDyEkj3CZIpHJJth8fbX4s0/y8nk+4Rgzr/opyzHOQ5U+hVUxyOOk45ZyaAoo7EPG6rSN5SCqXvk2ATSTWd834fzcSrvIhcoH3z7f4c5FpkeTzxMNuf7v1BBPK6/MoV+LuPX0kwlXXF2DmG3nF1fcO/+G//GGMtIahERHRobanritF3fPLpzzk5aSitwrmOXbuZkre+7Wm3PeMgXddd16G1ZjabM5vNODs/oq4rvB+5uX3Nw4cXDENLUYpfC0Db9mw3O0KA8/NLQOFcZLvZcXt3S92U3N5eE2KPLSLzRYmPcx5cXuJGz5vgabd3HJUNAPN5ze//o9/jky9e8t3f+Q71Ysnzl2+Y2xO+/PwNr9/csN3d8uDhY+bfOmM+O+NnP/mE//r/9v/kf/9/+N9x+eAhf/1Xf8Wf/emfcXe74X/zv/7fcny8QJtAYETrwO3tDYUtKYuCup5xcfkAYy3bXZsIt1tOT08ncHGz2bDZbKiqkuViwfHynP/uv/v/sljMabdbPv3kIx4+vOQ3v/s95rMZbhz54rPPefDwHc7PTtltN9zdrmnmC5Q1jMHRDQOzuiFgMEWNDZphDJxfPODqdkXvxmk3n88XacIsYk3B2dmFTFpZyziOHJ+eMp/P+Oyzz7l6c41CJgHOzxeEEPjRj37Mt7/9XX7zt39HQMXgKYqSN2/eJK+Qmu12y5/8yZ/wu7/7D/iDP/gDuq7j3/7bf8fFxQXb7Zaf/exnALzzzjuizV/XGGP4/ve/j7GWwmiid3zxxRccH8so7XazZr3tOTk/Yz5fsLq7ZbPZ0HUjDy4fM2uaVDiDxvPxZ59xfnzMN7/1Lbarc/78L/4V3/72bzCbH3O3WmNsye3dmtl8yWKx4JNPP+fhoycCisfAxYPHDMOAoycGh9Illw+O2O1aQql49eYV/+0f/zHtbUu3WVMZxeJsycur5zx68piTswtMOSPoggePH/Hyyy9Z3d1wc3XNo0fv0m62uFHuvb/50Q85Oz4hd06M4yjEVqqMJTGMCXCVojcnYbmo0RqCzgl87sLbe5a8fag8Up0jSgLZprHKtxK9EELq5koyCEz1ExlYersDID8PuHcOeRz/l+u4/3oef/mX3+fTTz9lvmg4PV7yW9/7Nu+984j5fM44tFzfvOFoeUppS5QuUdRs1zvqquL85D0uTp9xffuCvrvjFx/9LX1/jdaOWWM4O32AMTb5J+wEPA8u+cXIemq7nqosqMrsJeNROlJVlvmi5PhkTgjiScMQGEMANxJxKO2xRaDRGrCcnx7zwTee8Z3vfEhTz3j/g2d89tkzfvzjn/H69RUhwjg6kTTdBJwfaTsB6LOcT11VFGm0vO88wRuGTjEOGqNm8n562G4ct7cbUB7vxNS2rgsUJUZHjpYli/kRm9kdN29ucB76wWGso5kpyrJhEQuIBcMAN9crxvGW0YkfhkiJ5UklIXtCgNEHovLJM8OIbn+ULtt+6IgqEyQD4+iomzrJwXr6fpgIgJubG16+fMGbN294+PAh1mqKoppG1teb1XQO2+2Wi4sLPvzwQxYLkQz9F//iX1DXNZvNLev1HUdHS5SGwTmM0cxmM25XKyZfI+eo5o1MVGkAkciSZCVCko5SQFFavLfJY0YSv/vFyP0R6xCyEaTEjBB9KtCha3e0XU/X9ixmRxDz1E/Ep0RUG4XWEbcdGceRvu/SxGvgaHmWwEibwKS9jEwutA/jS54oEtJaOmknea/8J01ajOPA6MY0YRIYXHdQuKTJu9SNu++WjiLnkLr2pEtdOoGjkyKlqgo+/vhjPv/i08nQNReD4zim2KeZUEetvqqpwx5AEYkSkQWYQFO1T/ZJ8TdGlzS0HaJyUKZIneX43k6S90DMr/ux3W1kEtpYSmvp0zqY/Ad80nvPxtYJ6JsuWf4svGcMQbowK4MNhvGgg1IY1gSEkkEp+Z5WCmU0PTL5b40QUl3Xo4MneHmWSV2QhZEuc+cGhk0PcUSFgCJggmO3vcVGR1UZZlVBqQKWQFNV1FVBU5foGOh324mENES0gcLYqZBUIU5TkvnePJQKyTmDG0fGoBhDmoYKEII0sYyjY3V7TdvuIAbZT85PxR8q6Ybf67hTee+PxOD3XXwxEUuJdM7xN8T0uBgprJ665SVe9LRtlwj5kegDkY7CQNPUNE1DVVUoJYoJhRXP1jE1uuUjhIEQkhxHku+tqkpkSRJ5q5VldAEdR2LSR/Vert/J0SkPHz/hu7/7uzx975tse8cnH3/On/zLP+fffP8H3K5W+BiYVQ2PnzzhdFnjupZtcCyakqos6NstY99RlwWzk2ORGLGWQiuGfsdnn/wcS2BWFbz77CHf/fYHXF6cMm9qIeGC4a9+8H3WqytOTo559vQJXbfjZNnw7PEF55dnPHp8IcTI+ZKyLJO+fsDHET8KWN72MjnfDzCMkdHDGBRXt7e8vr7lxetrrtc7Rkq8YppmF5DSpIlmhYkIYKAU1liaup46J/EC7BxKxJq3pEfUYe45rZ1DgCDfdPfjmMo37wFYCTK3gJKO1zx1YomHth4HBOPeEllyapkMTPjGRFoRAwYmqdgM5DA1av2SiYRf2+NQsuU/9FDiLfPWd6fQqcS37lApYX/kpjaDMTJpRPJzXCxm+DFQGMPQCXipo8ZSULuIVSXPPnifn/70h4yjTPejmWSlQ8w1Vf5M1bTXiidPlu1jf/J7/uDtdwPI1KpsEXGKs3vAZ58TyKS1wyhNtInAjIExeqwpWJwtWZwsiE8eMGx2xKhwXiaYuqHnzavXDJsO3/agAvO6oLEGQ8SNPev1mnZoGcKIU4FgNfViybrbYVTBabPkvQ+/QTGrE1AXQUVaenShRWZ1Ap4VZFlMZM+T+2kP6mWiOF9DpRSGvfRQfmyWYJ1Whsrd1eZX3kN/FwAYY8Qqt/+AlABoZvqw1DTv9NVqmIlAYppcl+dEDs8nfe/eusxrhXvP+2rn+b5WV289lrh/D/kMDwmqrx763k2k1T4vn3w2dCa29lOmzgd8GlTKUn/xHsl3mP/L3pkVF2Q6+RDATs8IBTbJiTvnIEjenAqE6TVIRG5+3OG1yY0uey/U1CIVI/cYe8XBY74eUqQAdVF+ZT3lGkmOQzLp8Lthynun76XP/ZfdYSEECluRlRpy7ee95+7ujtevX/Hw4UPadkdZFCwWggm++877fP7iS25u71Is9SJVrQJFEXn04JTSBoyWhs2qKDk9WhKdNER6L+uqKsRjHBVEbjOWOD9O5JnkgT1NU1GUJT4Gtl3LMEgTkUqqHeLZIx7FQ9/RdUx2LUVR4JxjvV6Lh5IxnJ6fT/m794HBj2xWa5ZHc5Gf855Xr14mEkI8dsuqoqyq1MgIoPA+57OGPPHUNPMJ55okgvMajzKdE5JMoKhSSENVU88FI1CKthfLEVNYafxyDtf3UpcnGws5d4/WMvFWJplY7/3knR6CTB4BB76rhq7rAGmIHYNnNlvQDyIVPSTPZfFYExnsXdfS9T3ZR7AsKsrkO6XiviG+LI2QUj5PGGWvTcgEf8ZBhM+MafIoTvFNGkDSbqHEG1ubyKgCDs+Ik8nZTPwcHF8lT375vnIYs+/fP0y53R5/uB8j+eozhBCbKsV47+dZetCYPS6b8RW5bvsaymo1TWBncmlqvgqJWBIWK8XGOF0zRZpwPMg58l2vp5i/9xj9ZddkP0DwSy8b8PcQTGhhZ0fnWK83BC8GfNFIcdc0OUEAHQPWQlUo1usb0UhXimEchXFN+4FLm0lEFuxiMU9AlhT6WhmqqqTrOpEYGlJAqiqU0lR1g0JT1g2bzY5hED+KMpmhDUPPYjGnbCpsUfHg4VO63UgYHPO64er2NTHWnJ6dcHF2jFKKb3zrQ17f3PH5J7/g5etr6qJiPteEMGc2q1Da8eMf/wBl4fjkjN/67e/xz//5/4u7uzdUVcXjx4/41ocn0p1dWsrK4qKjrgqOj8REUylF3cwxtsR5R9f37NotDy4v8UC3a1mtVrx++YLFYpECR0ff7Tg+PuXB5TnjKN4Zlxen2LLg+cuX3FzdcHF6hhtH1usNL1++4ONPP+Fbv/FN2ral6weG0dF1t8SPPuL87IKmmVFoxcXFJV+8fMWu7ajqGbtdyzCMdG2PUlrkum5umM3nLOZLmnrGOEqHVNPMWC6PaNuOx4+f4L1nt2sZR9nYX796gw8ilfeTn/wErTWPHj2eOrdPT0958uQxznmeP3/Oj3/8Y/7JP/kn3N3dsdvt2G63/OM/+AO+/PJLdrsdm+2WYRyTCbUYO7e7HWdnZ8znc3a949Xrlzx4/Ihh6KiqCn2i2Kw7lFKstxsiMrWg9SlGgfOB9WrDbDbn8ZNnKTmPXD54RIzQdhI8+2GgbpYT0BCVJNJaa9oYQVliCLx4+Zrz83PoNoQQOZovWL+6pbSw63s26x3HxwvKsmI+P2I2P6LtBOSfzRrwjrubFavbNzR1ISbVIXJ+9oDoxgncEC1QAVpC6gwK7Jn43O2BipMWskKlLgH2IGkCSu/lkCoHVL0PbOw7tHSagsrlf6aU9AHYmZObfaIpQSprr0Le7A5kIQ4kriJpSutrRDBdnJ9xe3vN9ZtXHJ8s+Z//z/6nLJa/wfX1DavVhnazZewcVTkTo8mq4fj4WMCxGLFWs5xfslycsl47Vnfw2aefUpY11ojUWrDyOGs1TVPj3Mhu201awrGwKC2f0zB0uOCwFuqmoCiVgIgxEuIovjRK/kQcIcokTVnWzJYlpxdLnjy9oCpnnJwsOT07oqosv/joE4bB0bYdt3d3GNOz3cZk1C73qPM9IUhiMowJXFSGYfAMvSN4RVNLJ7dWlqZesN2tub3ZEmPAGFlvy2VNVc6wNjKfHVPaBS9fvRYwKwacE21lYzR13XB0dMR8vmS92qKQLqPo98RXURTScVRUMpljFUXyAvLeYbSlqAqInsIadrstbbsjRsN8vgDkfpL9TUDQzWZN27acnJxQFIaynBFjEGLKDcDeCyibm2YtY6UiTVNxenpMN2y4WWmU1dOUgbGGppmz23Uie+o9Wuk0lWZQSkp4HRVB+9QR7IneJX+TfQfU5EmCJEcqZk1i8bfLWWouWDNwcnJyMhFz7a6V5LuopXspMhWYuasxBCF8uq7FufFeh1H2YMwTC3/XWHvuZBTJVCGThEwdBSCIgRhd8noa7hWjPkYBFaNISsUYiS6TcBOdPsWsCYj3w8HdnAj9ENhs16zWK7Q12GiT7GBgTGtK9LyTnNhbJNlh85OEaS37Tk76UhwPIeLjftomRvAu4EY/TX9poxjHFu/UBN7LZcq+QF8T4DOIp4WGSXItS79FZDJHSQtg+l6eStJ7pFO+g0y0yV5njUiTunSvSkGQSvUEjmglMnnapMIhRIzag+luHCBKo4ZJ0zoxOPp2wzj0uHEges+8KiiLpIPvFMVyho4VhYHSGOrSMp/XVEUhhrhEhrZL55sAQaWoCptkzELyeIppYlGuQ1Ryu+xBG6Y1H7zCTbeNdCK6MdC2HetNyzB0FAcynyiTyKSDzyLGJBGupqYGH/f3lviHlJMkJsi9KV2jBm0tSkt9kgkmaQBITStGQ/RisFwZylJTlTbpyFtCqIjBs91uhYPIBECMIqFaGGxhKcqCskgkrTbYZsb5gweUi6VMb4WYZKkiXYjsXKANEa8Lrjctnz1/yQ9/8jP+8m/+huvVHeM4SEzajvybf/uvOa4MXd/hQ+T29ppPPvmUF69esW07jhYzlsulSIMQMDFgtcYqzXJW8+D8hPfffcpvfudDLs+OqaoChaLdjXz0yc/p+xYfHCF6Hjx8wPn5CUdHC2YzadozhcnI7jRd64bAMDrGQeTwYlT0Dtresd7uuLnZ8Pp2xe16x2rTMUYNWmIM6bOJSdYww1dGK6wuhWzSGqu1yBOGkKZ81DQNASTyieRppVPOmZueogDR6U6cCuFMboW97+gefGLKhZElJ0QhQor5mBuyUiRMry+9W3sw4EBsiqj1fUm0DJTeW+KHMYOvTZjNKiV/7+NiBmXy1+nv1DwX3gK39fS4BEjdAzcUUUXGMCJSyBqtBPBzo8cWCqUsMZTUZcWuH9lut/Aq0jQzvvH+b7DerLi9u2G1uaGsS0KaEM/rRd37bfv/k6wCZA2piUhRalqI6WuV1pa85tQcM71o3FMdKpGzat89LdhakjOOAYuYtBuraJaiUiAWZtKAeHp2ROEVsRtxqx1lVMT1burer2YV3kRUUwihUxhGAydHp1SLGfVihmkKhjjIfhBJ+bPHlqV0s0eR9QtBPO6m95huppy7ye1pUjWoEqGgBKBMxKJOOQ5JPi3f0/tuasi1aV4r90ma9Oh7YGBqCkhrbV+VpumqxCpb1MHv4wC427/SPdAPhcJOS+ArsPx0w+uDe/+AXMqgnrr/lH2eqSYiVQiWQ2BS3ft9exD0q/ddGcM+PqrkxzO9t1SrJwBccsnJ+ib9LJ97zhnjVJP4SW5aQ9R7KdAp91FJznovwR4R9xitxC9QJp32U/cZC8zT+NLkss+1Id77O1GxabLaJ0/qrw92cL/2yXEiZmgn4TLxK49Nz0DqmV+yMUX/lf1KGgnTvao0xgR27ZbNZkXf7zg9fczPf/ETjo4XlGXJer2msGINcntzS3COojBEP3B0dszpyRLiSF0WqDiiokarkrbdiRy+0Sgl9W4MTnzdUNJAN7QH8oCKsqynSfa+71hvt9IUf3yM1mbq3QsRhl6sSNq+o65m6DT944Jnt91N0/GZjD1aLCgKkQO8vrqiLEppfu17NpsNfd9TVRWzWT0NUPR9T9M0qSk9UtW1NIcrNdl9DMkzKiLywNoY/CiTs/lP3w9TE5aKMF8smM8WdF1Pl/LdZlbhg8jmy8S7qDb148jY9UBMtjPSQNb3PScnJ+x2uwMq5D6hfyjPr40hakVwsp6khvU4L15qEcmBh8Gx3bVoayjKSq6TkVo9+pDiekwceJj2RMFYFEZLXItJwrCwJSpJ4eE8Tk9RMz0Xej8QdcrZG4vTHofHRYdXQi7lZR+iTD4r9nvUniy9jyW8Tf7nr6ecTm62e/fSL+WoDuO7UhwkMeT8FabwzH7KKE3TI/MfRsnEr6g5pBpIZ3ws71sJjdUykaqSmkycgnhWxMiNBuaAWlLTEpi+o4TQC9NZ3meT/q4BhXz8SoJJJXLJh4DSlrJqODo+pd31BL/DWgFFysJQlZqmNsxmJW7siUHeQFkUbDcd4zBOBnGoJDdhxc+mqmuqqjg4UcVms6Ws7OTFFEIkRJ8APcswSJfzdrdLnbph6g4uq5LZbIbSYhzXbgecl5vcmoLZbI5Sir7vqErLbrfizasXvHp1xc3tmtlsjncdRIfWojPajxueP/+Uu/UN/eD45JOPqCrDo+YBJydHPHr4VHw03MjR8Zyj4zmPHz8meDG1H72jKkvKqsa1u9RZXLDd7WgT+Nf1Pf040nhPTNrIbdvy4MEDQvD0Qy83Opp+GBlGMd7s+p7bq2uWSRc5T/y8ef2Grm9FVm+9hXDLyfEZzWxBPVugjWUYHMFDWdYYY7m9eYOxltlsznq94frqmqpuBEQNkWEY8X7Fzc0Nt7e3aK05OzujKEqsHZP5vHxe1ljqumE2mzGOo3g2lRW3N3ccHR1hjOWLL77kb374w735c+pKl7HbDbnbe71eU1UVqEBIgMLQ97hxZLfb0o2SFZVlgXMC8AoI2aKNZtiOoKGZLYAK3zT0O2Ha54uGi8uHODfQdgMhbmXaqpaEXWkrYIZSaCOari56QlRYW6KUl2LcO168fElACM/j5YIXKqBwFDZSFCVP33vGk8dPOD07p2nmtF1LacV4sK4ruqrg7u4GU82Jab0vFkdcv3qRxoBzR92B58ZBEFMpRkhCGaevc/zIus2HCfphsMhFz+GRAU3RUdYT6ZR/rU5JcwgHwZd9opM73N5Oft/ujM4+IvuE+ldQ479mx4OLc2Z1ydX1G25vbvn+X36ff/T7/zFlUdHUIpvkncdpR/AdXSsSlbNZjfMDSkUeP77E+Z6HD99jGCxXVz27XSd+HCkJGMYBnUiVw89Z6QT8GIPWgYhDa5EQqWeV+FsEhQsDaJFoUiqksV0B7EE8IIpSY+3/n70/e7ItydL7sJ8PezpTjHfOzMrO6pqbjUYX0WzSTEYKIA0SaaKZDDL8VZL+BonSkwY+0EADpBfCSEogugF0dXV1Vc5ZlXnnuDGdaY/uroflvveJm1kF8LVSuyry3htx4gx7b1++1vet9X2QF4ayzMgLi7GapnnC4AfWt1u22x1ZbjB6T1lldK1M+nRtj3MdXa9wvkfHjkXvA23b0dQNbdezmC/HqcQ8L2QKpW/Z71tubnb4EMiyFdZYAZJtxmoFm+2eutnjfU8/tChjQMUu9bxgMV9QFhVd2xH6ELV9PSIHIMVOUAarDIYoUxHBjwRYS6Hl6Drx0lsulsznc5wLo+GltUaAxgjqrVarSGLZcXomJQ7SxSOdTG3bcH19zWazET+/SNgrpcmLIu4jIiEbQuD2Zj2uJ6UUxpoxKU+5jUrAb5AE1keyV5ESYZl+8gmBOyjwYCrZJaZMHTxKKdmT4w9TUR3vOFnv0Wswvf7gerq+o272DK6XXMHY6f1rLabFSo9TB3fG3CNpksD0VASL91IfSflUsA7Rm8SPn2IiX2IXpE/dmX48T4cdZukQ4Dv9TGLbxZvXrCOgjJUTnQDJt+X95Hx8s/fcHSAh/SWE8b477O48+PH4Wnku+tc+9DivUF6idvJEAPjWRNrg8Q5cKh6VwhqRb3RRjo3gx+40Qoh64HefRnGwb0WQPBUDqWyQ5JyEE01FXEiTw3FKKT3AOYxSZDqCTMHR7Lc0+x3Bi5xdbg1VLpMs4hej8cqivSIzijyzzKuSIhdT9+Alf/ddH4GcKE2jNSozcT04+r4n6bp7Lz5GJkqoTjJgyWhbOpu9l6lp58UwuW0a+n4gy3Os0WSZoZpVWGsjOTAVUOncClAhvld9P4xEq+QMWcy9Mow1JH8x6ZIXwGDoe7pWvEvT5BIQ45YeCXlpOvDSCOGUTGUqkeszVqPjpNJhx54yBm0MxmQR1HDRlN4yPzpmdXaPfgjs9jWvLy65uH7DgGLQGfO652bX8OWbz/n48y/45LMvePXmMvqr9uA9LgSurq5wWZwC1Ypb59jutnT9QKbFOHo1KzDWElxPGMQ76+zoiHtnR5yfHnF6vGRWFSzmc4pC8tOgOx69+4Sh75jNKh48vM/p6TFHq0WUmYnGxfGihKBiPhnoe0ffO/FS8oq66dg2PZt9y/V6zZvLDetdTd06hiDnI6AjeJmAy9iEEAt6rTV5lGBUKEEwOejWJ8bxkIpqARu0MiOQoOKdN0k5T7+cAF8I+ORXkNZgzIHHep4pT07+Ooc5NGmdorBK4VMj1AggTEB0OCDnJ7BzihJqfLZImLyddP+eHm5in/9nHSOVlzCcacMjuvhw5wHxmK6GxAjxfgkx3juc66PCQsBYhckUqpP3ud+1PP3qGff7+2ijKfMFzBV1V8fXcZGcfFuCN31vUm2YuognwCg9fox949s/kEJ76xyk/Gu8fwKgPEEpkXVT6dPGkZM4pae1Tuiv+FUaTeE1KsvwSmN7T9OIBHVelmA1OhiZMFSANZBpFsdL8qrE5BlOOZHWjaExrU8X+lF7SMFI4CbcLcT3JfXB9Fk1ajw3skdN+6OXRRJlgiZiZCRVIvCWmi2BaDDPndd++86I0JrEkHRTKc3kByoTNOLxYWKNJJPOh+SW0urg39L5He68UvpLIpISIZVIJnVwH+gxTzj8ACol5WNdHAmdkHLdKYiNz5nIpW/IH4vgpnxfKZFdjO8t3WE+qpr4IGS7d+GAzJoyfR+SvH2PG3RspIoyVkG/tS6FHFXIfm3GvTTe2zpJHiZPRmKt58fJ6ckj9dBjNYw5wvQlwPowCCb27SKYDnGVGByUOri3DjbKGHeIP/vavTv9+OD5D/a3ROwT44BRbDdr2q6J0zxDxOCkfl3Ml7x69YqmbsfmpEVRYTQsZgXHyxlWOfJMkds87vkSF5IsXIq1geS3LPEkyaan+yS9V+eG2HTUURTluC8rpaLHfccwuHFqCSX+ySpIDEi+SolksZFoaduatm1jrZ1R1zV1Ld/L8zxaeUxNWHmeA5P/0yFxkbCxYRhQWo/3+eFjJmUO+bfVGh0VnUKQ8zPK9KvUOMg4dY8SiTkheEPM8d/G5O4CgaPiR3zdtm3vxAFtDN3Q0w/iNWWs+Ni3Cb/pB9CawpYyxZXlaFSUg2eU/4QkjT+9lviGpSxOGidTzeC9YJc69h+kyOWDKO1oqzGFIRgYcPI/FRtiD8NiGjtnwkYPp3EO7/m3a/GJxJH/6rcef/jnuKrU9Me0f02vf3fBpfdx5xliY238UmmSX4+e3tN7Tes+kktjTnxQf6pJmUrO9zQs8HYSPOYlSo0TfIGvf+a3osed43d7MGkdu1UCJstYLFYcrU7Ar2mbDgoYuo75rGQ+y6lmhsUsI+AYegG9iplIw3Rdh/MBa3O6DrI8H4G2PBfdzDT6NQye7XbHgoo8s2htGJyAIZkRcGm/3TEMPXXd0HUdCqgS4JjlFHmBtjb6YvQCzg6OPC+oZnP6vuX6esN8VlL3l+w2W8LQU1iN1QNW9ygVO0qVwmYlb948Z3gV6AbZZB8/fMTx8Yq8ELPMl7evIXiqKmc+m3P/3gOurm5oui1tJ8Euy0t026GUpixnXF5eSDITbxRjM9qui1rzlv1+z/3zd3j69CvWtzeEIN2Fzsv5KKuS2/WaZ8+f8QfvvUdZFpwcHaOU5uLiEqWhKgu6TpLBEKCazTg9PxeSqnOApsgrrM24vLziyTvvcHJ6wna75/Z2zeMn76C1BNl90+D9wIsXL7i5ueX09ITtdsdyuSIE6LoerWS8sigKFosFDx48iIRaIhNL6W7Ybvjy6Vd88esvOL93zuXVFcMwyNSbUjx9+ozZrKLrOm5vb0UuDMe+2+OGjmHI2O/3XF/foIxc8zzP6LoW72VxWKuxWcbgBsQ9NZDA2KHr6Z3DeTg+OeP6+pLdbicMvLEslycURYm2lrZLptRawJXBRRItg6AYlMNYyycff8zx8VIMC43CqB6tB8rSMF8s+IP3v8PjRw85OjrG5kU8XwqNJ8tyZrOSly/f0G33NPUeawxlKecgbZQhCBiWpgTCWNhH0ADET8enoBU32ANyKfUASKPL5Mlk9BRspzFdFQNUGtM8AMU4CFAj8Pz1Y0q2kwn9IVAr71Okdr6dBNPJyRHn5yfkueWTTz7mv/vv/jmz2YJ75+cUZYmxGcMg52NwPV3bc3t7y/n5OU2zJ+C5d+8edeM4OX6AMXM2657f/OY34tnkBtzgaJqWrJDR2UOQ3Bgdp5tUJI0CWa4pSks1L0W+NBgG32FqDUMQv7kQyZeYzGS5xhqF8x29a5nbOZm2aD3j4eP7tF3HK3tBllsZZc82LLaFkEdtx3azY7up8b4V6bQg7idd27Hf79jttuz3exaLFcdHx6yWS2bzGdYaBqfoOsftbc3ggsjAKdk/bJlTFrCYLwk4ur6h7xvQGq0LQOLtfDanKivx+RsGabxXQPTUAekS0iYWVESvoUyk8oo8Bzybza2M2GvN2dkZWZbRdXuck7VVFAV1LX5287nIxKYJP0mkBworck7WmjhV1tE0DS9evMB7z+3tLcZo1muR0ZvNKtZrmZoCIebFz29KWLPMxuebALc0QaRii6qLgHOeFSST0KnzlrHwfbtLlGSuHQtIHaefBO/QGJONpI5SYojuhgGb6THX6PuevhNfmRBAa3m/h5/BHEw+ppdOP08FSRhJeB/v/R43iNzd6LEUTVrT46ZpnhibnMe7ITY/+HjO1PSC6ZOHCJKotL/I954+/Wq8Nqkp9dA3Jr12io0BBwexdOrOvuv/kwrDcPCcUxy9WxAqtEj0FtD1e/pBuoZTN7SKleJvi9u/f4eQjkNUy8mzPHb1Ja8xhVYBl0gV7ibS4uMwddklIlJrO4JmOkRo8ADtEmAtAivx960VAFBANi++IEqLZDYBP7TsN2vaek+RWfKyYFbmzHKD8tH82KT3pSiyjLLMmVclCj8S3N57VGzuCkEIJYLGuyi9F6U8jTEEa2OR7KNvWvRWGgteyRcPQQqR/ZSGB6U0R6sVBFE5KMpM4lqSFoo5hIu67gJMKpn8GkSGUyZaxMsTbQhK49EEJVNJKRb18XW7pqXvutF0WaYcVWxeS/J6kjcNQ8fgQvR5E+1+HZuRkiGzUlF3Xkkzlw9a/Ou6XrTtrWG5qjg5OaftBnp/ya55wfNXbwjaEGzF4rTmyxcXfPrFl3z8+Re8ePmK7W7HEOOOCh6jpN5VQVHmOdoa+mGgq3vKqqQoS8rZjOVSGryGDoYuEHzP/XsnPLp3xnJRRYJUbmillOjwlznvffAHaAWzquD05JjZvBRvMDeMXnyDE3nIgJIOWDfQ9Y4+yuENQ2C9qbne7rnZ7ri+ueVqXdP1AU9qzrCIx/RUlGtCLKwDGpFHlGk6RBppEH++Q6A5TZeme8SaeJ9JkhrvtzBKeEjsmsCu8UEhjFRAWnMhkUiH4FqI9ECcvr0bAiOwpRQGIUBdvH85AAFCyqPjE6ScPOXTCYQI8WffJIH6+3gMfQJ4f/fnfbsz+Jsa6SVKSI4Z4O7UkkpEe3y19MMDj1if/NwiiK50YPBJikiI45cvXrHfN5yenbFaLZlVR/R9wIVOJvb9kHDb6TPFWCjXOhI7CfuPn122gPRe5AEJYEuf+RCoEn4lkmQ6fZSYX2gQMRghmWTCL+5BXu55naZcVOpSlnNijMIWGZn2DEVGkRcUVcmua3Eq4FQgGI2pMmyRUS5nKGNk0t87MFG2L8VgLeo08vmMeHhMH/wgn5gkdNLemjyXdDoNUWcyrtR4GkRuVuJDnIOM+8J4bWN9O5GO8WF3gLq3b6gEuOv4mkmaTaO1RZuMzMrUbGYteZZzOMV0h0AMcvX9CILffczhhNAIBMafH+YFd44wyWEdEijee5nMlF8a76Np/dyV3zzgEchDP8bZoKZzk0BJySWnOOZ8BMkPPtPYABrrg66TJh3ngxBMQfye73yaoLDaRp9FjbFW1B9SLXEHoIU0kQ9BmjnS1FKcEB7XE8R8Ip6b4BGp2yH6qQ7fKoIpqUGkC65HVDvd60xrIeE9sVkoAd93J5zu3s/p+wlfOoxhWitu1zf0fUdVldTNnuOTY7abNV3Xce/8Pr/4xd8K4WQMWkFZ5mTaU1UZszJDE7A6UBYFWkFw0iCe1HmEjAjxz56ANP3nUT0kTdlIM6E0GPkg720+nwtJEkAbS9u27PdSE2tjyLMclDQ2Km/QJovERRjJJYXI0/ddi9KKqiyx1owyegpRRjJa0w+95PJGx+kl8UKG5OE8kc7Jx1nF9e2cGyXhDte2ivlrlmWUlUxp7XeNkG0xL0/Er4pT/3IOJIfPIoE1ybITJ8PSpNvBXqRT46asrX7oUoIWlXIsXd/HBi0hs5wL0uDV9bgQyIsCnVUydGBMVIGRffAwVxNvJyckR5rYirefkM9ubOhEyfX0OkXwEGsHLxLjuUUXlr1rcMrh8Hglu0h60fTaKkxx99/1z7t/V5H4udsw/3WSigMF0/TBpt9PO93bWMqd51EHZNBINGlpgjjAauM74rBV5bDZIsX7tC+loYAx93grTUt7lUj/H74/2WSnpt60P3/z8TsJpt73LJYLtvsdu/2ehw8f0zYtwyBg+NnpKbvNDednR+S5RtFy7/yY7eYmjlMHLi+v8NFIXuswNgHN53OOVivmVcV6cytdeecn2EyzWV+jtZWxWyxKWba7DY8ePWa93kpXvpbO6kQAJe+O+XxBVVZURUW1XPIXf/HXzKtVnLzQKKPZbHaUuUPRcnvzhj/505/yox8cU5RLynLJrtvz859/yBdfPuf5iwsub9ecLGZ0nchTrE6O+PM//3Oub97QNjWvX77ikw8/5/vf+xHvvvuYR48fcnS05JNPP+VodUpmc/phYDZbYEzslNTSRfn64g1nZyfoosB7T1EUXL5+Jf4jec6rizeEEHj54hmZNXznO+8xn1U8e/YVRZ6zXC756je/ZrO5Ybc/xhpN29bc3qpIqOWApfeB3GgxnBt6bm5uGDD0vSPLS5SydG3P1ZUQTKvlMdaIF8hsPqcsK7zzfPjhh9y7d4/LS+mi/+CD73J9fS3an/0wJhMhKI6OT5jNZ2w2Oy4vL/nqq684P7/HyekJ/+rf/Guev3yBc56f/vSnfP/73+cv/uVf0jQN8/mc999/n9vbNWVZsdvVvHp1wQcffEBoa/q+Y+gbzOlKPKzWtyyPzlitVnFhBeq6RivN+fk5q8WSl68u2O0FiM+tobCW4+Nj8J56v2O1WjEMshGcnp5zc7NmNl9JAhU9NRREJj4wOE9VzqjrPUopZrOKfb3l008+4mQ1Z15ann/1JU19w7zUlMVcpA+dY7dZM58tWczmzO/f4/WLp1gTBOBeLDg5XfE//ou/5GazY9d2dHUDqDHhOpSSIW5AJNmduPErwggIpeRDKWHDxxAXUs6upwA8Bpi3kmIYQ5hI+qiY509JcPqdEQR9qzNi8i8BmcggSm9NxwT2hoPu/t//Yxg6tM559OghR0cr/vk//+/5P/zv/4/8yZ/8CX/2Z/8Bf/qnf0pRiA+aMUJQ7Pd7nj3/iqqqWCwWfPnls9gVYlkslvzZn/0Zp6fnPH/+nMvLCzbrLS5AabIpwVSKEBzGgM5AWQ/0mByKImOxLFguK6pFJQmCRhK64NntuxF8t9ZEUjlDac++3vD64jmL5Yw8X2Bszikr+u4Bfd+RZQbvjygqS12XdFHT9/am4PLylt2uoW2kO73uPCps0XWG3eVsttfM1gs26xXL5ZKjo6OxuQCl6HvPm4sbhs4R3n1Ins/F16LdMZ+tUBrW2yu6rqF3HmN7lMoZnMjXFUVJZi37CAhkuUWpmuAHZrMVu3qIXXaOvpOfz2Yz5jPRRa73+3H68vj4lA8++EOur6/puiEmcH6UPTo9PcVay9nZCS9fvqTrZKrJWht9CiFt6mIc2vP8+XOUgsViTt87Xrx4xnw5Z7k65na9ox8GJF6IXwrxKYzV0s1vBYANcSpqiN3GNjOx21dko/LjAmsM3ltUHKUGDtbm1Ikaxncp8UShsSbj+PiYIYK5aTR/t9tRlhUEaNsOmxUoJXrsXdcwdC1D2xGUkJ4YImgskliewNC2FEU+VtIxIhH0RMwImD4Q3IB3Qi5J8dnHf4sUXvJgSR1gKjjCMMSmlOjBJDQZCVxUQIjnLmnGh1jUWCsyv8+ePRPpRKtF3lULUOFclDHI8zsxTqnJCDoiCQcR4q1iPwKvCTSTCe8ImATpGFWYSOwZMjt1q0nhgRixHxhhfxuO1PEYgni/lWUy7o1dkBEsEknxCOTEDrikFS4JdYDR3HoC1CQXjevETwRV0mfPMpmolKaSQGZsnBpMsn0GFcKoo+6blkIrllXBfFaRaYVrG0Iv3o+EQGYUs6qkKosokeap6xoX9dzT1LEP4jEmzfiBtqnv7LMJlPEhFtg+m/ZnpVDGMLS9NPCgUdqy321H+c2izFitVsyKgq5vIXghP/qagJMu5wjE+lhYB2DwnuBE2jSL0iNZ1GwPQdG1PSF0GCvT+Qno2O/37Pd70a33fpR9sNaS53n0XJJ8V2mDNmLm3DQddZx6GoYBawtkCscAMrEuhJen7Qa08ux2tfi1eQU2ZyDHseXizRVfPX3KRx9/ymbXkc9nbPYdz15e8OnT1/z6y6+ou046artOOgGjFn+VW85Pjnm4nHF6ekKWZVxeX/H81UvunZ9wdHLC8mhFVVVsb29oWwjOUhaWR/dOyXNN3zdsh4a+P2PftgSNyPoVJd/54A8EWDZaplBdx+B6ub5ohiHmkhF8B03TeQYnf+52DddXt9ys11xut9zud+x2NegCY3PwagQOjLZR8SoAbrz2VmcYrcTidQQMZYrQGjvGbZAYn1k9TlIrZDmOsnikW3GSDhkjZLyXhLBjIjRjpycwgmiM/xJAe7RoOiQ6wvQ44kq3xM83grPSEiDr/LBgP8x9DwpxBNj5Nhxj78edrcVPGMv0nXSGxu/dJfQhTZiNU2njTycA5WuvryZJWxVzpzHWBcV2u2boLDYryYtMpjBbx5vXV1xf3aKt5fvf/4Crm0t2+400zGoFappU5uD1J8ApjPuzSAHdbbr7OqEgUyMwAVaHclUqyseltSCNLOKP5gCDx4QJsApKGoIlhvfkRmTdSwxZ6fHbGj+fAYrGDWzaPdu+pfYD2azkfHWGLiydHwhhkDWlPNrreB3EMwMNyqSMUFQ60n2fpvrEPNyMV2x0iwyy6uX5Yx0qj57WYPIGjXFp9HgaCasD9QUO1rdn3GPe7kyXazLFG+I5lbVrMDqLcuIZ1uZkWUmWF3ECIL2HCdgjBAxfnx6fwMmphk6A3kRQqYM4cnA7HGrTkWLR1GyZ0sLUpCSvY+58pkkqWXJE4/spZqZaX6e3IOdXtqUokefCVIen8xpEQUi+rzE64DLDMETv1bQeYoPAnfWMNG9oLXCj0VYkycxEvgmALU0mWmtCfvAeQgKj5dBvESByfkTVJpFL3yaCyers4HpPwPU4chi/N8p1chCXI9j/tbh0SDgdgNx956KsIYhKhOL6RmrpsizY7XasjiqyXFRJLi4u4lRZT55nLGZLjPbcu3dMkWuGYc8sN3TdHq16yiynyPORaJmmkzzaKGxWjO+wb7v4WTxaBWyW0ff9ONmUPI+VUpEA2dF1MtHtowVD33YEfTB5HeR+HIZh9IHe7/fUdc1iNqMsC7LMcnV9SbOvqaqKqhK54f1+H+tUye/bpgFjMZnFgJBNxPasIKRMatACeV3xi7rbiBgIaGNZLBesjo55fb1mW++xyaO666OXXPR3tdB3gzTVw3jtFosF+/2OEKT5Vgg7O5Ji8AABAABJREFUqQmSeGXyu0przmQZKXL7ID6GyouykgliM9J1Hd3g8EoUS8qyRNuStB/0wyA5ohGJN5nEEplCRUBZQ56L7YCP5wilsJnE2tE+x2q0R1RF8CnRIy8zslkBVnNxeUUoDqZ8U5NGut3juTDIZPohwvhN5NLb60LFpGNUcPptCcj4qqmZc2oOuFPVh8P6/5BMSpNJjGpDE8mkRyzhkFyS59DjeU/XEe5+Hqu0eC7dIafuogCJXLr7GRPukHBe/1Z+9/XjdxJMg5Ou8n4YZNM1A50amM1mWCtgZ1UVVLOcqrRoZdnXe2xmcIPDuUBZFjy/fE0IBhfkgt5/eI/9tuZ2vWa73bKcL7B5wcuXF/Rdi7Zw794JShv2TUvvHKdnJ9zerukHh9KKwQ+4zpEVGT6IdNv9e/c4Pj4mBM92t+fDv/2Y49URr19dsVlvUQH+y//1f8bHH/5rgnbMZ3MW85wPf/VL3n//e9w7t/RYPvzl56xvWtqdo931+NZhvKbZ7QlYVsucn/3rX6CNF6PkzPLowUPu3ztlfXvF9fUF6MBqdcKL5695+PgR33n/O1xcXFBWuUzptB3aau7fvx8NhMX4cL/b4ZWcpyLP+fGPf0yRWVCBpt6PQWw+XxK8Y3A97777iFluODs/ZrvZcPHmNY+Kd7C2oG4adnXNg/uP6Ns6MtkDeQmb9ZauHQg4mqan9RtuN2s+/+ILnA+cn92jLGe8eXOJMZZ79+7x4N49Hj56PAJki8WC7XbLfLaIQBfjJm+VeEwcHR3Rti3X17fYrODR4ydkWca9ew9YLBZYa9ntdjx99pR333mX5XLF55//mrOzM/7yL/+S5XLJO++8w3q9JQsiSRCCjG92XcfNzQ15ueD47L4EZasliYlmep9//hnD0JPnInO3XM1ptlt2dSMd9NbyyaefcXy0Yj6XzwOa/b5GKUtVzbF5TtM2FMVMOid8EJJu6Bj6jrre8emnH/EH77/L9uoVr55+yeWrZ/Tdnj/84AOOjo4xWUbf1jTbW9aZRTNw7/4D5lVJ29UMDpTKycsZ73/3OzTdwNXtmg8//oiu6w+Il4AyadohBo6AdBWk6ACgxMg7Kf9IUDmQZVDmAOCcZHvUW0EQH4QYTRtwCkh+ktFK8jWJtEjB7XCsPYRp45wAWX0H5ErdYt+ejno5Xr56zny+5N133uNHP/oJYPhn/+yf8stffsjr12/45JNP+V/95/85WSZ61llmKUsLLKjblqvba044IctLrm83tF3PclHx/vvvc35+zmeffcK+3sPuVsBoF0QqygWKRU41y8lzBapH24HFIqeoFKujiuPjFcfHK7LMMl/M0EahrML5Ad11d8Z0ZcIPHJ6mb0TuURvxHFtULFdzTk6PUcBut2e1KpjNjEge+cDl5TVlZbm92bLd1pFocrghRFB4wNUtXb+lH3bsm1uu1xdURcVisWQ2XzGbL8nzkt2+5TdfvpApzEdnLI8MbTsQgma5OKFpd6y3O/reo3SPIhcpFe0pyowjdURmLEW5wtoL+u413jHKOqRjPp8L8TYIYClSfXuMsVibxUTRMpvlOO9o+5Y3b97w8ccfj2RTlhmqqmKzXY+mmjJmLxJ4yVtEupz0WPQul0sWiwWDd2y3m1Eyz9oCpYQM9INjNpuRFzbeP+C8mKcGZDLHKJEWmCZ1gsg0WYs1YtTbx67fMfEdsWc5G84L0eJjp5bI1IhJ6GazoWl6IXe8pyxLyrJkPpN46nzHMPS0nRhPD8OAthYf/Ci3cFhwTrIAE4DjQyKQpJPRuR439PHvkRTsO/m+6+mHPib0fiQYnHOEKMfhvRt9sEZM4CCOBc9BfEsSd5phcPzsr//FOCUW8ChrDogINWph3+k6Pfi3PNaPYPo0aSh7mtKTD4HI4qixaPIxXgvU4AXUVOJbmCafhUQ5BFK/fUcI0avMGLLcoo2mjV44VklhN3iZqtBRKsc5ESbK8gI3OMnB4v2ZWRu7aN3o56PjRXJeCnMBSmRSJhWjfddKoevFmH0YepqmoW72lLnm9OiILE46+balb3dkWovJq9EsFzNmZSHXOXi6tmPohFiWyTjou2b0R1CxEBynTeJ7kcYVuYetMePnQskcSF1LDMqyDBc8nWtpmj1WK5bzBVVVYm0GPkjOGuT8eEQOWuEhOJq6pSwKfPRWwEuDggB7Mv1++N4E5PDR53N/Rw5PiCmRzUy69qvFcizMew+DN7g+ENqOumlompbBeck1dIHD4DsdZegU9e2Opu0BRdeJt2ldN3K/KIPKct5c7/GD4+LigvV6Q9sP5EVF8IY3b254dblm33b0B0DBbLHA4smN5vTkiCePH/LBH7zPD955QFlkbHc7/vbDX3H//gkPH97n+PiYxWJBWZbs9luafY13juViRlGIUsNsLvvz2dkZZZmTZzkmzyDLIXiZSNdCpAy9E5I0Eqz94NBKPOAGH3AO6taz2dasN3tu1zsuXr/hZrOlDZ5BBbA5wSu0tmTGkGUqNmkcNBtE02ejRXHLWk0YxN9LIcbEVmtCGARWjvEoEAGMSPykLlWjVASR/bim7nbrhzvERSASOWrqWh3pnjA9RtTEYodmkH09kUveA0amQARfVfQ+ehaqhIOnAAwySXX4vqI3DQE95sS/C4z4/TqMStJh0/584KA0PTAwkvpAPKVq3P/S99KhFLF7V4jIRCozguURJMcdkB3pd6PkUWkoioLttqXrHHW9RWGQ5g+RB/VNxycff8GTdx5x7+w+2sLlm1egpTkDZJLdWANe9uh+GHCuJclIyf/cKEmWpkDuUGRh+oB+VJyQn3onILFODGjiZ5TItkZq5KDcix6pUUowpgXYWc48K1kES600Z6f3CEqk0E59z1W9YdDgFHTB0UWyaCKGICSfSAJEHwycjy0WoDHxGhxcKxQEJ3+q6T2ixHfpjp9ZXO2Hn0jdeZ4ElicSbspdPDKNMJ6JdL+NxFKsS00iqdIUt4lkl4/4XEbq8CakBjyDUhYVDdNT0450kevRF268OIefXxF9htJzpes7TRGF6e0efK4JuEtPHeL9ITF2Ahi1Ft2ow8elenoE5wc5C0EpmWDS4tk1eg4CwStU9F6UfHg4iIcBj0Mj0oFBC6DvFFhdxD1cQOCQTNNG0jSSS0rsMLSxGJON9QtmWr+HjTrpw3yt0TQEuCONLe/PeccwiA2HNAJ9e5pTtbIx1viY48Xmv3ENx3z/m+Jv/Pnd+1MeksilRO6LApWNwL6PShKOer8nyzLOzk/44tcfkRcyORR84K//+m+wNic3Fq08bmhZrSoenJ9S2IBRDqsD+6ZBuY6Q9wQ/4L003yXPXcnRzViXucFF8hq6bqBpGvphw8nxSfyckjPcXF1xu1lTFCXL5YrZ8TFd19MNbWwMNOA8VTUT5axdjVKK0+NjmqZhu9mgleb0+AhCoG0abm8ahqGjqiqUUtR1g3gkZ6Pax+h3OkbIeD6DeNgJDiu1vMjuTYRx3/cUVQlasW9k2urs7AxrbZRcH8ZGOZGFjA3wqbk7SMPhGJWCSEhaa8dzOZvN2O124/RT8GFscEgxIcnvOSf1jDZG9hNr8R5Rf3KOzonnk1yjgqqa0XRuJHz90EdlsRJiDd73HcvVgswawZMQCb80caSVQnklDVEJwESjrR7lUT2B2bxitpyz7xtuNjfSYGosCseYcqVJIx+mpgWVJnT0b03L7jQnxFhzF/mZ4tVESk3EkFLqYCJ7miae1q2KtZVDqRDrsOQplvYYac4SRQY93idj/OQgFz1Yz1prkTk9YJLH54z/S+9bM80NHxJShxhsUL9F5eTfktL+ToLJWIPqhEFMndXGWJTqRDKg76kWUsgQPDaTccWgUhekvINqNme7bfA+kOUia9b1vbCZNiMrCl69vGB9e4O1mifvPAJMTEIkWAyDp24asrwgM4b9vmZwDqMNi8Uyyo0Yum5gfbtmt9szr5ZcrzcjiGC15tPPP6MoSmZlSV4EgoOu73jz5oLtuoaQ8d673+fVq78meM+sKhhCj9We1aLCeU1b71mdL9FGGFSlYLff8T/9y3/BO+885sHDByznSx7cv8/19RY/SEA5OTlBKS2SgKWQP33fj53M3nnm8yVKKapqBkrjnWfQyW9HiLTLy0sJaEaLZHKeoU1gvblmt9lKF2tcXc7JYjw+PuX5s69Yb7bk5RXd4Dk6vo/3gb5zNHXH8fKY1WpFCIGmacjznHfffZf1Zs16vWG5XFHvG5x3HB0djaOYm82Oet9yfHLCe++/Tzf0cXoqIwR48eIV9x/c56uvnnJxccE777yDc45Xr17hvefo6IgPP/yQ+/fu0/c9b95c0PcumtDV9P0wjgG7Zg2uI8tElqNuOi7eXGKyitXJGUmeoht6guvQwXB7e8tnX3wBWvPuu0/o2h3LqqIoC4LL2G63bDYb7t07xxrLZvsSpcRcryidJNRGIz3IEgibpiM4jw5SOO+3G26u3sjkQnuLVR3Hq4LZ7JgHD+6R5xVtO3B9s2a727LfbxiGGq0ci+VKZGa6jq7vsEXJfLHg17/6kE8++ZTTkyPWt7cwSiEFNGYMemkj/traVymwJKAzdW3GoIGMoBKTap0CVawHUjHvBhm91UpJsfxWopI6pA8JprcT5VRwC0Ca3p+6EwAPHzsmz9+SI4TAfr/n9evXaG145513ODo6HgHkX/7yl/zoxz/ie9//HrN5Sd93tG1DOasICjGsbPbYTKZcWg3WBGazBUfHx/zBd7+LzS3/8i82tF1N04gOsfgOzaM/nMZahwsdyjjKsmQ2Lymqgtl8JiS4InZ+O7q2Y8dOkk/lYtE7Abdt27Jv9lRtTZ4VWFswn1csF3PaumG/25EXBm3CeO8cH83x3mGivFJVlez3LUPvcc7jB0l0CY6u3+FDR9Nl1HVO3W6Z1XsWbUOZiwzn0Ld0TU292/Dk3ROsHUSax4K1JWUZRj3mYWjR1pMXSsb4bcZivqCoFlzfbEAHuqbFmGL0JspzAUUVMgEQ4pSM1hLnE5ESkG6quqmpm5rdZkfT1AJou579/j4giWFZllRVxeXlJX3fvUU8hFhgCtFY1y1HR8fcbm7Z7LdTp2VMFDKb0bmpyzLWo1JuaHm9SXMmybuJ7Ih3Dj8mPAbtncilQAou6dcOngOZiAyxe6kXILjre/q+w/me3OdjnE4TWt472rZhu92yq8VDa0yZYnyakrfDTlAiYCESuM4NURK3Z4gEk4/F7zB0DEMnj3F9TID7kdA+JKvkhQ+AQRULOK/G+1u4B3m8c26U+uu6jsvLSyEn7pymCYRQd+LdXaIqndPgJ33tt4+UwBqlcUPswCMlhck3KhZkQd6rC3704BldDWLM/9YQ+ipEeUu5dsPQAyF2AxpCyGi7VgCKiB2T/DxUVAqKaIjWMpGTzmUijIKXibqgogwQsmdqJa8ZovxcZm2UhBCJPD8MbG9vheRWMC9ylvMZRWbxQ48fOlQQLyack4nnshB5NYXIOcbpOJjAGelQhCwSN6lIGaUVU0GBigWXYsR09OTNM0loiHSkHzrKXJFnBUVuEH6rJ4qtx3PoKAuRxvROJDHd0DMoRUha74CNMiDpfSul0BHgD5FkbuqaPpHFzsVub6kRrNHkeUae5wfxQdMMydfPi0Rs2+JCgBAn+3QOytL1jv1mzW5fs9/VdIMQyMPgaNsOlKbtZKpSmY7dtqGuawKB+WLJw+URx+fnrHc1F1fXvL68omk7ssIyKysWizknR0uq3JJbzWJWcbJasCwzlHaR8HI8vH/C/fNjTk6PmM9n4qeqNbMSOJ5jjWG5mFPNKvKioCgKqllFUVUxR9Noo6XJz0NwDtc7XPQkGO+14Bl8ILiO3gX6wdN1nuvbHVc3azbbmu22ZrNvxIspNh5ZYxGZ5QkgzZBmgiSRlGWGzErOrOMaGLyQ7LIOTJT0mjTl4602Nisk+Bw16fCnIv2uEEjC6CdEdvRaiSsvEfEjTh2B2ATAJOAn4f1BXioeftzqTGoikJchAPaQUCJNt04Spiq+wfS5viVRdmwcS+c3ddcnIHk63jojIe2TCbBR4/SytVkEqjIyI/W+VuKBGWIsc95J13P0pxAwbxC52yQz5gNKeYoqR2cDQ+9p24FuaAEz5hq7XcPrV5fU+4bFcsbp6QOyXMfPEKW5XMxLXZIO29P1rcTH4AjBMQSRHFKJiomywTJpLJM7IwlzB/v16KCwKDwBFwLiAjdNuYxkjAKVfNWUkGX90IM21E1NERTzwnJ8dsJ8doS2lgHP9W7D9eua4EVWKCjpSh/fAmnqZ/KMUB6wE4ErV2zgkOSVj6emz6Om65lgusl9Mn72uADT74W0YFUCwA+6rcPBqQoBIsEl/5xAvxQDUu07RhalUWliFYsOHuM02k3Po7Rm8AORKUJ5adAkArJBxaZKlUjBCZCcJi6FrOKAEEtvI4wn9HBNKKL44USGH5JNiQAbwc9474wpfDoxevq3kuZlSI5hWrC1RNrFn/owkcKpHh9fO6TgOFG2OsoVKqUn/k9FAlWlCC7nOU2ICDksX8YYiIC8XPLp7lFM53Q6d0kOUtbAdM5kLY7NYf6tPP73/FAHzp/irDqtNTmFKb9/u46Yag1CGBtRDoH1hAMFpcaGOghR1kyx3+9kAkcxEhfb7U78ifY1WkvelOeifJNZI7YimUYrh0aUUlyfURUFZVGQ5zl1XY+Ei4vSd/0w1cDee/rGj3ms1ppZNUMmbxx9P+D8nuA9x8sjUW7q+thA4GibBuc8eV4wm8/p2pZ+8BhtYqNYP+JVWulRgrnrhByRnDs2/3nBl4tRmi6M6jyJpE1ey2lfTL6lqAwTGyldzMvS9UqNgicnq2hzEPea+Hm7XnAYa/MRK3P9EJVPknf15E2VVEQIUoMQArm19EEk+cVDy5Ea132YmqO0MeLtZC0MiUyevK/yPCfLc/JcJsxEXSxgFJS52KUoAt455EeWzBqZhgMmefqDdRtva2XifqEjZhBtcoIKFPMKpzyd7+lDj1cSG/yY0qVcUE2EU5gwj/EuT6H4YJ/6+vFNMWXKJL8Jlxizw1gI+gPFkJGEQqGixcSEdSQpPBXX2kQ8Hf45ruRRpi417x9gF/F7mkQwHUxgTWcAECnpb0jJ0ouM/0ifIuHKv+34nQRT6rL03tM2LcZYsky6hoJ3sSMtiwWAvLG0KaXLNzgnEjhatCptnrFdbxmco8jLKAXUcnl5zX6/ZT6rxiKEoDDakhclwxAZ3yyM3Ypt26EQ89j5fC6AmPM0bUfddFTljKvLG5qmlWIUzYuXL3j38RkhJWA+kOU5XdvQtw5FzuPHD3lw/yvAUVUGe+0pCtEO7XpN0/QcL2cEDW3XUNd7djvxAjo+XnLaHdN1MqnkBhe/ZAHf3t7QdW1McgWsLYpiDEJFlqPmC6yxDP3Avq7JhiyykTJm2TZ7SUyLTDT8FYTg2G7X7LZbVCz2pCNbroSxGUEpdvWeYrulnC0Y4s9lc5bO1NlshlJq1AN98OAB+7oeJ1Q2my1d27FYLJjNZtR1Td/1bNstRVmyWCx5/vw5N9e3LJoZWW4JKPb7WroM+p6XL1+SQK2mafDe8/r1ax49fEzTtLRti3Oe29s1SmlslmNMRtM03FzfslqULPJyvL+auhEvrlY6W7NcM/QDbdNiVSabXNtGaQHPzc0Nx/M5SmmcHwRoyDL2+zpuAnHgNEzaqLKgQgzSsiy3mzXWIOTS9SXB9VxevCT3OyozsJjLvXR0tCJ4Td869rsdbb/H+wZ8gzWBssjleuuA9z1ZXjGbL/DOsdttqaoqmqoyZXwhBgQmiZ4R4I///RoGbA7IpbFQjh2hyf8lLt4pRiagIOXZUVc6tryo+D6+TjD5CaQ6SHgEPErv4SDWKKbPMSao354k0TmHNblM8j19GgmmI5bLFTbL+Jtf/Jy//cUvWCxnPH7ymKLIBcxEjMozb6WDyw94r+gHaNpAUZb4QTGbzXnyzrv84dUln372MT76Xc2qKk635OQ5GBtody3gyAtDNSuoqkJ8oIym9J75fEHbdCP523X9CKLAtG7athFCpd5T5iXW5JSlkEz7bck6swxdXFmx46coMhZzGd/OMktR9BRFE43Ho85273CDl6TT9Thn6fqGttvTdB1d31MV8rmMMRgFtzeeLPcslpkQaTlUVU6egVIdaujxrifPFVWVSZHiNWen51TzOa9fX2KMou+7OKYvYF6SdNJGo4LGqxCnlWZU5YyqmmG0Ic9Tl6t05Ox2W/G1csOYlMjkUogFmI7xsZUO/ZhsS0eRJDXeixRoWZaY/R43ePJCmhVG0EIfSF1q4jonAttpnaXkbhrjFhLFY4w/6KaRbs80CQETmPb1BEuywyHqY4fYhaSUJJ9GJ+AveuL0vRBvuy1t1+IRwSqlpmktpdP49yT1KVHZjySSH7W4Zc9NEncuyuSJxGmS0pAJihSXxo7Pr0mexNeJ3xq7Q91EjAIYYwnBS+fbbiel3gHokZL7ERxS3Hmdt0mmEL83SefcQZ9inNTjuR8LSZUSdnkWeb+yz6e+6m9TAX54jEl9vAxyzyD+E9qQWYNz0fMTKZDCWHgH+XvyG0j3eurWVWC0BhtI3us6/W4kdxMIrwIiB6YUJu3BgB8G8WO0ljLPqbIMMarvCUMvevURkMmsJs8sVgtZ87YZ9iHBZA6kFWC610aAPe7l0gXJSJwCY44BKf7IZJIOjrKwFHkWZXP9aJA8fXmMsgISDEL4pgkaENBex+Lck7b9gHcHkkve0/cdXSu5phS+UmhqdPQPlKne1PTkorzPtu3ouw7nJJ4NQ8DaDG0sWV5QljOMzXn9+oLL6zVX17fUdYcPjGCYtZasrNg1gzQuBdnvBtdxdnbGg/v3eeeddzk+O+er5y/ZNy3qzRsyo5gXOUerGSdHS85Pjigzg9WKzGgyNYBrcUODjzXUvfNjrLWUVUFZiDet+LPmZEY8QcqyZL6QqXpjpSscI1NmAnwHiAbKLpLoQ9x3FCnmxoa1fqDtBpq2Z7/veHO55vp2w77paNqBwYuEidGI74tOXf9TcimSObKgtFaUuRUvR2IMc+LVaLTUdUoJDEaQiXmjZQ0lkFJAsTASSWliSaX1ywSVpTwW0nYWH3cnfqd3Mr2nhF2q8RcPiuYxQN99DjMtdabtM+2hRHnwmAsTCAmUTaR0XE3fhuObARo4BGTggPyT3zqklkhkjNRnBWU5pypLqrKKk9V2BPmStO/g+1jXyb/7YWBwMtEpk8wu3nuOrAjoTGEyIVa6RvIIYhzs+571ekPXyeSjMfeoqmOKIsdaQ0DMzSXHkA9R1xZd7+mHTqQn/UDwPWEkhVRs0o3guzIYZe+cr3FvVh4T4nYSAr13uOAYIskk8fLtruoJOJMwEBsXdQYzzWK2Yr46Rlkxa79sdgzxuQe8eDGlX2bKRyZPNSTPiPiFGl9M4rkspXh975SqcY1oUcE49NoKYx3JCGJJLFOx23x6XLpP7jx3kEmxt8/fIVgYIuib3p8QTBYhmAa0tughrV2Z/EYrTC9AqTcuxi4jkzwqgn8Ha36cWCblGUTALu3H02dOsnCJKJqm/CTI+LjvjUeKa1oTlJfGa+lYuXOOONj3fSRY8eNFYqy10HGyMp5Dn+TxImk6SL4o51Y+gwpv5Y4JxQ3pmsiaTdcoTZJIs1n6ebrvZTJaqzRNNjWpCtmhY06k3ool8fXHqYbps0kul7yqvh1xFriz+lF6ugLT4hwfCRGjOfjNcT+9W17IEQPyNGUWEuoEBDabtawX76Pkm/zSbrdjv68F3+1qjMnIM0ORW1bLGSKrC7mR7/lC/NOTQoP3XqSrE6hMYOiHO29O4u5EgpRlSdu2EPeEru9Gv/euH6gbsZoY4l6hlExTa6WiQgijR1jf97FWtQQfIrEk+4ciiHT84AhIfZZnmTRjpyaGuEbGuiscKF+k9RlJJaU1KvqMJSJKrp8izwuq2Twqo/QMw0QwyXOHUU5QMAFpxioKc+eCqvSZ4r+9c6Mc4Ljvao0fhpjLxymoiP8ZYzHWSrO91vjQR180RknqLM+l8d+JlYxWoJDGvSzLGPqO4BRkRiwLnTRgHE4tCiHH2GyWIkaKjuggeKTRKKPQmWbf1XSuw6sgXpvx63B9jHtkStcOl0z6b8rt1Nsx55uO8Nbf3378tEcltZG0fkJw45tIzRvEmm5qoj0gkgi83Vybfnc6cwkPmJLUtP5TDB0nb8MUMVR8bHgrRhw8QXyBr8fTlCv/LizhdxJM+ECWGcBTNzXnZ/cIHpp6D3j6vmUYMvJiSZZp+r5GaxM1JWUDlakMj84yMizKWLQ1+G6IJ17z7NmLCO5nGJux3zecnZ+gFJTFjOViyXa/IRD12HNFOZux2e0IUXbBWsvJ8TFNPTCfLem6wIsXb/j1r7/C2kmOZDl/yL6RYKFDR2Z6To6OUMGQ24Kj1QnzhebP/8M/4eLigmfPn/LZr5WAXsHS9YomUxytCjyBizdrrq/f0LQ9f/AH36WqSq6uLnn67EuuL9fMSulEJDhurm/55PPPhG2fVRwdrUb5o6Q5743HaCudk03NerMhsxJ0RVO0J6CwmcVEYLPva5wbaJua7W7LdrtjsRrEjC12I202G/KioHfy/dXqiLbr6bpeJqAOGFKY/AaOT45ZXi0pioLZbMZ6vabtWk5PT9DG8POf/5wsap8O/cB6veb169d8+ulnlGXJ+fkZ3/ve9/kn/+S/YbVaMZ/P+eijj6iqGU+ePOH6+prf/OY3FEVB3/esVitEKuuSTz//gsePH/PBB9/l3Xff4+OPP+bNi6/IipLFaoVRMilQlCV5LiTder3m3v1ThqFnt9thVcaDB49Aa1zwLJZzXr54Sp7nbG/XrG9vefzkCQCffvopIcD3vvd99vsteVXiCTRtS1aUdL3DuY48K1itjvjX/+ovWC3n3N5c8vLFVyyXM3abK7a7NywKePLuO5yfnaBNTtdKAjx0Ld41XL3eUG8vKXIpOO4/eJ9ZtaAbAljPYrHiu9/9Ls73/PKXv8IYzTBMQcuPUkfTxm+0OQApDwLBmPQfxA4OgpU6+DcK5Q+DcxAflJiUjMz5QXKZxmvHt5SKnN8ZpNXBY1KCHYuUA3zq23JsN3vO33+I9543b95weXnJ8ckJP/rRj5jNZjx7/hX/w//437PZ3fKnP/1T/t7f+3scHx/z8vUrjMkoihzvGwbXog0MLtB0jplzXLx4TZaJP8Z/8V/8b/iv/+v/x2hqXM3mMqk0K8lyj6dn3+ywmSMvLPNFxXwhjwneE/JcvH+6nrquaZqa/X7P26O13kegfbulyAqKvGBeLeTPWUW9mLNczLl98VoKcQAUWgfyPGMWwNqcshgoy4JhiFq/XUvfCdG039f0nXRO9l1H23raTmQzy7xgt69GEMIoz6wy7LYl82XF6mhGZgt0VpBn4kmkdcDmMPRzyqJEkfPwwUNWJ0e8enVFVRa87jagyliYWbIsl0YJY7Dayv43iLxEVc5ZzldCjA0yEZZlWew0dTx8+JC2bTHGsFqt2Nc7gPG81bWQc0VRjI0eaTQ+TRXv9/vYtS/TwMaYUYc6BGh6kdsrypw8jx1DSow1pd6LBakSYZWgpnRuGFwkmKRzPRE3d4BpBDQP3qMMY5EtNWfUTg8iD5ZnGR5NNSslidYSxwbXUzc7drvt2BGXuoilmSQfky6InXQqFe2JXPJjV5UQRC4Cq12c7JDJB5leGu6Crgmkism5YjIXfjuRTIRYkrqRjjnxTsxszm6/5er6mrppKIrsDqEzkvdyq5O8Ft6enBrj5kHCO2E2Ib5uBGaY4m+yQDEmeTlNgMIkM5DAD4n1I7DxLQq2KdkOkRAZ+j5KOsUuyywjhE6m6A6kGMeOsECcLjMjQKrw0mlmTDT+lpg2guNKyCopDGSvy6zBagPOogaHyqxMVuexAPOOrtmjgkzmBTdILNOKMs/FT02peG+7g71fxSmVaepIPM4micnxPBiRvjDGYoz4a/ggMjneT00rWqsINjGSZJnVFEUWJ78kZ9Rhig9ykzqG3tG3jZBLQSTtcmtJmuK5FUK+i9OGznmG2DEqsp1p6sYRwhATA02ZFyilsFamSMVEPI/FuKPpOi43u/j+I0mdlZSzBVmWM58vOFqdkBUlv3n6kjfXay7e3ND34le3WCxZLVacnp1RlCX9EOhvb2jaPc4FVssZTx494nvf+x4/+NEPUdqyq/csXhXMqoyVLTg+PuL09Ijj1YLFLGdo4rSA8zQDdHWJVrPoO5UzX8xIcSbPDLMqYzYrmVUVmc3G/DzPM5S1UepqkMJdm4n8bmsIon/vhiGaXgtlk5pLQoC2G1hvdqw3O25ud1zdbmnaIfpSG0yhsUrjAJcA51GCRu4jE+9pY6QrVXIRN3rvDf0QgZA8AoeM031aR4IqAMHI9Y2HiVK0iXydOrITunyY5ya56Pijca2nPydidQR/RwBAHuS9j97BU2xMa0UrCEbfWTsJ1x0bu9ShPoAaA/0E9H17jrdzf/n3XUWD+IODc6YPiAeFVmLkbq0lLypmsyOW8wXz2Zwsyf3Evdv1g/icxT29d30EEgfatqFVLUq3qGEgaNnflfEYAlnIqGYlu3VL0wwMvdwj0qwljYc3Nze8evWKH/zgBzx+/IhZtYokRc9ghvG+CkEMzcHA0BGUHaV+071jTR4lx61ITWZZVGo5yANSh7X36Aia966njxNRQxhkKjAap+sg+0VQkZwgYLMc30UgUCvyqqSczyiO5vTO02warja3NK5nCDLBNHiPyaK8buQ3TCJoR1InoFzSa3sLXjv43p3rnxpf7oD/YSJp4zUf1+8BcfH1OnJSthjXo1d3vpf2wcOmtyGaWY0AHhlEskN7C0HyRh96vC/wwaGUZ3DZwfWa1AO0Mmg/1dEjycTUJCQg9hQ3BC+POEvycuKwgUg62n2cvEvPMT6XmXCaCYgeGYPxsx9K5HmXJqJiLDOMe69Keegoryw5kY+S5OlKTm4lApCGlCMn8sxPDaVyqac7ICTvZSMf1QRESk9HEjGdgxDzFh9Q3uPT57zjOxI/qDvMzac6xJu7Oc634RDvMjkfvw1yOczzE/U3/v7vwGlCCCOBmfLgVM8Mg+Py8g1KBQbXcXvbsV7fcn5+TNMINgBENY+MqrTMqpzFrMQPLcU8Z1HlZAZ0VTEMw+ipWZYlg/dRcUNTlhVd0wjGRFwH5STjnIip/V5UXIRkYrS8aJqWbpDmg6ZpKCppVCiKku1mi+sHlJbJ0q7vCcHJHqMNg5e9JYQgssBxYqiua/I8oyhEpSR5kfqY/1praaIHstaibNAN3VhvpvcsX1JbOCf4h0z4WaqqousFa0mEmveKYeggKDKbj3Y1Pl6vNNWVBEzT1R6GgcJmGKVHGxOIDZMxFg/eibeemhSHVKwRtNbxNWKMcEJ0zctK4qM+9KrTqDyTXD/P4tShQ2UmTi4Z6t2WPvqAijT/gWxb/PuQpuZSTBcbPFSmsYWlDR3rZkvvejAK1IEHPJGwIeGkQWKzubs/pXww/UVe/y4LNWKj37gffQMpFcKd55tiuCeEqSl0+sxpb7prN6H12Co84h9pzxqxX1I2PuVSigNcNxFM+mDvi+HzMA9O8SOMO3RqoJz26/GE/TvG199JMOW5pb7dg/cs53NOT07o+56rN69p65rV0ZL33nuH1bKg72vaZjsm024IOK8oqgWvXr8QI0sjG9fFxSVKaa6vb+maHoJiNquoqoLFYsFieYTCcHp6gs00dVNzfX1NOavwStP2A3UzsFydYoJIjeS5jPc9f/4MbXK8h6dPn3FyckIIjqOjFQ8fPeDNq9cEZVgeHTGvDO3uDbtGNO33uy3Pnn3Jv/irf8V/8p/8A+bzOe+9d5/3vnPKF198gdYFWld0Q8Zf/Ku/4cXrV+RFyerklPlyAXieP3+KsYb333+f4Ho+eP9dlFH86m//lv/iv/zPcb5nt9vTdS2vX79GBSiyfDSpPzo64dWrl1HqxLPd7ikyS5FbMmsJIerkDx6fgzIaYzPqtqXZNyJ7VeSjVr0k0oY31zcYA7NZiVeKF69ekeUL9m3D3BYCNGjNarVivd7EMUvNze0t6/Waqqro+5YPPnif5WzOmzdvuF2vo2negrbrGPwwAp5//O/9MbNZhbGGp0+fMpstOD+/T13X/OxnP+cf/+N/zMuXL7m5ucFay0//9N+nrmueP3/B4Dzf/d73+OiTz/gP/8P/iKZp+af/9J8C0HWO29sNVZXzo+//Afv9ntXRMfPlgqDg2bNnHB8tCM7Ttx0X9QUnJ/d4990n7PY1L1485csvPuf69WsKm5Fby3q74fT0Hj/+oz8mhMDt7S37piMrZxSlJcsztvsdmS1kqmzXcHFxKYRZmdHsDEPf8q/+p39Nvb1lbh3z+YyzsxMm8+sTHj58jFI9P/v5v8RmgWHo+MXf/AUf1D3OW2aLMxyWbt/JRFmeU5YVu92GPC8lges7lPdRfulu19TkbzQx0iEVuQekj0wzKIy5G0Cn4Bij1ii5LQFllCqJlXxM60Yg6+2RzbSRvp3sfR1MPeja99/8O7/vx+s3l5SzOcvlktXxEfv9nqurKy6v3lCUj/nzP/9z6nrHv/yLv+DzLz7nF7/4Bf/oH/0jnjx6h8urKy6vrmSKM46TSxKgWa/XKBXN4xXsdjv+4T/8h7z77rt89OGHfPrxJ9y794Cs8Axux74ZcL5lXuaRlBBZkiy3uL4jBBOl8ypWqxXb7Q6jt7GzpqPVGptl0SOjpa73bKKkybycM680RZ5xcrREec/1+oKrq8sRCO18h3cyLZDlOhrtWgiaYeilM9SJvu9+X9I2PX3n2W4b6l2Lcw3bfUfX5exqS5EXFFlOmWc8f/EUe2E4OT3hXfWEsqzIrSHPDdYWaCsyamVe0rYeQib+FvdOOTs/ZrmaA29QSpJHaQSQziKiTJM1Bu8cWVYwm83J8oz1dsPDh495/fo1by4vuLy+RCHPcXIi5u51LSDGYrFAa0mCkwlo3/fjl43TusMwcHV1RV3X3N7e4gGTZRwfnXIbrnAu0LcD+33DYjFDK41RYPUh0SAARUooZMJRJC28U7GjyhGCeOn54KYuqDGBCnGKVo8F6uBawGJzG0GaKMumZa/rupaiKPAOmsZB67i+vmaznvynkheLtVmUV7TSWaWBKMORJpDSpJL8ux/9pbyPclxJFm+YpPESIH8HgIjPYw+qrxSffPBResOPPkdS7CRCQu7f9XrNb776iizL8GE4TPciuHCYvB0QT7z9mtNjQ8znDkHTQIgTCUridJoQ0yFKsCffOx8nuGSKQCsIevIzOZx2+bYcqUjWgFWaoJzcpw5yW7CYlTQa+gjMQzr3koBrJSbr0sPO2FmtVer2VvRiQxaTegEARY1W7gVjFGWRQe9oXYcfGrQfWC5K+q4hxAYf17d0bY1Cuj3zWUmVWYxWWCNmuTiPi7leeq9tXY8SjcZohhA7No14IeR5Pkk1KTXeZGldpPWlIqktZrueoW9FEkR7rBVpND90oy46QXINHzs9FSIdpZCJVGs1s7IQ/XomsCDLMsqqEB+2tmU3SDOBixKWeZ5TZgXeZ+R5QVFWOBeom5YsL7A2xyvFvnOURUVmAk5nLGwVtfYlvxVP0BPOz885O7vH6ekZV1c3NM7RDI7eQ48QhbOjI47OzlidnNA2HcEainlFOc/JM0NZlOybLZ//+hM2uxu0zbjd7pgvcr73vfc4Pl7x8PyMxTzHKEe9XXPbNZhs8osqC43JDIvVgvl8TjUryK2hrAqKPKNIuv4H4JFzsdAOTkA5AGWEuPJilE7TyMSn86gI2GHljAfn6buBXdvz5vKam5s16+2eTd3S9A4fIESwX0WpVx/knhdpcyGEVLznrVIYa8iznCx20zb9gO8HVAiis6/E5F1SSz/eG0ZeSSZRFPiYa6bPalMBfrAKVVxHKJmU1+kWRk1zDHcK/gm45pBUP2yESqQSCEihIuFEMuA+II7i4UfEPeXid2mkQ2D4394R+/t1jCTFwd6iVLIin8DhQ6jzEGxXSqGtoSrn5HlOnlUU+ZyympOXJVYLua4CWKOkMXMYMH1PF6XhtBnoBxMBPyVAWQLWvKOjlRitRCqtLCu6LtA2A/W+RWtF37fj3p7ZnE8/+Yznz15ydnbO937wfU6Oz6IXcJSFz+b4UqN1je4a2r6Jn3KCbYzJRnJJ1DIsqWVbbjM/AUIhgJZObx0sxjuR4nM9NgyMHf7BE1DYPBNpQOfwQbwuT1fHHM9X5LMF3/nDP+TV5panr17w1bNnrDdrTJFH4l6sDiB1r0fFinil7pAkPiT+R751UA+mxXbXQJ0R9Ju+ebivKvkN9fWGl0OwDMT3ZbpfEvB9AIDH5pq3mxSDSt5SmlTcyjSyxquBIZInPvQMrsP0NUNfoyKhpJTEMWOyiWgKdtzzkwH7BEYe3NejX6lG6eShYePjDxRT0uUMYSSY0nNMtft4iqfzlj7jAbmU9nI33JVAFr+86b1OJJFc1/T7Kl5KrRWZMRwSGCIDJl+EcDDxrNMVjedaxZgub9MEBGBVemqQCmlaa6r9U2M0CDifGXvgOzLJS6eKRdJ0E+N4koz7dhwTFP47iKIECqs0XRu+tie9vU+N0+4IqaCVjdMyHh962rbhxYsXY93kfUc1K1hv1hF/7OmjjYmOXmxGB7KoyFHmMvWz3W7I41Sn1uKFaYucvm/xkcDt+x5rcryShr62HiiqktlCaufNZsN+v+fo6OhObff69WvqfSPTiNYSwiBYa14Amv1+T9u28rnidH7C07q+R6mBzFi6tpX3lkkzU9u2sWFU3vd+v5eYEOv/9Hil1CitV5YlIN7xaU+x1lJHhSiQnEPwFplO90DXNPF+V2IPgKJte2lqjPYqwzAIBmAM8/mc9XqNG4axRvcehrajzPKxWTXJaYeID6V/H3r8aJ3kOGXfHgY3EmlaK7IspyyqUQNFyMBy9HhN5I21Bq0W+NjwsVnfUDf1eM19bILQcaIsvS4uxgQCKtoSoEFnGp0Znj37Cq8DTgWZ6DUmkmBTwzwwOuipw9AQgmAJ0YdJ67jPvLWM0prQqK+tkbfXzb9Lnjc2Kt5Zr3rcI9PaS1KoqKnR8U7ThBrf1fTc6T/xM2p19/d0iswJyB2362mPSHnY4fOGaQOTeJ8ubEh2DN98/E6CSeTLREJuPp/FzvAc5wb29ZYsg9msoI+mxF0cr7MmAxXECLjp6X3UafVKJmgGT73dxc6kgr7rUUpRRE1xCCyPVjKdMwwiE6QtzgXmiwVZlrHd7uhaR2E0KhrfX99cs9vvefb8Cy4vrmnbgZN5BVqTFRkmszRdS1Et6R1sdg2r2RG9cqwWJWHowXdc14F/8f/9i9h9GrDGc3t7g3eKo+N7fPCHP+HhvVNsZtjWDUPf88Pv/5gvPv8SgFxb6u2WxdmMzz77kOXREfcfP+D66pKToxVHR0v6YeD66prBh+lmQnEbCZ1YCqK15vLyktPTYzKrYxd/R9cP0dwY6u2eB/efsN+tubq64nazZ7vfUVQlNiYB88WC1WrO4AZ8gKbryAst8lq5jDFuNhs2m40EidhR0Pcdy+WCPC9wzrFYLHDOcXV1xXqz4cGDBzz96jnaSHB+8eIF9+/f52d/9dc0TcN8PucnP/kJny0+Y71e0/c9jx8/5je/+Q2vXr3i+voaNzjOTs95+fIlL169Yrer+erZcxKDKt2mS5xzrK8umbuSEBTd4HBOfKl2uz2YW5pOJPeUlgS9j0BNvdvz5uKCL7/8Ut7Phx9xdn/F6ckpf/mzv+bRo3fYbHcCRmiNyXLpDvVBzOwC7Dcb8bSSBl/msxnPvvqci9fP2dxeRUPjQDWrmC+W5HnJcrkky2XiwbmOx0/u0Xbf5cXLr1hvbijKBa9ePuXo5CFFOScvl7y6uCEvNCfHZzx+vKcsK5qmI3mvKGUYhnZKGtMUfBhkdFQfBJyJERLvmTjar7RCmajtOUYmIOkXx44KDfhBXkNy8yB1AFMQC3hSN/5hkJxenztA5jR5kL4/xahvE9B5eOS5ZRg6ttt1TDJyTk9PCSFwfX1N0zScnJ7x4x//hH1dA5r/6r/6v/Lo0SNslrFYLvk7f+dP+PTTX7FaHXF0JF+73Y48KyPBpAle/OJ+9KMf89677/HowWOePf9SgCHVkTp9y6pgNq+o5hVFJTHZRDlOYJxorKqKPMsIztP2gxTxdY3ZWMpS5Hy6tqCud6w3N2RGQKjZrMANM9578h26umNXRy1nkqyTdN5oo/BekmKjFViDRWH6QJbPcYOnax1ZnlGWxeir0zU1rgOjBooM8iJDG0/TNrx50zEMDYHvcHK+Yr4ssFlGZi1VVVKVC9wA3huqcsFiWbFYVswXJcqkIggGN7DdDlhrWK0yfBB/qET0pvF2a3PW6w3r7RYPLJdLrt9coZSYoQL88pd/Sz/0cj7znOVyOY7tJzmpEBi1mLtOfOA2m51IzlnpgnXDwNHRCa9fv2G3k+79eTVDmwGtYlFNSDlVBAulaJ9WvBRq4Y530yRXkxI+HSGT1IGkovm0saLya5RMcuS5Ic8M3itm8yomtwN93+IGJ5Of+x11U5N8HmUaK5u6ooyN3e/RRJXkqTAQoteBH5KxaDcZjMbppmEYaLsW1w/ghWyJYVFq34PpDu8PO0ADWnnxcAjJw8HHousQwDTkeUnTdrx+fYG1MlnRDz3eDZhIQh3GxlQ0pG99U+xLRNLhz7U24sPDiAfh4j6nlIoSYjp6LwnxlkCqkDyY7gAU/26J8e/DkdssSr8IFKItEBWpVYDgHBhNZmRfHIZBOm3jmleA0QZl/Vg8RfxLAM+0sMwEgqkIsIhEnsNoLU1DmWW729E1DX0bSSXnoz58H4t6RVmWWB3Xk3N4oykykWmSeCnTjMkQVymRiEtdf87LmpQpGZmUKYqS1IU6OI/zSYJjet/j/eRFZz51PWpkusRohdXJrylJ6KgRwA1I7dY2tcid5hllkTGbVZRlGQsdKfxsZuk6kVuV5oQeow3FLCPLpJOzKPI4iSPgXD84BgxBGwZlUNoSMLTB0HQd603LbdtHMkdhLAw+UHeOdoBd0zNc3vDRRx/z+vKauuvBatkrtGbfNvirK262W7QyFPMZs+WMzCqqosAPPXkuoMvtZo3OLLYoOatOUVq05/PME3wDOrBaFtw7+44QMXlOVsw4Ojnh7ORYZGrzjIAADFVVxKI8elV5RskkrUUTP8RJIoM0dDsv/hOEIFNFsct+GMSfrts1BKXpBkddt1zfbnh9ecV219C0Pa3ziAdNJG84ADJjvC8iOOQjiKMJkxyel8mxIUrZyn00GQp7N9zpjkz9mJJ/huh3NhE1WsWcNRonpfCoVfJrEiIs/eAOyHYALiQAeASdI8Hhx9c7YIZCjMdKRRrMHDzfwaHU2Fg1gd/jDycSRXmRJrlDcn0LDnVII8kRDq7+9L3JI0L+nBrjglIyWR2/gg44HM7LFKNTIvcinkseFz0inWQH0XPQcSAMK0FeBYIOGC1NIM4LABacNDVZKxODNzdr/E5M1EMIdH2HjmDi4F7T9QN/8Ad/yNHRkRDcvqNpPM4rQhDSKu4yQgAFAI/CjOotU39yApgCqDSpEf0TgxD0KfcQGb801RmR+/E+lHUTtMZ5jzVZ9BlZcHJ2RjFf8PLXn3F5e03bdyK71w0yTR697pSR9xRCiP5RjJKTslZVBKakTgxKuO7pAYkkmvw6dVxjOlkDxbJ0yn3iPRBUJG7lawLjJjIqfc40QZjiVIjrVvENmFcQhY/0y+N6HR8soLlynj4MDK5FKU3XCcEkddEBORSlPo2yTB3iCqskNh92jsu5VOPkkzUZNstEHSBYtA4jyZT27LuT5WGSpR5jSMpX01eqo93YGCY5oafv7jYQpamQu2Dp5EtJIOa9Mn2VmiEyc7cTX/xg3BjrJkD3IKdUsgaiOCsuKAxxSnqs/+WK+xDz8IO6I2FANgHe49r4Bj/WIJGXdC99Sw59mIR+wxHGe+dwEl+O33aepBnJjLVuWmw6yn1pr+kRibzZrML5GcMgcv1Pn14IdhyVE8pyRpY5isxSFTkg8ayud7TBgxvoQwuI7LvDY7pOlD4I+EGaArW2BAdWZ8xnC3ocXz19xtXVFfu65t75OW3biawd4kvtnIvEhMVmAncXZQUxT5XmIyXSytqMEzMuTsgp72l6kd1fzOd3yKSyFFwveRX5IBPjaTrJOccQp4RSE2LfTVOJIYj0XiKFlVKcnp/H+jrK6/mBajbjzZs30tyjNdqKtUzKzVNjp7bZ+D0f839iTp7k7tL9kD77KD2vJlsUrYWIsTHPTO9XcjzBHlSUjhbcdxALBZthrImeUGrMX70TNa6EJ6fGsfm8AhJ+4CKpnDYxqR20UuBlKklbjWOgqmY4PJe3Nzgt94tXkhQGJTWxStSzUqggjXBjDqeiRPc3EENjNEy1XTxfI1mG+tr6uUvKHmICaU9KcVthEMJ9mg6dcNPUoGDMNK0psnYHCgyxxlRK2hvvNlnECfpwcBpVOg/pGk7NrmOiHZsLv7ERKqRc9k5wkMdz99x90/E7Caah76VbUSkya0VqZpBOckJgtVpgjXgSiTdNXBRGjaPam92O3jlmVYUPms2mpusc/eAjqCULLs+LyNyKsXuey806tFI0GyuMrhsCbuhpmj5qGafudpFkurm94fbmht1+T1EKKYZ27Os92+2GxXIFyop0BKCtyJ1VhcJ1gbLKKHJL2/S4wRGGHjfsefz4ASEYjC25vbxEeUduNbk1OGWpqhl13dJ1DW2TUWQaTWC5PKaoMup6x4e/+iVFUUTSQQrtwQUG5+iSXF2WkWd5HKsWGZbBiY+TSUa7VqQGlTJ0veP2dsuD82Pc4CiKmtlszr5uyauStu3p2zZu4JKEOBdo2o6y6slz6RzNcktd72MQkMBzu77lzeUly+UReZ7TNA3Hx8f8+te/5tXr16AVP/nJT3j+7MUYoJqm4eTkhAcP7vPhhx/x4sULHj9+zDvvvMvl5SVN07BYLCjLkrOzM4wxbLdbXrx4IWClFznG9XqL93B5eUUIsN/vefz4Mc++/DVt29E0LdvtDqVFyqQoCrq2o6zKMcj2Q0/bRFDExFs9eIo8ly7Z7ZbFfMGTJ09o2laKYiXSKz5IcjT4AL3I3ay3W8qiwmorutz7PRcXF6xvbyB48twQfM5sUTFfHjGbL0GlQGzwrsf5lgcPz2iaW9p2jzWatqt59fopOit49ESmE6zNKfKK46MzVstj9rsb9qqeEvGxYE6JKEIO6TBl3hLTRpkebQ46rLRC6fBWZ2acZIjAJyF2qupUXEzBcIyNB8SQUul5DmPRtKm93SmfNtaU/0xJ8rePZFI6UDc1LhpGKjeQKU3X99i+i8ShZjafo2KnTV3X/OY3v8HajJPTU9599zu0bc92u2cYHJvNllk15969B1hrx4kYgiLPS4rTkh/84IegPG23ZrtrUWjyrKAsS+mQyazsQwfjtSGIRE8ZTTmTueUw9Ay9oe8M9X7HZpNTzSrKoqDrK+p6Tz9rsMWMzBqqsuDk+IyTkysAdvstffQ+kSkDIRBQyfxSZE1SN2iWSezPS482hqoq6dqWpt2z14HgFLMyYzEvODqeU+Q569uBtt1z8aZmvqooZ5aitBAylNLi4xHJEO+E3NZx2i/LjSSpIWq6Ox9jXktV9eRZMY5pV6WYlVpjBez3jq5rx6QuHXVdSyza7dFGUdf1mDCmLqIEuMpY/vVoxtl1ndw7aoLq8rygbZtxSseajMePHnG7vsDToo3IfsiROlZiYTaWxXqUbfcHhNlEMDlwYQTXp5sY0qi7fFu6y7NcpkD73rHf7/jlL3/Fw4cPWa1WKALrdU9d72NXVOzkPRi3H8GYZG6MGEQnwmcy7z7wX3LDgS+NkCwu5jMEP4WuwFgIjQTTwfN650Hf/fkUDdMJUFH/u6NtWoZeusDS9MvbSeDh99LxTR2Fb/88neTxcX7qHE0SePIa0l1GXEOH+8S4thIgNb63Q9GM39/Dex875JL0VohYVkz4vQcnMm7yMzG+Djom7qTfHSm+6MvEKPmlUKhUmKX/BGl48bHYCd7R1DX73ZZ2v6Nvu/jaAecHfJA4lzyArNZoPK6PzRnB0w9ezOSHnr6XKT3p/pBraiIKLwW0TKFm1mKtGfdqrTXay13ihlhwQ1xv8Z71Lvp0DhglDSxGB4wKk/fSqDUffa28S6cHaR6TBoCqLCjLIsrqHXhc9mHMgfs+ypFkGXmevgqyvIjNM9KH1/kOnZUEZYQpNBn7fcd+s2Gz3bHe7mi9rE2tOyl6swxbzLle79k2Ih/30WdfsGs6lMkoZxl5WUIAkxcEpRk8WIvo+WeazMhUT9fWOO8Z2h7nBci2WS3TPLnFrObYeUlVWqrcUJUZi/mcvCjIi4qimlMtViwr2WvF10Xivs2E5BKgQYD4iWCx+ORroQ5krSNQp5RGGYsAopL3KeXp+pa272jajt2+4epmw2bbSI3gZAIi+e5Gwz7xhop3ungQKaxCvFqI/kdhAkQg+rPE50pgdPATMByxAIJXd6NoylXTv3UCaRnX0lSSp/3qLomhxtc4fFR8vQhApsmjBHrHKDBOGBLBBK10lI4Jd0DrEc9TB2bKqegeY3x8wfT57sjn/f4fQ3DjCZv+G+5eLBhvLhUicDJ2sgHRo8LFqR3nBwbf0zuNPyTuPEKSO5HIE/+lgd7JxPLgB4bQ48IgX5GCkotoRr8HTzSvN3LvzucVWovPUt+J1CMqw3tH2zZcXV0xm73Ee89yuaIsC9oux7et1OyREHZDbL5RsjaTBHBQHq8V+AGjD+7t1DWiAsEPuODQQaR/nZvORYo5EMZ9LNVPqdYv8pKqmrE6OuLs3j3qrsMjTZNN345yeoz1VyBEf5L0vYPLdOfvKi7ocAhCJebo4FIrUn9ilIJS0zOFQ5Lpt7zK24nmnTxJpbp1ihVTjXxA0qg02cIBAZH29AjEhsmfCy/kn1cuFT/yiZUZfYhTwxNEMjx6ClltSdJMagT4DEZbjMnw1kfJUDAmoI1Mm6f3ckfmLhEwB1/pMXIvDNF31I8ysi56EXkvcl1D7w8uxnQfJt/lRPWnU6Fic+lILhmL8xY3SvrJPerj642XYiSAZO+QutHF1wtxGm+AIeBxaK/H53JBppacGxh6WfPpOk2ShJMviUzE6jtfoGLjwTcApb/Hx9uf9y5+crgKw1t/vv08B3+Oe92I+ozPPeFJ0kwlhKs0tuHcWK8m6W75RU9mNfOqRMVmRLlfvchTR6xT6aQQIDk4KT6hpPnJK1Tw9P3Arqtpu270IcrynBCmpvIQpPnJmBhDlEwMhRCxitgwJZL1MsmitB5rwuA9wYl36HgKYqJSlAVo+cypzhvi1GiqlcVWhbGOH4kfYkhBSVNQik9vkb4hkkP9IPhjmuwzmfiWckAwHV77YRjuXvoYjBMpNcYOF7GmuPYDAWPN6NP8TTVq8lI2B0QISpPZOHVlzPg5tErxWJRh3OAAT5aZsek5nY/DaSkhuA7J4xCn6QUXcHiaoWPb7GVySTE2F/iDCzWSTOMaObjRR084Dl5nqpcOr4N4JKX18XZNz5hDHn7/7b9P6+sgC5yKw3E56vFz331fCeNJylDTinxr/YeD95Y879R0NuQ6fsPqf2udj7dN+mfa15mapyYs5Lcfv5Ng8oOTZAOwxuCGZHYmxdq9e+eyOSQGVckN43zAo3E+sN3t6QeHzTJ6p9jtWvrOxYXj8C5QlYV4gBQ5eZGzWC4iaxdvUAI2FzP1pu0EyGl7jo9nWJNDgLbt2G63MmnkHWVVUlYz6noP2oEK2Mzw6OG7NG2PxlPmFmMLjlclYdjQeUU1yzk6ntPWHUPT0dZ7NrsNP/zDH2KzgpubNR9/+hsGDH7o0CqgMxPfU8f19TXGBPJcsV1f8aMfLPFDz8XrV7x88Zyz83MePXrE8fExxhgxHh0G8d3Y7Dg5PWExX2C0juOKljzLQMUiSGvx5Iijjn3Xst7WPLx/D60tmS2Yz1eg99iipHeOoR4Y/MB2txs7w/vesW8a5osVZZWjrWJoeqw14rPUtlxcXvD82Qt+8pOTkQi6f/8+H3/8MZvtlvP796Kk4Zzdrh6lopbLJT/68Y949vw5H330Eb/+9a/54Q9/iBscWyPm9vcf3OfevXvc3Nzw/PlzPvzwY37wwx9S3a5Zr7f0CJv+8uUruq5nv9/zkx//hGHw1I0Asje3txhjOTs/x2YF17drzs/PRy+iYRjYrNeEkLpCS6qyZLfdMvQ9V1dXZFnO3/npv8+nn36OtZaiLLB5QUChjRXyb+ijN9geowxkMrJ7fX3F9dUlXbMntwGrIZuXLBdLZotjqtkK52UjzjKN04H9/pazsyX7++f0bqCuOxyB16+fgbYcHZ9hjaLe1xGcn3P/3kPWtx2bzfYg4dcQ5TvGRX6YdwMhdSrpQ3bcTEHMHGqiy28lv6Y0Lk9MKIJ+axRTSdAJxCQifC1k3dkovynh++0E00EB8C05PDIVqs2SxXIhMpr9gMksNstEi7ebPGOstZydnfH69Wt2OyGUnn71jAcPHtB1A+v1jrZ5w2KxoiiqMbHo+575oqLe1+RZzuPHT1DK89XTz+mHHWqjZfKmKicZpeBQGozS0mYGZFY60qtCJOgAGWPPrUwQtXB7e8tsXjKrSvpeYnHb7ilshtUCHC7mlvv3HozrtdtvYn4gyYwbXHzvAx5JUJQGg0g0GWPJBkVmMpxTtE1NUyuK3BAGw6yacbRccX52RllmQM/l5Z71es2r1yWnpyvmixLnCrxXMYZmSNMCZJmN4J5MBmSZYeiSdxCAo207um6gKjwqlyRgPl+QZQXAaCjqfSI+VJzUhcvLS7bbLbJhM47sj4WU1ne8li4uLijLEmPsCMJaY6NMl6LIS968eSOElFKUecEPfvADfvlhw74eUFqIuhCrSXUIFI7HYbEeJ2hiIWGtwXs9ng8/AmeagMi6Kj3JswXvqPd7tvma3a7h4vI1/+1/+0/4+3//7/PDH/yAPM+4urqmaWQiM3lMTV08KelMvh/x3ojJ9tjVm7qVD7o6BehOnksCJh8W6IQ04eHGHGaSC4lTS7G7anreCBqmSZV4zOdzXr9+xW6/x1gj3VgqTgpFXehvIpd+G5l++NgRsGSSrZAHJS+V2BE1gjV3yT8B0KasUp7Px+s7JePfhqPrOoosj512Gu/ieZi0acB7kbq0huRfFWKFkYBzQ3y4ku45FQSgNgm8sQadMLc44at1QHmJHV3f0e137NY39I1M1imfJk9kWtQoTZaZcXJUbgNZr+IfJv6d+AE/DFNREj+rtQISiU9lHrsThVwSAiiCMlqjnEyeuFicGqPJ8gyrFcMgwA8xjxIQwEvuS8LF7no8jVOXQFkWzOYzqiqPcleZnBXnGNwgDVAh0A+yhzgf0MZSVCV5FmVZtCEohTEZQUltMaDRWYZTBi87AlfbNc9fvWa93rBvWmwxYz4Lo5dTWRZkxZJdc0nf92w2G54+fUrvoKjmZLm8VyHM1AhwgdDlg0uFf0/XDvRdI7HFe9q2ZfAOmxnmc5FXLsoTjo/mLOcFs0oaN7KipKhmlLMFOq8ojB49ZWymI9GjxqjskfssKJEtCliG2GGrtcIoE0HcOFqvAzorJHYlUt5YuiGw2dZsdzWb3Z6b9W70WwpETw8VNfcjqCfqm36cLgo6oILHpEkTBEAAAXOUMvF8RbCGaTpUH4AGWounU1QlGUGAqd8pkPgpCWkRaDgg2u92+cffJ+0SIT0NadJigqIP4nBcL4fd8qnAD1paGdIr+pDgi7jGtDr4HYmlY7wOh9V5fA/fjhALyDTd1w9/51939sHxeqVroiE4Bj/AACiDti26l2si3poywTROYg6Ofujj78mXkEwdg+tEOje4eB2d3K+xkSVEINPjoz+BZ74oyQpL23TsdzX77V5iZ5DJorZruLh4PXaDP3jwQEDOHXiXAPMoOxRjsVJK3qOS/UCHEMliP50PlaTqYnd28CjnUcPUQDP4ARe8EGVquif94EfSSClYzBccH51wenbOyfk5L379FRiDI1B3XSR01egRlZozUXdzkyAXLK4hNd7LI2hFqvHC+O/4K+mB8pwjnHnw/fR8yXcKpHhVYfrFETScfnHE1A7qxa+nU2F6/pAascaXuvte01oPiXzUuLFhI31OIZ5GIFInWC7GNWUwSqORCSf5vsHoHGsyjEk+KkIC2hAwAZRy4ksUzTEmibtpUin5MsnfA8738b6XKXkfQWPnh4O92HNnKUYZXw4ATDDjZyBOnAoZJs0ozlp8sPQRZA0BwpC8Fg8mEEfpvygpqK3kQEk6WElroPMKM6T9IUriDTEX6Hu6VrzDhRMQRSRpWot+WVren+yZ9muSXoJ5fHuC7aF3DaR6IIHAHKzL6c9DOObtuuTtamBaWyFOsMt9b60V2TdFvHYdIbQjcSPkijRDEhyZ1VRVjncDyiAkRfSDMUbF/EPh8Qy+jySjZEHGGAbnwSsG5xj6mk29QSmx9RBctIz+nUII2Swbm17Gmg01EmBCLon8Yu8GWdlZzPW8xw0isd73HVn0INYabC5NSD5JEkeSpO978SqyQrJ0/YCJksHp3I1YWNzn0nszRlQ6uq6PMoTyc5EQ3InEvREVL631JN0dn1epyX9ziH5Rh4dSapStuzP1pATzS8541uoxL0p5fcpp0u8ZI57VJjZ/Zlk+eiXemYwcf2cYz11mxLNVKU3fd3GYIUkjmjskW3r9JEGOkUmwpm/ZNjvaocUbSEmkyBoT42+il8R/Nt3TSgdClH0NkZm6Sybx9Xv/oKYaSSY1ratUc919TCJ2ONztDr6Xfvfr62yq8UN8zNvTpjIHPe2I0/qctttIRh289vTzuwTzSBOpQxIqxPQ1SeoRM2chK8fGB3738TsJpn5IN4B49+z34o/QtQ31fk+eWXb7PQS58BDY7xu0FbOyvg+gNIMLbHZ7mtax2e7Q2uK9AGB5lrNcrDCZyBPNZhXGSBIW8HSDePvkpqRphcAoyznLRUEAiqKC4Nivt/zN3/wN5+fnWJvTNo7BS+fkbLGgqEqKsmCz3XH95oajxYJ3nzzg8ZP38O1LMBlaZxhb8uR7f4ef/5uf0+DITEm70+x3t9E3oqYs4dH9B3z54hXbiyuur69pBx2Z9Azve26ur3ny8B59t+flq5pd2/HTn/6Urm24upLitigq1tsNbdux3zfstnuatmW1WMhmHDWUz87OWMzneD9wu24BuLndUJUlVZ5xtDrl+npLYXOyfEbTvBIfK6Pp3EDpeharBbe3G5bFjFmc+Nns9hTzirrbo7eao+NTBhdYHR/jnItkmeHi4s0IdOZxWuHxk8fcf/CAzz//nIcPH/Lr33zF7XpN3wthNAwDjx4+5Kc//SkA/+yf/TNms9k4FfHue+/ym9/8hqdPn/Hq5SuCgve+8z7rzZbNZsvJ8Sn37j2grhsx6Os6fvWrD6WrQSm6vqfrB/FRyHKKsqTqe/K8RBvNarlkt9nw87/6Bf/gP52jtMF7IfLeXL7h5OQI5QVoS8Z25WxOnonPUuccy8WMm5sbrq+vefc732E2n/Grjz6mb3t+8N0/FNmlpuHq8g1dc4sKO548uU81X5EVS+o28OjRKUp72r5m6Lc8fHyGUp53v/Mdjk/O+Nu//RBMgclKbq5f8v/+f/03/Ef/i/+Mn/3Vz5kv5pzfO+fv/t3/gK6Dumno+i4SeYwgpxS7GmUkIUvygGiiOZ90scoGMJFOSk+dUOkYwRTn8YOAr9oaSao9BPf1jUsMDA80ew82t/RzHyQxCePk7rRBJsPpmBMxBstvIKV+Xw/Rem959Ogh3/veH/I//A//HxSWrh3Y71pOT0/FUD0amvd9z2effSbEQ5bTtR0f/vJD/nf/23/MJ599zma7ZrVacHFxweXlJW3bslqtqGYFXd/IlFJRsZwvefjwHVZHc+zHjtcXX9J1HVVZRRPZMBrLZtbE6+KoioKuacliZ3wIgaHrcXmGzzMAmmbP9fU1eZaR2wyjLdvtmkyJtn5mc8rC8OTJO2JsaaB52siErJbyOkT/jFR0K+XEpNYojJF/2yxDJCYs1UzjnaVrHV0Dy/mS0+MTHj18wHyRkxWeoBp29TXPn/+ak+MlNtfYzFKWBQSLtQXGGPIARmdgRIt/u93Q9S1+kIlZGyX1UlKQErFhGMY46QYB+bbbPbPZHG00Xdvy+PFj6rqODRs9Xd+NXiRJs9l7T9d1I0HV9yIl27U9xkSwFx2BZ433gYuLC5GtCIGyLHnnnXf4B//gH/D64iuevbgVP5S3llUqjqciPhWgkDyH5D5QQrgddFIqIuASJ2Ws1djMoJTFO8XLV8/5v/yf/080zcDFxRUv37xms9nw9/7s36eclaQETWtFCNIVlWUZ1mZYk2Nt0ruPiTpS5Pvks+QGQpziuEMCxbjW9z1D1+OHnqS7f2iADIwEU+r8MnqCQAIyJSRyI+5AaiDIVHWUnlwsFvybv/43XF5dklnL4Lq7gMtvIZLSq8BU4H2t4DsAOEYwLDYAHE6wHkqVTObIkIA9LfiBLCWS5JSC8G97f78/x+3VtUgazWdRcsNjtZIpGKQ4MVphVPRVsJnst4eAzJSPE5TG60gMIefYKES2mSRXkaS5gOAZupZ6v2O3viV0HSoE8WgKkBWl7OVaZPqsjRROXNNKS4tn53qGrqNvW8CTW0ORZ9jMEJxnGPqRXBrNYrUe17QoaIgsxTDIBH3d7CGoOOFkRCJDCRAABozCZhEU8gE/OLpBSOVhcGMeobV40Uknp2axmLE6WkTJDHn9JGPZti11XUvcdDJFakxGWZaUVY6N71m67j3KKrre0XQOlVdYU7Lf1lzdrHl5ecPri2tuNrtIUmUUSuOCi/HUUbbQti9GIr/rOrIsY75cslytWC6XLBYLdvWe9XpL27Q0bcfNZs1ut8P1Q5TIdJRRBkVMrHNutxuM1Tx+/JB7Dx7zox//EQ/PVswLQ5lrigheqKwAU+J1SVBSmJvoOZfneeoPPCi0O5lwU4AGF28mo5JHigGk41smSxUmz/G9gO7tENh3A+tdy8XlLZvtnn3T0Q2OgAAbNnpzDVFSNN3jJu5tGlBB/A8CDiOMk+SPIURvElFV8E7Fab4EfMVpXJOkJmWK1OpsbHgKwWPHPqVYaCeQIDkSc7fIvjsRL38mOT7FXc+YCRCYjjseJEhOkdZ1fBIOoQOnpuecDOfjddKH8TrK9vkppn6bclkAZSaQZProEssmyRk15f0QwWoT42rAEQhDh0uEURho+4ImyzDaxIanCLINfgTXQcjLNM3hnJDxPuUtcYLbOysgE5DH6UFCIiE9nXMYY5nNcrLMYDPDzfUm5gAyZVg3O169bnl98ZKPP/6QP/rjv8N8PsdYxXY7sNu3ZJmQZW3X0UUZ5M61KKdjvLOYkbGRmlRALI+P50G5gHIyXStd5JM/j/xeIggSgSOA7aNHj/j+977P2fEp3sN6u+OTzz7j6vYaTxjVEIKTwswajckziQPhrqjhBDxO5LJ8PwFniUQd+8an3xuPsQtmbHy5s05Ja11DSFJ90+vIQxJMdvg+/JjHHpIL49zg6M2TznP66eRTMf5OKkSjpLT8PwZf/DSkdSdvCvFziwyfkP5JKjrHmgHvc4wXsHXwnoLpOZQyktPh4748fR3K4A2ul9rcxakA5xjc5Dk6+rGMOa6A++k6yJSAnMyx9vbpOkkMtyYjy0RRKGClDvPDCDITz8SdQ2uMEVDSxuklnfCIeG59cOJP00v8H309CKIgE6XQ+rZ/K5fI0doegKzSDJHnOZnNyWw2AtwJ5L7TiPV7foy8tGD6B/F2anhQB3vXdNytM8bf4S7QjJqex3tpqNJKmltWqyOZzI8SysPQkLzD0u9kNmO5yCmLnKHvuN7V3D9dMZ/NsMaw32xRSpryBjfQ9A1lVbDbbvFR0eVoeTTiQ4k6EElkh7Ui/VxHnDDV0ckTaRgGqjxnsVjw6tUrvPfYzKJtnKBRSRVKVCd2u11cSyJx17Yt+TyLnkyKsigjFiqvMQwDt7e3oKC0FSEE2rYjy/OxXku57uQjxlhvJslkG3ETeX8Z2mj2u0Y8pABjLeVMSKIk7SeEEWgdcAfr/u79EdWLlB2f38cmOq01Q5CJwbR27h4+XptJIlukAWXvsjZjGQm+EO8XHRvipCYQQrwqq4g9TvfFMEggTfdYluVxKk4kb4P3cSpS9oqsKvA46l1L3TSiKqEDfXBoLUQz3jFKaZKIpkl+NqQ/SbKtkxzd3Xr77TWm7vz98LGJNIpRjkQu3VmfavqT8Y/0ODUO0yg15UZvk0pf/97Xm6wOlnF6hXEtj0eInlYHKhzCd030U8qJf+tgQPDfeK+9ffxOggmgHyZd9iTfgwoUZU4/DOA7vJfidLvdslodyY1iFe0QqOuW5XLJm8tr9nVPlhWs17eoIIaUNstG83K5uUNc3MI+G6OpqlncQBT7fctuV9P1G46PT7h8c8Vmfc3N7QU//skPefniNUZrZvOSgOHZsxuWRzPq/Y5f/+YL7p2/A8HSO8duX/Pq1WsentsxPdAq4+NPfsbl9TMYArkx3HtwxKef/A3rzZaynPHBH/6QYD0//vEHrF4d88lnz3h5eclqdY/vfvABWgU++egXNE3D0HfYvCDPDJ9//ikffPBdvvrySwLwH//H/wnLoxVffvkURUtZVagAl28uZWO1msyKhnrd1LhBOtmHoSOrlgSg7XpWR8f0+y2vX13QNntOT8/Rmab3PbNZhdISVBaLBQD7fU3fO87Pz7B5gfOOut6TFxX37p1xc3PL9fUN2+2Wn/z4j8QTSmkePHhAVVXMZjOMNrRty/X1Nefn5+y2W25ubrA247PPPuO9995js9ny7Nlzzs/P+M53voNSiouLC/7qr/4KFPzsZz9jMV/w3nvfYXG04he/+AVKyWTc82cvWSxWDIOn73o26y2fbD8ReayQsViUHB0dsd9uePrVU8rZnKwomc1mNE1DW+9RSvPDH/6Qoe9pmh1aKb7z3nv84uc/449+9EO2t2tubm746KOPePfd78j5665YHh1xcnrK9fU1ddNisozXr1/z2WefM68WZHnGX/zlX7JaVJyendHsb3jz6jc8fnhEW+/JspzV8TmrxUpk8pCujsFarJEAZE3OrFrgveGXH3+EGzqRHKuW/PqLz/kP/uzP2Oz2bHc7Hj95lw+++4arqyt2u+0ojaWVFEU+ZrvS5aDHAK9s8k3REZBXI1mAAq9FDsdkJuXbY2QKJuBNwBuZMtTRv8cFL4NT8TlSUn/YyXG3803emw+pI2sCRlM3FkCS5EnJ7rcE7xyPutmhleXizWv4SHF9fc1ivsL7QN8PIyB2fu+UqipJEyRd19HULZv1njdvbvm//9/+n/zxH/8Jjx8+oe1r3n//A3a7ncgDxW6arusYeocbPJnJmM1LVqsjfvCDH7E8zvibvzUE9iQTSvCSRIYILAYfCUqNtYbMWiGQotZxSqJsYWmaPTc311hlyHVGM1uyM9KRUywLlssj1H7D8ckxLvTcboTQddF/xEawfvA9AYfWHo2Ko+4uyvGAbGXS9Wy0pipnhHnGYrZguVhiDMyqnLPzFW13zG5/w5dfveT65g3z5Zz5YsHZ2SkKi9Hi+6G1xjvofc9mu+bi4oK63rOcHeHj+H9KMNMa6DqRt5zPl2ilGZynaQfquma733C7vqHe7zharlitVlxeXjK4gdlsBiQ94gnEqqqKqqpo25anT58yq+Zjot913dhF5n2gG3q6rkGbwKwseefJe/z9/+U/4MmTJ+M0mtJWgIuRKJkmlYhSHioYgtbgB5FicT5O02YHpElaoJ7DCS/vPfW+RuuePJ9jTM5nn32GG6AfPGWZUxTnFEUxEmmpm6oocsqyYLvdUpYCeqaiUa53KoiSjEicXorvr+u6OKnUR61n+bdIiMjvToa0EneSbABMgKVXeuw+9s6j9DSZcYBW4r0nz3OOj09p25aXL15ydXUV14tMmI4g6P/MgvfwHjgEatK117yVFOu7SS3Ky7VGpCWMTb5Z4hU0jLhI+FbFWu99hIomEMxaK+fBp8kbQbJMjG+pELRGZFrSGjVKiXeFkknK4ANGEckpPU6oKyWa7uv1FXW9Y+hahq6j3e8IsTsyG2VgAlVVif9jJEiN1uSZJbeGzBqyzNDudwxaU+Q5RjmKPCPPsjj53uN8LwSXc/QxPhmTPBwVfefYbHaR5O7H+93aDK0yrDGkKUGlIdPSaer7jlGOER+LTi/elEFiYhYnbosij76q4inkQ9Rgb0VKWuSYk76+Fl+ivCDPZSpTEaZOTRRGaQYvhEheBC6u1ry8/IrrTc16V3OzqRmCIdgiEu+KpvFjXjqbVVSzFa9fX7BZb+j6LhLonuLqlmp2TTWrqKqSYXDcrG/Z7xuapqfrPZmNqgrRoDoYS55bFNC7gX5QYCy9U7S9p256dvsWvCV4mbhwXqQPex3o1IBxlgoiOaNxHoYg013O+9ixqrD5DBuJTwiYECKQGiA4+raX4SWEpWmdxwXY1g23txveXF7y+uKa7a6hH8TTyViRAIyV5FQDRYkSnRoNgpgDawU2ly7aMPKs4pVotDR5hCB5puCDk6SRYhAZHe3HWJzZ2PykFAqDI8Zgn+Ls14mlkRBKe0H6Sig3yVEtkkwRYh5B5LhHJWkeFQFzHzwcAtMRlDPxeZVSmLcCpXjajakwhCTxF9+Lic/DtyjApsNEQASZ7kx7Z7r2bzehSZNKJCkE4YiP97HTfKDtWzQ6yoUekA9vNb15Reyu9UJUeUekq0iEl3TL5xCkiaprHT4MWKOj79mA1uJ1q5A8eLGQune/F1nJYegxRjAOUGRZwV/91V/x4ME5JycrTk6OKUrDxZsXeC9NCnkuzWFpYk68fAxmBImF2EiSel4pBqXQPmDGjv6Dzxt/L0SZsXRe8jzj8ZMnnJ6ecrQ6hgDPnj3jy2dPud2uBbuJayHFbR1v4gSEqkhEpNdJDY0BRWJZZJopoJQfy0d18L7ehqcOlmk8DnPJ6b4IiYgKhxP2cedOk01hDF3jcymIU4uHr5Bo4skvSTzfpAEnKXyMRMgdueRJomt8n+FgtFIN46ecgLw0uZTigUem7h3eK7wymCDf00YIRrSA3coH/FgDp3wkjO/ZeOkQCiqgjXy2TAvQG4KNBFN/QE5ZMuPRRsB2a6J/X9z3Bufo+5Qfx8mgLKcqZyNpkzCD4Kca3iSKKYGzWsVphgxrc/G0zXKMyQ7OqciEd10fSTHJr0EI5BC8YBRlRgj54V3DOIWQYnGcotAydIt4Uoknt/eyh/3/j3/b8Q37kkrk7gGYHb+MSX6ExCYhRwhTDQcI5hmbQrWSRsw8zykKWbd911JFb+a+6+l8I/J2mXi82zxjtlzQ9jWzmXj0pKmbPM9o9gNdKypYb7aXFEWBC56276h3e1arlXyyO80nogyy3++5ubnh9OwMm011H8h+4IA2eve2bY3RIg+ZLRYorYVkjaS80VoaQ2ODKAqyPB/3K+cDeZ7fIWZSHds0zShPd3x8PFoXpObU+Xwuz73v6TvJ3T0Bk1mKQqTYk/KP99JImQi1oMJYT9+50iHI0EY8L0ZrsrIkyzL80KOCj7Xw12Ox2CK42NiuKPMcsWrTURFrkgkV71/5PRsnDRMxf9iUk7yn0v2U5O/SdFZ6n9oojLKxOzJweXXFttkxIL7bm3aHLfPxdbMix/gYf4PQ/em8pIkc2acU6Mkf9Gvk0jcQK3d+/lv+/U2/d0iyg2i9hDGvjES8UmMTYHreyR4gTccm6eq7r/P1ZvxIqh2QSwfc1m8/Uk4f7kaGEKZWgHS83aT7247fSTC53uGGFufky7uBvnMYBFB0Qy9SIj5Eb6ZA0D1e1QxO03U9u53D2AznpODTKIjgoVbSDa+UJreKqsypykJAs6KUCYzg0V70Odu2oW12tLWYgc+KU67XO3b7DXXTkJcW5xHNyuAwJiMvM/Z78dexVPg+8ODBKZnR9EPH5fWaolxS5guGQXNz3XC9rml7pBPUK5ZVxfx0STbvOT4+5Xs//vdY72quNjuC8xjtqbKBP/rBO5yfndO1DeuLJa5tCVEjtG1qvvj0I7r9FmszFoslr188B2UIThJb1w/kecFus4kSLiV5UdIPPcYWSOdGRVWt2PcNLsiIZ49DFTk+s7hBDN+7vmO2mBOizEVRlrSNMPBJC9jGqQIdNMFBW++ZVxWu7+nqmm6/o9lt2W83KGXIbcbDBw8wxtJ2PXrfkOUls/mS1dExbdejUGw2W6qyIijY1jtOwin9EHWngybPZ8znx5yePhDPJJPxq199yOnZuQCFfY+2mtv1DavlMTazktx4z3y5JLNgjWY2m9E1e/b1jt57ZkFRlTMIIlHQdz23N9cE79g3W+q2IWhP61qCVjgFdTfQv7rh4YN32W5r6rpBm0ykjuJGom3Gbrfj4fk5u+2Oer8jN56vfvMp+801129esd/u6doj3nn8hHxxnz5f0mclvS7wfcAPFd5BbhzG9JJIKTg7O+Le2RmbXUM3RPO9eg8E9rs9F68v0Drw07/zd7m5vGaz3rDd7KT4IHZAKR8BisRyEyeWQJuA1i4STAZt3VhopwkmqZIjWZRYbBXZdGIQ9bET0SQz0BixYqGktCK4g0mk9F5QomGfcnQA5aOGuHhSHEa4cPB736oU0QWC8qxvbmn2HcEhXnV9h1KOLJdR492+QWlNVRU8evL/I++/nm3LsvQ+7DfNMtsee13e9JlVXbZ9swR0A2ATYEMAA2IwpFDgSVQoQn+XXiS9gJTEN1BEA4wACaDZBl1dvjKz0l9/3HbLTaOHMefa+9zMKiCCT6pcFVnn3n23O2utOeYY4xvf991Ha1ivNrRtR/CB73//z/G+4513vsYbb7xNYUvsohxlxHbbhnpSEaNjGHYMPnJ0dspuN4Cecu/eu2hjePLsPYwacL1CTwXMIVZJksQQcIQQx8lSF3oCAWsrqmJOXUwILoBy9Nuejb5hO61pmgllAUURsY2iKAvKQrzsrBb/s7H5qyQxEYMQkSoyWAxGYlaqTSVRGVB4ovZENaCKgqKo0YWYIUYMEZhNpxwfLTk5XvLi2QvWq0tWqzm77YK+PyVSS+GXwLVgInHnia3HNT1WG5mS1YaoI73vmdUTCmspjJXErSjEQ8VKYRY6Rz907HZr+q6BGGialrqeiCxnKcBK33c0zU4mwCJ0XUtUUFWVFFNa1rrLRV4hUknbppX1bSXh814aDYvFCV/7+jeJKJbHx9SXU9abXWpiuNG/R6VpYKllA0oNKEPynghEpZJsn05Jd8GAIyqRzVJIQyREoXMbq6TZiMfoTq6HAasg6EqaOaEhxk6ktozi+PiE1WrFs+efo5VmsTinKCYYU2JNSZZ1E4mNQIwdMbYp+RFD7wxy+wQ6ZXaTD30yBg/iyZDkG7TSkiiPwFFERY8f9sV9iI7g99KUCivSibaiqmrx5DOlyD+2W5xrMBaqqpSEPOYm5i0X7LGXGQ5A/X1Wd5AOJqkYNf57kiVTGZhPuXJi+MXg03UqMaoY/9NKPDLzVJLKTaLUZP0P5Im/Nsf981PqqqawBquA0u5zdS0SmWqMGAIqxcJKgagVVmt8nvwEGfCIKZHOhYAGrSLe9/i+o+t6mrZht1kz9B1+GPBuILqIVjIxXFpLaS0ohc6yhVGKk9mkorIaaxIzRDlMpQlFSQgehZjtopOZtjZYW0CSabTKU9qauqzFCzJEtpsVTduJ/04qgAtrxedTS8NQ1nYEF8lGtdG7NKQXiMoz9C0+KDH9LQrKUmSIy+TNV1YCSnddj3MDQ4pxSmkiFqUNVV1SFBXaTEApfIg0XUdUMmlqy5KynrA8v4spJtystjx/8pyffPiCF1fi2+ejAj3DDyJX54J4qHonEqYVE4pYE3VJ1DXNsKJrnTT+fETRUxSgAszqCWUxIQ5bYhtx3qEjzMoZVRUpCi/XWhuisvigcFERTMWuczy7WBP1I3oPd85PODlespjNmE5q+naHUgFrNXVdcnJyhL//gKOjJfUk5WY6e/5IflaZcvT3UEolMm8YrVqEwSGNSZFvgmFQ7HYNl5drLq+uubxc07SDXCtlUCblbOlGVok5YUxuX6epRtLAEgE1ymjpvFwANTKpGN9LYn1mTo6N0gg6DUIBWNS41+cGKkDUmYUKB0GLdGrGdjOpUD/03bjFXEo5be46j1JYOjVIc5hV+/OWi2yVG2zEMcZGdTgFrlJn87YOvawdRU6Esy/JnoXx1chqzeivovZ5mrLiG5jua5XYtbfP4N67jdFtM+1TxsheD+wBhjiymMbyIk2NQxz/N26u6T6JQ0SHgTwEQsySscnTISoEz0m1iAeFYVIvKOyUoR9odi1DP2BCWj9uoB8MNxcb+sYxmVYsj2a89so7tH1D17f0rqPrW5EijakVpNQ4HCD7vPRHvA+46CC4lL/LGs01mX0J8Akx4JxYFZR2yvnxPU4W5yhEaeb55RWPnj3DOYVCGvijd6DKEugRW8hQQRYNRCV/vXSuUwaTlpWsL5sTmpjjRlrnKUbsy8z0OUquX4ie7AAiE+YpxkTIScnoO5FQ7ezHcasZmOvQ1FzTykrDM6oxjIzCSamZZ4yR+l4lnx8ja3VsnkWxe4jxgIGMGkEVlEibj8yxg7xKGuwmMckLySti8mIy4ilYVSU2SfUqrVDRQpD7zqnEmCxsPoWJATQQoyFGi/cF5PiWcoaxwe1lOCyGSGFEyURAGfmd5XnCGHGDMDVAvF2sLajKaQKILFnyNBzI5kcT0vfKDVDZJ6zN6gPCyjVpUCUrIRgNRsPg9vYQMWpKyn3dP8bjfF73sWS8+7RN5zbLuVr5/VK8/SoxmGDPhLjNVMoAQerpxJeZTL98L4paholVLjxiQEVFoQ0CJss1CgFQhoBi8JG2dxhbyCBqgMJoqkJ864KPRKuwtqR3PuUUohrQp8E/UGgX2LUtcWQlIgCIkXgclSbg5B5Tehx6jUSKshpllkOMGFuw2qwxxlBXNXVd0w/C+rfWjiz/rm0YfKD3aVgSlWKu2AEI3l2gsIQgZAthbQ34ECjKArRIN0dkCKkb3ChXl9m63eBSniz3e1YnSReIKgFFfdfTdl2SxQuUdZ0GHtJ7pu92yGAZ/YhjCpLxUGYuM1LS/aDEF1pyxiDr0ohq1nh/pOFGHyNDCDhk6M7FmOJYqvWJo/wrSI4XEwiuYt6/kydxCqQRkd4OUYClwgiINn5++p7GyuCdx3PRXLMeGgbl03M9VhvM3igo1U5xzBcjScZfMYKeAZ+ucZI7hRFQHePpwfq4xRpSqS95GO9fev5h7LmVG6rM/s3vsV+bL7OWbgFSiQ0ream8PufeB+9OHubJ4xSjH97Bt1OosX4l5TmSO6lxrctwR75OkqFlW4KAMMPTn8ac/ZcdvxJgEuR1wPtOqI/eE5w0s6uySsl3JncXqXAJBHqcU3TdQNt4itLjfPYLcKkhQtpsFMaIt0VVWjEjTtMPbZ9NKEmT/J00cfqe6bRGxZ6m3YiZWois1zsG52iTvFBZlBSFpWlaae4XEwhQWosxgsJvtg3X65LCCq3x6tqx3TrQFbm5NkTLQIWpplSzE6rpMbSBXXNN08iUtI4Di5kF3zA0a6yKBO/odlsm8xnTyqLDwOXzpzx89VWWixlXF8/ZNQPzxTIlPxHvBgloSiSRrq9vgEhVK5H8qGaUZcHOtWQ6nvNepv0nNWUqFINXlJUU7M575vMFMWxHFF0pm6ZVk7iLj+KVURS0zQ7vBjSRZ08e03Q9dT3Bz+coFIv5gqubG7bbHYvFEdaWYzIS8vusNxitmS8XOO+wRcnqZsVm23B8dMpu14GS7zEMnovLK87v3D2ghjt2zY7FYpkWpiyu6XSKUQ5rjEzI1qVMqA09ZZrAJQ4SXH1kt93QtDvadocLDlMYbFUweM8QAkOIdOsdz54+xzuZKui7jtVG/Jx0DNIg2u04Pznl+uIFq5tL8I7LF095+vgz2u0GoyNlOeP07AHTxSmUU9qgGCiEJupLdADvWgqr0CqgbGS5mHL37h38s0vcuqXvHJ3b8uLFMzbrNV2z5cWzwO//9m/z7jtv8+zZMz799DNhTgSh62sURpsxKOSiWNgcmW2i0hSTbDIoiDoH9BwA2ftG5Hw+Kgz7iVUdVXrdPt8LGXxS+6LvVkEd5X1AmqVRKUIUcGlMdVQ2rc7BVqMO4+ev+RGS2WTbtux2HaWdJVkuuZ5RyVRW2/XYwlBWJUfHR3RNM065Oee5uHzKD37wV2w2awo75c6dO0ymE7DZ2FIaUSF4oUbT0DlH0w4Ya6jrY1579Zu44Gjb5xAaYhSAV2K9kWY2UXwwvOjeDyGD1wWFnVCYGf3Q4mOg9QMqrJlNKpaz5KuRmqV2KJjP5+SJTWtsaiypsZAOITcBpcmgKXK/M7GqRHJBOk0+DTk4AVDT98zTPlVZsJhPOVoumE1rNrsNm/UVm80RXbshxmWSmEtmliaBAF4MPwtt8G5AFXLz+yCN2bKQfctqS1UVOD+ASRNGwbFrtwx9h1FQ1mVaH8J8qKoaWxick4n6mOSwhqEVGRMlv7vWYjru0rSY0oZApO96ikJRGYuxtST2RcV0fiSgfQjcuXuXpy8+42b1XJqIIRtdp8JfibSHnHyHMGCSVnEkMSlKTFWglcVogydLIRzmGTpJaqVklV7ijwnSvFaGGHuca3CuRSuZJGu7jkePH/PZZ5/x9a9/A2MKtClSgSuTmVpLUhm9J4SBGJ2YA4fbAFPwIfkz+VTYOLyXiSnvHS4ExCNE7UH61LyBgPcqAQdJFi8Km0ArmyQPFEqVVOWMupqgteHy8gLnOsDJhJuBvk/3rMp+KrlFIcFzbJLEfbzc4+25KCS9TpGjpQBMuQiQpyodQSWWklJYLUw8Y0RGRJlUtKeEWBqxuXi/PWH163ycHS3HIkGpNLkYsoRMmmxPOq5aRYyGurAMRGGQaIXVRq5Z8r8i+S7kfD8i92DXirzFbtewSeBS9AGyJw0CrJdFMXrwcKg7rxSFscyqksIo8b2JoiBgrICjISRvGKXTPZbAHluCFsapLSJVOaEsKlCKPoq88JDAmJCaaMaKDJSADDJdrMfbNqYhksRCJgAClCkj/qhlWVNVE6p6QlFYjJWY4pxLTVVpKA2DTxIgBmuSa44Wlk/XCxi33q4JOlDUNdPFgpPJEbOz+0RV0qwcn1/s+MWnF2ybAW3EYLioCtF1T5JBzjl618vv4cR0ede0uAA+yL4gxTEUhWI2sZwsa+6fzymMxe3WhLaB3hA8zOuK2TRQVY7Oabadx3nNEIRZhSro+p5htaXpHZerHScnxxyfnDCfL5hUNX27Ad9Q6MB8Ynjz9QdMihq0YQiJgWsVZZIzFr8rLwVmEGBcBfAujPlR3ttS8kSI4IbIerXj6nLF9fWa7bbFhZhi+r6oPfyZ14CAf1JYKmS6f9/ci6OMMnDQEDx8v/y9UnM2t/hloyE3wrIMZS7UdWSMlVJHp/VFLo5zGb1vnMUEWOXBqnw+8ovyY6NafDpNWS0jR+RbYNv4MwFMB59/AFWMDYlDAEP2S58AwJj2MZNiBZKnfxUOn65dzIwMiZOy12afNhjhQpXqlsPrlOuIGFNhkhoHYyMoJgBB6uAQDxgsSY4v5y9jYy3d/ZmFIfZcEjON2fuGxfy9Vb6fRKqrKmth4oVAWzesb1b0XYd3PvngRZrNjqEb6NoeawuOjo6pqgnOCwtr26zp+078rSNYa5gkX02jFCpGVNQMbqD3HX3oRqk0cm2ntLA8U90UI3gXaUNHXU84Xp6wmB1xtDhlGDyr1Zab9YZ2cNIHKfIIX5p2VgdxQUt+IbmPAx1TH8iP4I/IQO7fweowXhNUYuekBmW+hMLGtHKOE3MyZFaAkmEIYfl42djSwKJKnhrkPErtJSrH0BVzzSiAgzGF7MmJjSG2UmlIKDWVi0LyWJPYw1l5YZSOiwEX0p/HWLGfKkch5+eg2Zhj0uF3EblYOwJsWluqckJRVALC6OxdolFBE73GaY83YayDVfqsEK00+GPyw9HZ805AoBijDFfFDDCJBHD+3YwR7lHweRBLGM4u+YIprdHWUhZ16g/ZlLObNIAm1ziYLNGYWKpKJRCrGD2R8tAr7L1YjBEJ3mEYEtNKWBVW7aXtjBbZ6fH76Bw3GJueo9teCh5Km/1AsBLQ8KtyvNyQPjzGvZDbLIfMoPzCe+V1piRO2ySjJQMiiamf9mStNG7wKf6IRPvgRd5NAPQIWuSSiQIkZoB1cE5yaaMTWz8NTgbABYbeJxbafgjaa9C6IMSIC4HCyvCSDyLxpo1Ne7h8Px8krojaiMTNsixxvicYkRY2RuKQ6zuRe4YElqSaNgpQplWScNOGrhuSXUwG4OX8+xilV6DEn2iUt0eNjLrcl7aJ9ZOZX0ZrAUuMwQ3C7PfOp7Wtkg2AYhjcgZqGXNd8hJC9gvN1T7UlCpVlhlUCJ6JKz/Wp7yIMVpcZxlJUSpxJww3SwjP4iNQjxiS1pHggPiqNGZ9kXmPeP6Ma64yY4nHuy+R1TpLhzACTsVbIBTEyDJ6bdkvj+3H7DzHIeh8/Pe/6+xQhpqtkMuisBACTayoxd78W8qDTXlbyFotvv+D2aymDTC+voxFM+uL6Gr2Nxl7n/rPyaw8HpvYAJPv8NHKbpRkP/ZYOsuXD4abxGYes3DEDG195OKB1mPhG8tCtZxzd+V8DMA1Dz5AogN77tGCUyO3YGWVVoVAEq0UHNZl9ueAY3JCmFh3r9Yq2axiGgeCEDqiTTmZdVwIspQWktWIymRBC4ObqSkxzy0KokD7Q9T0KuHv3Ls+fP+fq8pphcBTWcrO6oW13dIOwhkR/VuOGHoXGphHFR59/xtnpMadnR8QY2a63PH7yKX3fMJtO2DU9i/mCypYQIzfX17z//s/R2nJ2dsW219ys1mAsq61jvR64uN7xV//+B3Rty263Y+haHt67y8XVBa8fzfnOt77Jb373N/nw44956+13ODu/wyeffs6TJ8+54x2T6QJjLM+eP+WtN99hu9vx+MljfvCDH/Ctb3+DSGAymVBPJ2w2KynMYyAGB8GzazuW8xnMJ+w2G+qqoKpKIDINkflsQQiiH1oU0uCs63qUN3He0+52XF5epmBnOTk54Sc/+QnzxREPXnnIdDrj4uKCd999h5/+/Od89vkjFvM5bdNwcXHBk8dP8E7knv7iz/8X7t6/z3/y+7/PX/zFX3J2docf/OBH7DY7vvWNb/Gv/vRPuVqtePDgPm+//Rbf+ta3aJomSapUXF1dcXJyRrNr6douBfrAdDoh+nZMEI+OjthsGqKS4CwBPaC0oSgr6nrGo88fgdFM5jOOj485O70rwOAQsKagGTr+/V/9Bb/7u7/L8ckJz188R8eI0YrLqyuePHki52oYeP7sOU8eP+L68oK6sGw2O4ah5+R4yVvvvst8ecTiaIGua64vV5gzS1KYxBjFar2lro6w1mAsRDXw4OFdWg8urOiHhuvrS65u/pzzs7vcvXvMixeXvHj+lK+98xbr9Q1/8Rd/DkmqxaAJyAZgkixTCFKgiDbrPrRoA9mPQUwfhI2yP7RMiMYMMI22bmPSEdKGkacnokqTZ3lDIx4Eo7RZpWuXqZajWfJhUCXlrnBrWvercnRdR1EyNtVj2qDFR1qRpZu6rgU8SkVsccxkMgGU+LmtNpwsT3jvvff42c/e5+c/+5B/9I/+Ea88fMh8IcB0XZcjy9Zow3Q6Yb1eUVpL8J7tpmM+t5yd3mW3g2G4wfWtSMYVKXFXatxY3ODo+4EQItZWIyghLJlI3zq862h2clNVRYXRNSq5lsRgx6m7LD/lnJNpl3Sv9d3AfrJGobVHCqo0GZe0xw1GPjfC0A9YK+wqr0Wf3DlHWWjquub4+Ij5fM7NZsNqteLi4jLJjw441zEMoLSn0AWoJM2nI0pH+q7DKE2hNcYWolluC+qqpkqTiX3f0/adgHBD4PLykroqWSwmTCYVs9lspM3Xkxql5B7ICXX2W1LItJQbQgKVSQC8gChFKfJ4gwsYJ9mAtYazs3NOT07o+wEivPPOuzx/8YjPPvuFeG341ByL2SQU0WhW+wSINPUUQ8TjCUFkoBTiuej6VhLgFC8MihiyhNFIccT7mBoPGluAsZrtbstmvWY6XTIMjv/53/xbfvazn9F1Hf/5f/4PZVCAgyZlTDJGPk9DSuHg3MAwCLM64hNDaZBiPOxNtockG+Jckgc8GHDMcjoiHejGxor3yWhWSfKe2v4YU45NDNGq13zwwQcM3lGUJcYy+uTlc6jGTG1f9MU8rD321HL1vE/aospp4T4JhtTgSetDacakV6dJ7yxXWaRpOW01tjX4oIg+v0f6ioA5OB+/zkdZ7O8rSLIOWo3STXlCXBvRLY+EpLWuEsgeKZIHHqlwyTIwWVLO9QOb7Yb1ZsNuJ36l280apWQCVBohSiQhy2Is7kRGQknRpzWF1UyrSnIFLfP8RGncDa6XdenEKyMzHDPzUvyT9g2Yuq5RaLp+oGu7NDmcZCi0SveyZTKpgCgsq2FIMmZpEi41CWXCeyDEAaUM8/mCqp5iixKixETRbZehsKbdst1uUEriRjWZpny8hCRHebXa0LeR65sbrm6uWG+2DHHA1iWn5+e8W84JqmCzbXn8+Dkf/OITnjy/AAxFUWMHh2obmrYRCdfkERAHGUYKzrFdr2i2O3RU6OipjDRz53PD2emChw/u8ODeOXfOT1hd37CaWty8pNTg+kBRRuazinoygU3L84s1rdN4LNhSgMMYGVpP2zour7c8efIMbS3GFpRFhVUBFTqMcsxqza75Fq8+fJPJZIpWmrK0EDW6LCkLK9dVzC+lfhr8vumRo4pKTdhUjEcnMe/q6oqr6ys2m12SybTS5E93+svTkrdkOXOTafR5i2MhfOjAoQ+bfGMzPgNAemwOxYP33+d8MTF+5DURT4w6vUkYm735NflTD2Ch2zliagipw7+r3ELfsxDyd1E5X1WpIZzeFQ5iY0ifGPMEcH6VAMykmlXp7BUT6DupmUMITCcCtubc9quS0bpBptH3cmp5UvjgPtAJ3BivingwkZqcMnyRBjq0SInZwu5lmJVM7MowyV49Idc4eWp87EofHEqlBpnKHnUGU+xrDskVfJL+lNbVdDoXD9QknTSpKp4/fcZnn33Gzc0NrvcY62i7jnm5wFrN0yePWG+uefX1Vzk/P2c+n7Fptux2WwGmhoGyKphUibmvNaXNTbWBru9oh05sCmIchwWtMqPMUwbt+l58Pu6c3+HO2R2KouTo6ITPPvuU588v6VrPnfNXRvlCrTSaPDSWm/qpOaYF/PHeEbX4/bhBmK4xM4syu0spAcFVLuAit6WWRFHERam3xU9H7ofgQ5ooF7mtmFjm0XuC8yLlHcM+t9F6BC8OZe1E4s+OQJF4d9oRiDgEGaXPlPbJBLzk//JAkFIyUe+9x48NW6TuVor9ZHiWtD4EPBifo5U0YYk63YbyeGGr8TvK54ragQoyGOULuff2AFNEaHSeLBEdkrKP0gICqQOPFclpBawrTPLRS8BLjJHoE8s/eecM3kl80wpjLYWtkiR2mp7PxX9qkEa9r+HzzzyAZZIMn7EF2Y8nJDDL+fKWb9To7zoCfXovxa32oKHcRwcAyYGMYD50YqPl6/tVOQ5ltW6zlA7X4L6Oys89/Ld8jA328bW5epF7O+TBRCUN7t1OhvojAZ0sGVRqEEXtCS6OgKs2JkmmSR5pjYBPIrGmIEQcMmCe5RlDSD66zuMHLyDI4GmaBltbXBCpPukNTtnudlTjawOr1YqjoyVay8B+7waRky5LyqqiLEua7Y4sE2rzUGUYBPDXAvhUZclkMsG5gevrK7KfqS0Mxgqw1XdDYgDu5fesLtIa84mtaNN+Fca1MgwDZVkym81o25br62tiuq7iEVql1/mREXWYT0Vkfe2HLPMQWNwDEmp/O+RWXfbgMcaAySDuHsWIMY5qKfK7yJ5rcuxMqi2SH/m0PnMeGA+GeiI+3L4Hs81HToh8BsdymEFRz6eigrXZcLMRSWuR6jdJkvNgrSs1xtacD0vceLnWVSln07cAnEMgKR6AsV/GKLq1Vr7kz+M5HvPz2yBVvh6H+9Gv+u/LPvfWcFjcr/0vPieBmzn5Hc/Fvhfxy2KBnIuX3zt+IYn9VSDTrwSYun7ABegHz2bb0LuBbicbUVGWoguJ+ATtYmS9WTM7PqKoDUbHMQEYhmHUgZ/NJ2w2G4rCjPQ3AZRkyjhEj7Gam5trHr76kJvVikdPHmOM4nix5OzkFO8919crnHPUZU3od2xWa2HNGJhPpxijaduWpm1YLueUZU2hC5wLzGYzZrMJdVGxmE64vHzKtJ5TFzVdv2M6W7JrOy62KzbrLVcXK6bTGcErPvz8ip9++D9x/5VXuVqtabuOQOT07utc7lpmkymLsmZ9fcn0+JjTk2O8ivzghz/g8vKSo+NTPvkfP+Hi8oqLi2v+d//lfyVMlb5ncXzM8fGSsrKYYgb6HiG60bhdayWJrHO8+updFMIWur6+5N7dO0yqiqIQqRUBisSraDZfSpAqJ9KULEqOj4/Zrrb0vQTXwhrqesF6vWa72dHFltPTc15//XXOz++ijeXzzz+jnkx4/c23mNQVR8s5dV1z8eI5r77yAKPgg/feoyoUm9UVy6MFUSv+5m++j7WW//Tv/hF1NeHZs+fM5lP+8O/8EU+ePuHHP/4R7379XX7xi19wfHwsslFVxWq1YujEK8YYw2a3o20bZrOCoiq5urpksZzy7d/8Dk0z8OjJU25ubljMZOOYLxfMFgvef/8XTOdz7j98wJ27dzHG0jQdISgxn8Pzox++zysP7hDjwOrmkufPn/PhRx9Q1zXGGP6Xf/dXfPbZZ2zWa6w23L1zxs8//YTlYs5rr7zJa6++QlVPKOsZwTn00HP/9IzlZEETI8EZdOyZnN5HW6GTmwKC7pjOFG+99SZKP+bzxz/m4SunXN1cMZtBVTo+/+wD/r///JK/8/f+Hq+/dp9v/sbb/PBnP0WbtFmHwOAGimIiDX4t088m+S7lYAxIQZ/0ktFx3Fhz+Ss60BKEsiSIsqCCFvq+ks2A7AOt9mahIeb/wq1AdSsJJE8ORLS5naTuGxwZGPvqHEUloK/Ianlm05Km2VKWFbYo6fpWDMCdFyZn1/D5o89QIXLnzh3Oz8+FtVJP+c53vsP19Q2ffvY+//f/x/+Nsq749re+w+/87u/y+ptvcXNzBYj/zDB0fPLJJ7z22mscHx8xnUoS1TWRo8V9rL3DavOMOHSoIgLC6MgT74Nz7JoW74BoxJAyiu/L0A/stg1910MMuFZR6BtUKOibns18zdBey2aoDc57Ll9csNvtZDofubd3uzbJQBqslUTEWJ0KLfk+AMSQ7vu9hnTwjq5vaFpDVckUalFULBZz7jw449HTx6w3ay4uLthsNnTNmtJ6Cjug4pShk+lRW0QmswJ93VKVBdWkkj2lKPDes9nsqKspy4U0aHXSBPZuYLPZUJa1TAsOLp33gd1uI35xfccw9GOjQ2kp1sWLBW6uV8lHy9A2LVUy2XRO1k9RWKTQlTV0fb3iO9/+be4/eMjN6oZXX7vHN37jGzx5+gk//dnfMPg1Lu7355gKx5AZTVk6TwnwECIE5+iHHmKkSE0e+pzIifwISjwDRlkcSPSv/TqPeLzv+P73/5LHjx+hKPjow0/5xYef8N3vfpd/8k/+CcvlEjck/SclXm1KxdTAFfaSS7nCkKa93CCeM27oGYZe5PFiIMQBn8DFYZB8BjRG7YstAeSFnRkAlMcNHc71QEieDCFJV8m5ks8VoHMym/Ppo8/xSUbPuWH8fcfmlsqzVfmhDBjln+z/Pf8564oqpEFx8KwsZSr5pSB8isRQRUBqY6yw68pK5IaVSA75kNl9kPSFkMber//hffb7PDznwmLJA05SeESIQSSQraGoytG7q0hTwFnrXCaJ90V+boaVtiBWAYIXL04lnknWCMCkEYaQxDAZ5pApzJ7SFsxmJXVpSYY2IoHUD0laWiV5PWnCF4Udm2hGK8zhHhoC2+0W7wK7pmG729F1w60ipaoqCmtxwwBRWFa5sMi/d2YdSHOuwpqKajJjOl0AmsF7mq7n6mbN0As4q1RkMhV2u7UWU1iiNry4vGLbdDRtT9f2dMNA10rjwceAw9A4j9s4bpoXfPb0z/nz779PDJqbmw0XlyvAENBs2wa/FeEHW2im04qj4yXHR0f0mys2qy3n53c4Wh4z9I6PPvoIZR3oQFVq3n7jPl9/93UW8xprwHU3KL/m/KTiaHaKGwK7XY/RlmpaUVQF87nj4mpHN4jpugBwAYMoEzovYl/ORyIDkYEQdmigLKC0MPiKgTluCLS7FqtFKtEPjpvLK6xR1GVBYQ1duyM4kTyyqeGWzayLQqbGw+AJMdA7T9MMbLdbhl4mxFUqwq1NU5u5wPTCLNUJYRa/3RT/E8PcpwnVPVPo5ebeF+OX7AkkQGF89HYx60PydkpN/f0400va8/JGWTZPH3wGZLEuxmL48BhZGbkxmiPvQWgdC/8vQX/GEJ4X18FvnNs7YwtOxcQokMe99yNuopEc3HxVkPyYwTjFIbvy8FBBJrPHyWKV2RAGpU2SOZPGuzFGfOjKcm/gfsA2gn3sHf0mD+7TDD6pg+/GyDKRYYIMkEh/NIjEpk+xVpsE3BepGS7f9fz8Hm++9Q4vXrzgo48+4qOPpWbs+xXD9ZbpfI7WmqePnnF1ccPy6IhvfvPb3D8v6fuWpmkoy4J8N+nUuLXaMLheZMmiFs+k7H2qhEmrUzNMvGekWT+bTBJQXXL//n0265anTy65uW6Zz844O60YQoNSEaMMWhWoqAEBmOR8y/UJMeCjBzxdYpt47+HA0zI3yaSOJH2//U2wb1qmpmNIcnRpIDRjUnkgLUYZ8mlbOTdN09APIkOnE7BUltUBwKST9JuVQYz0HJNArHE4AvG2y1KKGpXqieR9qPXIpswN2BizX9seXEbn8yORxaq9j9V4X6sMNCWjeX272Qk6/f5FYhbZ8RzGETwaFQIRcB+pC7RIUuchpKwqQQKo4shMyGywgDKMwIuAWHFkWOZhLe/3wIHsK9Wt7x18TPdJ+ka5OarNrSYtMTG8TAZrq4Nrn/1pHC7dr9nfcs96yg36zLbPe4Y+uI9uN6tvASeMS+krdYwNdJWbxgDqVmzcP/d2M/r2+yjyUMbtexry7hlj9oiLrFY3dO2Ormvpuw5rNa6XflT0MJnMx5iutUUZYcC4voVoCc7hk2dTVZSAsJm0gfV6PebkAkoMaTgyMHiHChafpqiLokBby9B12FJy9cePHnH37l2qqhayRPJXms1mGF0QPOy2bZKztyjv8c6JB50uRjDFVJbpdEoIYRwcrKqKEBxFUVKUxaiwkWvF3otFSx60sKYgeJEgdt4TvMcoWC6XzGYzALa7Lc9evGC5PGK73Ul/ezKRYc7UQx8SwJSZT5BK7ByrgnCHOBiayzH2ZY9JFCgj10QZTfAJKE8sYQVpyMKPwGVen/Lf3n8p1y8ZWDfKoGJSAeF2nhVCoPcOXWSw0dG7lt4NoDWmMJRVxfxoyfVqxbZvWbcNMfcr1AHAP/75ML84fOzlG5x9vDrgXUlsP8gV421W0S87vjDk9B849uCeImNOh0CTPsh7x4GN/Fm/AnA6jHm313rKTnNgkAcPvszt14wyhge1oexLMvC+f00g93V+1fGrPZi8eIB0XUfXdUnqomdwg0gVKUNEE70gktvtDu/nTEwtjW0lkj+D8yKlocD7ctSCraqS6UQmNAfnxukUMYmDjz76BU3bEkLg/PQufdfRtu1oCvzi2XNUKIVl1Q9M65rJtMIWBtHvjCyPFihl6buB7XbN66+/SbNrKAtBpL33VGUFeILWqUgVk0OFpes8i2MNwRKSTNIQFZ8+eSHeF1aS3o8+e0JRGDjVLKY1i5Mzrm/WPH9+wYN7d3j3nbd5+PAhP//5+8ymM+7du890tkAbxc3lFevNjsEHXnn4kFdffcjJfMl0WvHkySM++uhDtFZ473jvvZ9z9+4d7p4eUZUlhSmY1lNKm4Oc5uTkjLbtWSyPJKCnhHA+mY7IuDEF5aQmIMZ7bhgwUbOYz0fUXis4Oznh5PiIpuu4vLrCeU9h5Hlt29K3DU8efy6gSvQ8fOU+isj15QVVVXLv/l0ePnzI9eUVN8dXrPWKDz74BUVR8MnHH3F1fcXgJPA/ePCAEEJKLDv63hGcTK4MzqG15np1jS2OQE0Fsfee2WwKShrBjx4/4rVXHlAWNjEC4OTkBJuSUmHVBYamZzFbUJUV7/38B3zrm19jMikwJvLG668yndb89fe/T9c2GGul6R0CWmn6oefRo8cYY3jjzTc5PlqgjOHxk6esNxuOTo45P7/D+etzdrsL6qKkHSI3Nxvu3D0m0FNOpszmFd3QElRDGQfu3b/Hb/02/Mt/+T9S2JJLpXCLjt/+rW/w+aePeP+9HzGbL/jjP/5Dnj5/zIura0KMWGMoJiUiayXFktZa5BZUnmxWY9EvAS2xj7LUcUoeVEyJPuT8bh+oxqCo5HVRinatZbIlB0v5+2Fj4YtJeA5et5H6OG7qh4XBV+EYhk4mNZUUSNtmxWSyIERH1zlJApKBo8j/KOpJiVVCTW/bnsViwYtnL3jw4BVOz045PT3ixcUlxhb8/L2f8PP3fsq3v/ub/P4f/J40TYuSspRCTZggPc4VIgtVH1MYQ1nA2cmMrl2DusRYR1FNhKHTCYDf9wNap/gYoe8d3m3omoHttsH1Aki6XlFVawpbMAye2bbF91u6thvlyq6vb+i6AR9Fn9eHIGbsRIzJ91BE+7x5yv1qlCaiCU4SGptuHR88MfR0XYv3U9lAtcaUBZNJzXw+Y7ttaZqdANquTUMVA0r1KGWZlDXn5wsevnLOo8cfi9lnmqosigKSPIAbnOxDsyld347Abdd1TKdTfN8zn085PTmh64dxL8tThErdNk/0XjSl8yS4S8bMXdenSU2bCtGYGuaKrh04Pj7mm9/8Jm+//TZN07DbtRwfT5lOZlhb0CVgKIMb2igU5tYaNalADCoDyCKjYbUGsv55kSaXJJboJJd7q9GnSPe1NJu874h4njx5xPX1DW5QXF9tePfdd/i93/t9vv3t76BQCTTLEieQuI+pARGT9GCSjQkB7wdQGud6vBPwKfpeJnCjPM/HNCFPKuB9wCsv1zP48f1lLYpvXYyatm1QSd89hMDV5SUnJ/eBghAV2+2OzWaDsX7sPIpZqTQC9glgaogdgEp6vA4CEkWVgaV0+vY589isjZDkpNLtrwRNUElnX2H2ilZKoUye4k2NhSiyDcbkxwTk+CocT58+5ujoiOlkSlWVtxrQOZkPwe8bMsiaLKxFWSNNHxUoitRIjgaSbwMwAjDe+zH/MFozm0zEnF4lNe3k72U0+0nOZPJa1gVFYbAmopVH60j04ifkhp69ZBkHDZjkK6G1TGhaS/B7YHW9bfEu0iVPqMwIHYGj4FCqIN84MTcZECmLELLcXoUtC8rCUFqL0pamc/SJydq0HU3TMgw9mR212a6ppxMiEtdciOyalrZ3DIlRqG0BVryBdATlHUbL9fEhsm08L66f4DwMLuCGQESPJuXeB7SGaGE6nXB6esq9O+cMN4an3jMtNfOJYXa2JPYr1iuNVoHFoub1V06ZFIHaeiZVgVEViwr6Xhj+ISr6TsyqdVkRdcFm53h2sSGoFautsAx8CBgdKWxq9AB9HsTJHhlAROEjNH3k00cv+PnP3uPi2RGz6YS6rlBqYD6fcLSYcXy0wGrwrk9SyJpgjUhqlyVYicPCvkzxO3gZlkiMWGuFp+Czf0rK9yTkyDCESfcQKiRXnL2MhoBLt02IX26oZvBn30I9aNa+dOi0Fzjlk7lzamjomC2XUwxlNIzO4WwEoMZGQXrTOKqFcjgtmpNQpQVcD6Pm/EGxn16Tz00eAMjls1J76RWTGhyRPM1NGnyQ38sW0tyXdS+5t1H7zzkUMvl1PopiIh4Z+T9t0caO8RZSHWqF7SD3Vm72W5HhNTZJdAkIZM2+wZVBKUj3QY6tOg3vabNv0MQsIZmerzI4k0EmNa7XQ0Q0D83l1yilKG01Mi2kxoJ6MmVxdMzD11/nlfdPeO+D91ndbHB9J7LkWljPzkWIlk8/ecQrrzxkNluymJ/JSgsuASRpUMcPkhUEiF6P91pm3GpN8rfwyZvH4cNAVYgSQVGWnJ+f8/jxU4y2LBZH4hdpC4IWxrwAeoUMD8bM3sm5wt7PMhKwvk+T8X6MMSMzQWk8emQjSl6SkFUOG9agMSPTJHuxSe9aci8fhDle2p6y7ClLGYYA6Q3JgFgpDeHUcDR6D07k8y1sp1xbyu+WB+PGHDdJqpksj5jus3GxRvGhYYyNco/mQKEU2OQBM7LPYfx9830m8fHw1ooIEz7L8u3bcH6UrE+5L7n2BqUCSmVp6+y1IrJjcu2yTJ5cs6wkEHUY45tCZfkRiMLCHNkDMTNTNDb5x+ZzF81+/cQI+INzm2JtjotKqSSjmBq96XGtRWYdrwhREXzOMABlIAHLShdyb2TZ0rQfMCqlJB/AmL5MDAKaxf2/f9GW/tf3GPvQXwIuHYJJh4D7l/354B3HPk962/xoqhOkuRNiYL3bCDCQwIdhGOh7qU9tIYxTYZzIXi5qUxqlpb4b1SmCZ+eaca253o17rAsRoy390GOj1KpFWeMjoiaRYmbbD8ymM5qmoW0alDGjGpLIM2oZpCoKkdXzAWsMfetxg0u9LOlr67RmRUZZ/JpWqxXeO+pJza5tKEtLTIMk3dAnAFw8ToekHGJMQYhS31triQHapkVrxfL4hOXyiM1mQ9O0ODewXB5xc3ODUjr5tE0oy5L1dpOGDOTzwqgQsr++Mtwt9bbOTTjSPaGTuku65gFkelQropa90BMScJzZpR43DoppbGGTvJ8dvev291EYa599HSX9WfFLUklVLIy+U9YmSeyuo+l7oorCFJtOmSxmxNJwsVlxs9vReQdGCSCW5TOVYm/ufgAUoQ8xkvHuZcw+tNTl+bEDcOlwTdxiCf3SxccXnjMOqvDFf9s/Pz9+0FM9+Lz92vuPzxcP16u69Tj7oZr9b8k+Yb/9GfttTJ4TE0s3W0eM1goq5+NfluXL8as9mLyn7Tq6vpdCzu+ptHnaOgSStvBA27UUVqZnSVTHEEKagPSjdnFVVaBkaqGqK6xVEEOa/Ao0zY7dbstqdZOeX1MWBVeXlyNyG4N4Jikv1NuysBRVzWRSikE5IenAi8dPcPJ3Kb4L6qpEEQX5VjNpLDpFpZSwCQJUZcFkKnJOwwC+d0QlVMS+82JoF2Xyrnfic2RMhfeKru3RQaT7+t5zc3OD3tg07SgTo/fv38OUJR98+AvabuDevfssF3Oy4a41msV8xtHRnN1uwzA4oXQ2DVqlxqaLlLbCD1Em2qOmSibLpigxtsCkwF7VkwQuaQojAbue1hir6FsotASnk6NlahSLgZ1zA34QPV/vHH0vhs0hJZmb9YppXVNXBSrWrG5umE1qylIMKqeTms1qw2azlin8dsd8PuP6+prNdoMxmtlMNoarqyu6ruP09IwXLy6SJOIe1c2Tl1rnQk4lCUfxBlNa03YtIViGrk8TuYqoNNvtlsuLS9zQ07Uti6kwsOppjS00w9DRdg1lVXJzc83lxQURKMqKy4sLtpuNTB5ozWxS8/Zbr/PmG69jtKJtdzJR73qa7Q3bEnbrCYUtqRYnEGVqYbPZUtSRpjPoQjOZLhiixYUd8wXcDYHlcknXDjTbBiKcnR5RWHj6+DMWyyMevPoqy8WU7W5L6/LGqHHJnPAwKL2MlO8DhwRnpfdFuspZcDaVT68dq+uxqSDBOb4cyUiNlTGJvh20c2FP/pcRTFJJWi3J9eis7fqrotOv11FVFc6FMZALsNKmZofCqhIfRDpPfIci3luKUqjgQuOuUhGkqaqS45MlPnjmiyOurq558eKCn//8Zzx45R537tzBLg0+OPEx826koitriN4QvEXFgsVsmTyVHOgWbSJaF/RDT9u2tF2D926cOs5gSNf1NE2HH4IY3DKwXbesJltJ4Lw0Tvuuk2QyQtcmKY4YE+V77zmEUugQUN6jwt5nLPXXxexTRZSLRCt/j0ESHGl47uXRjNFMJhVlVbDZNLSt/C4ijyfSEzG0WFtjY2BSW87OjrA24lMCZwvLZDKlb/tkDixTVko3RCUyncE7drsdk8mMrmmwxrJcLHn89GlqeEkhb4xGazFnz5NCmSZYliWTSU3b9oAa4y6oJI+h0us1wzDw5psPePXVVzk7O+Ozzz7l8aMn1PUD5oslD195lZ+/f4VWdkwcZJ19WdGRC1sp2JwbiGWZHhNwbXAhPS3Hnf26P5wIlk+IDK6nKAp2uy1tMxCjDEZ85zvf5Z133mEymUpjOkm2ZEAlxgwuhdHM1HthmMQ0wYsSxloI7oDpNOCCw0efwEbIDRSFRxud3i/nKzJhmQso54QZpiJj8dQ0HUdHKrHuArtrKTyEkZnYWloKeaVzkpYbKSkpjjkG789a7mvc6tSSC/YcbPV4QnNqlyd1tTZJ6k4fvni/b47xP62bXHCog+bIr/kRnRP5W8VeDiPfven+D4m1tk/4o7CNtOQRPoQEyqb7MypUMrPOOW8M+d6Udy+LQpr4QRgiKvmHaB2xRlFYAYaUUtQTPTJNVJTni6+L3NsxJBma1ERVWpp1MrglWu4xiDdb13VpMMuJfJ8TcHw8H6noE79VPwKtSokkhmQLER+lXjVK7vuIYQgKPwx0vRs9nYbBMXifhAal6PXeY1Nh2Q89bTfQdD0+KiIaZSzogqgVw+AZnKd3jhA1AYXz0Hae9abFJwaiVtIYjDEStDBFtIFJXbCYz5hUJVpFKquZTUomlWVSGo6XE8KDM3bLAqsj83nN3dMl86llOimpK/EHHAbDkNe+Nrghoo3Bq4I+GILqOT5esusczkecb4SZVpRpMELKsG3rGXzEhYgLqWBUck6dDzx7ccUH7/+C1ekRi/mMui4JseX0eEl7dkwYTplNSqrCitSeEi8uYcvkNSyGxXKfiNdF2zT0fSfTuVpJAy95kORDqeTLqfc549h8T826LAyq1B7AOXz94c/IHnjaT/GrMZaCuuWNocgN81QU56I/7gtfNeaMavRdzK/OEfGwRr6V/R7EtPweeoSo9s+R73H7NTmHzY/n3zE3UDL0FpLPHwBGBiwKrcFaYWdpBYjfmlLqkJbwa30s58fiSWkLrC2xRv48NuvJg45JgjP/Ocmc6cRgEoZEUmXQe6bD7WnePfM0D6ZlCaPDnAb2TR2Zilfj/pinlve7qtwDo5w3slaMOmC8JJn6KmSWE9Slo6xLPvvsEc+fXdB0HUUxIRhpqBNbLi+umUzmxKCZTCUfWCwWlKVNAFMccxABmFKGkBp48iukxroKxCTnG+KAigEQlo82it1uS1GWVNWUsqwBTSwy+KKFlRI0KuSJbp3Wq6xZE5KvYzAJ5ErnJ2TpK3mfoC2osF+PUV6nDtYlJIBJ7dlCAt4msCPJ4wXvMHZA2R6lCowRgCkPxhpbog/uAZ0YmHkwcZwCP5BBAoVRBaN0ewKE82tyzSlydTlvjcLrHpuZe9AqH0a+Pfn/cmam4KV7lAMZxyD3ntYJlInc8gJRjEDrCAyp/CFuDyqG5CWa2Gcq3ZtZXp0EQHq1v4flsYjKtIcDUH/0u1N7SUHy73PQnJYzalLszJ+TxYVTbpvp04rR12zMsaIaifM5HEafVQ40Wsv3Enwy70Uvs5X24IQwruN++j5f46/Ike81+cuXs5bgi8BSfs4vO1c5O85rftxZlfRXvXd0XZtiZJZtk+9jjBHblLIUsF8LYaELA2VpqAsBZ2Q4UvLoITEVjRFmktY6DTeJpCPGiI8kAWVEIt+jklRtHGu1ruvxIbBYzIFI0+yASF3X0nuGPYgSYXAiMa+NorAifyprRTZ6Y80Bi19e47ynIAFM6f7PObn4/kovxySVoQzEDoN8R2ML6npC3w/sdg19L0O0NvVdq7pOHqbcqivkO2fxuYPYgkjShRFkzY/ndSx1AlHqG/K9kPbDUX0IUOm755oApF9SWJvOTwaX4FAKP383FWRQMg8ohCAgfR5Uy0QI6QcMtH2PixFbWKrplMl8Tj2bsus7brYbtn2HIyZ/+AO2Ut67E0M67zC3fvlxkdxuVo7nJO8PX9ZsfKlx+mXtyHjwD2O+O+bF+XF16/kv5+CHANMX//vie3zxO2QVgDFTvlXPkr/9y3V+6vHI+slxBOIh2EaOuWG8x2Lcx4SXexUvH7/ag8k7mq6lGwZ8lKluFzxlmtLKQ5TOe9EK7jrqyUQChG8Y+iE1gkSmQSS3gjTb2h1KJzq7RpqWSlg6m03HanXDMPRpyr5kGIYkrVdSleKNpLVhaHuM1sznU6q6oixlUgUFRVXQtB3eBaqyoK4mQOTO3buEZGy4WMyIwbJr8pk3TCYFm/WOwioWs4lIHJiIix41BMALOu+NgG7BMZnOODs7o9CGbrfl2dMLltMpb77xCsYoPvzoE54/f8Ebb7xO27Xc3Kw4Od3xxr17XF9fUVUTvv2tb4IWff3NVr7P/ft3+Z3f/k1+8eFHaAXf/OY3+Pjjj6nKCcF7+s4zmdTiLeFzYaQoJxMp3rXoZEblsWU1Gkpbo1ltrqmqgqLQFIXGeM9u17BcLKnKimfPXnCzXnNzfYX3JDmWwPX1NbvdlqHrMIXF9Y7p6QlaK7q2oWsaTk+OsFqxXa8prKHtWrabjch5aMV8vuDFi+dAZDabMZ/NWK/XXF9fo5Ti29/+Ok3Tcn15jUJTVTVOKSb1VAydbcGknhKj4/p6hfdQVxNOjo/puxa8ww+OoevYbVtsWdC7jq5vRO6pl4mBwi549fVX+fzzzxN9N7LebPjhj37Io0ePkodFxfOnT2jahroqOT054c03XuWP/vBvY61mt12zupHzM6krom9oN8+5eBZYHp0wKRRES1EYXrx4zvHZlN637PqO1+fH1LUZJw+mU8+3v/VdfvKjn7FarXDDmvXqhmldcHV1wa7ZoAycHi/Z7Lawa+iSLr8KQQRMsyHuS0X4WJggP2XiTI1+JJK3pSQtGbhqLVrUKnCgtSlBJU8sjY8dHPFgo8sJffrgW8m3NMUOCsRsHqhVas5+NY75fEnfS0OwbXuUtmy3K5naK0pUUPR9niCWjbptOqy2WBNw3tG2HYvFQv7ctWgNJyfH3H/wkHv37vPi4pIf/eTHvPfee9jCUE1KdKOYz5YMQ0/bdmLuqi19F9FESmso7BJrZuyaBhdW+NBhbE3fO5p2R9NsafuGST0bC1cpHqJoqDuRwnGDp2t6tpuOwhYUuqRI06ohBIITppP3YuIpEh1pEk9JMRMQ4CkGkbWKUWHZm5KDfG+SVxFR/E28z548EYNIBlVVJYakMeLaxNIdZPpeKUVwhlg4QtehTeDoaEZRKFCylquqYrFYctFeUNgShUk6+A2zxUxAib5ns9kwny9pmgbvj5lOZ0l3uRiBr6IQU/euS7T80o6TSlVVJVbEDW3v0rkNeN9T1TbdIzKFudt2fO3dr3P37l3m8zllWfHRRx9yfDLh9PSM7373N3nvgx9htNmbd4YIOpCNlyGXC2LsCkjTww0Hia0MSTg/pAQvN1nUWDTu0844vo9zA8vFjK71uDBQlRXHx8f83u/9Aa8+fJWu68YJcFKDIsZ8/fwIBgUnSXxIAFNwg5jFjuCS7O/O9zjvcGlKM9Wxo3yTLWyaZkveX16aNQqNc5GuGygriwtO/HS2PSHWRATQcc7z7NlzjNFEnJy5FHC1iUjgTJP4Kpk253CY4vEoLT9Ki+6bqhJo90l1jIcsqPS75CaJgWji6IO1b4zcTjoPJVOl0Ii38vJf52MxmzKtK5EeM5qY9MpzXWC0TjI4B4W4kiax0WmaN3g0UWQlQsS5iLF2ZAs1TUPXtOJz5EX4SyR44ugPZLXCGgvBjwBTXcpUdlWK/5JSMqjkvQz3hJgAoBjF6ytRZXJjdZyAD5G271iv1gloGAiqEGmO1DCVqfpU3Cfpj67rRI4SKapNldhZSiaOfQQXQPsoea8TX9ZhcPtGQBSZv6JIgIcfiCpNrEZAGXwYcD6CtmhbYIuSGBU+etp+YNe0dP2ANiU+apyPdL1ncAI8m6RlXxpL8JpOCdhsrObkaMbp0YLSKHbrG4q+YVoXzCYls2nBbGKZvHKGiscUBurSMCkL5jNhZVmjMAqGoZDpda2xpmBwIsfZOo0bFMbAcjljs+uEveUGisJSTyfjlLsHbtYd23ag7R1t7wGNUqKuEEPk+uqaj1nRbk44PTlmvpjghi3DboXvNijfoc9PmJ2dUhfpGmstpuZG5ONi9uJQIi/TdR3tTgCmiEJrm/w5M9gsl8Lq/RCPSoWjgE2S22Wj+whikqz24E2OPvneG9lwKY5kCUoRRZWccj/YJIC3VgLsSBOXtIvHMfoRQ27fknPOPQMoF98H4muHte6Yf+ZcOM1Jqb0MXxZvkTC876jG1FDNLFGd0bUxp5bnGaPogyMkHxGrgSCSgxiNRhjGMXgw8s3DV4QpenZ6RzzHrDBOCltiTAKYFAholO6pBARkWTM1qhfsVQwygCM+HuYLjX6V7wcl9cPh3/f/vn9sbHSnxpsi3Rf5HlJ52GvfiC0KyVOzLFtmquo8qBA9b739NvcfPOCDDz7kxz/+KT//2QfiEeIVwSiIHZvVhmdPXrDbdkymE7S1LJYnmKIW5ogGi+Q2ok+cZMxjTKyjBFKQ2K3RE0JHCAbXdzJIW9UyxNN2TOoZVTXBmBLvIqE2Y05ARAJVkkCX2Rdp2iv0uCZV9tbMYEM8YB8pRTSFNBvHdZ7yx/H6pCPIu2Y5RIkro2CnDK76gLYDquhRukTbQYY4SKBY8kY5BLh1kuZIQrPckk1SWcLP7qNHzK/L76kTk+5LvH9HJpQClWNmjlHiIpZugNRkzwNxLy2KLH/nVWLhe1RSQlAxAUyKcdhSqcyoyE3QmOKJnF75mZqr6XchnSPGwQODj3J3Z9wpZHmR1C3PKghjvAyRoPP5kWGT/X0RBSyPRga+YgbN4uiVRdqfsjfKodReVp3J+bZLrAwChGDIagf64PoGGNfinnWtxvs05823WLUHjMVf9+PWoMchiMQeVHr5Zz6+jME07u0w3rMSGiU/kJAUGLzIkaftHe+9ACpWZERtUTKZTCGVlj54ej8wcSW6KojR4WKQHoMRz84Y9t9Tay0RJEYGHyiqmmYn6hRlYVEaAWayR1sGl7ywhU6PT2h2WyE3pBqpLEvxf7KSO3f9IEOsIWKRZMQaM9ZQSolUfdM0ow9S3/cp1oCP0k/IfreyPuMIBvlEKNBafj+R+SuoygnaFlxdvmDXNBILC0vTtOQBU3nNXoY7f589SymtjyDi9hm8iQHxhFQH11OBUmbc4/KwUX6/AMIqDJHoXZLNdAkkS/l2UQppw2SmZ94bM9SQ/pfWXh60886hjE5+hrlGMEnxQCwCtDGUkwmzxZLpYo4qLTdXl6yaHZ0bZCDEZ0bsvrcpubY5hI4Ofn458pFB+0MA6WXgdXwLnT9vXFD79zhcN+oAzPuSj8159x5M2v9ZH+wvXwCV1JeBRbe/Z94bDq1O9MsFvRq/+v77xNydCfsvn3/duF/3e2gpjDlAUOEAZPrlx68EmNq+S5N3ga7vktk4HB2fMlvOuLy8Zjadi3lsVGw3DVVVYYqELgfPpC4FWfYunRgxLbeJrRSi52gxl78rmRLWaj9VuVgsOD5e8ujRYyaTCRpN1/ZcXl4CivliOgrPVKWmqCxal4QYabtu1LotrGE6nTOfLVMQE3r+MPRoFamrEmsVXddSqMC00pS2pKos1sJm2xC1xpQVs2VNxDJ4WG22rNc76rrg+fPn4AM6Ql3N0apg6BWnJ8fcu3fOx598zl9//4e8+tprnJ17Hv2bf8O//bN/x0cff8xqveHP/+LP+dpvfJ1/8A/+Affu3ef07JzvfvfbfO97f5Amp1vW6w0/+9nPuHhyw2azw3s4O7/H0dGcwbX0Q8/zyytee+MNHj95jh8C00I8i6S+twQU6+2GyWTCs6ePgcBsOmE2rdluVlw8f4pSGmtLzk9P+fzxU3yI1JMpT59fMHjHW2+9zYMHr/CTn/yExXJOVVe4oafvO9548zUuLi7YbjdMjeU3v/ttPvrwQ168eEaM8PTpM+7ff8B8PuWde29xfHLCv/iXf8pbb7/LdDqVjSVINlRPJnRtz3azYTGfo7Xh5PiU4+Njbq5XnJwuePr0KWApq2na7FJSrCPawNF0hi4sRVVQ1QVVecx2taJrN2wbwxAi3/zOd3n8+AlPnj+nazt+8eFHBO/Zbrdst1uUiiwmNcvlnLOTJYtpxfr6OQ/u32Nxeszd4zl1XdK0W1SEuvQcHZXsmitubgbqek49nXC52tA0MCsW9O3An/3Zn/G3/vYfYm1FYRtiKHjn7W/yV3/+A5pdT1lYHn9+xX/2977Hm29c8OOf/pR/9S//Bf/7/8P/kf/m//3fsQ6eqrQMIaJtOWrgafYFlASN/WYgud5+2mpsAx/QH5VCKKlR9L7xqWwIgBFZzJiSjnGiiLwZHsi1QGryp8CXEvgs2VdYe+AVhci5JIDpl+wPv5bHZrNhNpuN+rbrzQ5j1LihO9+x3a6xtqAsayaTKYWtGHoxex96xyqs+c53vsPV1RXODZyeHKFKw4sXF3gvBdb3/pO/xaPHn/HX//6vmb8/58ErD3j99deZTed0XU/fDxwvjxN4AOtNT99fUtcl09mJSJI21xg1p9k5Ntsdu3aLD4GiVBSlweoSjcUPiq51uN6lZr4UGn4A12miq6hnM4q6wntP23cEFIOPRNelBEWSw6jjmNjsafUkTESRNcuNBW0zxdslnXMBKwcXGFxIiZfCR9lfLl6suNnuePb0BW37KsujCq2i+NN5MEhjoChAITrK1hoqW1AXFd2uo6om1FWNIlJUAuL7NPFpreVkecTHv/iQYRiYTqfcu3+XruvSFFhD0/TMZpOxgBJPQpkfLwoxLd3tdkLrT4lu03SgxIcj+EhI1PM/+ZM/oa6ntG3HG6+/zsWLp2y3La88fMDp6ZL/z3/33+KCRyUPGHJSqHwqCOUx5DTJhLlRxD5RpNP5L8oKo1uZWlN5Qh1hEKfniP67Gf0CilIKx7IscU7YWH/yJ/+Qb3z9G5RlxXqzYTqZs2u2Y5Mw+IjPDIsDJpMAQoMAXz7JFeEhelQc9v5LXph5LsgQhkKPUnRaidxU74KspeiSBG+BUpqiqNlu1vSuSZNnFudlyq6qJvjQ8+TZE8q6wPmOzAgLIWALM/oYxJTcqyyZF3JLK6RUOTdkcizOSWX+L1H1xsQxSVWkQ6UmaNQRQiDGDDolk2bSlK8xBMxeLmZ8i69GsH344IFInY2T4AfMIx9GxpDJzY0YpTkfpQlmtKG0cn2NNdhCgD2ArhlotlvW6zW7bSMm5ckLLFcNwQ9Yo7DGUJcFRNBKpPDAoZWh0BYVI67rcV1H9IG+7wnOY7VlOqspy0I8GA8KBaWkyN+2LeubNdvNVkxxrSUql2Q/NbYoqeqaWinKsqJpGzabFdfX18I6Vwo6aNsOUMnfoqCsCwJwuVqz2TVs2566rslG5UaLpwWaxMwUg3arNF03kCV96npCVJZhkPXogpOmlCINm8DQD3TDQO8i3klst6Xl5GjJpK4pq4K6LumahpubS7o+UFUFr94/5/hoRts2XF6+wLqGu3fvcn5+xPHRAq08x4s5JydLKqvROKaTkt16jXM9wyCbiClLDDqLEdG6TuRgg2WIJcZaqrqknhRMpgVLL0MAk9ownU6Yz+fM5nPWu4HnVze8uLzhxcU1TdfhA1ijqKzGaBl+m81qjo7nnJ0e0e0M3rWsby4xsaU2juXUUtkFupD7qLTVCDB6L7FGK03Xbrm+WrHZrgBGUCizCQ4bqAdtJjKYP/5Lat6NPgQme3zk+LQvtPPP/bT9QcGe/m7SW2ZpPkWksDpJqZPWHGNOefsLxrROcpyU2PnlEeuw8M6fH4XZodTI0peMdd9jkC+VC3qJv2QJXome4/tnr4F8ZOmwoCF6Mf3WxqJRdK7DDUkK1Xx1zOePFneSX5J4Xha2FlZNYidl5lK+WrfOi7oFG44DRlEdspRuX/3DBs0v+/eXH9eYLzwvwbAHj4TxPpRBoHLMQXwIWGPT8IiiMDWBHdN5ze/9/j2+/Z3f4U//9F/x3//3f8psOmM+X6I19F3L1dULNpsVxtrR5+mtt9/k9PxUmC1BZFhVYuxnEHdcf6LVKntPlOadqUrKoyMUMtj0+WeP0Vr8dIqiwuiSwkJflPhDCkkCFoRV6RNQslcNUCn3zgybffN/f82GuGcfKhiHA1UCJXLDVav9tbIjkynBxjFSFBqvPZQWFUu07bCFSzVlxHvJkUbWYMqncu+RgxhnEgMoH9br2/cISuQBlTA1YwwH8Yhxz1YZe9a3HpbTlsDF3LCUBpyR83fQeztsFIuPVfhCDI1RgHmrxeMwFEGGQJQwiUns+jxsFUZ/UwHstA5o49JwZt65Aig7gjTRJ4Qq+Y5KwPUJqEnNwxiIPqbrpca4q9J9p9CYdE2dF2WAQ08YbUT2UmX2RmIoEhUuBmEpD8PoiSOvAW0UoRiIoTrYb7Ki317ON/cXgvPj42PEOIgDX/Ujn49bUnm/BGy63bD+MinXvBcmgDtE+qTokNkufd9TliWddxhjmUxm3L//gGdPnsm1VQJedL2jrwqMChA8nXcEa6nKapSWHgZPNwzo7BkZoXeeJBSKT7f+rmmIMVIWBfPJhO12w2IxoywKGXxtGqb1hMlkwnQ23S9JpXA+sF5vKMoaraVf3Tb9eE7Ed69ktjziZrNlNpuAcwxtk0gPieFepWFL52iabiRWlGW9700kYKosbarfA1dXN7TdgDai4tG1g3hq2mpc88YYVtsNfd+PcWtsqx1cM9kbVLJPDWjMeH0PY16Ow1mOMvHBZI0h623wAgqJ2pacg7IoKa0dhTsP4PvUM0g9lyy5nYWWD76jNWYEPdvB8fz5BS54TGGZL5csTo5ZnpyCNdxs1zy9uGSIEK0lKIjepwGo5G2nFEpn7+AEOinpe/6q/EByXZMXyBdjRU6EXwZ11Pgpt/LeW895KaaPfz4AjXL/M/8neTlkCerDXOU/xGLaZ0mMv7+cny+Jf2P+vH+/Pch0+whpL4ipHs5/l4HZ3DT4Xwkw9X0PUeFdoGk6mrbDOWmYlWXJo0efYXRBXU+xhdAhlbZYU1AUFXVdM58rdk1HdDE1hjx973nw+kNm0xqjhRXjXKBptjhnqKuS2XzCvXt32W53fPrpp5ycnBFCFMPzzWak2SnlJWnRGjTSdEqNKa0Mm23DcnkEytD3nqqacXNzJWyTSS1+J7sbIqKBvFjO0XGHdhEVPFWleeXhmzx79pyr6zXbtmMIcH7nIR99+jldB74y2EKhi5IwBAgikzCpJjx7/oJHjz/B+4YQFffuPySgeX5xRQiBhw8f8o1vfIvZfMbdu3fw6T7Ybjdstxv+3b/9n/mn//SfYoxiUlfUZcnkN7/LzasNL56/4PJSEtWj0znBRWxZcLxY0LQ9r772OkUKchcX17Rtx4vnT/B+4ORozosXj1kspmxW13zw2We88/ABhsjFi+c0Tcfd+/c5vzOjMIr1asXzZ8/ofcAYw8XzF3jnOT07ZbsVvfeubXnx4pKPP/6Y68tLFien3H/1Vd566y3OTk8I3nN2espv/9Zv8i/+9E9RyrBa3eCCbCoXL16IiZ5SfPLJJ3zjG9/kxz/8MW3TjjTV85NzjmbH1OUUayKlqdBEiqpmsTjGaujcwBAdmsB0UhKRRK0sDfNZjXMDb7/1kNJWoDTPVopPPn/M97//fa4ur1kul5ycnPHBe++zXt2I1Mgw8PD+Pe6cn3B+dsL56ZLKBNaXT/FDTwiON998g+NpiTEVthioCsVsssQWJWjP4G4Y+mteXGxZbVbU0ynzxYwf/vAHvPXWN5hOTvBDyY8ffcAf//Ef89d//X1+9MMf07awWq0oCsvDhw/57d8a+Nf/+l/zve99j48/+5wf/fhnkjgqsNqijTmYiudAXilh0fF2EXXYNIhZZi/TmnREBQnGQR0UDinwjdMuah9Isz+TvOcX44pSSZ7AiBSQtRpbGKzVVEWRQKY8hfXVOLS2o7dOWdYcn1jatqXrBtq2ISgoi5oYSQmYY1LPROqyG4iIfu177/9cmtvG0jUd53fv4b2isCXT6YwHr77CKw8fcH19yXp9w6PPP5ckMcCDB6/y1htvM3QDp6enAujryLZp8Hick+l0rZYoWlY3npvrju22x1oIsaMoptSlxZoajcGg2O129F2PUkHipFKp8J0wnx2JJnIMlGWPTSaesVPgerTRWJLZsMr303jXQdRSGyXQKBccHgEZBJSyiW3icC4kBkc26gx0nafvAsEpXD+khpCwwkozl2JRy7RoBjBI0z5d1wvjTCVGlDGEKIl22wmLYRjEH+v09JTFYkFVV5yenvKLX7w/Tgjd3NzQZ9+m1Cju+56ymoyGx845JpPZKAUwnU4JKZkKQeRe7959QNu2TKczwOK8Z7lcst1u2W1nVHXBgwcP+eTT9yFNpYfgDtaaNBFyc02AIY21lmBiasJayqJI963Iq/g8TXhQsIzJFoexQEtiHhTWTDg9ecA//kf/RWK/aRazBevNWgDxDGYF8YDag0t+BEhCMmaNMRKiS8nPgWwR0hgK2YfJS0M/53zWlvhBpKQGJ8MtZVnTNS7pdluOjs9YrS8Tw4PEui44Ojqm6da8uHhOPzTSiLGZ2TTIxNbYEE1G3rlxOfrc5cQtxdQsGfLStFG+NErdLixI77H3pxKWVmmkkClKMWJ1eXps374lT8y+3FL7dT7m0zpJK0qeaK1lbJ4kDyOZ6pP7Reu9fJZKrN8ysZVyQaCN5vLymtVqJbGu7/HJVzKGICI2Vprskh8rSqOZVIa6rEYmik4aYL4XQ/WhH2h2u8ROslRTMbgvikIYRgkw7FpHP4iMtXeetnWsty1971HKUJgKT8SUWvL0BDBprdFFAVrTu4GhdzRtj0rsKmNEcjUqg0eLhKnzrHYtm6ZnN3hUJYw8E8EiBV8MDj8I6KtioJqWVFU5Dk9MpiK3enFxw+X1DZdX1xRlxfm9O9y9cwZK0zaep88vubhc0XWOoiw5Oz1jPp9RlBZjwA0ikc28gGiYTmtOFhMMAyYMVAZ81EznE2L07NoddWWppktCHGhahxt6tjvJV+T0ayKGoXd0TuT6Budouo7O9fROMQTx+7u4uWK1XaW4LYM+i1nBycmM09MTjpZHbNqOSa2ZlFAZz2q9ZXA9RithTGnFYlEzmVisjajYs5zXLGZHTOqCurQYPM12BaGna2rKcgJzKAGThg+MsbS7hs2mYbXa0DQNhTYjYyd4B2jQ0iAc40gGbg6Kz2z+rlTEIGCoMfk1yc9mbLrv9w2t4liEJ6I1qScNRoYMcmCTJgh7oChGNDJ1OzIlSG+W35TbREuVc4FfkSaO06rpMyBHuy++KINPuWkCewg/7WApZu5ZNUaJ11Lw0rxRWoAyAKUVLu2v0YuMVZbM+XU/lotzyjLJ49kCa0qsLUeAKbOAxJ8jSSsjTfMsAy1HApdQxJh9lQ6YdDEmkAFypyY3uw6b/iAA1eERQkhSXZm9J57SWrFntqQBBGGPKvquF0aL1qBEjixLGbkQKFUl4EAQecU/+sO/x09/8r7IwW9W7HYbTk5OCbGn64SJFdF88MHPiIgNwf1XHmBNKd4mwWOj9Dd8DKNMZAZ4YiTJWwdmxYTZdCE5gNvQdJ7j41MKWwKGIYiHsMseOCFKKusdYZBBHTf0eN8DMhEtQxRieyCnXgNGGnSpvyTXyh001+K4Nke52CAAEVH8Uo0WWT2lRY5qzOtD5iDJ+Sut+PEEH5LEq0/gSgZrHP5AdjJfYukNmbTWs+RblpBP/67j2CxUes8ayB5R41T4oWG8OshnAa/iQfxMueYI/OxjjDACfMpXbwMyh4fVIXmNlVTlFGMqTPJYkj6ZEwAo5caKvSyg5HtSP4iEuHyPwXkZIAsxXQthKWcGaQbNx/OalB4Om6Va5/1RoVSQ8SbvhRWdmBMhN7Qzq8+K2oLKJnSIFJfzHuf2ktQxHngvBwH9Ip6Yz3uMmcaUpIc9MQ3URene7y++kgbEyND/Chy/DEz7MqZS3vlGkOnLX/nS31RqRvv9v0ZhG/a91NTGSB94t73Bh8jx8YLTk1PqegLodA8IoOFcwPmALWUwyXUtw9BRFZHBOTbbDS4GJpM63YceUxY8f3bJbLqQPrPS7HY78TY6kE2dTqcYpXFDT7vbEfHUVc1sNmW5POLFixfU0xldP9D1A0VZjrFEWJsZzIzUdYnSiqurK5RS3NysQUFZV3Rti7E6eWMbht4nn+cM/BcYFC6QbEa8sPK1JgSH1j7VEDYNTkps7fqeorAjKKsTa9aaQhj0bYsubucQmZ3JATvaKM0QhjE2vOydmR8TjySd9gPwmc2I7DlFYSlNgU0DISLnb259fu75kVKj4GNi7WYPv7wXi+VBPzhWqw2bzYZqMmEynbNcHLE4PkXbgqbvuF5taLsebQtCSBY7kDza9Bi8xL9Oho3zzawPBgvkPo+JFQocDgcdgEsj2yvnqL8EqJY1tAeXfhmQ9fLfozp8zstgUv67unW9bg9pwd436vbJPwS7tNoP839Z73VM4g/uhdu/Q7LgYM828zH1h8Y8KrOUv7y/e3j8ymw3EOn6nq4fZFNIm3ye2EEpMeltGnwIzOaLhDYrrCmoqpqiyIwIlQqOiLWGuq4FyQ3Jo6IqUKogm2MPg6MxMh1dVVIMX1xc0LbduKkBSSpCinxrNbumlQRWawbnmc7mKGVRSoCrfhAzcLQhAG3X4YIEs7ouKasCn6TfqklNUZT0gzQ6J9MajKZpBwgDldXUVSHm7kNP0zmClyZSoS1FWRI1KFtgTMQqmC6O8F4aAjEqPvn0M6q6ZNc0NE2D0prtekOIgbZtubm+4Uff+Q6FLZhOp5yfn4vGfDljOi1ZLGtuVlcsFlOqiZjsdX1DVU/FnM0NhCDn/vjomDA4mt0G1zm2qy3zqsIqmca/unhO7xzNdoMxlrOTE1bX1ygiZWFxZcFyOme7a1mtbogKur6HKNRPlGI2n3F9fcXy+ARjLevVisePPufoaMGzp894/vwpAOvVDXfv3ZeAsx3QSnF8tOTy+lrAzKbhww8/TFO3imxC2XedTJIZmSQeuhZTVFRFybSuGfqOEIaxMKzLAo+wJwoLWksDcjItic7TtGI2/fP3PuAXH37MZrXh5GTH22+8mTTBNZOq4q2vvYtVkfmkwqrIsFuzuvLUVdJaV5Gby6csFnNm80BZFFRlbuRIMCxLzb17xzy72OBcy3bjaJoti8UJz54+4eTYM5se8eabb3Fx8YzTs3MevPKQ1WoLKO6c32WxPMV5xfu/+IhPPv6EejLjt37rt/jJT39O18u9rUafDyDuBQtyGMmJRk4ID4NNekb6/1Tw5/8gNTlzwMyv0RIt4j4oqbFxeTsAqpRIFknSq0yyL9ZqjNVYq7A2mdiqw3bCr/fRtl1qFMkEWVFILJxMKkJVst01BxMHcj77vkeXBxrKCvq+lQTBRoYisF5tk6yoTJD6wVNPamazGRBlytQWPH70lKHzEBRvvPEmu53oFhujaNst2hyjKTBBoUzBpL7D2cnr1OXPiL5AG2nIohzaeopCYRYTARFLTbvbiVdeZVAmyXpEh1E2mUaqxA5xorOv90bNUQVU0KmQzQUcjAazKhdB4mOk8KgDwCQSiCrQ9wNF4UQrXIlXiEheaEIg+TB1BJ8SqBCTLnRqFOs04dM7tHHCivGeqqqY1BPKopKiFEvfdwxuAAV1XTMMPXVdEaLn+fNn3Kxv2O12tK1IGUGg7/3BREv2IJLYOgyO5XJJ2wnoYYz4fDgXRqZKXdecnZ0xDH2aeBLG13y+YLu9ZrXecGzmvPrwdR49+gQXOrJpszH76aaYplFvRYR0fp3zhMKPoJYU6grlVZqWlHM+dhdVBqulcVdoacA024HzszP++D/9+5yd3RUmg5Mco7CWYejI/hYhJr+lmIwmk+dSTA2GkKduU8GZJQpi1gbPhWmMIjujI0oFsvRcnjLzLoIhSSrYPXOj0hStMLF9CBhtcQeyC13bIdIREalTImCJURr8UiTX7I2HAxnAi/hbE0pKx1tJ2z6ZBQGj/L4pS9bvT12nsfEgz8+yDQIwyeWIqJRE52mnnIx+RcD8ECFIo85oTWGTMfbIuI34kLwkDgysc9NJ2nrC6onJc21wwnRu25au7Wiblq5txZMnS+N5BwSmk4qyMLLv6ex/I2Cq+NhB3w7iQ+cdWhuqqhyvo1Jq3BuUUjLx2bfsmlYkrF0gBikYo7KAwgUlDNCixBYltigAxeA9PkTQhnoyRSmNGwZp2vlA56RBFLUHJQCFNhZjK6ppQQwKrE75uDR6dQLUpPAGgkhon0ynzKbT5A1ieP78kr5r6buWGAJHyyX3zs+oJ9KQ2GyEPTWdTHEuUhQl0+mEojAIocyxancU2lHOS4rCMJvOODma07U9gwarFVFrrq6uadst9aQUyWtcYg+p1MyEsihHXwjoaYeeNrGo2m6gcz0R6H2kd4F+8FzfrBmcQxmFVZbZbMLx8YKjxYx5XVJamJSKs6MJVSnyfVfXK7quTc1TQ1UW3D2ZcHw852gx43g5ZzktmdaW0iq0CuAHdrs1WdbEWpFWVbpAmxJtLCFEttuWzaZht+vIcndjhqYU2iRPD3XQpFaHXBE5YtpPVRoIGOVQUljPud0+z8uhft96Hd9PRWHAw77wDSH1DbOcSwZs5HuE9HEHMMIX8KD97NHt2HUIwB+CS7efk9ijI6gW9+8Tc0Gf17286T6dyAymFAe0ptAmTVYnoDrLXimwVvy7SNKuhx5Uv86H+OSILJ42Fm0EpNgDTOqWn5I0PYVxEUIGmCIxSzShiUElWb397SDDpKnxmUAml0GA9POWfNZho+eARUKK6UYbkW3T4gWTJ55z3h0IY6MeJTmPCjnvUQRl6XtSTDdMJnO+/vWv89Of/pjLywsgsGtXFG4vB1iUE7p2y9XVCxbLOXfv3U3sdSR+BslZgs8BSu7BGEQKWDz2dgyDZz5b0nUDm02LwhJT41C8mpL/hk9spBCJTuSFXd/i+o6+bxlcm0AYhUm9GlXWZDkiksdGjNJMDDEQtBu7TT4BzSHLGYfkR5gbuEJXQdv0e8j2R5bYI4JPKhsqRqxSRKMFzFVCunIuJnaU1By5Ns1qPyIlHMjclhgV3jfEVMgeKnqMjKcEeObHlRLWNy/VofneikDI8TQD0iEDP4yxNRLTfi71gh9cYtzfrr2VUlgTsAaMKemrgcLUmDQgF6OAgeP9rEjMJQGutYrEYBOpSU6G3J9GWO3BE70H70iJDCg1qgvIiYljvZ/wwHQfHkzUJ0a8SN/m2uAgRqq8GGP+kRqWKTYoNUqGmnQerQlilaHSoE26mCrlrMLTOuhkpJw3JlAZGH0zD6f+v2rHF5gTLx2H99rYScgFw+13SvuhSuc14v2+4R2i4HoCOFhMKPBBGNXT6ZzJZEZRlAz9gDEG73uRy/cRVRm8l3pXRVkPhZXBUpfAFpBBPhcEIHU+YGwhoG6Q/XUYRJ7ZWkNRWAFmEIlaFUHVUo/PZ3PKQmryDPISBYTBaLZdg6xqAXG995RlhTFWhqq2O3wIbHc7rLXMiimDcxhbkf0DxXOJcQAnhgGDxkclIEsk9bsz1RJi9OyaTfIqFNWewckw1cja6gaGQb7v6F30Uq0WUzk5MhLHx0XiJcuRStzIfbi9xHuIgYB4y/o0CBCjxP/CFtg0rGiSx+QIYiiVYjbSY4Zx7w4hjnu4SrVxCIF+cDRtR9O22KJgMp0xnc0o6wllWYu093rLZrNJCjU6eTFqoneM0qdRjbE8pnicGkEJNc+A0oHv6NjDPOh75tflHy+BS19YQzmN+CX/Pg63HPQ80bkPml97+/UCLN1+7Avvfetj4hceHD9v/Lv87dZ6HwesbqfT+/OzlyEdPZcOBshyPkY6h2N8/wLotT9+JcDkfaDrB/p+EHApyFS3SwWoQo/a5CFEJtMpxhSp8WQoy4qydPtfELnJrK0S4CQNo7Z1VIVGqRKULMi+H4hhJ83RqqZtO9br9WiUSGoKKUQSSTQ1ReczG4M6P3CyXMgCVYbCljSt6JKT9D3bYcBa0U6vq1IaPL7ARKjqmqIoePH8ghBk2rVCEYKibXZYY5hUFcEFNkGSPO8lbHdoJvMJtrAUpsaqiRh3aosfRE8+hMDFxXPm8xnGrAjBUxQF9+/fS41FkZz76Y9/jFKKo+UR3ZtvcXJ6Ql1NMSZQTwyT6VlqNJd0Xcd6s6WqLH3fsts2DC6gKJiUNUeLI0qtGdqdIOxtj4mKWT1hd/2UbhgI3jObTTk7OeKzTz8jKkNZiAH1/OiIpu3p+g61WdN2Ytq+Wq+pqpLFcsl8vpCmajJ1/vSTT1jMZjwNnqvViqZp2W7WqPv3BVwwMgU7nU25vlkxDANt2/Ls6XOWC2E4NK4hhMB2vWboOogBg5GfSmGTtEpMusa5iK0KMY/WVnymlBYwyA8DN5fXPH9xzeOrho8//oznzy9l6sHD19/+mkgkFiKv+M5bb9I3G2LosToQXcd21VEcLdCFSOjcXD7H4CkLkcuS5A8BTIxBWcO5PqHtZXq27XquVg1GV1w8e4YfAvqO5o033uRmdc35+R28j/zND35I3zsWiyOOi5JdO3C0POKTzx7x9rtf5xtf/zqbTcPF5TVN2zJ4YbTk5CGOU3r7YDAK5B0UX7eKsNQMQO1fOw4J3IpQ+TkH75WeNAZS9kHXKAGSsvRbYfcsJmPVKJEjietXpOmJJBIxgDcB7ZMMBYoiGb8PvWO0dkyFhfcO501iBGX2jk9SEh7nArtdy2xmxrxju9kSVEWMYno5m00BAXMuL6/ouoGjI5HIM0auwa7dMGkLjJpBUVKYktJOePjKb3D3/H0eP3lCN1wk0EiakbaIFFWVKOFQWHB9Tz2xWKVQ2uNDl6Z37KirL+a9QvHVSqOTJr0Ked8Rn5uXKcZKZ3mlNJmo1V7+LUoS5bxPNHthWzVtR0hNtBigbQeGzicvO0UMiiE4NLK/5cKl7x2myDriXuQKCzEejsGhjaFzIn+nFcymU9q2wRhN33c8efKE1eYmMdS6WzIDSouXm03gRvZ18T4wnc7Y7K4o0z0RwjA2aqwV3f07d+6kJFcKXa0sk8mE65sLml3HbDbltdfe4C/+8s/A92PS9YWkdYwF+0QpA/1Z7kPHbMa99/LIBsMJwxgbfjmRAvHcqqqSh6+8zh/90d+lKqeJoeVxg8NYQ9+HvRRIzNrS+acnJL+kcOjN5A+eM4It6d9iNmhVUtxH8UHRykDUhCAyK1rLhF1VTrCFDMHYImJtgbY9OpCAtmHMZ4ehl8EYnyQKlMLoghj7lIgZCDVizRKJyhNwHJR4Y8iNwSMMg31zVaX7GHUA4EWdOrGMayDmpm1q/ForRrtiPBvHwiGPU+V19qX15a/rkSSMM2BqUzESUwIu/l1ZbkWa6wIq7g3DxQ8DeicSIZvtjqZp0noW0GToe8pJLWyGGBNYBIWVQaey0BiEJRKjH+9lCPTtkOQpFHVdU5SFFHhaE5WYCUcULgjLcdfs2DZdysPB6AIfIebJxMETbaBQJknneHAeF2SaOniPMpZ6Nsf1PW3bMviWYRDvi6j0OE1c1QW2rJkkaUk/9PRDgwt+BNynZZHOF6DAWM10NmM5l+nTru/pOzlXMXjquuTu3XPunJ9SlVX6HXYYYzk5lt9JK0NI7FEfHEPviKFlWmvqqqSqKyaTCbO6BO8ZCktdCnt9s93QDZZJXxKDo203FFpjjaGwBo14e8YgoH3wit3Q03aObhho+p7eObQ1uFwkNx1tN6CUwdgCA0xnE2azKVVZSCvad1gVWcwqZrMaH49YzCvaphV/w6JgPp0wnxdMJxXzWc3xcs7JckJpQePB97jOS3PEDeLnkxqWSg8Y4ykidP3AZr1js23o+uGl+CHNBG0OJvGJYwmeZeuImckhELaYQqf9Ne6Zj4x5yL75ngvN3FBNCBEZDB8L5hgJes/UlLfLRT3j5+XvI++pbgNHIzs+7l8uH39rH9tH19vf+/D/94X3Pre6VZiTIfj9kVxeUIiUZjAi/+SDR4WDIhzZy4OTxlXwjvAVGZpSuhDfNZ38V1JDSk7mHriRwTSSybjH+yHleSI7GFVqJkcNMdyaxgYS42IPbiil8IQRzMzXdy/ZneugBE7k76skh7Ja/EMOp4jz/qsUBJUkxNJ6GNl2Sjx8FAbUgFFZ9gbu3r3Lx5/8ArNKvl3dhuClaWa0NO5iHNhtV6xurumblsEng/g0HBOiyATnRo+K4P2Adz1dYriHEOl7z27Xs922KGVkilwl2TRSMw4rkpHBocJA8B1+aHB9y9A2DK4Za4xgDTZ5BkZdSE2mIiENeuUpdWX9rbUXssl7GgCKhx4i2hCtlcuaWGS5gZrBmZim1MdSlCQfp8T3UM60NL+DF+BvxKdijgOpYgqS4/R9lxqfMeVZpBxOjTXUXrYx+V2Z/RDbeKT6NioSk23/zyF9gbGhmAY9Bzck5pJjGJLma/ziEJcxAWvBmALnPKUdsKZI9aCW63YYu5SCEVwi/adQaahOhj6SH23w4IUVp9I0vNJZTimD5imPTGtUGLBaWFRpGE88V0EhjE09fqe4B/qUDD7JGjnkfB1KGGqJnYBWDqUQkO9QHj9dJJ1qD43G53sEiDoSo+awpXxwkb4Sx39M7n6rwTwWa/ud8OW32D+mD97/8CrK373P/o8yAGCLkuOjpXgvKU3XdSitcU5IA4PzUidH6AcnMQgotRHw1UdIDMeYCywln1MUYvPhvAxq+CQ/rZUWqwUrQ1tWKVQUJmBRFEwmE2IItM0OAO8EsMn5iPde+schCGAeUuzVGu8DbSd1svgp7dl3ci7zesjxTQOSBxstwE2uvYyROky8jyU+7HYN06lKnkk6ATsWtMEHGIYuKSGknoaW+z8DJfJzbMDts7vUhxtzL9QBWHDA3InSKQxRPNSCz3FcjYOr4u2ahkHiHsjNfb+QAD+pn9JeS9yDN0qk8Icko9h18jtNZ3Pm8wXTyUzk9o2lXa1Yr7dsN3KtdModYlT4NKwZ42HPMQ275yaQAlJdK9c437/7HO/g9r2VC473xOEa+cI6SjnhL3ney49nH7rDRZr7ovnPh9fkS0Gt9A1vPR73r98D/7d/uT34s/9OWSZzD0Sm3Ju4/188/HkQ2/NQxsH7Hw6ZfdnxKwGmZtfSd0KDHHrZGPu+Z7drqMqKfgjopmNS1Wna1zKdzlhvt0Q0hS2Yz6djQijUO09Zlux2G0IlRssqXei+7wnBJ+aISa8JdF3Ps2fPhSYYBmIM2KIi+jTppMQgbbdrqSZTYlTitaANphRfmpC8pHaNSI4oI/r5nsj5yQlFqQnR07c9dTWj0DKZ2nVt8u6I4mOC5WhR8+jJC6yyLKYz6mrCchlpdy3tkCZauy1zN6eyNUW0xGgpiinPL2/o2oa+64nRU0/nTGZzhqFntVrjh47XXnuNt956m+VywScff8jjR5/z7Jn4F52e/A2vvfYaZ+fH7Jotzg/81m/9JvN6ii0rivKIqppwfbPl00+f8PTJc1Y3O1577U2ePX7M0XzB/OiEriwp42s8f/o53vWiCV8aSmtwZWQ+nVAVhvXqGlPUaFtSGEvb7Lh//y67tmMYBs7Pz7m+vubjjz9mNp/x2quv8c7Xv84nH32M1pqqrPj808/4jd/4DeazKW7oscbQNFseffYJVT1FacPgei4vLmQSuGlo247FbMnJyTFNIwn0MAxcX12wXZ/QtTPqouDenTsCfg4du+2aO3dOWbsGosdoKMuCoqrx0aOKBGjoivc+/pi//su/5kc//jnXfSGMjgAERdd0qKAorKEqSqwG13V87e23uL56xtA3HC/mrG6eM5uUaAVNu6NvOkpr0DoSgiKELWXfcnp6grUFyhiqOvLaq+dstx3X1w3trufJ50+490Cx3W354Bfv8Y//yX/F+fld5vMls6Mlf/n9P+ezz5/w2utvcufOkgf3X+F73/tb3Kz/FTFEjLb8b//kH/Kjn/yEDz74BRdXl4QkKxbCIJNqXjRwtVWpgRYhMTKyhvG+eDsMhpIEj2aeaPYySyqV2QE3OJnPVzI5divUqX1TTqTwZLMqjMJaYTPZQoAIbQ5qUf3VSRJjhG7oUU7O1TAMVHXJkBh80+mUm5sVxhSyGXiP0UIFF/kKAZTBJiAAgt9x585MJkf6ns1mAyrw/Epo2NPplLOzc5qm41vf+jY/+9nP+cEPfkhRlPz9v/+f4dyA0hFrFdc3L/DOcXp8znx2xGaz5Z23fpf1pidQ8Bd/9S+IYYsbhHVSlDCbGvAVVaGoC0XXtOKxphRGRwa/ZrO9QZslBeLv4Z1QoYUFoiiLWnSYfQ+9sBdHcMlIYmZgLOa0UdjCJm+dvIekpMcIUyn0A22/Y73Z0DTiuxGCwjkFFAxDxHSR4IDosSbVg0GhlB2HK0TubWA2nePS3ijyFobKVAx+QBvF0VI8hfq+pe8jfdewbXYpMZCGnoBIHmM1MU18T6dTnj57lgAo6JO2s/xOYuZelDVVVREjGGN58803mc/nojk9mTGbTum6HfPZHGMKYoC33/5aSjYUWlmMFr+pnEQKgOLGpp9SCvx+6kf8nxqWSToFJ99PG83g+5F9aFJDc+gdRTL83u4cXnm+9c3v8r3v/W3effcbxLA3AAVGbXbnBnySv4jejSyTSMT5PI3mCE4aUzE18oVSn0DWfkjyBzGdI2ibjq51eA9fe+ddtrtNAhS1+KMkabmyFHkfbTzaivSo0pI890Mv+axWwiQ0FhM9UuaWFKai7xUxamI0ECfU9RRt5Lt3ww5FADVIE1aL1NJuu6GqigQMKZzrU7wVzyWVDQF8mkgLkWpasTMDSg2ANGyUEsnEsizS/eUSAz012FKDIYzFxFdDuskeTChDxA+OcQJX2uribZSOCElGL9/TwmyLzuGdo+s6ttstTbNlu16LPJ73FGmPC8kfTKvIdFJTWCOFr5Whneh7/JDkfpz4samgKcuK6XRKVVXCTMYIq64whBjp3UDTNGw2G7ZNK2tZG3QhbLVdNxCiSF44J6B/jJuxotFaU9X1KC+plGJS18LO8YHeCxtPBkGsyE5og7ICEEelsUon2SIp3oe+RxF45e55Yt/I9Pndu3dZzOfi16QUm65DaSgKw2IxZ7qY8/rrr3CyXEozbvBYU3B+akWvv3f0/cC23UIY2O0ammFHVcDdOycCwhUFWluGvsNYzXwxo6oqrtdrMaJODcjtdkdn9vFEAYWtmE5aYlDiOesV3eDoBs/gA0MMDCEQGIiE5Js3jE1pYwuqomA6mxOjYrdr6Jot9aRiNpvJ721FZ79vS0oja72uSo6XR0ymBUVSQ6jrSvIhJUBoVAqsoSqn6XeUIRwfBlzb4KOwJnbNwOX1NbtGBrFMApV1zr20JgaPSes8JnAkjkCOxF7vHcTELlEW4fsmYPtgAjI33sfBo7iXzRizx8NGa/o7UYbrtTEQ/disiFGYZCEIMyEeDHTsG2Ly7ofNkXHMPhfYB8Wu2r9E8ITccYl7VY2Xh6syizQ/FpO8tPQuMvB/0KBTIuUVQPYh59MghRKwjHS9kkSW1u4/Ikr9//9hbYk2h1IvPk1vJwcHrSCaUaIuhIALe2+WPuUAITdQ0JhYjDlKPrz3KXcS8EWlhnVmRkGaqk5eMTH4fRNM72ueGBWFKShtJbWaMum7H9QgSl6TQaqY3ttHeR9bVHRR9mnJA6Vx/uzFM3wYxM/ZwG4ncnTWFiirCaHD6IjrO7arGy4vXqBNRW7iSDMv4L3s77IUI2HoRaYs+VNaeyQKJl1H1/fS9MTJTwXKpPzYFQIQRUcMHXHYEoeWMDT4fosfOvlMYzAUhF4TjUEVqT6LIrMW3V6mLISDNSRnaBxG8t4RnORheSDKaYO3DmuFyTX2/3LjzMi1zA1GpURSU6dGrFGGsoAQjQzaOTcO0MSoGBzjkFhQMeU+XWpiuyQznQHO23Jw+Zc4bN4dHmO4PHjO/t8O4ojK4LQiy8hlgGmULFP69mcoGUQpy4owRIZiSDmHodCi9KF19kUixafUBMwT/Qmzy9LJygVwjugHCA6UAEMq7r2ahW2Q1mZEJGOVMNa0MknKMIPFmmgUOg9+5WaljuO9Se4SpAb+/veVz5PNjbHeUMqIF6XW8llq37zXOjPxkoKSP5BeTNfOsF/ro8/VV+b41X2Sl5vYt4Yw4pep2EhtaLWRGJGu56H0qFLis9UNkhsMPtA5z9HylIcPH9A1DV3bEb30TV1ixA/9AMok0MEBSob0IzgfcSGCMpRVwdXNDTpJdOYBzyw/GbTEnTINEpXWQvAsFgsUETf0dK3n5Ggp/vVdS98OzGYzBiceQ73ztP2wB76jSLsVRYEPkTg4UQnxAWM0s9kMHzyrzQYAf5B+hABtP1BXEwotvnqD99giAVdp7yuKkt1ui/eOsiyZzxegxV8K58Uvr6rl/b0Ml4Yo/lAqKiEmkuvwMMp8j4peKGxKzHQa7shgyzh0mq7jMKRcJLGBgmdcN8aYlPubgzWqEvC3V9AYQbrEVA1j/COxLqPs505idO8G8V0yhrPzM6azJWU1wZgShWG93rG6XtNsOlRlMDrI+YsRbWVw7hDkCSMoo/f5maAxqYeYtZp9fljYUHnZfAk48rKc4H5E/nasPwSTDmP4rZ+H+eg+Ed6vSxXZg0FfPPJ6HYGh9H3yUEM+Dy9/F8brs3+v/bJPG5gKCXuJCRyUgQRl2DOK05DGCBamtZI9Gfe94C8/fjXAlBr9XTfQdS4lyKITuW129L1jUmn6YWC2WPLw1fu8eHFFUSYT3EnNkZoIdbHTaBUxhci4PX/2nMV8ysnJkpPjBcvFgq5r6LoBGCjLkldff5XVesOjzx8xnS9YrVb4waeJCwkmZSGBarMdmE4XuOBpk/zc0dExVzfXWFOCEimPm82a89MzyrpiMpswnU4YfI/yBluUzBYzvO8gaLp2R985jo7vMHQ9jx49om1aZrMFYQgcHc9xIYokRRg4Pj1mtdnQNC2Bgqv1NcOlw1KyqJd87Wtfw91cMplZ6mnEh4Hv/cHv8/nnn/H8+TOKoqSua77//R/wySefcHx0jDGad995l9/73T/gaLnEGsM/+2f/jN/8rW9w7/5dJnXJv/gf/jnf+e63ePjwAWVVsd7sODo65Z23Xufu6RlPHj3l/fd+zg/+5oc8+vRTHty7y//1//Jf8+zmgt31BSo6ZtMJ9+7c5fLyEuJAu9vwox/8DYbIBz/7KU3vmC0WvPrGW9y5ewetFavNltX6hrquWW83vLi8ZL3Z8s5b7xBQbDcrgh946603mE5rHty7S1UWrNYb/vBv/y1+8tOfYgvN2fk5u7bjFx9+mJIaRfCeq6srnj17xnQ6ZT6f02y2KAaW85Kzoykx7HDDDm0strDUpaK0iroS2a2ysFRFxeA8pa1QRjN4x1/+5V/xo+//kOvLa4y2rK5v2FzdiMm7D3S+4ft/+RcYBbNJzcnxAh0D7XbNbFKjZxWFVbxz/g6r1RWKyHQ6pTxe4vuB3VbMrZX2zJXiZrVh6iOLxYL5dMZOB5qmYVJbvv3Nr/He+5/y4fs/Z75c8hvf+iZ/9m/+Ne98/Vt89OnH/PBHf8Mf/p3/Df2qxQWDC5p6Mufhwzf4B3//H/CDH/6If/Ov/yf+T//1/5m/84d/h7/zR3+XDz/8Bf/N/+u/Fa3/QhF9xEUnm3BMhTKI5EKOPGqs028fkTQ5kafz5TGPTEyF1GBy8XairtkHaJnwO9AaVbJR2sRkEs8lwabyc1DcSoR+3Y8QBHgXj7qWsiwhKoZeYu7JyRExKto26/xCOstIkZSbXvV4rpUdePHiGYMbmE5lulqpyKuvPaRv23Hy8fz8Hn0/cHx8yttvvcsPf/Bjfud3fhtbnmELxXa35tmzxzy480CusdZoVbG7GXj3rd/h/t3XeHD/If/8f/h/4l2Pd+B8jzaeelphTElRgooL5rMaP3Q41xNCS2BH0zk2TWQYPLu+Z7PZ0rStJHAoJtMptZ2hEa8NHwYxv9WMjESlItpIw8d7MIVKU/8GYwqsEaNjoqLtBq5v1lzdXLG62dD3nhDFo2+1GTjeVeM0ahg0XnVsNw3r9ZYYoawmkhC7gDUl03pK13WUpcjCrtc3lBOZHrXWMD9asF5vWSzmZD5707VYa+l7uZbZnyRLcYUgEqniEyVSXM7JlF/bbsnJak5A5vMFd+7cSR4tlq5rscZwfnbG3bv36LoO7wfaduC1197krTe/xsefvM9mey0goinJfpmjESjSeMnTMxl48qmp4ZwjIJOgMvkpjC1JmmTSXutSptkQlpDWU06P7/Bf/OP/kj/4g7/F0Hu8Cyhkqm0YpDHix4aQk+TYC3MhM3S8H3DDQPADmaHmwzCy3LyTP8v3HXDOM/QRpWspSK0VWdzplGm7YLPZEthS6oKqFhaI+ISVRDMIAF4UhKioihlPHj2naZoUpxQERWEmKCyKkrKYsl07XnnwkLPTe4R4QgiOe6+co3TgenXBD3707xn6wNB3xOCZTCoUFe3OM+hIXYr8lWfI2ajIu9kUQ41BW83QdhgFhVYM8lUoChnumc9nkn+pbP2ZuiK5WUD8SsVZY3KSzr6ZpfO+p9IgRdzLduXyIsmNBR/ovWOz27Jardjudmx3Oy6ev0h68JZJVVGYJAvqBrRWVJOaSV1SF1ZYU8EztF3KMRt88FhjmM1mzKoZZSExqGlaxBfEErE0rWPXNdzcrIRpNAwSH6uKwTl2bcf11Q3XNxuUssnjQ+RAnHNsdxJbJ/WM5cmxgKnWMqlqAoqynmLLmrKSRqW1ZZrSlmnmwQWM1eBhaHturq558eI5RPEgOj0+ou97htYxn9ac3D3j7OyM5XJOcJ7tbsvFzQVFVfDub3yNyWRCWVeUpZyfqqrFFy2K3PWuadltdzjfMKlEnjrQY4vAK688ZDabpYazFMjOd+BiGvqqmS1O6dtdYpJrilITQw8xYI14YM1mcxlec5G2dzRNz+XNhk3T/v/I+69e27IsvxP7TbPcdsddG95lpKv0WYZFqpJVJFVFUA01BAhqdkNCAxLQgL6BXvQB9Njohhp6FQSoW0KbapFskUWyq0gWWSTLZWalicyw98Z1x2+33DR6GHOtvc+NyCwKelLGDpy4956zzzZrrzXnGOPvaF2PEf9OsaoKEa0j3jcom1GWJWWRy5CjKPC+o2lbuq5l2vYst7VYSyWQp+07YggYdLJ3KUB5QmHRSsDAspxj8RA00UGRSzNXliVlWSU7U822rlmua8L5NU3nuL7aCNs17gCgoeFWiV06AMs67tQBw7BcGs6dMgM+xW//Z9w+tT+OQMr9HBybP+1+Q90ow8Gba9HIzIyMY43hplEE9gaXA/azx8wecxXGNvjTh8FAilrZvcph37s5GLipaBJGrxAphn1R8tF2oFSWZSjl8T5Ixuxn4DZdTBPRJFmZqYBWISkV5DhGIr2XQdlAYO2dKASFzNozCFysMVRWgOSQzskYI853dAOJJJ0LeVGInQ5i9eK9Z7utaZp6JPJorYk2JKW7EVBV52RZjjWZWPtpg0jtdv1LL6wjQkifpVbkeYlC4ZynyGdi92wg4rk6f8ZPfvpDVstLtIpMp1NidGw2G9rW4xLgEHwky9d47zk+PiErpuMxEhtdRfADUC7qSGMst2+dUFYlfec4Pj7ggw/eZ1tviNEzm5f0QbJLtVHoTBFjh9UTQBGUx9ChQo/yPdE7vPH4zqXJqZHnT4QKUWIjKFNUqOjRKasw9gNxI2WHJFBRhlxaPrMo575CpyGzIQ55TiOIPI7yxILVDG4GsoQOjnUx9iO72qdsIgm4hxg1bR8EXAqILRcO41vJcg2OEDpRFfkh02lQJAzD9t1L+lSAaVhP9lRwI/CYWN2DcmBQiQ/n7A2wZXxM+btEPRiIBkNLCGIZjdWY3IISp4ehnhP2dALw8ERbiNJsqPVQRNcIGBmcqJe0HKuok7WVjkQPLmp8TPa6MZPPkT1VgM7FTk8n6/yoGX482gKyBzJF6QMkH2bPKSX1rMNNY8bBpkrk70EVMxD5FDIj0DblrfghczTuiAYg52TwGPfZAZh+lib2k8Pf3RD604Cl/cH0Tt2cFHoKILlXxIhEjkwkbycEppMF9+7e4uhoBtGNvcbqeiXPl8jbcq1rUa/HXsBq13B8fIwxqWfzPevtlt4FCpuh0HSugSiEnr4PrK7WEDpOjg85Olwwn84IrqPZ1sTg0QqqIqdpGi4uLrDGMp3OqGYzlqtN6qdlv4bB2k2BtmRFxXa7JctztJZevCgKAgGXQM6qKpnNZiO407YtmS1omna0c8+sZbOt0caS5QVKaTb1RmyplcFHRd/1qS4V8kTvkspLK1HLu8FmfXCgCDc+N8Un16f04Y/g9XDf0QI/xOTgFZOFn+SidX1D6B1FXlDmOdWkJLdZUuPeVCEOaUADMPF8DpvbA55tnrPeboX8FCNFUfDCS/fJi5JqMqOspmRFyZOzU5bXa/reS05r6AkxoJQQHLxSyVUhoKLCGol3GNbd4Wq4WbOGEejm+evhZ6E6z10xPw9c+sT999f05x7n0+6zD07dVE1/ktgQYkyELNIc9+bPldrtO+ztOTdIUaTrfSjIx9c6qJXGZ2P3WX/iyO1eW/zkz/ZvPxdgapo25VLIV9+L1Hq7rQk+sN3UZLbAaEVR5pTVBOc35HlJ7zRtCy09bdvt0E3naJoti9lkzP8oipL1Zit2FdqwXq+ppjMePnzMer1muVqjdcPAMQWNthlN16N1gVYZKEPdOdrBZzNGmmfPaLoeSIx+IocHR2RFBkqkliHCZDIXm52o0TonEtEuik2OKciynIvTcxbzOfPpjKZuMSpiVBC2/KTE9T2ToiT4mDZlGc65vpa/a831ag3KJIaUInjLxcU1jx49ZbW6RmvDbDZHayMy9/VjQvDMZwecnV1I1pRSXJxfUhQVdd1wdnZGs635wfd/wDs/+rFkntiMV157A2MKMpPRt56zpx/z+Tdf4c2X76Fj4I//6F9Qr67QOCaTgunEcHR0xDoBZG3bUG8lzyXPLV3f0263FNZy9uwp0/mCu7dvsdpsmUyntF3LZr2hd46nT5/gnPiq6swyrSZs1xthfaOoyoJXXn2F6+U1eV4xWxwAD1POgCUG2NYNwceRjTIU9FVhUDhcv0XRcn7+lIPDY2yyJTFaVDHB99Tbjo3foHVGOZ1wfXHFO+/9lHfe+Qnvvfshi9kB9+6+SOtzLi4uOF4cY7Sha1sKa9LGVTGrSjSRy8sLDhYTppOCPHlTz2YvJtZYhzGaV199E61LbFZyeDTH2B6TBSKO9WaJNlO2mxbfi+1LZjVvvPYyTd1wcXXNn//Jn/GNb/8K11fPeOGF25TVN/mjP/ojVA/n51dkecVsNuOVl1/l6mrJG6+9wfHhMf/0n/wT3njzTb70pS/z7W98g6oo+K/+m/8HPvb0ocMFL71SQIpsLdaSqTyURQMtQctI06xQBCUb0kgwC2kAndan3calxuEv6TrdDToEoJLGS/LSjFFkWWJJWPE7T9bcqQH97Aw9AXzo2dYCIGiDgBDNFiJYm9G2rShjilKG+71LOTUiHYcUFjlYjrhI38WkIgGbKfJePLOvr6+YzaYQI8+ePmZ5tWS+OGE+P+CNN97g9PSUf/4v/pDv/PW/xuuvv0TdrLhz5w7Gaq6XV6w3LYv5CfOZ5DItZvf4q7/2tzk7e8oHH/0ZfXdN28aUJ9NjbKAopVmZz0sUBu8tfd9je4+xjrZu2dRbNo2s4ZK1J8yo+fyQvChFWRChDwalPUp5NAGlhZUnMzydQKVkuZc8/63NJCMJhXeB9brm+mrDer0dBxldF9huejZrh9GaPDMoMnrfokxOUU7FfspHTLJdG455iJK7NptO2WyuRiWDc56L9orLy0tOjo9RKtI0dSqUpeGez+e88sorXF9fs0qM+xjkesrzPNllONbrbWoOhtpIrr26rinLSoYmIbDdbJhOpzjX8/TZE+bzGX3fs9muaZqaF1+6x+uvv8nV9Tnbeg2jTVcYm9cdAKGG6eNYVIh/tuRVaSPdh9ESaDowa0SmbhD/f1GO+RAxKuc//o//d3zpi1+hLKYjyCHWZAk8Ci6FajvxjR8ZUm60wJOcmH5nk+d9Yjf6pGhK9l9pKKwAYxUxiN1U8IrMFnjvOT0/p+scZTHD9R2VNeOgG6VGT24Aaz1dE3j69CnXV9ccHM65e+c+l1cfI+ohTQyaZuP4lW/9Ff7KX/k1XnzhFR49XPO7f/93WV5tqCY50+qAL739VRaHE+aLKWWR07ctrm+4OD/j8vyc87Mz2m4jyoOUWReiDJucE3BNK4vNclR0aRCjkMGwpqykSSiK/EaAdYxpwDPe1F6B/ot92xXlkZ1P145JvO9xPuxvWhuiGjLPPE1bc3V9zXK5Yrvdsq23dF1HnueSu5hnGKVwtsXkFWWRMZ9OxAYasTpywRH6jrarJY8ny5nPZ1RVSZYyF0DRe4cLCnQgOsfVcslqs0ne6WJb5IJie71ivdmw3mwElIqKyVRy97Q1WGVomi7pUTTKWmlYjFi8Ra3BZPTe0yfFEFGhtEme5slmIzhR6DSOzaahq7fYGCmKktlswtFijg8dZT7h6HDBvbt3WCwWaA1dkD5gvlhQTWfMFwvyopBBls2Y2ByrJRMreOiTQqxzXdoXFX3fYrRisZhzeHiYhgAD092gdM3V9QaTZSwWh9zKCrq2GevCLNOE6Mi0wmZGLJCzAhAVZe8Cbe+ZLJYsNzVN19G6nk1d0/YdrpcIi6r0KGvJUz5Wbi15plE+JwRFbD1nl0tMZlOXKoCwybIUHxHo+khRdijtMWYChbwGgiIvSlQ0+AQI5XnOZDqhKCuUztl2DreuWW1qmsYRMImVDwMTXQPsN6RxfxiVAKeQWIwxiGLU+3GwAiRHCRkQjtjNgEyNV8+uWtuB1UnRJBeR1JTp9eymrel1sfcA7OUEoER9P6Jg46PceM7nb8N1O2Tw3RgU702O48D6VUPgckzvWb6vtdTDanwPYoEzQlV7x8AYAZL2LUNCEKs2H8VGrOt76mTT84t+m0wrJMNoSFDxEHsUAkiEmHJovLgftG1P3XR4P4SNJxKFzVAq2VlmVtZWa4R0Ej2qH0K+d/1GZvfO8qjTUG5nNSuh3wNBSfoN6WscbeNpaQBZU3zwMg9IysHOteMsQ5TxfsyWUkpRFDWTqiKEns1mxUcfvkuXXCwOFjMOD+acn53y6NEjyS9O55cxhuA99XbL1eUFWVHD6BaxI+woApIf6Tk4OAACk0nJ9GSKUoH15pqmqVE6YrIetE4qgJSVqRzRD+t5BHrAy/2NTpbAKV8PA1iIlhAtIUoNrxI4rZUaLdZcyvtTKqnTlMYoi9YDYA02gVG7YZoRZbhKajMlVpMD456Y7NQ0aB1T/6hSX2HHz1NHj7Y+fR7gAuQGQjDCzA8RbT2LAnrXCZO+65Lqye/1rfsA0ydXl+d/JhbUQ/bKDiTfEbR2Nzm/0jB2AEfiYF+PgIBak+c5eV6Q2Uz+zC2ZlV6kLDKKwojTR+rLxalCzo8YO5xLn3M0yaEkEF2fFGS9WHhbLzV/SHlZCCkvJMAvRktUhsFmT/p9N6pho1K4QXk1vD9kD9lBFMMQWsCjcYKQrKpFNTGo6EEpQ1QKNeayCRAxKhOGBKYoav+o5TjK8Y/iLBBBRSU2pJ8RK1L45KD55s9253EYgP24A5ng04blQqr65DUw9IWiwK4mU775zW+x2V5hrCcvoG/XrFYXorxJQH6WGZomoI1hkk/G6yO3OdYI2WpwKXLepXNFYawol/q+l3UA6ZnruqVta44XEw4XC6ZVhTEK1zkigbIsKIuCqizYbrccHBxgE8gzXPt9uvbFzk3Rth2DQq9tewGlk52f0VZqYtfho7yngezT907m412PNTInJQrBb7OtUSYDHei9RykBqHRSBKHUQL+RayAqvI+0nSgtRxcP58WumHTN7K0/n7RGS7e470i0AwHG/LTI6PLRe0/vPCq97jyXPCs75Kjuffwh1XQ6EZYkt8mPxLxBaaONSeubgG9d34FRTMoJi8UheSF4QVlWWJOx3dZcXS7pOkeMEqVhjSjdffDpvAiyf0U5DwfXhmEmMgJayXEipnrRBzdaoKeDIxNKNSif9t7i3hvWe1fWpwE++9//NPBpsO5Tn/i6STC4qWT92eDVzSd+7rpPx30gPwyPxaedHal4Hmx+2QOXhrp5OFRSQYdPWQt2r/PnJZn8XICpbSV/qetS6LDzYPXInGzqFmtq8lwufOfFuk4pnYoGnU68nbeuQuG8Iy8KyqqiKCuKvGTZtrvhmTY4H1guVwmcEmaH0QZSaNeQ1RHiYOGl8H1gu22FxRwkYLJNPvLGWqrJhOlsJuoSo8lyGTiGOBRTuxwFopICyXi860fvfO8d2/WSsjCYNLG3KpJbQ24shc0Imcc5QalDUHgPXd9zfnlJkafgba2J0fPRg4dcXl3jvWM+m3BycpvF4oCz01OuLi8xWrFcrlBaMle6tmM6X/Dk8Sm9a1mvlnjfozTM5sJW9t5zdbkiL0rm0wW5LVhenfO511+hyCz1Zs3jhx/S12smZUZwkXqjePZMcXl5yXK5omm6EdBTMZAZ2eA3qyWT+YLgOqLPqIqcSVUxrSoUjMUTMWC1wWho6i15UTCtKrGFQSwwZtMZ3gfq7RZrDX3TU0wKFJrttiHGMA7InRM0O7cKhafratr6kmpSUJQFNsvIi1IsDftOmDrpImjbjs5HPn78hL/4/o949uwZ63VDkc3oe0/f1uAdi/mUSVlRb7fgPFWekycrj771BBeoCkNmRGluM8t8Pk3B1wJYmqxiOl0wmcw4ODhgtTnH2JT/0rWcn3colRG8wvc+fe4zptOKi4srTp+d8u5Pf8JXvv415osFxhqOj28Tu8hqvaW4vOLg4FDKrRAoczn+7/zkHfIsoyoKXnn5Zb79jW/w/gfv8tP3f8LV6pKmTwVZTKHzQQYZaRqcmnwZFu8XjTDY46VNaWx40nXH4Em+NwPY+11ZiORLD8wrzRioOrA9pdkTkOB525LPwu31N17h6ZNT2raRAjp4sd5Q0ng2TSN+7XLwxG4iDNOZFKYbvdjaMYTaOnKVQ4Sm2RKjI88tzs8wZgaIUrCpt2T5hMlkRllMuH37Ng8+esCDBw9ZLKagNVlWoLUS+41mC9FSVTOMKclsxmRyn2998zsQe07P38P3y9T0Bxk0ZBFrFFU1WPgpnNPEBrQOWB8wWUD3Hudbuq7GeVBWCrw8yyXXg4jxmhC7RB4cNsaAD7uiQU5xKYIMCq2lYRv3l96zXm/H/MAQItttw2pVs9lUZFkGUZFnsoYrZbG2IGLwIQjTqO9xrk9DRotJNmrOCzgi9lFewDLnE7NG2JJFUYxD6cPDA15++WUmkwlKKdbJakuIeTEBZ2a8ZrSWwkl8/60oJ6yhLAoUslaCFI/rtWTjDYBLT6Tdtty//yI/fme2N29L5I10SgnLSY1FzL4U24c42uXmRY7JDDblavQ+MLLAY2pUgqgLinzCF774Lb75jW8znx0xBJnKa3XEKBk0cQ9cCglgGrOUBim+F8DJp6/9rKbxK9m3EJOxp1KJgexpO0/TnPPkyRPOzs7RSlHkOdoWkgmX5TJ4T2BtUZTyPeO4ODtjtVrz6NETIHLv3gto3ROCo28d23XHs9NzqmLGrDpgNlkwn0UyY1hdLam3GptL0O3B7IiXXnyRo6MDfNfR1Bs2d1ZcX11yfvqMulmz2iyp2618NVt610OQAbIxNg0Y1N4XYh2Zsrl0ysPZt22Ramw3YP2s3G681bg7EgNTbbBdANnDJE80DVW8o+t71ps1y+VKrPG2NXUj9pJlUYzZgkYpptOJWOFZQ5ZJhkgIYuco9kZOSAN5TlWWTKdTijxHwdhIN10PytK5jt55luuabd2z8zmPkrW5FYCpaRuU0lSTiqoqBcAxGhUMUeB4TLIA0cYKU9+K91FAUzeSJ9W3rVwPxqHNYI0jRjTeyXVVGIMpS4yKlGXObDZhPp2izISD+YyjwwVHx0dMpxO6tiGzGWo6Y7ZYUFQTykmFtVkirSuyKEPKkSEeI9oMChDFarMkxijWIvMJ88Ui2cZJXqEPsF61KKUpipKDg0NmRUXXteOA2BhFxJEZnfIe9PjpD0ToKspgezJtqHsZHlwtV2y2G7oOvEvDF6uxWbZTgWUGHSNETdt2bK+uMF6885VR2AyKrBAwLAp7tHOBwg8AvKhWt9uaSTHH2gyjPArDZFJRVRPysiBi2faO3vdCBKs7lMkJcRjGyeEbmIvCQlYymBiPLexY5DEBTMLmNftWySnLLvngyVqsBaj5WcNYCaMeL7IbF98IDO0NR8ZGdbjb+KshDR/3nyfs3+PmLcZE9hjApeH5P30wsPu1oWhNipHxJT9/n2EgcPM9DzWHZOnEvS/Etz6mX1Ikm7hf/FtR5juASYm9j+SHhaQqkeyk3nf0veQIbTctkKGwoMT22RqxoBSASZGXeRogyTDfWI3NzEh6EyDaMGh/ZP1W+FCijSYvMkKQgZ1kdYLUwQrnIq73KYxerKl71wvZJSnPneuEmBr82O/sM5BPTo5pjWe9Woqd+3ZFVRVMpxVFIYrzsihlljEMeZQAkb2TOn+5vGI2j7uhOgggZhR2UIVpRZFZrNFURc7BwZwnj5/h+pYQejTQd4Es1/ROo/oB+OmJfUR5TUyECefECiqi0SbHWiMklGjEFtWUKF2AzhKIL6QgjScQkrXZDmBSKbMvyobKoKQJhPG6HGsRM9QnaY+JezZHId0vAUxKgdDpRfE+9JUKj/Kp/g9RsDitMVGyCkMAnQWMC7ikZndFn6zbdtlcaWont7i/Djz/oziuYaOFUJSZRoiDdVsa6sbd2jEAkju7PLGNDMm2WGlFkRfkWSaEuDxPJExNkWnK0lKUWvKmVRru9kFMEL3HB1CukzmaCanPCoSuxfVtspH22BjSZyOvX6zBIgFRSEUCaJ2G2omVqj1KOQaLvF4b2SfUvp1UynEawadhiJoOpBoGl8MaPvw8fSklAJfaAUwMZO0BdFTSqUS9N9gc9jVZcNP88f+Hxev/T2+fqOP39iwg5ShG9hV1+0DTzcfazXIYB9Hp/ulzszbna1/9Oo+ffkRdX9P2a7pmjWS+htFxIwTJYjcGyrJM88FBdCb1qFKGLC+w5GirCcGjzZBtFNI6YulaqVnLouT24YzDA6kBFZGQZeg8oyrlGhrOzUk1kflpiNR1Q9f3ab0TUDdElcieEWNkzTfG4oOQHZXSyYrVgYaiyBOpV42AlbjKiGBhmJt2vaPKytTnxlFdPhD95JqNUjN6IV0Ya2iTItcn0mSMER1/FqVGjWvRvipNaY0e/p1qj5EwikqOH2EEmULwWG3Ic7FVN9ak638cEOzqcqSOiTBa4w1rIOkZfHo9QqzpiAqqcsJkOqWaVKAMWZGjjMV5L641dUvwsu9JxEGaAyowKuKVSrZ7ag9UUikighHg37e4G0DsOKwzaveYKg079oGa56+h/bnHzwKYbvw9HevIcMw/DWAassMHV6d9m9S95xr3nJvX6M9XUn16vbt/3/2SdLf37Y5XWkz3/v/pj7P/ef+s288FmLpOlBl953BOTkZS/gKIfRNxQ1UWlGXOZrPh3v2TZEsTxdPcOTnZk3ejtQYfHEUhHvPTyZSiqDDbjeSNaMVkNme72dKkEPYsEzmicw6TTmaSh3xwcQxmk4yllqZtxXIkM5JrogyLyYSTW7dYLBZcL5dkecF8scB10sgXhQAbXeeJvk/NWITgaeoNJ8eHhOBZr1tcv2Exn8kgwIkPclVYNhtFrjXeZJQZaJNTZBPW2y3XyxXbeisXcJaJuscoVtfX0pxWJWU54e7d+1RlSQywXm+YT2esNzUHBwfECE275vXX3+DP/uy7rFfXuFQ0LBYLvvDFt8lsxtMnz3jv3Q85ODjg8OCQ6WRG122pKkumFbFXHBxULMMWYyNtt2G9ueTygw+p65q6buh7R5Zl9J3DWFlQjck5ffqIzx0d0mw21Nstt+/fpypyyiIjs4aqmrBebbi8ukxYeeD87JQ333yTxSzZmWjF97//Q7RSrLZbVht5n8vrpxTHOVlecHl5LWzKzKJUpOtalFHkmZZMpL7h9PQxr77yMvVmhVJiGbVaZXRNLbYlRUWW5SxX5ywvrvngg4f89CcfSGaGzllvWparxzx8+BHTasKkKDg6WDDJc67Pz8XGpm1wjSMvNNOJsMw3oce5lm3bsNnOmE5nFGVFWzvOLpZk+YSFFSDn8mLJ7MCijMe5wKNHT7l//1W6NtI0PUo35FlFmeVUZcXV9Zo/+P0/4Etf+TLBeYKPfOPr32Z5ec07P/4x4fSMN996i8uLM5zraZotm/WSKrc8+fghjx484M033+Q/+Lt/l//53/n3+O/+3n/L+x+9x/VKcd2sxMdVDZtSWlyHeTAky5HdYjVYVAxLVxgKatgFA8bAoJyJaSMcsatPLE6kYY+sCSapmQY24bCgCTjw2WjGAX7rb/wG//qP/jWPHj1ivd7Q951Yd2hhYDZ1TZ6VqZiSY2jLbLTLiwlkGoAoEgNJqUwGo5uGzSYynU64d/82YlmiqaoCrQryPEvKDnjllVd48PFH/PCHP8T7nq989Ys0fct0MsH7jvVmRZYVHLZHYlkSDJu141tf/w4Ez4/fmfHRx9+jbyEzUdSeGRSZJivSwCtaikLjB7apsWhboTLNcrUiBCEWGBUxBnJriJnBWE3mDL1TdL3H+wSmBSnWQGGtSgWQDOdsVAJS5TkxKjKbo5Rhu2mIqaH1wbParLm8XHF8MhfFSgqVjmGw/xCLNB8jrm1BbZlMpiwODsiNRac8nr53hNhLDlrKCKgqCZF3qXCczuasVnEMn3sAAQAASURBVCum0ynHx8ccHx9jraVt27EBjTHi25auF7DKWgEMZKgheTBlVbHZbJhUJYv5LLFQE0MqATd1XdN3/fh7y+sl9+6+QFVWBB8wKlkXxP2CRphCw8hyyK+QIYAwitq2JSsyMpuT5QbtDbHbs65Asn28Ex/3W7fu8x/8r/4jAcyjJvj0PpF8AR+EpRRxxNCP1iViDTAATGEvZ2kXCh5CEJJ0uAkyDT7CCmF+DUOprl/z5NEZMSrapqcoCmazGccnJ+Q5aCOZLkormlZRllNpDFTD5cW7bLcNP/nJT+m6hvv3X6QqLQTHarXhyaNTnj7+Cx49eMRffO+HnJ9eETHcOTniwcMHXF6s6FzHpl5TFDnHhyfcOb7D0dEha3vNy/dewholrNPoePz0MR89+JAHHz/g2dkzLi4vJfNSK6zNWK5XQ01IHHJXGD7LkIYoYQdBRQZ3uM/cTY8B80qGnjEOPYGsq8M/hqJe75pQ74RpeXW1ZLlc0jYdbdvQth2Hhwsmk2kifniMVsymC6zRxOjo2i0qsaV9nzI4tGI+P2CaLO6GjJ0QPdvVmrOzcxn6ZRWbuma7balbaY7bVohUwTuIgbpZ07sOlGI+n3B4dESei71dIOIasFnGPM+Zhrk0sTFi8qQMVYrOeZarDZv1Ctd3LBYLQpQsL2MzjIYiLyDCpCgps5IQIsvVFVlmmEwKDg4WLA4m3D45ZjKpyPOMMs9FaZvLeyynE3wIAlwZGVh2fQ9uILGQrlPLpKooigLnHZfLS7KsYDItOTo6ECZkykmLIbJaSc9gjGU6m3F8fESlcpzr4IaCwQsAktYD58SZQWwnNdaI4m86m9B5R91Jlp4i0BkI3oomQ4nVZpZJTT8pS7JkuVU3rSjPosJosT/R1pLnpazNIYKP+CBDuhgjfdezardcZpqDWUWZFxhbYrTs23lRYKzFRcn+67uePu0NWg25gHIbhg16HPh+2gBqGBgl5r0XRwaTPpMwDE2DJ/qYchEZG/xPA5ikyXeQ1PDpmyOYNN4vRGxm0tBjuDa1MNITyBPw4iibBpYDu3KsX8erNqmxiAxh25/Gzt4BSTHVVbv7DIDQ8GOlVLKRiuP3xoN24/HU+BiiLHXJeloxaERQUuMONrifhVteZHsKJqkZYkiWuyExoJXHuYa22bLdbqnXHcZUGFtijUaZiNWS5ZzlFpsryonUwLCXtxLcOGTeDWfiWAv0fU9eZgx2WqJAEjLLQDHwLlDXfRpydaIQHTJzXEfft7RdSwge5zqpV3wQlXO6aa25dXLAdnPF2dlTzs/OmM0mLGZTYlInrVdLMmN3WTLDeRsC3nmaWHN9fc1sNk9AhgwrrTFCVsglu1ZpGZxOipKqECujs2fPxH5TyZnn+x7vDW0T8S5K1mjsoPcQDDHI+44u2UMFTdQVNpf6XEA+k8g2EnsgrHgFKhC8Q6tASIppGTzvrM3CoApO5ARZZ9wOoFGgdVpvEpggl6uopOQ2TMPkWpRMrmQbJRu2qKQ04o8XZM+ORkhhQ75IjOC7IaNzN7gdniOmvnZ3260HnxjhpdlQRPrfG99nD1yOO4BpGLoPtXGIiaTm3Dgvg0hmRK1njSHPcmwmqtssGxw/pL/RKqK9gGmOIGCh90kRFcfPwXtPv13j+05IW8qTe4Wxco4EJI+md5EQDEFZ0F6uXR0Qapao3qWe10Rl8Eb2NDt8Duna01oLsXhQaYzgYTqe6dpU6bMWJUf6fNNziW3fYI+3m1XsjnOaMyiEFTTgVakGVvGTn9kv9k0ukL+MkDvulun4hNTXfZqCaYcr7DJgxgF5lFmuVpovf+mXUMbz6HHP6vRSrOKLnO0asaAMnrrZ0jQNk6oQqznfilo8ehSaophS5AWzeUZeyFq/Wq8oy1xIs14IVQNZUSupuaa5Is8ziEImzLSmKAVYGoizMUKW5fQ+UDdbVusNvQspo0yuMx8jIbT4EHBBcogODw9pmmYkgQqBEawyFHlJnud0XSfqnK4DhDQxgDi9E1WPSVmE3vfj/Yb+w3mP80LA9V6yYA8OF6zX671jT1o7kuXjDVLOp9dgarjunkfItR7XJal7xe4vhohGVPJlmZNZm4j9cawdB0BmN5NLBPM9wsz+eeRSdlSIQq63ec7B4QFFUUr+ZtpXfAjUdcfV9VJcE9AYbVP1pAnOg0qCkqjSvGkXxzEASgO5R0DNXb3ovUtgyj6AI8S8weZvXDuefx979eGnAUw3FUhqd+k89/2bwNIeoKT3/80nnmP3kDefNz6/Me0BwD/rduMt7dXiw/I5cgDUQIwigdG7evhnP/bP/tlfnsFUt/S9H72xQxriDIt82/aslkv6vmE+r3jxpXsprynS9T0XFxd0zqGNJUZP17eUZSnsEaGn0fUdZTEh5jL8yfOcR+unWFvQ94667dBWFE7WWkFIvadzntDL5q1NzurqnN4hPvKZFPN3Z9PxJPQ+UjcNr772GmVRopQhKy1TYxOTXQa3q4slt0+OiVHkj0op8jJju23xoSMvLLduHaG1ZbtpWS431G1gPq3wXuT6eTHh8mrFSy+9Qt01PHr6mKZpuL66Yht3iOFrr73GfDqlLGTxPTu74q//5ndoe8fl9YqmaTh/9IQnz86Yz+fcuXOH9bbm3v1XWc2WbLcbrNX8yq/+MpvNmtVqSZbP+dLrn6NtG44OD7lz+wSCZ9s0PH74Ea5veOuNV7l79xZGBULf4fqeLyxu8/3vf5+PPvqItmnIjZVMom5DbxrKasrbn/8CH7z7Y2aHhxyf3GJ9eU5Z5Lh2gzGW+bRkvVpyeDDHOxmk3L59mz/90z/ljTdep6oqTs9OuXvvNuv3NkymFSe3bvPq62/x9/7B/0Bd17SdZHD1fc9yucRay2w2Yzaf8PJLLzGfTamKnDdef4PppMTkFWjNarXh4Og2zq1p6dluWj768CHbusdrjQ+KN996m9PTM95/9wFtsyY4Ycq/8urLFEVOU9dsNxvKshRLFavJbcZiXlIVliyXIj/PZ+gUgC19t+bk+DanZ1dcXlxBdFxdX6JMZDrLOThccHh0wGYT+C//y/+aN157izdef5P1qicznvnikPtRshr+2v/kr/Gf/af/Ob/6q3+V3/jO3+Bs+YR/82/+DRfnF9y5c5vr62vyPOdb3/oaH7z3Hu+/G/ny59/iD37/99msa370vT/n//i97/If/W/+1/yN7/x1PnjwGn/y3T/lvQfv0/ouqRPEckbWlrSZpIVmGKwNG5xKg+Wgh2IkGTdEn4p1GQITxeIgBLGk0EPRuJfPNC6kdmATpEGIkecTX9jEBPt5i9Mv2O03f/PX+aVfept/9S//iH/wD/7haEc6MD6zzOJ8Nw5QvPdkZYkx2a5pDoaudZBpjFXYZCkk1gt2HICcnZ1xenoKiDXHq6+8yeFiQl5MQcla+I1vfIt//a//FQ8fPuTttz/PpmnIdUFX96xXG8qiYrW+RBvFbHpAWU55+uSSr3zp13jh3gv82feO+cGPfh8VI/N5xqTKxHJOOWxmRv9cm6ygutbTNI5y1VCUGfOzKdttL41u6DA6YDJLnhfSNDuNaaB3hqA8vVMyCEPjnMfaFPuqdTq/Nd6TAAfxzT88PObi/EoaQCMMqY8fn1FWOcFHbt06BNVjdaTvU18egahou55ATdvVzA+mhD6wqbdjJt3VdU3vxS84ywqsyTg9PSXiKcuC27dvc3V1xWola/jTp09pmkYyWKbTUVq+XIlSwvvAYrFIhagUVINyOEssemMMx8fHfPVrX0ErzXq95dmzU1zb8Rff/T7L1YrFYspsUvDGmy9xtDimKia42BARYEwpkZhnWUEXhos/FaWAsZKVFIMMLYyyFHlJVlj6raiFQ1AwsOm15AN8/u0v8Nf+6nf45V/+VZq62xvORZpmK+d2FG/8ZrsixhQOnQafAN4lxZIXu4/gusQoTkO9SFI2BaJP3iMphVUAloiKjklZ0k4KjFV89NFHvP2FL0sGlTZMpgfkuYB5SitccFTTQyaTCd5FthuFMiXL6zXf+94PuLy85Fd/5eu8dP9FJtOKGCLL15f4zvHuT9/haHHAyeEB91+4zW//9m/w+MkT3n3/Pb7/Fz/k40cP+MN//ocUxvLy/Rf58re+zPnTJ3jfYZQwlKtJwTe+8vVRQbNpWv7R7/0e/+aP/hkffvguZ5eXTKdTtIlY7RNrT+x0mnrLeinHsm1bfLjJxh5uw/r+mbjFOFq9fGphrHb9hpz6MojebLZcXi+5vLri7OyMbd0gweqGk5MTrBV7SmVE1aKUp3ct3oOKYWTjeddjtKKcTjlczJlMJmR2UHXK86zWS7ZNTZeCgrvNmqZzbJuOzbrm7PwMl67VLDNMp0KkKYoCaw3z+TTZNA1KP7HAIYWm28xSVhPQVoZkCWQ5PT1jdb0kBi8EKK3xvcMoTZHlzKYTXnrpJRaLBUVWEj08ePAhxTkcHB5wfHLMrVtHTKYFRicVQQxEBYdHx3L4kdpdGyPzIB+IKS9BGUNwAsi7EDFJqTusAfPJnPzoiPl8xuHhAVWZ431PUVTEGKk3HU3TcPfOPY4WczQe19cMrPmIKBa0UcIYTerIMs9HFmcMgJfrqMozCpVTFp6u3tJuN1gUIVhRbqPQ1ooKO6msTJZj84IsL9A2I0TIraWcVlTTimlZARCcIziPUqTAXBn0iY2nDL6N1mRGAUJOspnYdrRtx9XlkrppxwFK8DIUGpiRnpuN36cyLYMAMm3d4JJda5Zl9M4lggEoa6jrGk1ykBh+b6+Jvnl5hbEeESVCUi3FOPrz76xMzDgsgDhmS0meTpDBMMPQVo2oeIi7vI8bz80OWBpe289sfsfHkNsYkr13//E97N3z022F5HuDvWYIYsFGUnqJbYxGW8l3+CzcJpOJ1KpB8oVcH+jaFkJP8B1919BstmxWWzarDevlhnrrKHJFnmtUbiSbJUjOj0IsPJU1mDxLlkkMBdmNz35Uz8VISLlXkV0mywBMqWT94l0Qsl9sx7pFp0BK02uM02gDvWt3mY691DCt6zDGslgccO/ePTbrax4/foxWcHx4IOz9ppGht1LkttgDFLQM82w2vu5IoGm2zOezNGMRJVGWGRQ+9Z6Wwlqm5YwX7r1EjJGHHz2kb12ypZMhmrWW0Ad839IpR9QB5xvwFhDVpygTNVplaCV2zNoUGF2iVLJq1RZtLNpqlEkWP3hQ0jsTPJ5WDu4wTNNKPGF0BgkQjiGiUvC7TLpu9oUy107X+JgREdO8aegV45iZOKhS5aOOuJTBJKVgRNSXKtX/oFUh2ZoqSnj83m0flP53dc6IRLwKP7OWuGmbx474lHo46z1ZckIQx4Io10cIBKXoXC8OPUGUXdp4UGIfq3VM6glR4/ddxDtQOIzJ9gasnna9xDkBRxWBItPYLAHzIdD3jraPSGZjBqpHGUdULSH1887vMlxQGpVVQnKydgQUjTHkWUGe5aknyWUOoMWuaVQVKXEiSkzJ8bwZeoeYeqzhM1bPH89EGiOknBA1gMtiHQnhM0agSsgasG+C+7NuolzYN5sdVtDdowzXmzaKGIc9ee+Xo9Rxj54+4uFDsfs8WByyWp/x5PEDFJ6o4fz0jKuLS6qqYDKpKMuK7VrW0SrPJOM2Rs4vLimKItUAnrrdCkGoKimLCmsGypxJ4INChYa+bW6ALOv1Gtf1Y914dHTEpmlo2o6m6ZPNtVjVRRTaWDrn6Ifz24tjQUjqnuAH5VFMAEzJZDIBYLVa7wEaqS4xkq1Z1w2LxQG9d+Qmx2YFfiOAl/NDjqfA2kHtDq2P4EKaRyQAXbRRqd6K0k8MYO5QnyQT2gTop5prr3RJbbA83wAupdrcWEOuVRIJWPS4vg7W03KGBAbVGSP48okzcQCw0rqh00yiTw4jLgSqMmcyOyDLC66u15xfX3G1XAMak+cQAi76dC6n46C07E1KI84lg8LLj+CnEBXUnoIpyMyH5CIwvpcwAty7i2Lv5N+7TvZBpP0/d/dRN39h7/vPA1DDOji8Rq1V2ssSwT7dZ/c7+y/u0/al4Yr99Of99NfICFCKM49czwHPkL+qlGS0EvVeDTx8vv/fTWV/PsC0bei6VAylIbrY2AxIoAS9OedwPlLXLV3b07Ri72ONxbkB3PEorSnzSgI7q0qYi12HMYbryyuGzIn5wYEooFBok5EbiwuRersRyxejiWnB8z14J8H3WV6AVrjgaduezbZls+2w1jKdTplNp5TlDNdD7Tu00pRVyXpTY41Y0NXbLSdHx2y2Nb1rgcDh8TFFmQmzXhmO796jms05P7skoJgfHhJWW3zsyDJN50Tp8R/+h/9L/uRP/ozmcsutk2MePXrMwcFi/KC8DzL61JrVas0HH3zIZDLh/PIS53q6zrFab2laR7+pubhe8fTsgm9+85ucL2XIEE3G5WrNP/39P6RPzKoQPB89ekKRi59mkWeUZY5WAQtUZUHdeUqrIXjapqZtWo6Ozzg+uc3R0cmYZfH+++9z+uwZXS+Fz7/8w3/GF770ZdbXV5yfPuPFl17GuR6TZVhrcM2WKjdiodgJu/fo4JDXX3sV13dsvOPo8JD1pubtt96i94H1tubhxx9hraVpe1wjG1Df9xRFloYRgclkwtHRsTDAek9RWq6ulswWhmpaYm3B9773PW7fvoXvPevVmqfPTrlabQlotm3LxdUVp6fndH1PnpfMT+a88upXmZQlVgt4OZ1OqYqC7eo6MeVTodb2KC3WST4oTBQmRfCR1fWaMDPiA6sDCodSju9+78/wQXHnzn3eeOttGSDPjvnROx/wox9/yOuvvsnnP5+TF5rZfEo5LYjR84XPfYlHDx/z9//7v8ff+Ju/xa//+l/lD//lH/L46SP+4T/6f/Orv/JN6vWKRw8fcnlxiu+2TIuMk4N7NE3Hex98yP/4j/4Rf+U3/hpvvvo6L7xwn//7f/1fcXF9KSokHXFaWBMqelBDGB5jzuowh5AFPjHgFSkMOYyLFWmQJADTbu+ROjE1fwPNSHZIBtsr71VqOkTWvr+xh/jZCer88KN30Drj9Tde5n/27/0O/+Jf/CuePjmna3vETi6MVkEDM6Pv28SglI0iyzIZ+hthoEQdJLi3V6kZENZZU3dUE2l0z8/P2W5r3nrr89y79yLzxRHPnl3wxptv8fTpq4QYODy+zZG6RbteYkwuRdtmw4cfvsfR0TW3Tu5y7+4LKKVousB8cYdf/vZfB1qePvsxwbW4HhQ9nQ7EaIiZDDCLXAChorKUk4LpfMZ0VjNfTOm7iNIFxlapUQSUxkeLcgVKBayzRAVdV8gAPTgCDh9FjRCi2Fn2XWCz3gJyLVdVxfHRbaaTBVdXay4uVpyfLbm+2nB2tkZrAdoWBzNy2xKCpe8ksDbSk+UZZVVSTipc36ERllLbCkiklSH6nt7JMMMY+d2DgyPuv3CPz3/hC3jvefr0CavVitVqJSGf/U4ev90Ks1cpRVmWwI5NYq2lLEuul2tOTk6IRJara27fPuHjjyXPbjqZ8vZbb/Lxw8d845vfZL1a47xkEuZ5wcnJLY6PT3j27AHKmiT7ZwQiJdgX9i701CjK/i/5U1IHGGMpioqma4UdrDRaFzinePmVt/itv/m3+Z/+rb9Nvd2FoA7qgd61hNDh+oa+rUfgOsYh0FrWgWEw5FyP78Vax3nJl4tBbARuWOSF1HAmtrI0TOB8R55b7t+/x7vvPeSjjx5y+/Y97t65R55XoKXhUB7QGdErulbTtY6u1dy5/RJvvFVzfHTAC/dvcffuPV566TaZjbRtg46Ot996jV/+5jfJ84K2XbFZR/IicLQoeOHOCfXmFb74+S/w9//eP+AH3/0B2kdy4JWX7lKVOURPW69YLy8wNkPZDJPl5EXJb//Wb/Otr3+Vx48f8pOfvMMf/LN/xvX1NRqTrAUCm82G9XrNZFIRlcO5bmgRiDEg46pd8fhzSEi/UDcjolAGH+xxsxpZZsJAU0o8xEPvWG7WnJ2ec3F5zXK1YtuIgn8YKDdNw2KxSKpcsV6SfVAy2GJwEBxGS21RFjllalaVUtRb8Z/fbITp2bhOfNF7z/Vmy3bbsa076qZlU0vGaG6Ttd6k4vj4gKrI03BfMrp8UrYMNhjWloiDgMXmOcpkwuqs2/G5Ly7EkrkqCmbTCbdvHXNydMR0MmE6mbA4OGA+mwnw4zyb1YbtdkU1KTg6XnByckBRyrC061sBSHIhEahkCUUipxmMNO5I/ZtpTeglRyzPc1TfC/hTFqhWUdeSbXJ4dEhVluTGotCUxZTMWpzr0SpytJhz6/iQ6bRAguClgYbUYAcv+8/eGmGGNU0NQ6w0+HSgtMagmBQlJ/MFG9NTt57eBbCS42SyBDIpKDJDrHKmk4rcGjyBqsyYzyrm8yl5nqFCRIUMg6IqSo4OS6wBoif0DaK22q+T5DqNKJwH5zzbpqNrPcEPTH3QWBnKo2XYlmz/InHEk0dlE2Ib0rbd2JvZXGyZhsygmCxnbZ6hoxpSncaByA3l0vjnPqsWhsyNmJhKqXOE9Lnvq3X3bzsgZ/fo4wjsZ/S4Me7uexMWkh8OQzRZBwZV8k2G9vC9YV2IN6T4w2+r1NfvLEVkb0r7mXcyuJE3iSiBQSlDURSf/uJ/wW5tM5AZeqLvcK2sZ2HIXWoD27Vnc92xXnfU64628eA78Aa8hhys0vRKBiAGT6YNGpVY1kNeyx5AMJ5HYqtkrChCRLWU6gkdyIwVADwEHJ5gIj4TcqjConUntux40BFtIl2XSS7EtEyD0EBZFORFQfCBq8sLVldXTIsyWWcarDZCngnDurIDLQcbtKbtsVk2sue7rmO73bBYiL29xhCj2CoXeU5VFRweLphWE8mbdI4izUmIfuydQi8kX5lGeHzsxWJosJ5TAqRZlaFVhtIZEUvESk5fsrozShO0ISg1xPHtrjUVQQc0YlmtQgAM0TsiBoz8G5J9PpLZ4VP4kNKaMOZDJovJoMZMD8ksijdY64JLyOdqrAwNlZL1IQycohEY3tlCxcTWhx14fHM+uAO/P32Qlu4fdyoCgQklrePGIC6IumlfGZk2QDn/vRCoZM4hCjnnHCp6tAr0yfVHskgUWadxvaYrNCblFEfv6TtP13n6PuD7OA4NB3twHxzddiV1fxBCQ5mJonKYqQYf6T1EHJEeyEC3BIwM5FMejI9pv1YGm4m9rUkZWlobjM6oyoq+KMmzAmt7IWql4yzxXJpBTazGy1Shgkn7Q1Is6LBTQe0O6h4QOICcicwaY8ptDeP9PjO3vUE4wJBv9Ym77e3L8tfd4HowsoyM+BEy15E/RdkQUOmzRik8nmenp6JG19IPnp6eUjcbQujp2oaua8gLw+HBAdPpVGpTH0ayivAM5e82AZNaw+27txGhtxeVXy+1qkn5pEZrJlbOhSFrSEoFjbE5NpP6vOsdXS/1mk9Eq94nF570Wtbrbdof5DhlSrPebEU9Axht2WzXHCxuMylLVISu7miblkgcgR5Zp4TQZawQz4f1XOoNhbYaj2QKRyVEV5mxSe9wvbwmgriDIcrV3vVi5Zz2uRD8mI8UtQKjE9ia9sGhPEmf97gWpFpM1kcgWURbrZMbxgAu7eer7RN2IIQBUNNj0zicM/t9d5EXaFugtLjJDH1HUVaUkyk+BNrNVjJjm5aokuIVDTgh/qOweSEk9tiPlockbbzMIXQ6nwJaWfJE+hdXFCf7jB+R7eeAt32Lzh2gJDPRuPf9m0DRz7quhgd5Hlza/12t1e58VfvPuevBd4qn8UHH+vTnqYWGz1+u1xuvMO1te8fgxo+HIMC9Ulft9rjn3+tN1drPB7R/LsDk+j5J6NIGzX4/LhK2+XxO1zXj5lzXDavlCu+hqXvquiGzyZ9XI3JfaxPDUWSF0uBuqKqKEODq8pqmbujTRhxCQBkjC1ySGQbvuby6YlbN0drKid1FJtMJm2sJQlZac+vWTIJWXWS7aZhOF9R1myTI2Xi4ne9FXm4127qm7zuMteSFxWPYtI6gMmwxlcVDZ+STOUSxxJhETevWVPMKMk3ddKzrKzq/AdWTZ4bppEio6i4M0hjNZr1OtnQ9R8fHGCuyTW0zsqJAp0D4vu/pnOf9Dz/i+vqK6WTKYrHg1lQa1+vrazbrFW29ZbVuaHMn1hrlhGp2iOtb6s2abbOhbj31asnRwQFd27JcLjm4vOb44pL5bEZVFBitWcxnEAPbzZa6qVExcHF2Suc8LgYuzp4xm8/QGto60DYNRVkxrUqiDxIIqhRFkbNed4QYqbRmPptgMosykTJGrpZrYTTWzcgK0FpE3ENYL0SqckpZGrzbcvrsGbdvn+BcYLOuQTsuL8ReoGtbTk9P+cEPf8Sdey/RB8/1csWTp8+IUZGXJfPJQoKiy5K2d6y7mui9+FdXFXiHTQCJcz3WaLEu05GqLCmLXM4fJRlfeZZzfnbOfF4wm+aUVUlRlDx5ck5dP6Rzhl/7tV+nriNnZytc7zk5rvn448ec3JqTFwYfPdUk5603XudH77zL0yeP2aw3lGXFSy+/iHMNjx895OGDW0yrgum05M6tY87PTrl1fMhkMmOzrnlSPObBhx/w+dPPc3x8yMnhEb/y7V/mT777p1wvr2n6dmQnKJKNwH4Dv7cKaS0+1sPPhzBkRWKTGY1KnrbDIiZ/7vzyd4uo2jUDA/SUPP6j2lm1yHDsswMwnV8+pW0c3sFkkvPFL36ek+NLHj16yvnZZbLCi0kqvdtAdArUHXKExqIiSMGtgkoN5fBzGBquLMuYz6d43/Ps2WPW6zU2K1mtGlCKsqpYLA5ompbpZEqWVWKZ2joJj9cK73u29ZKra7HQ6PpAnimKYsLn3vwqxI7N9inercgyJev4MJAJHpRBG2H0DNlcSlWUZUHvIAZDIBNZe5C8vN4rlM5TcWmJWhGjQXuHDy0hNHsFUNq7ohIPZSUy9ul0Dghb3tqCEDXrtQDil1drKYx8T+d6iqwjhozVKgiT04gHfFFkzBczfPA7RoqSYahK1hAx7ux3QpTKzigZeHz1q1/l/ffnPHjwgPValJqr1Yqmrsf1XtS30qSJtacwvPq+p+t7IoE7d28LwKIVk+mE02dPpVC/c49XXnqV6+sfsZjPmc/mKZBTPKNPTm5x7949nj57MAaeD7ehmNkNEgYmkTBYh+Ju14zI+7U2G1W8AUXwmt/4jd/iq1/5FgcHJ8JiRo05jju7u2RZo+NoeTMOGNJrGxQZ3klz7n3KX4rJRi/o8f4xBAkRH2zylJfXmVidKMNkWnHr9m02q57NesNqsuaw6cgyk46C0Pz6XgAvomU6OeSN14+wZkpmoSwM203N+fk5h4cTjIpMJgUvvniHk6PbZFlBZjVlGch0wOtIZhVlnjGbzXj1lVe4urzkww8+5OnTJ2S65+hwCgS2m1UKpA0yrFFiW3P/hRcpipIX7r9EkZVcXS158OAhHz96RNc5UZw7x3a7FeDSiuf2/vqrtTB990fDn4XbYFE1NtvDQHos8HdWXL1zbOuaq6srLi4vWa03NE0DgLZmHHZJNty+jaR4hQt9LqlRrKUqc7HCS8PtpmkFUKpb2uHvTcO6bWi6nrZ3bLYNvYs0naPreiKRsioo85xpVbJYTDk4WJBbTd914gfvnPA/ok75c6CMWIvYTIZCbdez3gqwVNcNTdtQVRWTquRgPuP46IC7d25z59Yt8mQDN6lKsizHO0fT12zqNVlpmS/mHB4dUE1KQvKhH/Z15xzKiEWpDA/ldWklgfExUSt1AlCGm9aazErd4W0gtzl5nlEVldiRRkXoomRepWypwmbcvXXCbFJIeHQc7JiS1QOD6jrFkSTwwqcw6nGAqVNNlNjUCkWRZcwnM/LMU/WeTV3jCWirMdaItZyS19ypCIkRaDUUuaHKjVjEGtnnMmXIbcZsOmE6zVAEvIu0fSAvLGUpw2QV5XMfhpkxBPohJ8YFvFPJ7s+glCWGZEuVlrBh6K6UGf8dQxxrrbZtUXFHSpErIF0fCUAxxqCj2tlWqX11zydv4/f3QK1RwYQMqQdrpEEBPwyKhs9kUBoPe9AuU4kE3v5sBu1w/gzX56cNjQMBpX/2QHkfeHru3Y2POyjwh/sMjH69NwgYbQbHQ/LZWGf73o17b/CBvgsCiDqP7z1d41gvO5ra41qIzoCPuM5DaPEuYPoO37eYxqJthipKuqajmjQUeUGW7OZ1Om+JMYkZdkMWjahp0gRMPquhnkDAroHUJtu9TvWW1DMmWR+TW4rcYK0e+x+Avu1Yr1Ziy+88xwdHTKdTjDWiFjUa53u6RIjp+46YkYCxKPXStkl2OQrlxQ5+tb7m6OhQLJ8CSR2SkWcWa6DdbpgWhSivMdiUz4Q1eI3UX6FHeSV5SMGIBWaeEbACRmuxXM5Mjk52eCGKRSvRoUc8VcAopZWsG0SInYCHKS9T0yPMRAFRCMkW0YvqJqZhq/OOIXsoxqFuTgDTXh/jY+oPExFX7JTTwDsqGYxaIxa06dgNEHIU1sKN+l+ngme4pvcB77EHTs8Xw83rfqwR0nokGSGCkEQVR+b88+rHwSJqP3cpRJ+Ogyd4J8fD9bi+FaVdUuBoZZJlqMIoscXrO03epP0cGQq6PkhumEuqBJeymQZ3keDo2zbV1xGjoMsk99iMg06beqvUiysvHyEh2Yd5AVpVqiH1AAD59BqHPcMQlWgpRDHoGYiBo22d3rddkqOrUGkpHWzdFVEL+CtAhNyPGNJenuYUaY8VvN/DmNsaUt7bZ+N2A4QDOZ/jLmcJbu5vN7Co+Dw4JcfTKBDVcHxuzxoATMmLPL84p+876nrDanM+gilts2G9WrFaXfHySy+xmB+QGY134kqhlRLyVdr3rc3YzY0U220tpLh0PRgtCn9t03UWSJZqYFI+sWK3Z4uiRfJ9+t7Tdj1t5+h6l9YzAbWCD/TOQ4xj3WqsISarW6VITgUZVVFijKWuNzjfyZ6B2EyS7ChDkAOc5QVd78isJcRI37XjnBBkfYjI2iHzzkhAALEBjIKkilLJ/2DgTyhG27p0uMYrYqw7EAvD3RqU0uJGou6whiardaVugsGpYh5qNqV3/c3Q4wzPOfTnzx/7iIDTIQYODw/IigK0ZFSjFJdX12y2LT5E8rKi6fo0hxC1khts8kewR6fzYeix9LhniD2hv6HqUlrdfD/qk+Dbp91GAhY3SUfDf6hP3v/TLq4dULQHcKmbX4NyaR9k2n+8YQyrnnvc8c/hvf7Md7N37cvgddzn5GfhxvX9fH36/HHaJ2J94kB8yu3nAkwS5rsbGg8IqjC85MEXiwWr1TVay8a+Xm9E6eMVbeNomlouqnQA88wkb/jExHeevuvYbmvJqYhweXWVFDAdbd+Lh6O15HlG3GMnXFyc4w8DVSlqqM2mpqgqmlasRKrJdFRY9X0QizsXaZsOCvGaFKk8SQIqGVHr5RXGGLKiwOalsEmdIxqRkAN00VLNDgBBrjMPpmgpdUTnGpXBw8fv48IWm4GKhsV8mmTN4p0eU6O92q5TYHrB4fGRDNf9CpRhcXiI66UQ6dJx+ujhQ3xwmMxylFuOj0+YVBU6y4ha0/uI8x1N78kDRJ1h8wkRQ92t2a63rDYt50+e0b1oiSGwXrUEX1Nva46PDlnM51RFwe1bt5hWFVdXV5yeyUJ8cfqMrCzJq5LNaik+zK6jddL4qsNjqqJgUlUoLTYng61TiNLYTqdTNnWDR2GNlQysvaZukA+63jMgv8ZoqnKKNYHN+poHDx7xwgsvsm076nVD23lW65qrq2u26zUff/yId975KS++8gZ9K9lc16s1t2/dIbOe6XzGZDph27S0dUPbNITeoYn0bct8Uki2SGoSvJfwOaLFaAmFB/ETNTojt5Z6s8XoDmtLtLUcHt7i6qpmuax5/70P+dzbX6FuoK4DTd1yenZJ125pu1tMJgXaKMpywr17t3j85Clnp+d8+P4HvPGFL3D37l3Wq2ve/emPef+9d/nC22+xmE8pjOLJxw84vn2HMp+g0dy5dcK7H3zIs8ePuXX7hKNbJ3z7W99iuV7y0/fepb88Ew9eWXfTBrYbKqRVLS0yAyNW1oGxwUqbjTaK4NTe0pTGOcMgQO0torulSjZ4kIIxCLt+GDi49PVZuV1ennN6egFRM5sueOmlFzk5votWhr7rWa+3qdhxNzatAdRQSFClABCpGFcBFZKPdSQVRCI9jlHWusPDA7bbDculWD91veQ2rdZbXn3ldY6OjqnrFq0yKpuhlSh5qmk1Btr3ruF6eS72dSHIMG5ecu/ua7TNkidPFddLh1YdSostz+Bv7+PAhpHMJGMM02lOWWmcA9eDi0YCmD04F6FT0ngAvZXg4RhMOm90al4Vhr3mdfBAR9hWk2pKWVr6vkNpi/ORi/Mllxcr1qutbPw64HFUWU+MGZuNSiowT4iKLLPMZlOc77F7TI66rlFGNn95btlmu7ajrhvW6w2bzYY333yTzUb+LlYSmqdPn4oHM6R1cyf5btt2tI3q+562aYgx8NJLL9LUDa6X9Xm9XGKMYTGbC4Fhs+bunftMp5LRdH5xKmSGoyPu3rkLUdilJDsL2AOYGAaUCfCPaT3QGsVgl0e6nA3W5vSdyO8Jirt3XuCv/vpv8Nqrb0AcWKp+fA8DuBSSilLqiF2Oxv6QbwCfg9vJ432Ur5ioq9LIpwHG0GxGT0wKTdlbARR5brl37x5P4gXOO5bLFZttw6SaStOc7Dm2255YZhwsDjg8OGE6mZNnFVeXZ6xWF5yfPePJk4633nyRWyeHzCYlL754h8X8iDKv0CrStBcQO1EdB0+eWXzveO3V1/jRdsvVxQXnp6e45ort7QOMgaZeE2Nkta5pu0DfR5oucHV5za07x8xmE+azBW+//XkWiwPyrKBrepr2KT5lPmzKgnKSSxM0FMik9zYyHYevX/zbzWb805ruNODyjm3dcL1acn5+xvX1kqYVYNZkFqX1CMpqrUdAVCyWpNbt+p1yyaQaByJd3xGcp+sc6/Waru1xvSi227blaluzbVqarqf3AWPEak0bS1VaqqqgynNm04rDgxmz2UTyLmMUG0nAqCGkW9ahaDTGiho8+MB2s2G5XLGtZbAViJzcOuHo8ICTo0NunRxz+9YxxwcHpI0cmxRarnO4vqVzLYvDOScnJ8zmU7LM0nZO1hGjx3UlKLk2h15CK8nY0Gg5L9NMUqf6bwDlrDG41IRXVUlVVmQ22WPFSHABlRQmOihyazk5PpQ1LEpjG1PPEtMeOBCWdmBWTPvirhFTcQdIkfqd3GSY0lCWUAWPNtC6DrQRgCm3ZMaiIygViEEUVTZTFJmW7FAVsDqSKUNhNVVuOZgU6FwlgByIgcmkpCxzWSPSEGaYIoQYk6tEwAdhnxOi1KXKyAAhgjIylBibyz0gJcaAR8CdruvIjMVaNfrY7+bKKtXiZm/lkGN2g+3/KdfZCO7sPc4wWBosq2IUkonzDuKgKkpDmxDYeek/x0iXN/Zcszs8r9o9/14/cXPAphL48clhwc3HYrST3v/ecG7I/hjScyVVRbK7HF9m2A2T/rLBxi/Sret6ye2KAuJ0radtPKH3+D7QNoFm6+lbwBtMzDFAcJHey3qouoa2ESAmagvZhO1ky2QyoSxKyrKgLAVoGs7PYbw2DnDYWdMMRJ/RxjE6CTv3Edf7Mct5ULkoJflPKl0fRT6nLGUG4b1koJ1tn0pmnXPMpnPu3bpHWVaJKKUSYUbyQOpmy7ZO+SVa3pdkDMt5aKzGB03Xd6xWS6KKZJnGAnluyW0mIHCM1Ns1bj7FmokobhF1ttUK7TVeRfqg0tBVo7DilqIKjMoFUE7EgSzLUw4cOBcSoWVQqwyElGEIJp8pocGHfrTIMyRmOwPIZEYQKaT2zjtH14tiMqTsLGF02/Fa904Af68iPq2/wSc7KT98fkpY99ZirSGOgPUAMEVIx590HhizyzHZX7dGpricION8YjgH9u+vGGyjJKNOK5lRRJ/q4eG6jzvQMiRVcZ9stgbAyY/5okFUS/Roevrg0lA5YDDiwoDCe/Be0XcpRzIlI/s+kTHTl+s9XcozDSGRsFK+kyJitPTp1gtoZa1KfZxFBYWOolpDicWtlo4JGw2SyyQ9TWaLBKbvPjutLHluyXJLZg12AAP2BprDuTTWnQkgUoFdDQVpHiBrvxzWNAhVMb2iwRQsXfPKQegTqUyIZ5/V280tZqd++HdVdY3j42Hv3dvhh8+u73tWqxXX19fE2LJcLTk7Px2fq+066qYGFbl79w4xKFzX0beiwI9KAM+AWMrlKadTCJWW9WqFczIvMBrJn8syjBZghLibdygGgHmPWJJAGR8CXaq1u05mySbL2YHegTHHOgpg7EM67xNhwXtPWZRkeS7W9V0ruZ5pRjaA52Gw3VMGow2daylMges72q4ba4N9NSZKjXMu6U2GHjsBPGHvte3N0saObQSXduDPgFSMANCwrsVENEr3McaI0hawKiZV1H5P+By4kX5PDV6X6TXtE5t3wImWTLgIWZ5RVRUmy+m9p2l70JHr1YreiTWnzXKUS4S85BogIHmf3ucAIO6UPeN6+xzApLVOee7jsj46saQqLL2dT9ZiI5C09xzD9/Q+sPLvADI9Dwp9Elwa9la940Ps3fdTK+vn6kc1vua//Pb8o42fcxx6pP0ae1ivP7luDADe/rr+s24/X8HkUjAnamQejA+qpPg4ODji7OyUGDtA8fjxY7lAVSberq2wySUoWJPnRhg+xowhh0ZpVqsVk8mULPOs12tMlo8X/sAQ2Wy2FEUuvpxlSds2XFxekNmMyWTKcrkmJMncfLHg7t37hKBYrbYCTlQzqmqW1Chi0XR1dUWZW7LMEoJjs92CsZgip3WOdrliOpuhjNiKDBe97z3ZtMJoi3eOdX1OXhT0vicrLC/dvs9qu2J+VIHPwBdYq2malu22BpoU0OslJLgoyIqcx4+ejtZINrN89Wtf4+OPPyYLgbwosUVJ3XXgahrXcrm6pprNePz0icj/iZg8p2skhH35+BkfPnxMbn9EURRohHGbmwyVzzi73DKbzrh3/3VevKOZTKZUZUFmLHjHV7/6VX76k5+giFij+NGPfgTKkGeWaVURUfiup+23aG2YVFNOnz5mu15zcHybxWLBer2id4rpdCqS0bYlxkjbOwkXVZb5fE7TiI9zlmXECH0vzE1rLVVVcevWLQ4Ojnj26CPe/ekHvPvuB7z99ufoPVxer3l2dkFAs1wtefzxx3z88GOW6zWHh4f0l1dkecHB4QGvvPYqHz/8WKy1nON8eU5wnjJZEOUmZdZoTVGWzKuc7eaK8/NzXnvtFY6PDwlBhr/HxycQNU3TUddbXn/1Vd57//t8+METFotbLI5v89Wv3Obx02f84Ec/4T/7z/8L/hf//t9lOql5/OjH/ON/8k947bW7LN6rODoUH+9yMuHwEI6Pplwdzfl//e7f4//wrW+yWl/jUz7C977/XV564Q4qVGxWS6yGttnSNx1FMeFXfvnbTGczfvjDH1DOJnz5a1/hZDHlb//27/AP//HvsfnuFt+vJGcEJFxNieUVahdEJz24JibblhFlHxabcdHZZ6mmdWIEmfYWTbXbvMbvRcbBcIwycHBpAP1ZuT179pgnT57hPUyrBXfvwNHhbe6/cB/QPH78lLOzs3GYoRR0nZO1I7dpPQ1YY+k6sXVEQ+d6ynyCQkuj5qTp6JpADAZrS46OD1ktN+RFoHdwfnbN9ukTDg+Occ4xqaY8fXrKnaM51lgWi0OaZou1IkUOweF8zdOHjzg4OEZNZjS1weqML3z+G8zmJR89hNX6AXW9pMzFy71tPdb6lB9kySwSJqw1uc6IUdP3ELA4p3F9kAEmAvAYk+EjKJ1hTSnWPj6nd2IpqILFqpLcipKwa2W/UUpsmKrJBB89WV4So+HJ4wsuL9Z0fU/b9fTOsV6toZSGr3eGsiwxpsc5YcPkec5yeQ2TBb6XrJuQWFMQKcuS6WTB9fKSi/MNm/WKvmt543Nv8Hu/93sSCh7E/rDrurH41Fr2zLIsx0K4aRrycjKGXPdOgjS/9rWvcXV5zYMPP+Lp40djxmHXdazXS46Ojjg+PuHo6EgKeRx1vWE6mXF4cCzFmdkVi9KspyFgYo1ao1Am+SprTWbzxDodWGeasqhou05UZbFHG8N/8p/877l370WsKZISmvG6Nlajgk5FZsR5sQsxRtRmw7BgX8E0NOY3AKbgxJc+saVDsh8Z/oyJUemCeNYrLV7fxhjm8yNOTu7z9OkFy+s1zvX0fcRaPWYgPfr4KUW+4LXXPsdXv/p1tuuaDz/8iMePn/LB++/wwQc/5tGjH/Ob3/k1fv3Xv80vf/vrvHD/NvPJgqvLJWdnpzx7+iGT6YLt1hO84dbxMc9Or7l1dMTR4SHP2i0//cmPmVZwfnrAbJqT55qqqlgvV1xerVmuW1xQXJyfU02nVJOK2WxKWeb8+l/5q7z6ymscHh3xT3//D3j27BldJ4BF2zSYLIzrsgzgjBAD/M4G47NwC2nwMDLg9E0blkFNcX19xeXVNReXlzx5dkrT9mIXZDJ0jLhe1gcFqCyjN5ZMaYIm+bw7Li5OUTFS5BZmE1zf0bcNfdvStd2oZO/aPoHPtaiaosYlRXBWlJg8J9diQykqfyc+5pOSqirIMkumVLJbVuL5npdJgSPscwqNNpb1dsv1csnF5TXbTuwyjc1YTCfcu3ePV19+iZPjIxbzWbJti0ntoxJgG/GuJy8ybt+5RZ5lBBVlbVCRvCxFma+ToVoEo6ysh1FYlVlWjIHHRhsBrZxD2QEMSaSTVG/kNqM6KNNjCTglTWDAdV3KMPIYBZmxNG1NCB5tNHmRSwMfhXkuzbnHJeXU2KDtgxEpe05DkjpJaLLNkMyNAH2VYbxK+48mzwxFkaMibLfCEK8KS1llTMqc3Cp0dFgsVa4pM1E1VRaaIRctyrpzuJijjaZ3jq5pZVxrbLImFGKS9xEV9V6zpxlEPlJT7VnTyXeloY7JKiwG+l56tuFaMEbawRhCas61ZGIGj456Z7MH6TF23P7xJ3G3nkibuAN8ZIBLIhKIxZhzDuf69D7yG0NaUS1ZdoSn4SnS87D3/p5bvvYVVvvr2+57wpDfJ+vE54AkkExQFfYGdAMDmF09uz8ECkSCc5K7Zow8qOLm73wGbuv1NuUgik1t1za41oNHVHbBohKohLboIseYQmxvUz5ZcI4mOLq+F/s4CsqypKoqUVtOJmJnXhV7agyFCnEEeEBaDm32epoojhReDeeQomn6RGKKopb3pL58gsk01kJmAULKNlV8/PAB77/3Lrdv3eHWyYucHJ+gXYkxhqIUxWUIjqarJZMmk3N5vV6K6sca8kJcBACqqsJmGc3FBevNhrap0QdT5pMSYmQyyQVwCAFjCvJM41MuVO9qsgy6zidQT2qeMaNCK/K8wmhDkUtmn5B2c/JcrJG9D7R9h2odgTCqVLJMY3OPUQLce9/hfY1zrQBM0aNxYl1l8lGdqLzYUgXncb0T+3vXjbWb85IjaFIOq3wuyQY5BtyQnRcGZRPidBHTcDQBZHIK7YE7JCBby9qsteQOjte32g3lJFNK7bJGghDdAsNzq3HYBgg4bozYhSqNxaBjGIF9qVfdOHAejr+PLtX2UsPGKP3ZAOxPJiUh5DSdT/Wwxqrk/JP+MxoUDpXWrojHWsljsiat09ajncIHjfeaGA02K+VxlGxnJjkQZMaS2VwAUVuiTQZJDQx6JGUNvb824saltMGYDJvuP0y2FRZrCqwdsrxs+tz8SOKwya4WlZQfCQy2MUtkyPRjpRKIN7QimsHeWayvkT1aRbROaq7oIfbE6OAzZK9/Y+9TO3JFmh3vBt7sttEbv0AcT3G1d7oLkTiB1wpAauW27Vit1jx9+oSu62jaNZvNhrYV96HtZilZ8Jnhy1/8Jrdv3+an77zHdrPGqEjbtXTtmoPDhWTbpvUgIPVdVubkoeKwXKBUAqm9oywKUVFHRQzJ7jmtAdaKi9VsNiMm8Gm72XJ9taJ1LmUuRbEzNkYymdqeruvHnlspUYH3vVjQWZuhlaLvO27duiX1St+l/r4jy3Kx+IyRvhcXryzLCUDTd1ibEdhZTNrkRDWqJRWjXfxQxxRFkWzgk9JLy5o2qpqikLf265gbFsPpuhk+yJjqPR8S4UfHBNaANhqtLVpJRuywlvpkTw9p9p4K+RAi2pixZuam6cm4vw6OYnmWUVQlB8cHtE4AyaAUaMtpslZUqW5tW3FnsTrHR0/vesmzNVmaAwSpqTTj8dp9payluHMG00aO8ej8k87nEVr6GfjN/mUxKlb3AZxPqd92SqLnvsc+WMSNfw+ON3rYf0Yl0/5jJPBwj+yg9h57/3s/742MRIt05109nHqEvQPxaXjRPsh0Y2b7c59Xbj8XYBIv3oFloEAZlKkS6wKy3HJwMqd6WlFvA52PVMWc9eqcvl/T9x2VDfjQYrQhsxlFaTk5mnN+uWGzbWj7TgLsNZxePkOriO97ipCT6QyjNC5GOtfhQ+D07Iqu7YhRMZ8eoEyFV4pN05OXJU29YjaZMJ8XlNbx6OOPKCcTptWCstB0nTCgnA+0qxpjFFFlnJ8vpXHOLCqfUk2PyIw0hcF3ZHnBpt5SNw2tCzTOselrQaR9Tx8VkzxPLETFrDygzG7TO0/ft7RtMw4OF4sFIUQuLq5o6o71dkNRlkynEz766CPathXE1yj+6I/+FWVZMJ8vmE7nnBzfpsxLHj95SlVUZGbKh+894OnTJ7z88stE4KMHj3j5pXs0dUsM4iEKiqbpRD1mDG0UppAzhuA6/HZDPM341V/5InfvnlBVOU2z4cdPHlPdvcOto0PU6Sn5Rx8yM5qZDmTbFcvlmgsHt198mWgUZ88ekJc5db2mub6mnB3y8iuvYH2g947Wt3TOs25X5EWJQtG7jm3dY7VFB5cK/MBEZ0R6KuM5rCJffvMujXtKwxXFQcarX/g8k5MX+Ef/+H/kwcNHhAAvvPAS5x8+pa5reiZMDmb84J2PuLg8J89zvvL2l/HB88aLL1GWBcZkFFiaZkOeG2ymMCaymJRkGkLfsbpuuX/3DpP79/B9DV3LF7/4FhiFzsDmORM944OPn/GFX/06L7zxGg/e/4Dv/vmf8tZbt+m6lvz+PY4Xc/7w3/5b/uW//sd89Ru/xnfe+jv8X/9v/0/+/N0L3vrci6i5IV4t+W//T/9n/sZ3fptXXnyJ20f3OTl4zP/lP/0v+M5v/CZv3vsCmxcdq2eB7//xx9y/f8SLL93mO3/z8/zwxz/CZhmZLehC5KXXX+Xwzi186Pgn/8N/z9/6m7/FQmt+8yu/xP3ZjN/9w39F71Zo3ROUsPl6DA4zhgrq2BHdBh0YBzQdEW8k58ajIBiwSgJ9nQyADQajJCA2KkOIBh80ysuwxqAJEdxYLMoC5oKACl3vabrPDgvpcKLppgXOK4oio6+veFpvCE5xOC9Q3CbiuLq6wjmP1jmQsd12AjrmGlSDMXNs0Dgnm22ZW4guhfhplDZcr5bcvnOHrCxZbxvJeHPCGC4Ky0svv8DlxRUPH75L121YzCbcuXOH69Updb1lW7fcvfMCm3XDcnlN3WyxNpLlInXPs4ysL7i8CHh3wOHsV5i++QXeefffcr3+IX08x7NGZy0+GjKriNHT9jVK1TLsSqrAwlZoVeJNhs80ZaYprKLpwGUy4PNRrsHBL7zvHd4pcBajKjJbMSkLbN6y3awTe7kkU8dM8oriUKNcz4dTxSNVk+lIbjIKG5jMLFnpJK/bKoxx6BCY2AmHkxOOZndFwasMQaUOGFF0FnmG0Z7t9ozN9pqD4zl37t3j9TfeYHF0yI9/7yc415NZCbffbFa0yYILrSnyEh/A+UDXO5SpCSFycHCI1oa2bTk4PGAxWZCRsV1u+eCDh3zjG98gxkiW7NOU9aiiYdOfsWoCyga6FuaH97l1Z4XJF2i7oe1WeN8TPRTZJNktaSlokWJYK40yMjgSNlYnzVyA0GlKe8SyOedwcZdvfftX+eY3fxWbFXR0uHZLfX0tftBOWJYxeLQSZVpwQf700uCG0EuuFjKM9r4j+J4Ye7zrkg1eHPOCve/FgiapoToaovIoRN2BDxgvwxBFh4qKnCm3bt9iXmjOL3Jcu+TuK1/ixRdf4OTkkNm84htf+zp/8id/ysXZYz54N+foYMG7P/43fPT+D1lennHrMOfv/K3/LWfPLuhWFduLku/99MdcXTxF6UCMjrZZ8sqrr3B9teLqasnl9RJQaGPQ4ZppGfj40ft43/CDd2Qop5TijTdeT42Jw/UOaywtLYoWE6f0xrG8bMgMTKczfuUb3+TN1z7Hf/Pf/S4PHz1meV1z69Ydcqtp+xofInEI72SnJvhLSsFfmJsiKWhgd970kkETUbR94MmzZzx5dsr55RVX19ds6hoAazIZMgZhNubaoLMC7ISrTcflx+epMfTU9Zp6fU1mImVhmFc5vm8orMFERCWTiFdapj4U8woKMDGAkmFd9GBNQVFOKPMy2TpHog5YqwBP77b0KopiNU82gD6Q5wXWSLbGeai4uLjg/HzJ1eU5rm+YTSuqPOfwYM6rr7zIW2+8xsFiJgO/0JAZsfcYTWlSQ2eygjLLGZnZvcOWObmykoOAqEcZGLDRo6x49LvQS16StSPI0Hmxih7JKUbLYDp4Mp2C5ZNSUfgpcczo6J2h66VrCkERtcKoEp1ysHAa7cPwwd9sxtTwOKLuVQw+/qIWc84TvViqkEBITUZmChYTjU/rk2RTNJRag7IYLUpZTE45PaKsZpRljrWgQs+0mjErK0qbQQxkncH5QPSQmYxyUmHKTAbEUQGWTkNUBqcMba/pWw1koFJotOqJyo0MzuhNyrAQxcEA3ItKSWw/m6YRZmZWoLOSEGWQG5VlJBKGmACSKIPHdKxCAkBJytaxzVUQo0dj8FGsTlWMBC+qL2HaKpSBoDVBazwQnUf3XRosin2vc7thok5DYJ/Apuc4tmOTrMdmeQcu7UhOcv+hkReALKQ1MBK9TDMHta74y4fxnBlzWxDlkvdBLNN0AiqUWO9474VpjUlK3rhjv35GrJuuzh4zaIoUSmwxdZEG+oFgM6qpJcs6XN/h+hblOgabZLG/TWHTitQXbvFdzXq7os1zNkXBajqlqibkeb7LZEqSGaPAKIXzYnubF8nCUIvNXcSngTWkZobo5RXnuWU+rzBWy2epZFlarzZcr1ZcXFzw/k/f56tf/2VOTm6T5bmsFxOYVjNya2VIiSGvt3RtjdUW1zmaepPs6XKKoqLzAgwdHy0wxrJd1zSrJdfnZxwfLsju3gUfuHf3PpXNiT6wul7S9R0xF0a6yQtUkZEZoGsJdMSuQ+sWkxuU1SjrKCcZpcmTAiWnyCdJhWIhaqqUpS21iU7AXUz2maIOcSEQ0jA2Ki3ZTZkWG0OjIVmfxtjSu5amb9hut2w26xvgM4DROcE5ghe7t955CJLvElQarGqdFGsVZVlR1y3bzZYYRclpjIEgn5MaFS4JFFECwKigIC6Efa9kxRDXANK6KK/HBwU22wOMZKBNss1TUc5PkwD5TBco41HKy+sJblQRB2XwKiNGQxd9ApkcPnR4HMZkZEb69TybYk2JC1GOb8p+VoS0/SisQlR3fhgAD8D2oJCMI4lLpWli1GD1bogd0lBXCAsWo0U9YE2+p8oaFKZpfxzIAkrcSowWBZkMRnfgYIwKlR5XK4tkbw2KjQHsGF53WnujF4JJyBEbaJXGjfKnHt5Meh0qRsxQkcRe6uToUdFhdUQFueZRg831Z+G2X9V8ckI8fGcILPj0gXREFGFJORwtfeewmYCp8mkJqKlMYNNc8aN3/ozZLGO1viLPe+7dmfHhB494/PBD3nzjLV579TWODo758Y9/Iq4cKpCVFZerK6pqRh80m8YxmVZsthuODg8oygKtLHdv3aPebqXWBqLyTGyBUgKkOtVhbMZ8Mk1kEc+kKNheX0uGW1BEFyl1kYARRbAZPgZW2y1N28qcUVm0mRCR+tPjMVHR9jG5CeVMDuYUZUbbrem7lhA7Ij1xAGLH2iej7ZPVXpT6vd16iBlZpui7nhg1RTHD2hK0pq5X5GWBMlKnrda15I5ayRVDdTjXoHSOUoYY1ShKUFqsJAORkGpZohAssyzHB5+iBcJOXZ1IdcaIa4wxkmtoB09lvbOzHv4NaS1QWtYdDT5GfPQ4hJyqrRkt66zWlAcVWSH54FfbFVk+hWwiWVobx/UyolSO0TlaiW1eZo3UvEFy5oKOtM4lqztL53cEgji4HQUhHJOUsnIa2yRuHGg9cdzfUQLqaK93P0/7xk55Lj3P+N4VySKQG+SE3ZWjx7qQBB4NDaaoZ1P2Usr/HUgBgvtIH/g8uASghPWbbEcZkv52IJnQDvau6F2kgbyXRG56Hv+Kw30H4Gj3iEliMO4FYThG+7axcVdr/zyMDv6SqcLOOkL+NyDaOsnNQvRUVcFsNkERyEzGdrsmBGFyN80WreDWyQnBO5TWZFVJlmUSbL7Z4nxIdhAZIfSgIkWRk5uc6eyQpu9Zrtc456nrWvzSjSHPxA/eFgqi2C3B4McpIb7XV1dJehlHm7bJZIK1Gev1Rrz1z0+5f/cudb0lyyy3Tk6YzmbEGGjbHryjKjOukgf/ciNfx7fucHBwgNbQdwozmfL08SPu3b3H8dExoNlsO7TyDJL6ybTaez2BPC85PT0bEebVajWCUOKP3tA2gzXWFZvNljwv2G439G3LpKowWorxsiwFIQ6Bssi5vl6ilGI2m5HnOfV2m+ynplhrpLlMyGbvHHXdEKYFy/WWk9snGFvg/BZlSj746BFd04D3lNUcG0XuWVjL8fEhysDjRw+IxpCVJdYWKDR1t+HyvMEoz/zgEN/39H2bAtol30tStw1VVQgTPRUfPgZiyv4xNmMynaGMZbE44PHjJ2zrjul0waNHT7l9+w42K7m6XvPw0WNpoDvJifnc597mxRdf4oUXXyCzlrIoePjwAX3XiiwczWp1hSImCynY1mssnkmRY1Jhs1otefFzr7GY3WMyzchyzXQ+p/OBYlKRlXOeXFzx3vvvY5wMKObzIx4/PmMyLUAJO/XLX/oSf/HjD0SNV/Z86cuf54c/+nOuLi6Z5IZpfofj41s8ffaESVVx/4X7/NLXvsEf/8mf8P4HP+G1V97kW9/6Bn/8b/+Yq+sld+/fYnF4ixAzXn75dbb1Vhpcm+N8YGG0sAe7jj/543/LN77+VRbzis+9+Sr//tEx/+Af/i6t8/QhJqsqKTBCYtRqrYX+lzKYhqZcrA2kqQ4gSjQSDj0stntNfggyFIuJfeKc+CeboEDvrA1cCKOFZN9/dgCmSVUxm3bUjUjH8zxD65Km7glRjsN8LurLzaamaR1WW/mcOo8XG+BUSBhCiHSt2DJIOKJKA02xdwjBC4vTC7usbVvyPE9KGgHOi0L8hv/5P/8Dfvu3f4e2XYlFn86SpahYxllradsNKEPTSJ6eioYyn1PXDVrlZHnFq6++yXsfPKHut4TYyVgoSpYESCHQO4/RyLqQmghrMozJUiGQ2JFG4wK4oPAB+gDeR2wIZFkgeA3OonVBZkrKokCbkuAbghfAqGm2Y0i0tZqiECanhIia8RxPJQoohAzhHZPcktks5Qv0dFanzEJPXuZcX8uaUpoSay3379/H2JxXXn2Vt956i7OzpxJyn9YX53tp6K1FKchshnNiIRJdHP2qy7JM9qo9MUZuHR1LnmCeUxQZjx8/4cmTx9y/f5+iLNk2NZFIkZd0XcP1csl0smC7bZhMJkwmM+7de4Enz94hRkZFRwwkVtjA0FZpcLmzBAJhAnddT555jJV9vcgnvP25L/A7v/O3qaoJvfOcnj7j8uKCeVEmRoxPjbE00MPaMwwfRlZb+lNFyV0c7EVGS4Ixe2znBc2e6gkYbW9iBFKBbW1GVpRMJhVd25JlGcfHhyxXG+7cOeLu3SPm8ynGQlke86Uvvs3V1RVPHj9iUuV8+ctf5P79Y/puS5YpDIqrizPOz5/wk5/kNPWWq+sLUEEylwpDkWcUZY42Cuc6tLEQRMlVVDnGKM7Ol7IuGgmEDyGyWq0pi5LF4oCyKOh7l1Q3wt66vLzg6nrJbDbn+PiEF19+nd/57d/hT//8z3n89LGw7fJMBrVaBkMKUYyJnYAea71f9Ns+K22YeujE+PNesiZPT085PTvjerViu93SOQH7Ysr2UkRym5FZjTIS2tt1HWdnZ6xWW6k9Mse0yqjKnGmVM58WZHaKBbFRizubz5gYgj46XHBkubB/tbIED0VWUZUTiqxAaz3a3wyAgbDBO2luxsDtHK0zfFSSR7lc8/TxU1arJV1TU+SaSVVx6/iIu3du8fLLL3F0dIjZuzZlQLTPbhsaMvl2jCTAN4zHNZVvDBZpsLMl3LeHGB4vDky6ZNs6tDs7mOBns/d21kX79mMDMJAGailjRWlR4NywSmPXmu0AiB0TUoCTIdA6ph5IAMo8y1JodERc6lLd6p0cOyUD2rIcHBdyjPJUecnBfEGZZegY6Ns0fEtASp5l48Dch06AzwRGiqW4ZIMNA3ix2Zaex6fWeGCGypvZnfvDkHFgyDrnsFk2fj7DWj96+xNGUEWGgdKt7tbWXX03wj0JsBsGnuMLUNz8bBV0XTcydUmvawDAho9pB4QPb+Lm4FPOr6FBZvzcdx+zfMr7n7vYA8s5IsOgffvnQc2WgDIViXqncBvfSxxApQHAijfO6+ADjl39+llRLg23ptknCsl+m1thjysUschxWSY5NH1H1zW0bUPf2lSXClAfvajcdix3ATpVsqYcrGT8YKcdIzpCW9cE7yBIrmOWGUyjyPOMyWSCMYphfCJiEhmcK62JymCynKoUhWhVytdqdc3HDz7i2bNntG3H17/+dV565VWUNkSgKBXKipLbGkOmjVhrKiUKcD30WJKzoZUiy3MObM7jx8+wNufo8JDgHO+991POTk+5ffcOWZ7TbRussUymU2IIXF1eSm1v9HjdWmtxaWCvtUrzsZj2K0u1mDKdzyj0bG8wJdeoMQKOGrtTpIwsa53w9RgIwUjfpyPWZYy2TTrZRyfLKsnKjKAcMSoJvA9gjey1AzihlSW4ZFdIELtMn/bEpKrPbM7BweE4yzg5sVxdXlPXtUQLDODi+J7FLmkc4A3uO6ZEaWHkKxVBR4zd2e+D2hEewzCAI6mmhr1GzhNjUh2pC5QO6X0adJABpgmGEMXy0AdD9A6DxUfJR9RRYXRGlhUUeUWRTTE6x6azMvpklYdkAhol722smxNzf7eg7nbM0a5PJXCWwRpwN9NTSobBAqYP/c4uW4oIcQCw9v4/KIrkcA323WmKiRAYh/zb4LmxFo9q21FRI84oWsvZOFg2KRUh6vTyB/szlUC/pGZQChWTwiuK0wrRkVgMRP3vwq//RbmNVUyaJu++vRcXlwbUu9tu346gBrvB3UZt811eaSTieodRcL285PLylKYVkUBRZFxfX/HkyUc8fvyE23fu8uabb7KYL/jun38XsVKX5xl63iHjDsTRYjKZQHoem4nSx2gtAL+RrDU9AFxRKh3nkgoyvQ2d8o6G6dNQg2R5RvRujF0JAbKsRGuVrMcbxNEhZeZ1koVmdUFRFJRVRYyRth1s9gJKW1AapSUDtCgMEUuMJCv/gHeBwlbyeZhIWWQUxYyjo9ssDo6oJjOenT1BmYBEtjoePHjI1eUVfeo58jzHGlFvDtmVgd3xU+M1rlNjIdfYoA7fd0MRUCpdV2mWIuumSVlne+dO+tzRKjmHSI02KD5jemyQfNmB3KG1psgLbHIgk/VGrvmu71hvWtbrGqNMqvnluTKTyckaxYoupmNbKAHKfCJcpncqvCcVknvB7vyKyYJ0eP0C8Aw1dLoO1N4FwnC+7APzu1p12KvGNes5RdKNe4/3jePv7i5Efubv7+xnb35/5xCQ1GHDqxwAePae6xNX94138dz3nr8NV8vz753xMaOS43TDEk/dqMw/9fbzAaahaN5bv3YBl3GUR5el+EyG4Fktl/jQ03fCMM7LnNl8hk+WNzqXAtI5uU+fWGDTyRSCWPHMJxOszsjLgj419SEMQbRizZPZQS4Zx2ZWKSgKkX7HCF3XYmxO03aUFUynUwlR3lywWW9Yr1esVysyI+yXzM6wxqBVpOsb+qbB9x1KTXn08GM8inW95fHTZ+RFxXw+RSlo6i3b1RVFWTCdTsnzguX1Gu/E7q/rWwHPAJtZXO8IQULVtFYsFnParmO9Xo+5JrBjzGmlCN7RJyZg17XEGJhOxFbt6ZNHyTpFCo+qqvDeURQFk8lEZJfOj7Ly0UpgsEGK8lm3znG93HB6esl223B5eUHXez748CFd01CmgNC8tMm/1zDJc1oHq9Wavo1k0WFzmEwqYuho6pazZx3OtclLWJpW73rysqDpe9q+5ujkLj74NDxOQ9UYsVlOXk2wecXT0wuOJjNOz664ulpjbcmDh4+ZzufM5gds654sy2m7DmUMRVlxcuuExWIhDXII9J1Y0bi+J0ZFZg1aCZhXbxVKQ11v0MER+54is5SZSQP5jtn8mKOjGcp48tygoiHPM7Ii4/joiB/86F0qk9P1HderNTAnqiDzch25desW1YenrJcrtM555eV7fPD+92k2G9bXFd1hoMgrnjx9graGoBUHBweYTPH02WOmsxmvvPoqn3v7LR49+piuC9S1I8s9NqsoCikMq0qymJq2odaa9arn/fff583XX2Y2n3B8MKU4us0PX3yZB08/Yt2ILz++x5go4awhokhMpMEiT8uATcG+293+KGFYnnaAVLI7iXGXVTEMkcUsNfFjQsCFIIWD2wEPn4VbURTM5jO06ej6mK5Ti9aiGpGBs1i99V3AuR6jLV3TpSG9WB4Im0cec7QJUaQB+05K3TQNO09yIQQMQ2vJAEr5Sn3HBx+8x09+8g6u3zKfz7lz9z7bzYa8EMsSa00qsGSg4p2ja1tyO8G5jqYRdslsuuD4+C7nV2va3mNUBmojyjakgPLJNz6kjBhCSMdgsGpCNjZrcF4ngEmhnQBMPqThU9BEp6VpMxKOHIPk+PWdgBK97+j7VoJ3gxs37aHp0nvF2DCk8qLFxmYZRZ5jjGYyqVJT6cUTPqag3QSEkEBXyZuQzMHT01MZYo5NgHzmwe2KI7GCC2m44lKxZMahnNGG+WyeflcsmtbrJefnp8xmM8qyIi/EAsU5z7Zu2Kw3lMWM4MWaS2nNC/de4PGTd8RbPhWuMkPcy78YKptB9pGGbL3ztG2PNT3VpKTrHG+++Ta/9JWv8tZbb9P3PecXl1yen7NarSiPUlOa1oQQBWjuXTcOlkZ/er+zwtMR9sOSd3L4ZAkTY/r7LlxZKZUGiClsPaoduJTnFIWQVJxzaFNSlhlt23N0OGU6yVCq5+rqisePPsYoS9cKE/fRxw+xxnB4uCBSonGcPnmMsZ62XfL02QOKPMP5FskVs0ymh7iUOxBVHBunEAI2M5RKbPvKqiSGgLWGshArsa7rKPJi9Mzu+yC2vJsN6+2Guq7ZbGtWqzXOB+6/+DJvvPE6ETh6cMjHjx8QQiv1W8olkyDmIWNhf6T/2biNthQhDagjifjQ0zQNbVPTtU0K3iYpgy15ljEpSyZVRVmU6KzAq5xmW9PWW+r1Gu8D06JkPpswnxbMqozZJKcqLAY1Akxaacn39I7eS2ZJXlTYMhd7Di0WW2Um6qXMZsQQ6Z2sc0oPYEhkUF4obdEmx+iCvo90bc96U3N9tWW1vKZtahSibjpYHHDv7h3u37vDrVsnFEWOd/I6hmbtZs8zDKfSPxVj4/n8AD8+9z35vf0B/g6QGH62DyrEGMfmZTekGob4qTHc7xOHPxRpcjK8h32EZffaxKt/973h+dXwfInIJsOVXS0ua2Gy6kCGkIQhn24HaGkFRZ5RFjlFnpFbgyZyMJ+xmM8wgGtbnNoBnKLcsQIwao1Pg03Zk2QNc8OgPVlG7XofdeNzkH8OTPHdMRjD5gcr1j27lcGCNI7rwUAoSoMrFEMQ+/4B3/8sh78HYrL2iDuAKKmhVNo7un6wp+G5cyjeAGw+7bza7Um7c0hOkeFcGfjakV2IUhxf75DVEP0QIj2c17tKdmjwg5wAN8/x8TUNgzpu/Hzs3fbsN5+/zy/yTUVRGygtdZs1Qm6y1sowK0aCFQs55zKy1pJlhj4zNwGmIDnN454/gIJKoYxBWUuW5YkoJAPy2DtQQkhxfQ9KgBGTWMtlWcpwLY02VEyAh9JoZdE2oygnHCwWzKYTrDV431Nva7bbLVppjg4Pef2NN5jODsTqPVkL60yT21xANW2kJi8KBmV7RBxNrJFcaqMNBweHfPzwCUSYTKa88vKrvPfuT1leL7m+uma72aDCLktjAFhDHJRxQhYB+bf0+Ya+Ywf0xJwyk6/MGlEJeVGSJ/Ql1b2aLE+5OpDO4QF0kNpPx4DNIvEG013IUSZlZWjlcSaijUcbjzE91hZJ8TeAOhlKGcmlVAofI1nqX5TWY47SZDJhPp8zm80Ql4VyJEA1TSPxC0ZY+VLPxAQwjdpbIBLNhCGfYwSYkvXzYJFnQxBXx2TFN+SLDiCOSkCPHgAynaGUT+tEUn+QcldjssgMWvoZtCj9gyX6gDJCUNHWYDKDVkbW3hhFbRtTr51mQDK73KmLdvshMIxJE0g6Aj+AGlkf7PYMtSN9wE6RJO3iUJvLvwf7JrklAEgN+04iM+zvu8nGzks8Fz7ENDuUnKwhK4tRwZT2lGH/j2nQnMhgKIMaFEmDbZsCpSVzcPhsojagxApxyOL7bN1u1vGKNBjeI//Cbr8ar4u9um4gBsseKWtEhKTi0KzWK54+e8Lp+TOca1ltrjg4qFitVzx5/ARjM95883PM5wvqpub09CmHB0fpMw50fTfmvQkIInXKtCxSPn1HZi2EIKqaIOeLNoa+b8dZEkqiPmI6r1R6rTYriB766OhcRx88PqQ+tetpW4cPgNKEoPAuEFwUxbuKKCN6Zm0MNin8QoCmd7SdxzkAK/buySrSmIxCy+NJvrU4QxRFwXxyIuoeg6ihJgvmiyOqaorNClCGrq9THRZpttB3mrpe431N8JJDJX23PP6oehmB3fSpq93aMFqjjvuBZO6NWEfKfN5lFu1AlOH3Rmu1gRCQalTYZV0B4+MPdoV5nqcsO1lvlJKcraZpqeuaum7IsynODwCPKGQDwpLWRKLSkv1mcqDDuyGTc9cLkBLiojJ7M0ZSnvSO2Labd+96jd35P1wbougafv7pQNLelaaeB1uGTWK/GUnX1B5QM/xwZ5U3/HmzThw+B/Y+i/3HGGdVw3PF3fva/fnJrn7/38N7GOa0z/dUcXgNn3zzwwv8GUdnd/v5AFMqWATITBvKgHYlhcNqtaQsMvrWcnFxyeX/h73/7LYlSe/7wF9EpN3+2OvvLdfVtrob3UADoCcFkiCp0ciM0YuZNfNi1kgfQB9q1gyXhqJmkUNxKFKCIxqGANqWr7r+3OO2TxsR8+KJzL3PrSZAvUUpe1XXrXPP2WfvzMjI53n+7voSHwZtWfAXzvMMl8iA33rPcrUgMrJgbdPinSfLUiKdkCYRB9MZ2mtW6y11VfUBiQcHB0RRjHdQVy1V2UiguoIkiiQXaDiUDcwJK7JpLduiYnqgmc4O+Oijj/j088/xzjHIM06Oj1mtFhwfHjHIc+LEsNnMcU1LVZY0dUWx3fLzn3/A6e3btM5x8eoVw9FYnDy8Y7Va8uLZY/6z//Q/xSjN9dU1T548ZzAc8vTpc6xryXPxJk7STNQFdct2W9A0Faent6jrBts2GK2wXobsTdOQZwmTybhvWGTwIMP54+Mj7t+/x7/7d3/M6elpGEo6Qf/3PIq11mT5AO9sQLX3myIp1NI0ZbXZcHW9ZLWULIrFasVytWazKfC2JYkUd2ZD7hwckkWeWHvyPMVXDbNoxGKz5eLyjKpZcf/uPfA13m7Yrguurs7IB2OywYg4zcE3TCcjyotLLi/OOTg6BS/emWgNdSsKnOmMfDTFYvjTH/2UV58/Zz6fUzcN1hmuFwvu3L0n13lT8NZbb/PRp5+QmZjZ7AC0xlrL5eUlm82auiq5vp6TxDHbTYHCc+vkgKdP51xcroHQdHtHtd0yyjOS6ZjBYMDLly84Ph5yfDpiNBpSNRVZPoLASH9w7z4/f/8THI5NseGDDz/ir/zaX2G1vkYbz3CY4VrHaDgS651twVe/9hUOJ0MW8znlpmSzqlivt7w8e8HlYsGzs3PSfMSDOxPmyyseP/2M23fu8J/8b/9j/vE//n+zWG759NPnvPHWAzwlw1HKeDxkPB5zcHDAq5dneOvYbtbML+c8efwZbzy6y3h2QGxrfu17v8zmdzaUdYM1Bu2bkL0gbCeNlpwBBUo7tPEYLSxB5QCLyJHZrScZ6Do0CtcrFKy43ngt0t8OhOq9/LtBegh5tU4CrL8kx2AwQKuEJKnZbGq8J1jhGZI0I3OasmokSDXNiOIB+FjUQsrTNYjWOqq6ZtdIS56N9S6EITZgdQ9miwdy0zdqzjmWyyXj8TTYPXiquuDf/E//isjA1776NW7fusPVxQWnd+6S5wPSNCZJT1ksrkShoTV1U9HahtjHbDYFm03DwXHG7duPaO2W1UaD2qKUMAZVkAxL4aklPwRwStaQ921oDA2RMSEE0mCdwVpD1IjNmnUa6yWno20dRsWBobNjKrba42yDUVDWa6y1VNVWckD6QW3XMAdWtZO9dbPZoIO6JM/F1nR2MKbcrGmamLqKuLi4kCIZJNS4tFwv5rTWU5YVm/Wal2fP5cIH0kAUReDEerLzbnfOUdc1VVX3Hs7yI64vAofDnKapSZKUwWDIdrthuVzw4sUzlFYcnhyS5VOWywWr1YqiEJAkiVPxzS5rHj18gz/+k4g4SvG+8+1nj20mhaVt7S7YuLvPracsa6AkigekyYC/9tf+Jr/yg18jimKurq748IMPUFoxGORACxgBlL0NgJJY20n+Qk1rG1SQ+ru9gaoEFu/YzDYompxv6XzeRd1hg9JEin3pb2W4pJUhSVLSNCdJsl2DoqQxz7KM6TRBUXF9PefDD37G/+v/+Y955+13uXv3PtPJjD/64Q8pyyXoGudLymLBanFFlqZEGspqTtsadCQEnCiOGYyGXM2vWK7WlFVBFBuiSIs1bKyF8eUsB4czmrqGMASdLxfkWU5rLdvtFmtlMOudZ7lc8fLlS9555y3AiUJtcc3Z2Uvu3HnAt9/7Fo8ePeDf/sHv8ennH4bBj2QHeGRv6Yp1Y748DXmfmeK6wXloMMLALk1EUR+biMaIRdp4PGI4HDLMB4wGQ0aDkSjIkwyrIlaLOcp7khiyYcKd2yfMJjmjQUyWGNJYMUglqF0jgyvnkKy3zZqmEfB5NJmggpIxjhLiKCGNM8kM9Yq2kfvHoLBOMra0MWTZIEyCNCZKUcRs1iuxZFwsKaoWb1siIySn8XjI7dun3L9/j5OTQ0ajIbap6J21vTyzxZe+P3P06HL4mnW2M5b7hUBDd3zxa36PTa1+wfftDaI8fV6OgNPdoCyQVrojAAS+CwRnjz3d/6N2DVV4Xe89Rul+1NKzpIO/vrUWi3jUO29x1okFULDiEjsmIwYzrVgYKQXDYc5gkJHEmkjLDjSbTBgPh2IRGkKqvTFoZ1DOCRs/6ghNLW1rSSKxGpEMxWAbh6xX58ROWikJgycMDJUWhwk5p12eEX2P0IEsXb5td95ba8NQIVyjoMZS6NBx7rKX9oecr1/77myq/XMa7OaUNzhE9dczS/fe146lHvblPQBnR5LZVyntryrf4Vg74K1fW2Fhd9Vq6P59Z3+lNcp1oGo4J0q4oV4pbLCa6ccTfkfm2Z8fdOfYWvulBZiyVNjSRulA8JGs0DiSekwpBbETi8nWEMeGNDE0mYDcolYWy+2uHlGd2ha6hgQiGeb3tjXOs11vGOQZjdaUSpTqWgdCZxhUKyWMeLrX8vJ1bQxJmjKZTDg6OmI4yFmvVzx79pIXT5/inOPBw4fcvn2HyWwKaEwU0wuAteTAaSWfvWOPO28lsD5WrNZLUahbh/KKu7fv8uM/+ylt3RKbhEdvPeB3f+d32G4Lzs/Pefr0KbdPblFVFSuPgN9a4VoBInCe1kmWWaQVcRKjsJQlNE1Fa5VkELUW19RiIOeF7Nk0nshYbAdyey9DUy0W5jJHkXPbOVV4DFoniMWgD+ctDkPSDphyxIkKNbnCovBK1EOCGYS9B03UtESJJUoTXBOUaMrgg8pmNBoxHo+FXBfU23meC1s+TXv7J2N0yLTorDJ36JDkKuWi4NYKtABQWtCiXina27l1MxLLHoixIzyq7qyYzl5T9h3nwdGpC4zk5CGglCg1ZWdy4TWcFzJa3yd7i+2GfnRFtgtblVyf7tBa1ID0w8d9YtxOIdLlEXkE8MXthqdyrXxQHvl+f7eBuKWDKiIyhkAbEPDJChFB09ksq9CzCTnNWcnT2gFMYfjezSbp9nIb9lTXf7bdmoqIohjiFB1J3pNnbyCruu+P5PVUhNMer0Rx+6U/FEEUEmqd/rF385nYPSc7MNOHeQ1eLF7tXn7WsxfP+OzzTzi/eEljK5xvWK5KLi7OuJ7P+cEPfpnvfPd7PP7sEx5//hlpGrMtVsSRoW0tZVEQx0J470iTcSx2787L7NK2bcjAjUN9Jpaz1orlrswtcgZ5KvusFqJ3VTbkwwl1VVO1a7ZlibWeoqoFXKpbWqvw3tCG9dk2Hq3kdZS30DqyNA094gDlI8oi9KlWSL9xAGtk/xHSb5ZlNK0VG+0kJc8HHB0dcXR4nzhOQrnmSNKMtnVsi4r5Yom3MZvVBhMpsizj5OgBWg1YLC5Yrq5YLF8RJUpmcqFuFbxf7jkhv3j28dSuv7kBLgV1ke/3RPrabx9c2q2LrugKr9PZZyrZBc3eOuqecWkgHGutWWzWKCO5sR7FYrVlvdpSlA3Weoh1X8+hNbHWob1QYbt1uFYTJTKMdAFoFLIIgefq8WFP8YjblbWihlV0WYXd834HHO1glt37l/+SvmYfXNoHm37R1/YJct0p7H6X/HkP8O1/bvfnrgbf/579a0hX13Sv273H3VflnaubP39DGLT/2jdAMUL9YPfOCTfWgvyI+yJStfcNf97k4D/AeD+ATIiNTRRFYgPhHEZFfP7pJ7z55pvUVcnzZ4+FDYxnPJpxdHTAcJRz+/Ztttt1sESwXC9WLJcL1uuCpvWMRgNun5wKm6mpxGYnSrm4uGS+XLLeFrSh4ZvNDogikUhX25LjW8fiWakUeSoDV2Hne/J8wIvnZ3z3+9/HWsc//af/PVXbCBjjxRbqs08/4fvf+y7eNlTlhvXKcL284JNPPmEynjIZT/jogw9pq5ayFhuSLE745rvvUjc11/MrcJa/+df/FtvtlpcvzljMl+AVP/7xT4iiiMEox0Ty4I6TmLIoKYoS7+Dhw/vcvXuPqpKw4ufPn2PLjWSGjDLWa8N/8Z/9b/jhD3/IixcvMdqTpxFNm/D06WOWyzl//a//VcqyZrPZsN1uKcuS0WjEYrFkuVyjlOL27VO22y2TyYQkSdhut1xdnlNVlWxsJyc8e/wZ73/yaRjOKeI4Zb7YUNcNynsGqSG7f8C2gdu3b3H7eMJmvSCxLePpjJfnr3hx8Yyj47voyLG8OOfq6pK33nyHFy9WvHq5wKuIfDTl4OSUD97/OYPxhIePHvLp409p2orGSgGrjCbJMtJ8wNX1ko8/+RytPK4Q/2nnPOPJCdfzDRfXP2cwGDCdTXny/BlpmvKd73yHr371q2it+Vf/w78MYecV282GNE0plOLw4JCD2QTvCh698ZAsy/BeFBxYCZUzylHblm1VcvtkwmK15OyVIs3vMRgPqK0LKghHbkacvXzJbDxlOp3yt//23+LHP/4JX//6u2jtuby+wKmaw6MDlNYslive/+mP+Hv/0X/En/3Jj1guVlTbgihKqFvPYl2QTFq++Utf53f+9T/j6PCQ9abkxYuX/P2/94948uIJw8GYO0kGKsZEsCkKymZL2Ww5nM24nl8yGg25f+89nnz+ET/8vT8kMb/GN6bHHKQp5cEBbz98ixZ4/OopAG1biJcxBtu0aJUGlYcVgAJHrCJhEBlFjQTx6qB6cFZATIfHeNNbmEhD3jUlHYtFHjLWiae9nE9LG/75shzT6RRjSlqr2Gxr1qs1aTohjiWLrW7kIZskKXGcEcU5pyf3GA6HzBfnbLYLNpstx0fDwNpTRJFItXsbGqC2ELc79kQUbC5XqxXr9RqtNaPRQGxPvaLxLaNBRl1VlG3Nk8ePSZOM4+NbvPHGm5LT0TpK33J0dELT1izm11yeX/LO2ylVVTEcDsjznNVyw3SWce/u11hvTjl79TiESDqcrWjbWuzPCdlcCmKjJBcIHxRdBhPFwjBSMR6DdaKobFuFczHWpTjfUNc1mi5svgVl+6Ba4Ry21HUJHfigNUmSIRQ4FYI+Q0EXx8QJVGWF0SlZlpIFu9c8T6m2W9qmZbvdslwuOTg4oCi2lFUZlCcRVVPy4sULnj9/zvX8ku9977vMr68pNhsOjw4wSnN5eUlVVXjvyaOExWLVF0qi7NtdSxNJYVcUBaPRiMPDGR4B6YeTIdODKcPhEKUUdd0FumuKbYXWMS9fnFPXW+7ff0jbOJQRC4O2qRmPZwJK+p1CIUnFGtFb3xdHSSxgpyfi6bNX/Bf/u/+SH/zgr3B4dMynn3zO4yefMZ6MGAxzsjRB2Uay2lwHKDc0TUPdVAFgagKZAlrbyLVvbQCjBHDqhsJii2OlXVeepq36ws0BxXZLmqYBxAOlDU3VoFVClg3JByMuLlccHpwSxSlKRwwGI7LE8ZMf/ZAPP/yAx4+foHzDf/uP/x985zvf51e+/2v89m/9Nr/yg2+HpqJltSpJM8ODB6eMR2M0is8+ewy2Be8oqjUfffI+z1+eheGjp6lbiroKwxEJky2rks4Ku21biqIgy6R52Ww3LJZLkiTDWbh9+zajkVyXO3fukA1Szs5e8ersnM8//YS6bjnerDk4POQf/YN/wH/7T7acXyrW2wVFVdHaGpOYGwPmL8PR2Q9DsErohjCIbdZsNuOrScLx8TGbYkvdtCRZymw2Y5DlolrUmiSEma+2BZ89fcGHH/ycti6YjXIOD6acHs4YDWKUq4h8yzDOGKSxMNe9orWO9brk6uqabVlhgXSYk2ZDVKSJTDeMFTs2o42QOvDB+k7yebQ1IffCoHSMihJ0lPLy7Jrnz85YrTZY64hjTZpo0mzCbDblrTce8dYbD5hNx6RxhGtDlhrCGumySTqL0O4cgZJm2Tmsa3vgu8sy2gca9puy3sKK3fDupnrJIezEPTCk/35/83XZva4LFik7BdRu6P+L1nTflu365xtHD54g/UHTNJRVRTqQgabvmNTeomyL7lQ54bWEGGPBO+I4Ik8NkZEQ9jyOOZgMUVbsvjfrpeSOIPYocWwYDMQeT9FidEQSpyRxDCjqpqEoS5rGkqYpcaJxwY5FGNvd+ZSsDsL56LJG5HAEjyaxZA3h0c6LLbXbY0363QWQrwXQxbEbxMLNxru7VhbXK5a8Cs8QnCgcAgjWq528AFnGQcxrr+m5AYi9rpTbX2vdACZ86n5Y0F3o7r0ppahC3tNNdZcNv9uhgzpjp567uV671929BwjG/18cEuz9ef9rf5mP6ShHoDkZdBsTkcSiMumV9ZEWb2PlUSYmSTR4yRjyweLHNkIocd6jOtWLMaAlb03UDWHdBbeTPEuoipI2bxg2Get1jPeWNE1I05TIBIWRsgE4UbROkaY5J6e3OTg8QpuIn33wPtvtBnDEseHOnTt84xvfENKmEXhKuHKitu/JGlqHulOGXEprkjgiiiCySkLu24ayEjeNk5MTIWXVwu5/eP8Rt45Pubq6ZDlf8flnTzg5POXi6pphlpElCdlwgEli8kGOqiWzbLNx6DBMjHRKXSRiF1hWQVWpcO0UExcBaFM0jUWZnDRxRFGCNilxFNY2KgCsspUIeBIABa1ROtndV8rSOqmtA28cFSekAzBJTJJnjCbjMCSkFxV67/DWBeWnMPON0vTKHzxpmpLmmdhxxwnee6IkxsQRuR8A7Fk0hX1Ddzk9nQrT4lXauxKgPL7Pwejei8f2mFQATbzf5f45AUS93dkwgZAphbHve+W/tRbrHK1VNK1nW5WSK0ULNCgjQ8LGNfgawBAZsYC0HsSeb6c0xXfPrg46p9+7u/1SIfknHcC0I8+EHJsb4NRuwBlHGqVtD8o5LM5usa6W66k0GBNIA0Hx6WSFOBvcdsKzwFkBFdvWUVdWLN47myxtdhc+rDAQO2jlG+nR+vcpwG0cJ7jBgDjJgi2ZzB1cQEZ8OO/eg3UaFxKa9N6+/r8e7AqU17/cl7/dcywomI2ibpsQP+bZlgWffvox/+7P/hBjLDqyJKni9PZd/ul/90+4vLzg6OiQv/E3/hYvXz7l8ePHnJ+/YjIZcP7qBUaPaYPbxXQ6pa5L2qZBaciylPW2JIoDQGwgyWTPzoc5WZrS1jXD4ZDReChZPc6jbC0Zo8i6clax3W4ldywdMTnQzBcLEpOQDiK0TojjEYqE1npsK4QdFSIfrGto25o8zxmNxuQDcaNyQazQAdlpmhDHCVk2wESmj2WRfLa4B3PEkSeiqqTfTbOY1bLEeyTzmhh8wnRyK6x5xWQ6wughnXOQMRGL5RkYhWTONSSJAF2oHXze1XpfuL4BaHB0RLAdOBLHsTw7XWcJLYuhBzy61+8JPS7Emuie9JGlGaPRaFcz101YV5LpZ1sh0Z2/uqSqLdokDLIh26II6iTNjtTqiWLTAyEtLZqIxEged2lrUB6rQ5ZdUNcJ6CWQvXMOTdQDzB1pQAiU+6DMrpbbHR054ua583tffF3Z9EXVkO9/T0dU2qlm98El2YM7ddXr+qVu/Vjvv3BVVf8k6Pb9L2BJr60B378XpULd5JXkYjq7o2F0wJXef7XuZ7pn0L5V9GuA1S84/lyASXfe8E6G7fLC0ggSenN5iFsiA8M8ZbNpOT45ZjoZM5mMOTo+ZDabApaqKphfXxIpiLSRULd8SJZlPHnylPF4QJ6lJHHGZrXBexjkMgiKsoTFcsnV1SVaaQaDIV956+3wwJPB22q1CvktFhNFDEcT7j1MefLkGVXTSEhuU3FxcYFRkGcZb7/zFt5b1tu1qFaqLedXLxgNc+q65NnzJW3bcuvObZqmITIRBwcHnL98yWg0wNU129WGq6sryrLi+YsXrJcrsaWzLePxiDSJ8VaCduu6pCg21HXLwcEho+GAxfyatmmF9UXL3Xt3sFZssIajIT/68Z9SVQVZlmCtZTBIMcHjsm0aFosFk8mEzUYe1oeHh4DGmC2JxIpwdnbO0dEheT4kSaRIOzo+ZbVast5suLq+YjQccuv4WBj9pXhlNk6DycA7Ktvy4uyS+PaU8/kKpRXHh1N8tcUrxWA44I03HvHq1Uu++93vMDsYsd2uaRrHvYf3BAy6XPLs2TOGkyOybEhZ1lwtn7EsKrxSZHmG84rFfIPSEbPpEUVasNlscc5xcbFgNBRV3HK9IcsGbItCijsvNlPvvfce7777LrdunbLZbHjvO9/mww8+4OzFS+pG1B3OyQBgkCc8uHfK9fU119fX4CHLc8aTAdeXF5RVhdWeMje0zlLWYn33/OVL2QyjDK9ivEpQi5q33ngT7aVITu4aPvk04sXLFyRJRpKOiPOMdJARJRFxYiiKip/+9AOMjpiMx7TWkqY573zl61wu5lxcXvP7f/wHrBYl9+6MybIhi8U1v/27/zNHJzOa2vHRJx8xXy1wvuLBw1Oms4zzywvOXj1DOU9Ve4qt4u/87b/D//g//P/4ox/+mMuzBb/6q7/MKM34pW++h04M59dnWB3JUDeEpUrRvbPn0kqGW3Ud2AdONjhjDASrqm4D7IZIvbd/Z7WAFDLycOmKc4e1PgBLLgAjX45mHGQgFBkTmGKKoiiI47EwsrzGmJjJZIZSK5SKGI1mjMcTTk9PGU9ytsWSly+fs1qtUIi/cFk2gNjuWOtoQ/ZCp4Sp65rz81fUdcnBwQFNI4rQYZ5zdDCjadpgJdqCchwfHzOeTGiamqqqePL0CZPxhCxPMZHCNiUnt09o6orHm895+uwx3/zGt1mtVrx8ueT09JBBk5GYhNFgQHxnwrr4hLYtqZsNXm2AEq9qIKwfBHyUyARh8+FCIadbsUtFsvdspLFWLPNaW0oRSignnCfSCh9HaBK0FuJEUTRUVU1ZFWKH5VRgJerQE4mnereWszyjLEB5sdep65pIQ1WXFOXOE76qqh4M8gqwijiKOTg85Pj4iA8+/BnPnjwVwNZ7ri+vMEaYXMYYsiwPxdrOFqpraqMoIkkSptMpk8mEPM/J8gyUJ88zruZXjKYTxuMJr16NA6vIEMcxTWM5Ojpmu6k4PTmlsRUe8aCuq63Y1Q7HVFUTPvfud1ZVBYScpshgW0VRtSTOMhpNeO/bX+fv//1/iG09jx8/YblaMh6PGOTy/CiLDZG2EoLsgg2H656LXS5fBzB5+T4rock+5CyKbWCnWLJ4WpwXlZc2UV+oyrUS21htYiKTopViMBuSpkOUjthua8ajCZOJALnWel69OueDn/+Ezz/7mLre8pWvPOL05JCnjx/zyccfsFoseeedr5AmKcV2QVGuAM/sYIJ1DReXL9lsNqxWS7yFy8tL5os527LEexVAeskaqOsWrTT5ICNJYuqmkYGXF0AxiRO2RcFnjz9Hq4jIxESRPLuvrq9Jk4TjkxN0pDk7O6MsS5I05vHjz3j69Blf/8a3qKqSq6uEv/sbv8H/55/9E4pyTZ4OaJzC7jFbv2yMTwVoI5ZI/ZpBAr+nkxHD0VBU5FYUTGLtFJrMYN1RVQVXF6/45KP3Wc4vmAwHHEwnHMwmZLEmwhLHmiwxjAc5eRpjraMoK9abLecXCzZlTZSm5FlGkgm7MY5iTJQE/3VRY1rb0lqLt20IX49onaiL29aj4wijE7w3XF+teHU5p7IeZ2JaW6PaktEw5/TkmHt37/DW228KsGQb2saTRJkwnMP/UMKm7vzKffinsxeS+9H2ynoIapdw7ANMXwR6bjKV5c9WlJGvfVevWnHBbz0w6uVrlsC7fe137IAW2wR1Tximee+/wPiUn9jVLYoARreiKmttS+I9ZVVKhpsxKAzKiXUnHQiiNQTbTucdWR4zHGXEGpJIMRlkjPOU1WrT5x96D3Uj+3ySRCR5LooHK4BKBzRKHldLHYbSVS1Ao0IsP0FhOgCkOwNeIns7xZbHBusnGTZHcbx3HW4qzLp5hZxbe9MOWXXXZQ/cUTfZ9T07VWaFcl58p1YK96DaKX06u2QXhh7937nAeA0vLQPXzviqGx7sGKA7VVxXP+x/tmCdokRFvz8scB14Gj6XUh4r/FhprL8AKO2UWzubkZ3dU0eAkBxF3X/vlwVgGg8HMvjtiLiRKHYluyawjq1HRxptIjyBQe6ltsJ7vHU9a10GIEH1ok1QKYhaQekerQj3t6OtW7wTtWG53dLZffbM4dgQuVZyPkxMkg/YFjVPnzzhZz9/H6UFUJrevo0yAkNFUbDgCwQWAY+iYNWksB4MrYBoSgc7s6CdNrHU8a5b2wKIaa05OTnhYDrDW8dmvaatK7761a/y05/8mE1Vcv7qgg8++IBf/qXvkWYZgywjMkIsKIqCxXrBfH5NUWypayW5YdayLQs2m4L1ZoVzluvra9rmHtPZLNQRiqpq8b6lTBqSOCNJHD43ovChy0sKaibvw/5BP5nu1j5aahdr5Rx1pGSMRuuYJNKgkgBGdXdlp2gkAFVyGTVKrAqRjFlheYt1YRRF4jQQ3xxdvR6Uvg8cAbK2iMJfhEGgUqHMD3uAdxIG3z8FgzNHAC+Vs9CA9Y3sL0HBirUhLsKjvTjQ2MZSN46qdpR1S1lVNL7B+gbnarxu0FpsuKIoIUtK0iRHR5Lt0g19+wGjVwGs7TbQMFzcU/Aq6FVz3fd473G23jsnYskXR1r6zViG2EpFkkcV9krlxVlBa+mbjJLMXOcsynlwendfhmtnZRTYD+5ta4MLQbiqSjKTZK/c1RUq8hjj+syw3dDcSkZbXUvGs24BjfOyf7hu/XWzSWfDmhKQ9389PLuMlv3BcQBNVdhnw83nAgkErfAqomzEmnu5mvP8xTM+ffwRdbOh2qxJEsV0NuJf/Y//kqLc8su//H1+9Vd/wMuXLzh7+ZKy2AKO1lY4L7bnxhjyPAe4AQYLcbLGRGDMiHSQMxzlHBzOyNKEOFiJJ0kqRCslyIdxonJuaktdt0Lu8Yb1puLy8pLnL18QxQnT6RGz2QkHB6cM8hn4qCcZ4KFta2Ij2dUSwyKqH8nWUzS2RamoBxqUUqRpJlZwYR83YT9smxbnFVGSYJSipaIDVctSzoPs0y0OxXA0omkcTSOOPa0FpWOmsyNMpGlsTWshDkCFC44czgcvsVB7SoTFDuzobeG06kHEnVXczpKt633wUtdppUOdL9/XpbB2GallWeJbi9HiBDIej1FGyBHWicKxbhrSbERZ1qzWay4v52JfqbUQycuCKEp75b1S0DaN1NWh1jLGELs47OuyfiMlNZz2oojFeSyyl2sCqcDIfNJ73b9z6J4tHaFAfQFwvQk0ERrEPfCom1uGf+vXv3//+/YAGql3CLal6gao1AFLwuG7qQTq+yd8z8fQYe/v/n8fYPr3HTfeZlCo7vdHIiwVBanYkqq+voeu1+veATdO2o7M9e8//lyAqSuKe9wvrOhwvVHA8dGhKEtsSxxF8rXDw5CFZGS41Ml/raUstmgjA5XGEoZIlsloQJqkvYR+uy2oylqY7FqhYgnJTmJh9R0dHjOZjqmqLU1TB0m9w5hIZHLOsy1KlDZsi4KqblFBUh0nEhoXJxGb7RrvaqpyG8IbJcj91q3brFZrLi+vOTk9RRvNnaPbjIZD0kTCzLXyjEejYENneHn2iu22CE9yzWQyYTDIiSKF0g4TZTR1jVLizx5HYlF1eXlFWRQBXEgZDQc0TUtdawmVbyqMUaRJRNNKAHyUGOqmpakblss5HeszTcWPuixr4jgmiqRh2263VJUUGp1PZidrXC4XXF1dUpQly/UG770E17ct2ogHaShvuF5teHT/Fqttg7XXwiIaZpSNxaKZHhxyeXXFq/MLDo5mZKMxzz/+jNt33qBoNHpRsi0bzl5dMJodYIFtJXZE+MAAdbL2sjTl+PiExWLOC6+IdMRoLAxPrw1l3RDFhnwwIEljojgmHw4ZDAcy2BwMmM+vOTw6YDqdsNmssb4l1hGbzQbbNoFJKtZDRVH1tiSRkrA65S22KWnaluv5gtamON+S5RL+FyuCNYDBWUsSSyCrc444Mbzx6B5Pn56zXKxJMjgZTvAe4iRmMBrgvGZ5vWY8GNDUFZvrKwbjKZGOycqSqpXhw/17jygLsZFS2vP8xVMOD48pioZi25BkOYvlFWhH0x5wcJDRNHWwbJLPMMzGpEmOazWLqw1PP3vC8YMHZGnEg9u3+e63vslv/+FvIYWpDBe00aFJ3OsAwteDq0JoElzPYu4Kc8WOQeCck8JwB/C/vtvsbVwh2+BL5KPsnKO1jrppqKqSqqqwtsUYsQrIUkNR1gzyIYPhmJOTO8RRTtvWjNucuhmhtefJ41e4tmMjBwser/rCqGOLQFdwSKZPnuch682GUOW2tyszRpiOBGuEphFLMwH7JQRYNR5rDbaxDPIh9+8/oChKVqsFZ2fnrFYrTk6PKQqL1hlRnJKlGZaSulqj9Zooymnba7yY4qEQUEzyLVzw3pdKyPgWyXyK0MoTRYiMXke0VjJmXNT0Qy4PRJE8KJWKxO5RKZq2ZrstZWhXVWJJlOjeikmaahliREaabdmLZQBstKKqylDkAUqFzKN27yGtqKqKNBswHA45PDzi1skpm/WastzSBNVOd126525VdYqcHVjbgYODwYBbJ6eBZS8Wekprjk+PefHyBcV2S1kWbDZriqIgTWWgkOcDQAU2aCxFmVZkWY6novd3VjvGyv5AUGw3QqGLoqwahoOUe/fu83f+zm+Ah+1W7AbTJEHpVqxkw/+srambesfMxPfEi6apgzpa8mVssJvqwSS3s8UTcKrF+SYMIZuwxrumU2w/QEkTHwa148kU73Sw1614++0HpNmAKEqwrZAO1ssVwzwnjQ1RYii3W05ODnn54oL59QWD/D2KYiv5VumMqtY4X3B5dUVRbNhsNiznc6qiZrlcUZSF5AvEMW2oUxweHQKmHVaI3IHVapQ0PlXTYK1De43Wwq6VBsOz3RYkSUwUR1xfX7HdbkUxV1YyBFKa58+fstmsmc0OODya8fWvfoMo0nz82UeSYdbU/Xv4Ik/qL+fRr7seOHGBSBG+wUszkESSYxFZCXDvsqo6uxvrLE1dUpdbXFNxMB0xyAaMhwPyNJZBTdtIVlsswxuloKpK1usNy9VGwOg0Jc2HRGkKWmy4lNpTldgwhAu+EB2j1LaOumkpqwYVxeT5CBOlNM6DalA6EvDJycglT2Lu3b3F7du3uX3rlNl4FFiANbZtaJrQ/BBAJH8TAIKu6QynqbvHAvjW5RVJob977v9itUeHOvCFr99QK8kXb/x9F3y++x7/eq+4e7/sfq93PrAcf8HnUjv1wf7XVBheR2GwWbeNgFrOolxE3DVC3XMChbPBvlQrsQSLDcZLOHYaG4xCAtydgEu2szPRShSpYX+3TgZ0tm2xJkJHuwxAyWUTVZJWYs/X23x0jasC7wOB5wYA57sPSJcbJetfwuX3Cre96xOAmz5ouQNW6P984+ztD/2QyWOnVPBGBhg2ZCN4uxtaeyWfWweg50YW1x5AIzXkboLcsX9vrKX+Y+yUQ0rvDQZUqG3DtcKGhrs/S2GNdQOJvWN//fQA62vnYv97fxHj9S/7kaVpUBbIk0XrCB1yRVWwo3Q4tDH9CEV5HYx/pIMQZUvc398dSKzUbsDM3rCsO5TzuFTym7x14b3IcA8f+jWtyYyiqWQI9uzsFVGc4ZHMHxNsbWVv64Z0wnTv6iGNwUSRWEgpRaQUBkNkVK9ikm/ePV+0hyRNsK4lzVJOTk8YDHNG4yFFUbHdrNluN9y9c4dPP/mIoq4kd69uREmC7P/dveKVo6oq1ps1VVXKnoA4RZRlLSB5I2qwpnGU24o8tx1KhLVeiD1O45wB1RLFNnzmcCW877Msu3tehR6RoJwUMgLhz2LVqpUMtRWdytbv/heUqmrvudq9rgBURoLgw/v0Adiz+ADy76NH/Qj95nNg/17znT1wNzT0N/eQ7hX6Qa38I7y27m/DXuEVOPlt3lqxO7VtsCQVNZYNGcLeepSTDDLvNN4qWmepq1JqvziWYX/U4l2Db73kjwRVlw3XWsAls7dJhc+x1yMrCLaCYY8O57lp6hv3hzYyV4ojQ2xjIMVEPjDtPUo5AZu0RisnlvjKyf4vZocooh6YkAcE/Ty3y1/TONJY44xCLNxNeEb6XvEle4MiSWJRGSh51li7IxI0bQvO99aOYgWrZU0EgEQBOLGm1d1s+Ut9hIuxeyj39VD/xW5TCrOe4KcXwHLJ9V2s5jx7/oTHTz5jvZnzZz/6I9544z7D0Yyr63M+/vgjfvArv8ybb72Bcy3Pnj/m+vKSupFesqpK4jgSYBIBcYSA48XaToeZhHP4Vizkl8slcaK5ml/LnuIdtnWk2QCtBJRN4oRMR9R1LTaM1lMVFd7Dq/Nrrq+XWBuT5mOSZEqWzcizGWk6AW/6nDy8xAbEkRECn9nZyVkvlsEKJerOKOoziJQ2xHEWAFzxu+5ILDK7ktyhxtaicHReLM59y3qzFqJvkqK0QQdHFGMMcZKgtCXNNCbyrLfXGBNjXYM2cl96t6t5dnXYrh7vagwTdWrGX6y6cUEl3NW5SilM1JF15HO1rrOblp9LkgRjoj5zT65ft35kZ9BaiPOr1ZrVekNVN5hE4/2OqIASe2sV2AXeu263lRmLEoJlVyfgu9mDCiCUgIvaa0RXq/AqyGcdopqXT9HxCNjt6rJn9dDrHjAXyvn+0bF/3voqc69OvFHNdb+AvdykPhNvl7fUuQf1PeUvAqvoDADlvO6yklX/9/tODv0r+N3n2H/+dbXsjmwW7E67H/aqfyaq/Rdjvz/aq4//A8Al+Ast8rRcSNgNnToUMJyCW6cnrNcrqrKQoHOjGA5yKeKAyBiqoqCpZQjm2oY4GZCmCc2moiwKnPfcOjmSm0wr2qZhs9nStuEBaxXUNcNhTpKkDAdDjg9PQsNlcHbndQwa5zxVLYqmOMlEShdYKMPhkDiJiCNh+lxfX9EOMoxWJHkqMvpsyvHxMVEU45xnOjlgvVzx8NF9ZtMp5WYNriGOJPNJacPlYsVqtSGKYoaDEUksAb9JbPBYrG9I05TNekuaiMQyTeJgfdRQViXWWobDIVmaEkdSAAhyHwe2pu83v9hEaKPBO+bzBXVVMZnOSNMc78ViJ47jUJQK47UoRRVmol0+02AwwBhN09S8PDsLfrnSkKM0Jk7BWimmtWG72RIPRhTlmuVyjgUePLhDUQpjIRuMGAzHPH3+nMY7Jgcznp1dcuf+18gGmnRYgk54eX7JiYkxSUrTOJaLNdqk2EYaz8hETMcTBllGtY3Jopgsy7h35zZFWbAptigMaZZhjCHNEgbDAYNBkMwHln9dVwLoZbHYfiEDZykGPUWx4fpaQDlnxbqobVbilz8eyWu4hrZ1rNYF3rfEkaGqPKPJgDQeokyMVxFNKzdnWWxpyoLhKOPNNx8yn284O1uw2c7JxxNyEinR4pQkhTS1ZPlQBg6tDE+Vd+RpileeNIl58/ZbfPD+T9mWK05OD9gUK6I4oigaysJS1hXrTcHjx88pq4Isf0iSpChfUjcFxbZhNV+T5QOSKEermI8//JTRwRHOGo6nY77/3rf4d3/2Q1aVDddf1BuupS/k+oeJNjIQNaI2UF2RiaJnHQQ2qQ8AU8dNunl0m3t4MtCh6RrvDV+WQyyxKjabDev1JgyRGqLYEWlNmsZ4P2cwHHF6csrDR49oak9rG5yrcL4iTjSLecl6JVLvji1rrcOYWAqkVsKAbRiEiZpRmCxKiS1cXdesViuqqqKua5QWhVVRFBgdC5PIaLbbDeVoSN6mgMeYlPVqw3g84s033+Lzzx/z7Plz5tfz0IwatpuGKMrROiVOhmTJbZRbEMdDnB+yLV2wc/NYLwO9NIrFo9xLs6ZUi7PCAPTKgIoxOpLmEIX3Md60+CjBucBkRXJm+iTBMJSLogjrLFVZSA6edWLDZ7rmVta80TJwVgqSJCHLc/IsJTKazWbTD5qM0SRpEs572w+4qqpiOJ6QZZLddHpyQj2dcHl1yXK5oK1DnoreMYXW6/XuwR7+0IFXw8GAO7dvs16vWG/WTOopSZpyeusWj598Tl1XVFVFUWxxDuo6ZTAYMMgHVFUlxfFWVAfDLOVgegiqoWkKrA25U15Y5R1oI77nkRSKDqxTRFHKrTt3+ea33uMHP/hVnj55hokMaZIwyDJRprk2DPe8BK82VVAiSMnWNjV1I5YJ1lpwMjwVBZgNwFQAOF3IZnBtYMbJnwlDFW3iwLppqWsbrmUcvLJzkjjDtlAraQROjk/o/JtLV4N3lJuSo9khjpar+QXW1hwdTSkL2UejCK6urrhz54TBYIyn4fzygqvLM8piI8qWqyvWq62wlI0hyVKiJMZbRbC1l+GV1nTqic6uzkQG2zrKoiJOYnDib++8ow0qtta12Mpyvbjm+XOxbViv12w2Gw4PDhnkA64uz7m+vOL27TscHh3w7jvv0rQNnz/5nMburE726ta/9Mc+gNEp5aQqR5pr53HKCgscD36v/vWhSfey1mzbgHcMs4S7t04wSgv5RyuUb/GuxagkKH8VbWtZrdYslyvW2wplYkbjsWRSGkPTtgHEESJG01osYBQhkF7eZ+ssVS3gUlm15KOMwXCKMhFULUoLsapqxLo2jiIOpiPefPSAk9NTptMJaRxLnpdTONdQlpY8zSDSfePS29r1Q3Z14xx6L/Vol/Mpzbf0DN3zZB9c6rOvvN/ZZO1dFwExHPtDeu8EfejaKOdc6OF8vyftAChuNF2wZ4kohcsXGiToGqguX6r7yPL3xmi8EoCpamqstygfbCW6LBlPAI13jFBjlJCejEJZsVmNI6lxOoAcBGhRWot1a7BSJbyOkMwatI6IIh+e0y583YWm1aO1C7k2NxvZbl13o9v+I+9NYnfN5m5QsD9ylWvQAbM7AOvGgIOb20d3vnt7VRXuudBXiCpe1oh3HSlJQIO2bYWFv7f+tAnjAb+fL6DD590pKW7O0zrmfxjAdH8fyDY6KNG895K7FGxZuyFJx47fb9JfV+P1z8T+tN5kze6vs9etVP6yH2kS97NnYUYbMFFP+nBeAL+QHg84lBcAVgfAwbU2WN6EwXMYthBm/DIckZwe1U1+IPQiXc/vSdI0ZD2JdXcUmT6ntG5b5qsVz56/4OjklNPT28wODonTDB0J+Qrk3rS2kQxoZEDerSFLN4SMMB5MpIi0DNqU0qEGRdYdkA0E8JpMxty9d4ckiZhMxhRFyWa7YbVacXx8KPXlWmrRPM2J4xRQNK0oJKumRkea1jnKWpT4IVIInKNpPcpExHEm95cH5TUugEmS1wOiFFE4GwwCfEeokHvM3dgr5Tx3/5Z7TAnxq5/Kdf/IhdqfdcmwUPZ5eoAp3Mt7YJNkfnRjwc5G09MEJcTuvqez2tk9l6Bnwu/euOnX0W4foN8zZIvodj4V9iMVrFSlLxWCxw6k8t5jmzYo7+uwp4fcodaBlW42iRNiHWFdRG01qmpxrQzgI21I45g8ELKlFpV3JOQDj/Kyz8uW3qmGut66h8Z2e353eC921MFZpCN6AjSN9DNxK1la2jhE2QFayzNWACaxWJVSSEDB3VByb59Tu5wOAXk8RksemagJDEpLHkvbCJmyIxAYo4mThCgRgrrkjNbY1soM0NbSb8htLUPsMOQmzCIFCHRoFfbk6MuIMPmbf+6ux+vf5bnxHOP1Z7ryEkmiFK/OX/Ls+WNevHhC3Wx58vRT3njrLlGkePrxY5RSfPvb75GmCZ9//imvXr1gtVyAb1HKUVcVURQFW3V5lrdNK4P/YGvZtq5/5pZ1zdX8mjjV1FddLm9D2ziybEhkEpI4Ic8GHI4mrFZr6fF0RLEpAM3VfE1VecbjE4ajGePRMVk6Q5HhWoM2Md4bnOs+s+n7WttIr6WNkL0aa2lbC9qSRKYHqW0gPcr522WTEbra1rZC+HMbUHJPr1YLrG9ZrRdYZ8mHIxwwGWWkWUocJyRJBCrD+QgTeTbbA9I0o27F6SQyur/v9tXT+NeJLCFL/nWQgR0ppieBaY3ZA5k6a842iD/k9aQ/lfl5Kj+LgL8+pBn6zoJASfzHYrmiLCq8ln5WNjDZ09u2xehOQd+h06Zft9podGfFF/a4zuJP+uVQ+zmzA3w8PWmq29wlsy3gFuzApe4zdXv57jx1//2/rGbbkSR2Kv0duCRk/E691ANNvwD8I3wO2ffl/XREj/779uv4vffXv8ovBJdU3zMJ6Uz28c51oq+f+te8Sfbb/dqbhL+/6PgLM5jkwQ+m84LoG24wSkLGP//0Ey7PLzBKM5tNeHV+xmg0YjKZUNc1m+2K6+trtts1WS4DtixpUCqmsZ6Liwt+8pOf8NV332WYZzx+/Jjr6wX3HzxiNJkI48e31LYmiWLyLCeKNN46kihCA3EUkaYpV1dzWUpKo3TEarUBLZuKc5Ysy9iul7RGMcgSjmYHeNdw+9Yxp6cnnJ4e8+r8jPPzc+I45v79++T5gL/5N/4qtm1o6wo7iFC+wZiEsm64ul7ys5/9nKOjE4ajsaiItCeNNJFWNE1JWRVifXR0hFKaOE45PDji2bMXGC3h4mVZMplMGI1GRFFEU9c8e/aEw4MpeEccyYa82WzY1jVZlpHnCYvlnM1mjXOeydRzfHyK90r844uKpqk4vnWKXkVESYJHGtjJZML5+StWK7EBrFuLbltc2Fi8gvE4Es9PBThL7DOSwZhta7neXPH5s5/x+MUZWZZwcDDh7r3b3Hv0Nj/9yY/4+PMz/JNLVoVmvnXcuv2IaHDCy8uKxXKFI8W1iqqyKJWQpmJTZFuPU4o3Hz7iR3/y74gjw9ff/Qq3bp3w8I03ePr8Ga/OX2GMYTab8Pz5cwaDAQ8fPmS+uCbN0nAjWMbjEb//w9/n/OwlVVGiEDXBnTunXF9fsV6tuHfrAcvlkuFwQp5b1uslzjlevHzBeJgzm06grTg5PWU4SBjkKW0bcXrrASaKKYqa5WpDUbWMJyPOnz7m5dPH6Ejzq7/663z7m9/gg+Rz/uhPf8rT3z/jr/6Nv4b1irKyxGnGaCybbpLlnN66y4cf/Yw333mbg2yIXsP7H3zM1x+8RZRomlXN+atz4swEFYLHFjUXFxecnN7h448/5IMPP+Gjjz/h//C//3vEkViH1cpTb2qixHBycgoW/uSPfp9f/vUfsFhc47aQDBP+zl/5G/zr3/tdlsWW1jvqtg7yTCONvpLgxbZxuwBIL5aXSouKydJZL90sbnrUPGxc3RCqK5h9KPy97yzJ/sL96y/NsVwuOTu75vJqxWKxoW48m80G7xNsLpYGWkUMB0NOTk5589GbbLYV2ihaW2BtyWCYYlvNi2fXsra3TSgMIrGY0CaASllv4bbdbvHes14tSYKi0VrL48ePaZpabMWGQ5qqotq2bNZb2qbhb//Nv8WLs1coJbYJeZ6TZQNevjhjtVxy/8F9bt25wz//5/+c+/cf8u67X6WsW5qmJck8WZ6SpuLdS5qidQV6KyG0ONp2ibMFzte0TknBikfrHfvbeUdkHCpSKLPzz9VaE+sYo31QxTRoWnykaFoXGq4uY0S8ykU1GfxwtWQHeKcwOsHE0owTwKU8PWQwGKC1sLHqug6qnRrnLXGSMDs44OrqiuVyIflvVcVoNGQ4HGBMxGw2YzwZkT5JsE3D2fKMphH/4o6lfn5xJcBgCMr0HobDIYvFgizLePjwAX/yp3/CfD7nzt27TKdTZrMZs9kBzlvWmxXr9ZjhcNwXlHXTUFcl9+4dMJ9fUZUlw+GIb3zzm/z4JyWXVxVtW/XqxM6OwDkpKCNjJOBeaZq24Zd/5df4h//wP+Hb732Xzz59TBwn5FlKHBuUElurspIcJbylrUvsDQUTtE2Fa1p8sAADT9tKkS5FfGC/40IWXIt1cl2VEjsMwaIF4CMAqGfnFxxMDsjSAUmak6UDrudr7t29z507Y8mFSBKOj0+Yz5dcvPqMP/zDP+DB7bt8/etfIYo1xWbFeJSSJp7DwyHqOCHLI/7sR5+wWF6QJBHzxQXb8pL15oqmLQMA5hhOR5JRFcUooxkMBsK4C2x6AOeavkDshllJGpOMEk5vnTKdHvDpx49ZrdbUdQW+ZDAYoYzBtg1XV1dsizWH06mcH2vZbjcYLQppZz0vX72k+dOWycGEu3fv8as/+DX+9f/0Lzk4PKRqCrne5ssB5hutA1gpjWDXbN1kwcseJNO2XfPT5dP4wKBOk5jZZMTdOydExuNbH5qymkgr0jTtr20UJSwWC86vriirBhMlHJ/eQidiCeycqBM1AaRwjshoIUobYZQSPNAd0FgvrupRQm01WT5Bm4i6WTGfL3ny+BlXi7nUsPfu8o2vvc1bb7xBHshUeEeepWgcZdlSbLZkQeX4BRUGN5/jnfVX08ja7QLW+yZFqwBeuv7z9yrm8I+AqbLmOuZlmDn2DVZHCsP73oLEdVT614gq/ZfUzcbnhirK7xqo/eZJKSUM6TBUQYELqlDrhLXeNE0IpZd9MTZRN+EGZBBpWxlYe0StOBwPxFZLa7JIk6cJKpCHVAe0WE+jWlITYSJDkgRbEOhDr5UyJInsadZ6rJNm36vQ2DtRLOtw8mS4EAbgWoesJYUhDrZzTkLcnccpAsjTDfq7OizcAzfO4+7P/df2QMfu6IFEF16j/37X5zfJAMPS9b4aGXA3tkFFESY4L6DFyqkDPHf5ALvhwE1l0373HRaEQobFSvXvV/J8TF+HonVQ4Hdr4uZnv7nWduumyy7YDQo6Vv5uP+nec/+7vgRHEsVhhAF0mT0m7gEih+kBRbzvM1M0Mlfo9xsnyhOtNV7rvVuuAwNuXhtN2Mut64ELkLWoQw1UliWffvaYjz78OVFkuHfvPr/5H/8j4iSR/NfW4pWhamrinizUkGaDYB+uQgaRliwN1WVzpChbhfvOhD3RhHtdhmvOe8mMNorheMjJyRFN03Dn7h2ur6SPXy7n3Lv3VfJcyKJ1UYfA+EOpp8ot1xfX6DiSobyOmEwPuHYOoxRGK5T3Yr2WDnpgAGA6nZHmI5IkFTW8MhRlheR9xCRpRpwkJEkqg1EviJNzLqhl1J5bzm4vNtpI7pQyqJC9BTtbH8KzIUS2C0i3bxfZExjkvvbKY9UO7tbd3uuFLAe7Z4ruLPdU1z/6/vUEWFfhCe57G0/vPVj2Mi66FSeWtIS617LbSbp/rJWMobZuaTYFdVOIlWO/XwYmv4qI05gkHaIMeC0B9HVb0rRbTCQuKVmWk6Y5eGhqUSY3TUNZt/1n0SGHpFOTiQJI6hgVzrPWEEluBXgnzwWnSNWgt0cX4mJNUddQgy4riqqirGtR3EaGOIIkhsgEy70wlPWoYMmnQBmxvfLyu3AOjxV004czEPoGr7ow+wjR11mcsngr10EbjdcRLowjG9dQ1tIDVXVN1UjWY2vFxUIp07vw9FZrwf5J49Fa0X5J6tkvHK+FS94cXe8/2/fKl34wLqRC5zyts1xcvOTxk0+omjVJrvit3/tt/m//9/8rq+WCTz/9hI8//pj/5r/5b2ibms8+/YhPP/mQNImoy1XY+3xQyMRCpg+Euig2gUwpQLXYnkpNrSPZV6+uFwyGoij1aLI8p9i25FlOVbW8ePGC6bdvY1WDV6IyH00zPv/8CUfHdxkNpyTxAEXM8ek9wFCVDVVdM5l0eV7yXIijFBNF4MRuuq0qdKwxwdLVK4O1FXWwjddGkQ8GzBdngQwLg3xEFGoIax1F0TKfL2lVIXWCh6Le0rYN14tLWtsy9S1jrUkzDbSs1kLSzwfiepCkI0x0nxcvH3M9b2naLbZtSdNkDywIwMlrlng6KJH299iuXpd70eyB+1LHVHVNhe+zDL2XniTLst7xKo5jGut6glBthWwloJP8jqv5NWdn16JGN4YkjtiWjWS99RhJR2yC8NTG99Z2onrtiEDGB1JKqO21os/Yc8E20AfSF14Iwt1vUHT11uvDxEBm3wN4egDnNVLRf/CxB/h051nrAJZpeS53NbkQKHYKpl4FL2yrnsDy+rveg43ono59/xTe+y8CFff/7PA3at0vnpu/YPYawKr/kOPPBZikMA4Pl5BoaSJpfmQj15yfvWKz2dC0DdrA4eEJg0HOdDphMhlLrkRdSLPWivpjMhpxNd+yXG1ZLDe0jePNtx5QVRWrxZzVasXd+/c4OTnBxBFN21AWJZPJCK0VcWIYZBlN1XByfERRFpyfX7AtK3ZSOvHlzLIBRWCGDwYDnHPMZlNmszEH0wmTcU4cKR48uEsUac7Pz1ktt8xmR9y9d5ejo2Nenb9kPBuBbSg2nsXVmtnBiMvLBRfnV5xfrbh//w2iLCfPc4aDnOlkSFttcG1F2yYM7YA0TdluClrrieOUwWDEeDymqioiI2qo0WiEaxu8tcSx4e2332a73ZIF3+WmqsnihNbVJHGE0YY0jWnbNtivrBgOh+R5ysnJMVfXC16+POPs7Ix79+7w2Wef0rYtX/vaV/izH/+YYrOmLAvqpgkFrSXNZTBSliUSCdPS2lYC0oFt3UCUEA8mFJdznp8tSRJDbQ3jA2m4Jkf32F7OWWwrbt19iw8+O6NmFFizGp0OuV6shfXpLG3rwUe0TYNrPWmaUBcl77z5iDffeMg3v/41kkijhjn337jX24j9m3/zb1AaprMJt26fkmYJk9GYzz/7nE8+/pjj4yOaqiHPctqmYX51JefYCRgUxwkfvP8J09mY7XaLQoC8JIo5unsHo6SAPT49Jc+GIXDZsN7U/OynH3F8fCp5JNYxHo/58Y9/zNXVuTDyC8sf/cEfcu/BQ95+6z6Hx4f8s3/xW/zOb/1bRtMRhycH3HtwlyRJmF8uaaqGNM/5zd/8u7x49Zw4yRgOcv70D3/Mxx//lLatmM3GDAYDzs/POTw84ezVBZvNBQ8eTri8vCDPRzR1y89//ik/f/8J3/3220wnM9p6yzbdkCYtTx5/zuJ6xfT4lH/2//0X/JW/9n1OT49QseL7X/8WP3v/E5rzV6wbeeB1ljldbrNXGm8UGNCRQ2swSNPl91jK9MXx7oG2Y1LRWzN1w3PZWb984BLA1XzO1fU1y+WWomioa0USV2S5MKubpiFJEiaTCYeHYnmVpQ0Kx2pzxWLZUFcFf/Ov/00G+YyXL1/wW7/7r/jjP/5j4jgNbEpFliRsNptgsymZbrZuiONYGhgnD8HJZIJ3lqZu2G62pGkKJDjrWa6W/M7v/jZ3796lKrcslwtu374VcnSksFpvPuTBo0f8+q//VebXC54/e8F3v/s9Xrx4yWK+xlmDVin5cEIUJaBKUIOQPZOyLa5omhXebWjaDc6VKNWitJU8JgIb2oB3mjROwkNaaJhaG5SJxWoiqCKttTR1RV2Lpd1oOMPakqoSu7SiKMJ5oi98tEqIIi2AR+s4mB1RbhJcYym2W0BR1WUYJCZIRpBnvV5TVRWDwZCvfvVd7t+/jzaGum5Yr9fcvX3EH/3xH7FcLNhsNr3iNI5j2lZeA0IT7VtQhjRNxdJzs+H6+roH2Z88fszx8QnHJydMp1NWqwVaQxwnaBUznTbMZrMw4HJMJzPquu6bO601v/RLv8RPfvrHkikVGgEQxrxHEccZoGkbaK0nzTL+6//qv+YrX/k6cZRIwT8biy2rFtZuXZfYtkQrsRpom0oyX9p6byjo5ftsu7MZhAAiWqAL4g5Ak7d4HxRLIZsF5Xe2sElGFGkUNZ999pjZtw5IkpwkHlBVltn0iEE+IolTqqrmX//rf823v/1tzs7O+eCDD5lfX3I4GvPs2RNM5Fksr2jaLc5tyQbC7Hn89AMWywsaK9d9tZ7jfIE2EflgFAJFBZsQe61YGgAdYSInXvEBMOgGbkorYiNKkKqsaFqx/DPG8P1f+R7ewXq94fPPHzOfL8niBKUSbCs5PVeLKxSQxjGD8Bwfj6coNIvFivOzM/7t7/4ej954yBsP3uCb33yPTz57PwxIo6AC+3Ie3aCqez4lSXSDwWY7ezBkiBMbTRPu/9VyzmZxRblZYkIAdWIMkdYC4Lua1loaa1kuFhAl5MmAJMlFsd0KkOBkKkOkgyt3GEYLEL7fMCiUjlAG6qri8mrJ9fw5T59fEMUxddvy/Plzrq/nHB8fcu/eHb7ylbf5yjsPSJJ4Z0GlHFVVoIM9ptaK7aYgH2Q3VSH97931Xc6JynRbFMJO9Z3l0Z7PO7u2pWu29hmUrx+vs+VASaBwryzZ/W5CQ6X6qaK8wW7Yvw+AtE1nnW0wkfkCkLpvYeb3XqNuajZFSdMK0coYw2g8DmoaGUo2dY1B7mulImGLOwdKk2Qps9mMLFGoFtJIEUeG7XbLarNhU8prKxOjqDGxqBzzPO/33y9Y/FlwwW6u86AnnJrg6NqfB1TYX5WHRvYXrbUQMcJe42JNXYvKtrc7eu26CztULr7a+7su1F0GU18Embrr3qkC+u9TwcoEeUYLaOZEBeJB4UhisW/tgMzumnTnRXBfj3Vi79WdBXWj8d017p09iAtzY4sP1lPhe4yBYGnbBcZHUfSFz9UNYrr/7tZ6v5boWMz7n383CNq3wf3Lfsj6veGcJc/0DhgMg3ATReH+9vhWnou2G5zoDqQwkguyzwHohjncHNIIUO3BdHk78o2bYs1nn3zGyxcvWa9XvPPOV/iNf/CbDIfDfh2WTVBsJxIiH6kQ8K5Ax4kMuMxuZNLlfcmeA1VZk0bdXuaQWLGg1lIAokppnSWO40AQlfv91uktPht8ztXVFa9eveKXfuk7vPXO22yrms8fP+f6ck5VVaJgt56qtQyyhHwg9qpeKaazQ9o2hKx78NYSKSMqagWRERDMJCna7Gq8ImS1Ki2Wf957TFBSOicqku79w/663l0MR8a+1R03cht294g4h+wGy+Gr4bU6a6EO9AnqGaX6EHeApqlAyV4uFoWvPU+U/O7OajYsPtq2oTMDdgi4L/tpGNfpKCiF9tZTp6gN9uB1XVGUW5q6pqkayrVYOyvvAktdlE+A9AQkmCgTiygtJKlYZSg9Jk4EKImjCKM0tgWtLUq3oCOsr+R9qZANE0uGlQ0kARcARbHuE4vwSImCuHMNcU5TtKKg1l6hA9DVNm2wa27ZVo5tZUXRFEl0RJ6Ky48Jg1ycQ2Hp7J2ivceo88GusQkEUyf7aNvKOVYqwpiYKJKhblk31E0TlF9CxohD9qzH09Q1m+2WsiioylJy1dtGMijDuhvkOfkgJ46jQPzweOtQyFoXotmX8dgn3/z7huN7X+9Ve446PGu3Vcn5/Iof/eiPWW+v+OCjn/D8+ef8lb/6fa6vXvHxxx/hnOM//8//M7abDR/8/KdcXkqWc7EtKctNmCfovr5qbYsySkhv3jIY5rs1bCIGZijbtQEdKQbDjKopydIh+TCl2FY41XDr7puMxwc4C/fu3OfsxVPapsY7y3q9om4UrTOgUpJ0itEpzopb02iUAV76QyO9b2wyYpPgbCsD+yiQErTDhZxR71uUkn9L1lPDZjNnPp+j0CRpCkg9qIO6UqFQCQySBBTi0rRq2WwWKOVIs4gkNaAc682CqrKs11tMBM1ZwWQyZjQekuZDvvXe9/jZz/+U6/krmrYAJTOBHQHTEymDCuCXMXqP8EWoy2/WuLIKhATRtlbsYxF3qzRNhGwcJz0JxzlH3dRsq1LyQY0WBVocg4Oiqii2BavVhuVygfMCiqMNdRuy3L0APmLabUIWX68XF/JPsAGVlkswBhMblDeB82fxJqhsjcwZbHBTEVhbnuGE/HghF7Sy5tUeoYxOiboHLgXiyg5wYu/7//1H/6zofj8Cgivle5XwLntp1w91OXFKqV5d26vKurr19bvbd5bgiq4PUTfuc3Fm6ch7r7/P/v3u9Rbd81j2gb/gCM+brr6+WQd88fgLFEwdm9uHwZ08rDvk2TmxoDk6OkIbzWa95vbpLZqmJo6EiVfXNS9evKAotsRRxGwyoq4rmrrGtnLh0zQlihKKYkNdlQyHQ27duo0xEVVZUVSlhJgD4/GY2XTK4cEhV+dXtG1DXVeIdY7ILpMkkewgr2XTCH6Rw2HOdDLGKMd0OuLwcMbpySFprMlzsVMzxvDO2+9i4kjyltKEr33tawzyCFsrXBuhlKOuS7HMKUrapuXk9gHpcEySijVensf4VNGUCq0HxHFMXVWoIBU2UUzTNIxGY7Isp7WS/SPZPUm/hKLYsNmsaeoK27ZorQR88b7PSxkOhzSNxXtFFAko+L3vfY/HT55Sn52zLTY45/n881qUTt7x8SefCLBUldR1Rd00ZFmGtZ1XsayABw/vc3FxzmZd9yjx42fPSOOYpmooGof1msZbFuuKy8s1KIuJBkxmKS6uePzsEjA0/glaGVqvmUwPubg8p27aMPiEohCAMM1yTo9PePTwAYcHYx4+uMuDB7fxruV8vWEwSBmNBoDn3Xff5fr6mjwf4Kzn9OSU0WjEcrGgLCvGwwkaTVXW1JUU0kVRoI1mkOdMJmOiNsPj2G4LbCtIu7MlWjuyxJAmRhog70jSlMEwJ4ljDg8PyYdDNpstV/M5MzTj6YRiNaEpC9p2w/z6kixNuHXnPm8+vM83v/ouP/rZRxIO7TxVUVKWpQS9RxFlsWU6m3A1f8ViuaCqHH/9r/515svHjIZD4jgBNLPpMR++/zHWOYZ5zvPnTxmPZoxGOU1Tsl5v+dnPPuKr777FdDoijlOxIXNXHJzO0HHEalHy1TcfcXl5gVItd+7dITURv/a9H8Cf/jE/+/QDvPHBIkGFvlAL88D7ftO0tsRoCTAnAM/7jXTHmlF79gIEUKn3tA7DIuljgg9w++VBmcoQ/L7ZFJSlxbuIsqpJigKlErRKQwilPDistUFR5iiLLcvFnLIs8DgOD0UdYyn4+OOPWa+3Pfu3bS1pIvZI3nq00lRVBdDbZjqnKcqtDAj2hq9xFOMjkTd/+OEHjMcjsjxHaSjLAuc8xkQ0Tct6vSVOzgSoCsyW5XJJnue0rRQrZV0yHE+IkxxrRV0EQ4b5HfApjRnh/JZm9RJQOFcKoBB11lYt0KC1o65Kogg8iTSj1ompRSvM8rYVH+S6rtlsJI/Ou4i2AaMT4qQD4UKDrhRaC+OuKhuiKGOYj5hMUlaLFVmWMRmPiaKYslwHqbEMkubzOWmaMp1OOTk54d1336GuJROvKq+4ujwniR1nL1/uWf6oHRPF+z4LzkRSBMq1EXCws1Kq65okSdis11xdXXJ1dY1SioODGZPJlMEg75+LdS0qx+12y6/92q+zWi04PJyh1JT1Zs7p6S2ScA6M6ZjZhs73GG9oLURRxjtf+Qo/+MGv841vvEea5GH4rMTXPTbYtqJt62BtIQW5bZuQ9VKHHCW3Bzbv7DKkzhOfesLXPI6mqcJwUXKYWtuA8sEeR+OVZjhI8F5zdvaKjz/5lCzNmUymGCO1yIP797h/90GwdyxYL1/w2Sefcjg7YLVeUZYbnG9p2pLr60t05KmagidPP2VbbqjrVogQpJTVmsbVpGlCPsho2pbWO7z2EHLrZKgbSd7YYEAcG5y3NHVNVZU0bRWYWp1tVIshCsMdRVXXXM+vKKqSQT4kywZ8871v8sH7H7Car7Btg0kiAfS2YiFpnQR/bzclh4cteT4ERCE5nI94dfYKtOfb732HVxcv2BarYEX55WjIX7dtk+HgLi+mH0x46UdMUHVITe3Bi5JitVpycXHOYn5FVa53w3fnJCvCe4qyEsuLyKBaR+XBJLkM96J0F1rvHboDOiR9OQy9dFCdOpq2pWlbnIdskFC1LUUlLGelo96uwrYtgywlPTnk0aMHPHx4nzcf3CNLu/2N0NARPpPU82kci411Y9Fmz5LOyvCqa34kA26X3eO83Sf89feyBFXJPtZZGu3f77LP2X7vIDCevd+rF0CaRR8GgZ1/U9hnRXm0n6uk6HJfuq91lnVKKZSTjIlur+m+3lvohcN7AcRXqzVVXWPiiKOjI7GzQ4EWCx8VFEA6nEcH1I00/p1Xf1mVpEryVwfDAdWmDAHuHusRq0rtgnopCTbfXvLnWrELxfleMdY0DR027bsBLDvQTuNDbxas+EIPbZAsMfaG/FpHIReu2393QF/f3OpwnsIL9WDJHglIKdUPVaV+696T3TXEXmwnu3yNPl9EXgCFDoC7DOs76w7rWoI8tQeZnNxmKCsKL+e65yZY39m7Bt/+vpHejdXaVsh7X1Qf7T6P/NsHIC0ACUqFDDT5WpfP4gII6m8M93ZHVwv/h1iK/GU5nO/ORlg3SoD6bj2q7qYBAYyhi/MJVqTQDYG81juAabfo+uvZnfX+5wLaWlYV69Wa50+fUzc1kTbcvnuX4WjI8fEx2TBFmZDrIs1IeE87GEJ1Npj4cN/4vUvsMZHZrR8vbznwEWTPbFu8smGfBZRhG7JC4khcO0AxncwkB9PDar2hdY7bd+/x/MUrPv7oM14+f8bHH3/MrVu3GAwHDEdjnGspqxoTRcwOjvo9gm7Y5cVS2gQwXiH5y8poegm1B7TYZHfDNdeDxj4MqoQA2j0jUa6DAHcvoUx/zZTvR1DhfMoQyjkrRCG1Z1cU1Ex7MDQd1u29p/WdekmHx3AHdjsRR/bzqc4OqbuXdf/7Ox67DbWwc14Is7UQz7r+No4SojAYFzWArDcBa6SOrcuS7UbyWuuqpinbbjlivGSCyGcVINGqlsi26MaACfu1FlcJ5zWtlb1RAd556qalbgP40+2P4e9cK0Pwzi4QoPWyD2kP2itcIIMK6BP2Wm8kh0+JCtChsH5nOddah60adGuJtCauLU3jJEaicy6yYnkmTHwtwFO4H5xz2LalbeqgrBIArGm67BQTsmaM9IJW6pk2PCtRmjhN5O+dDUBFIYTFWvoF62xv664UtK6magvJyQzuFa5tw/PP9wP1L8Phu8IJIaKIc+DNz3+TSNOpPAjrX6wdjTGUVcnF5TkffPI+OnI8fvwJ+JY333zAaJjxox//GcdHR9y9e4+7d2/zh3/wQ169eklZihW6WAA72qaGEFORpikomWWaSO1ZqclsFmUwKiZJYuIkJs0Sslzs7QXE14wmJxwf3mGQHzCdHnN8dIuf/ORH5OMj1qsFy/kVRVEznh4wnswYjiYM8gGRyXrAJY5FtWRdRRwlxCFrWc6HFsmeM8SEDGff9lmn+BajFUaDQlOUBYM8k1mVUlR1QZpkrNZrlqsly9WK4XDEnTszyrJkMV9RFDVVLaCxtZblcsFJNmSzWVFVlqoqabcVJlasVmJRNz0wPHzwFuvNGmsdL14+IU00TdPtx2HP9l72+ddAiu7ogLyuJvNuB3oYYzCxCQQe1Stn6rbG1a5fO5IBRwCOZF/1zlMUJYvliqKUObJDVGfOeTo7e9WpisLeJX1ERwzQob+QTO2uzuwsFF1Y12KLBz1pySOZczrAGA5R8kNPYpK8x15yK88e1Sl+wnNqhyTtar8eeOr+6nXgaT8qCHoui+os8dSun+svQ5iB7t2Tr+dHdr9r7869+Xc3vv7FPU7tgWY3Dx+eqzuQret9dkCkPBBU/2Fe/81hzXX7yL+34t0dfy7AJGGL3S8SyaDkMuwuQpblbLYbtNL9CcuzHKMNbdNQ1SXL5RLvLPlkzHQy5eWrK9pgB5SkiXgLhz0yiiKGgwHT6ZTNpgiDtoZxMmQ0HjIcDBjkOcM8Z2k061LySjrpWZyIDF9bjw9NVT6IMFoTx4bJeEiaRBwcTDg6nHJ0eIBSku/QNMLePjw8RhlFmiXk+YDT0xNsu6VCAu+1lnyN1WpJ0zakWU6eD5jMDkCJ92wUxSjliMyAuGPl6wilY5F4K01dN+TBNse0liiylFURspNUr9babGKaykhwYtgQqlCMOOuZTCZUVYNCMxyNuXX7Fm++9SbPXrykbusQQu/ZbtfBlxPOz8+ZTseBcRKGfG0rFlD5ABWQbbEokUVogifm5fyaJE4wSpHkQ1wrfrmbouZyvqZpKo6OjjDJkDhLeHX1KXk6wDFHKQF74iSVEL1Q8HkUTd0yGk2YTWccHBwyHg+5f/8ud+/eYjodUdcb/MoSxyl5PsB7z1tvvcXnn33er700TolNTBKn2MZRlzV3795js1rjrCeKpIGvyjqwhxKSVDbWopD33lSOtlHEEaiRWCuZSDaLJI0ZDgfkg4zZ4QFxnNJaR5KklGUZAMKUwUjYrvOrS+bXl4xGY05P7vDu22/w6vySom2wdUNVSqE6GozwRtPUW7y3TCdTqsrStg13bz/g5R99wOHBEUmccX215PjolB//5MfMZlNObp/w4ccfMxoNSdKcwSAhzzKePXvJkydnDPIBJ6czorgmLxtmWoE2LNYVcZbx8uVjvG25dXoLby13T045ns4YpCnLwBDdG7/stpVuBmH0npvKa1uO6hqJ/aKn6zK7P8u/JRxR9X//JerHqeuWsqyp6gbbyllumpayrNCqJM0i8YS3DWVZsF6vcVazXq9YrhayFwU7uDiOGI6GPHz4kNPTU5rmRc8GttaSphmdjZdk1t3MvXBB7dNZinTDwU5SrbVisZhzeXnOeDph6EZk2yxYIHT5EZarq2viOO3Va6vVksl0Jl7qbc18fs1wFDGM8tDIxsAAYxLSxBDpIY4tVdXSNIbWarF9sLXYRznAW6y2eF/L+lExljSEnIufsvcaZ0UFVhRy7optRRyN0CrBmESszOIYpcq+CQUQ2wCxKYqSlDyPcXZBFIpn1RXL7M6P92JFd3c65c7dOxwdH/HyxUvKUsDkuio5f/WKuqr74evrIe02vIckKGCSJGYwHHJ5cRlIFjNGoxFKKRbXVyyXK1bLJVkuKrc8z0VNZMSOQM7/SkBIL2SE8XhEHEdU9ZrRKBHLCW36oaWny1/SWAvj0Yy7997gvfd+ie9/71cZDkfi+691AD8VWjta1+BcDV783/cBpg5c6v7dD6Q7cEl+oQyVvcM72wPa1rZyXvqAaMJ6NERRQlmWzBfXPH/+kpcvzvjmt77D4eERk8kB4+GEk5NTTk5OxAPcOozWjEdDnJXivqoLlPJUdUFSK5R1bLZLXp69xKk2sO0BUpTxlNVGlMTZFB0ZtDMyOAs5OsprdJQSxxnD4RgThYJOb6nbGuz+kCb8TwUWrJOByGqzYlMUVMOa2QzGkzHTgwlVWVJsG9knbBsG6xbVQKlLyrJGaUPTNMRRhm1byqLk7OwVm2LDr/z69xiNxjRNia3bEEj+l//YB3Fhv9D2PWnCh+asA426fZAwJKvblsVywXK1ZLNZ0za1gLJWim+vBCxfb0uGeoBx0DiwSsKFtYkFFFKKSBtRwYSa3tom1Nc63H9eng1VTdU0KB0RWU9ZC8BUNa0AVsaIPZICPRkxGQ1589F97t6+xdF0JI1x13z63efr7jutDZERtnsHQCgC0LxnZdcx1najxX6824McHajgkKDgbpC/fw32QZ6bf0cY0Hn0bm4SBmpeMiH6b2Znw7U3lPQ3vhaaWnwA8nZAV3f9gd7nvXt/bduGfbLLiTC7n/GSp2Wcwqguv8n21nMg7HznPa5piWPVBzg3Rd2DUdaH3CkDcRyRZZIBC4TzFvznvWRzNk0goXn65pgA9PXnRAXdQLd/egG6PTJYkixM+XljII5NOA8CpL5uaeidC/fBrjl13RrYq886oKh7Typ83w5sciEQuhtABpCqW0nyBsUqr7s+3XrFyf7UdfKevoHXxtywNvRWBZAqrIOuH76BZ+x6HnlNsUEUiZPvB9n9HtH9YHeTBqC5vwPC5+yem68D2J0V9Jfq6AAXunMkw5/OirHH0pEBTBeF98WX0TjVjXECyLO354Tv6uEO7z1lUbBarYVosd2yLrbEUcx4NuPg4ICDg0PiOKJ2tbwnPE5LnUgAOLq1pvbUnN0aJwyWjFKYKOoBCYBIB+uv0MN091t3b5kooqobvNehjx2SxCkHB4eMRmO0NqzWW1rrOb11m1u3bpOlKVdXl3z22WcA3Lp1i3w4oK49221JmqaMpxPSTAi9YdIlwKv3GFRwEBMrO3psSQZ3Rpnd50OAup0SLwA6WoHbKYt2hxj19IOz0L+p/kd9v/d4b/HsExJcn4Xs8Xu5SUIoEDtQR2QiJJ9DFpKOdqoVFX6/86K07xxsVBgAAgGcsbR1g7UtbSvAdF01tHZnaZkmntSD7ZjmWt6Psy3OtrRWclL7Or5usI3MRXQIu++eWbZ1oFusqjFVhXExKsQGGQNeh32o2xu8EG2bYAdnraV14TNJ4YFyFo/un2ldHaOR13XaYZxGMrWEiGVtI4pNR0/Mck4yvPp/ANc6aKHWiqjRtLbFGLl+ysugWIMoJJRGqUhmg8EivQOYZE2JKrVuW/A63EMBLPaiZGitpbXyc857TBkcTqyjaUrqSrJ3XCCIuGD51wNrrqZxJZHRRJ1a0rZiP6tCDtmX5PDdWvfd9rR7/sDrA+twqM4dIzwnFdR1xfnFBc+eP+XFy6cYY1mtrpkdjLh955jr60uKYsOt21/jzp1brFdLzl4+Z7tdi105Fskjor9OXX+rjNQhHcBMeJQaJL5kOByLS1OwW46SKFjZCxB/dHyHt9/6BsXWkecTTk8f8MHHnxJpRZS2REmFiRuSGAbDEfkgJ00TIiM59Np4lLZid+xEIahMIEm5FmMiOW8K8A7nG1pb07qSutniXEvUqsB38rRNLaR2L8SuotjQNA0vzl5wPZ9TlAXRPCZJ5X5erTdhntfilcd5S1mWHDtL1ZQCdttaSIcmoizF5SfJBoyGU+7cesBmXbBYrLD2ko6w3YEdu9ptL1tJvabiDmtBcCmZOYhqVawJ4ziGsCcJKWanuDYmIoqkL5GRh+rtANebjVi4t51SKNTYBKDb+pDFJmtVFOhdT+CRYO2uB+jy7vZAm36+ovdoDUjtq4INbffTASxVygfLVE//7KBTxIZnW19XKPZvkd15u9kj7v4cXosdPtKXhnrvz3s4zeuv33dQ3T7OXjWz9817eE4oSXZ/9zqI3H91/3v2atGOIHKTmrOr/fffz0757268dvc9Ny/Ev//4cwGmKLAnAZTWpEkcmMnim5wmGaPJmI8//piLi0ucs7y6OOcrb72NdS3b7ZqqKoiUpvWWyBjG4xEvzi6x1hLFEdlgwGA4wrqG0WhEmsQMcpGOl2WFiSJSJFT+jTceUWwlRLssNrRNTVEIcz7Pc2m2I9huS5yr0VqRJCmj0RjnLJvNCtvUHN895dbpMYcHE+JIs1zNieOIKFgzVFXNZDbh4OCA2cEYFYCFupQiqSs8Xl1coE3Oya27gGI2m7HerLCtAFXWVoynY/Fnry2j0Zgk65iCEMfiKVsERlOeD1AKojgiTWLSJCEfpLRtQ55mwjANVg6VQ+xYUAxHI+paBg137tzjl3/5V8gGGUrL0EmGfPIgEY93UfGMhiPKrXiECsBSMJlOOTk9JU7E7/cnP/oJw2FGmiakg4TtdhsGX2uMMTx6+JDnTx/Tlo5t1fDqes52U+JNTj6JaCxUjSUywr5tm4YXZy+5ml8yOZhhYiMDLmPw3nBy6xa3T05J4pjtdsNkOmJ6MCbNY6pawuLzPGMwyNluC+7fv8/52Tlt0zLIhqxWG+qiDbkoBS+eveDv/sbfYXE9Z7laobVmOBxyfX3FZrWhLiqasuXNN95ku1mxXS8pig2QslmtyGKF0WI5GMeKJNXkg5jxeMBwNEApza3hLY5PT3n/ww959uw5EZrx9JiTWyc0bcFmueLs5QvydMwbD9/g1cUFH3/2OYvVksFgQJal4BzGeMaThOvrKx48eMTB4R3Ozxe8OrtgPl/yzttfIzIJFxef8c4776K15vDogLfefMRPfvKnWLtF6YzRJOXtd97g2bPn/Nbv/AFeRdy594i2WXF4chsdXVLWlsF0yIeffsrq/BUKzWZd4U3NarNilCbcOz5l+7ygxeO1wTmwrkH8paX491buvVVV9A+xrpnoHoCqD53eNeVdHyc3wxctF/BBSfclOerGUtcWZ0HrmLpVWOepqgata7KBAEHr9YqLy3MGgxHeaV68fMb1/BWr9QLvWinyvMVZaVIePXpEVUlWS1HIvW5tizbSiDWNDdZsEiDcNVBxIgWXV44oksJIqyZYfold22eff8psNuPw8BDvPZPxLHgSK/I8Y7XeMplsmUwmJEnCdrshHw4xkaEoCs7OXpBkLZ7j4KedgpUmOY5S0rjFuS1qYlhvU8oqoWk01q0AeTY5r2jbBoMWlZIHjybP88DyUcGzvWa1KpjPVyyXS6qyYTZVJFlCFAsIkKYZnpUwQeuGprYhg0mhg32gANQCALVtsHBTGhPWuRAUDrmazxlPp0xnBxSVsJZevHhOVUl23uXFK0ajERBsfsLiT5KkB7eMMQwHA7QxRHHC4dER8+s5JycnPHrjEW+++SYvXrzg8WefUWy3lNuS8WjIcDCkaSXUejSccnk5F5VknnHr1gnGaIaDEUki9n/T6QwT1b2VooRZR7R2B/Y6p/ja17/Nb/xHv8mtW/fAG8qiwRh5VkWxxvsGfIOnBWVR2uFbaXLbtpb3ZKXAFLWu7Ye2O09oaNs6DP2trFUt52W9Xe8K08BQQmmiSJ7xn376OR99/Anz6yVxlPLuO+9y79597t17xHQyoyoqFotFaEgVk+mEv/v3/q6o61ZzivUaYxTrzZKDwxEOx6tX58yXCzzBwjDJAMdwnFNez1ltChpbcXA4lmGTkeGnMTH4mCTOyfIhg9EIpSQTrG6qvpqUzy/XOwp2Qc7uBsNVU6GUWCGU5Ybr60um0ynj6QCPZRMGad5abNtQ7bETl4sFZVEyHs/I0pSmKrm+vqKoS/JRyngwluDZzZovzVbrd4W0/HPTsspaK/kdsdkNjwmDJieDqcViweW1KMtsB0BEBu9DsLuOKIqC5XqLSVMSNNobvI4hzgLAZEIwruT5GKPQCspSsn5QGo+nqmWYtV5vqNqWfDCmrFo225JtUVHVDXEsKp8kTUjjHK0GvPvWG9y5dcxomBNpGe7vKwWNFkjRu93gNE1TmrbtP28HtMTa9M1gVTU3mpBOUbv/2v1p9rshWg8shOa1rusbjZv8zF6N4MV2p0Oz+uaqY8d3YEb3s/gehHodTOjURPsDve7z7dtR7IMrbdsyGo8Ywm6o150v77GNpbWeyEQCKltHaVu8UiRZSjZM+/emOms6pdBRRMfutFYs8qJYk+cZw2FOPpBex0NggMqH6Z43TWvFaiQMCgTEcb3TRMd6V4peidCB9h1w48N0R4ggW7SJ+/23y8qwVmpo10p9YMPn7uG715v9/hqGoXC4VnI5unWhe6DKWivZY5aeRKCcxagd4aUjHHSBz9pomlpcCHRYk7L+AggARKrLU9sfnqndGkDWhvOiMDDaQwjExtqwjizOBtXU3pBG9a8dPsN+U44A0ftDgJ2FiP/CWv/LfsRxEgBXyQeT3oEeSVIBddrNWhx4MB2bGQKwSE9+cLh+3QujWe6NjpDRMcOfPXvGBx9+jLWW6XTKd7/7XQ5mM/Cqt0q2VYOPCGA6OHSfCQNh6Wq120eQ79XdPaLFljnLMpJ4d/84W8uaDv2MAAUyrDNGGPDWglIRWTZgOpkxHs44mMYcHh6TJE9YLte0jefB/XvM35xz994dPv30U548eUJHKHn06BEmSVi9WlCWNWk+Yjob41XUA7e2buS55ETtQz9c3K1bGzJXHDvlotyjdu+/5d7t9hE5/51lXYhMULt9uwOMPN1gs8sJISh12YnFQt6g70hDvhvgOprK0ti2z+6RkZoijlKSNEElEaqbYPlOJRVAMx0TxZIpaFtHWZQUmzVt28g+WrdUVYN1cp9GUdSrzuW55SRvRWtwDusa2rahqCQXqK5FTeq8rD2NRnkbcvBUb6vrqPHbLWmWoK3GRArjJYuq3bsO9Jl8gXjl90F4Oc+eXT4x7PaX4CIYstJF5d/1f861/bOktY4mKLe6bEOPB0ufjee9p1Geqg4DVi+2c8450YQFdYxykoMlWj+5ds62Yb0IOaKxbg9c36lcnXe03vWqJPBBWdHZEbbYVkjf/R6h5P6XNeuwaJw3tFpmVxog3GdAbz/1ZTg6Qk8PLoU99XUSVbduxIoQqqYOz1CNV3B+8Yof//RHvHj1jKJZ8NFHP+foaMqtWycMhzm//dv/hu9895u8+cYb2Lbh93//dyi260C496H3dyh0AF07ezWLCkSLxoqVpJDoRX2SpUMePnxElg2om5rFYo7CUFU1s9khp6d3uXv3IY8efoXLyy1N7Vmva77+ze/ywc9/Rj6cMR4fML885/riFTpKiJKIKFEY1ZJmGdZZmqZAOY3XLRYt6zOAJIkKxJ5WbPTbtqaty/DvmratUJ3KG0gTqdMcUNcN88WCq/mCTz77FI/n9PYpP3v/zyi2FxzMDkmTAev1SubCvu3VlHVVo1SMDxbwHcjTOouvararLdW25ejwDs5p8Iof/eRfEkVRIMQqmkBwE9SaAN7drDVURxLWWnLVInlmiX07QVEMddNITImzoY8VFZE2YsHnnajufbA1bRrLarWhqGsUojBvAkDulWRrxbE8xXf7l/QVSRxDb5NHyJoWG1Gjo7AfdgQNFUBjIzlsAXCKlGG/g5OnTbDTR/ckq06RLEdQN4U6eFeb3ewdOuDpFymKlAq2dnv3l/QkUk8qTY8T7MCm12vA7j3t7Oz2e5GuBn59JxNyoO6gsdf/9gYo9YXDh/071Fg7Bb8Oe+3OzlxIVioAdbs5xevHn1fW/rkAk9hb6B45rGtpPrUWxLBqG95//0Mur6+p25Y8TXnzjbdZbTZEkSzO+XxOkkTMDsZMxqM+o0OKojGT6QQVJ6TpmNOTY6aTEWkcMx5OGARgCDyrzZI8SxlkMbZpacqaODYMB0PqRhb0aDRisdz2gZtHx6dcXV0xHovP8WwyoKkr8jQiicWSoSgrylJyObSWYdvdO3cZjAZMpiNGo5SmLWjqls1mw9n5OR99+DGXr664vF7gVcFy22JtRJYPOTw+YHAwIU1EUhhHchM2jdg0dQWxMTHT2ZDr6wXT6UHvNX56OqGuK0bjnOEwxzvLwcEBa7PCWUsUG1arFbXXxIk0UW1ruXPnDlk+YDKZsV6vef/Dj3DOc3BwwHa75fr6WmTdtbDmB4OMpqoY5DlGK8qqpKka2tqynK/IspzZ5JBiXWA0xFFMlknWk0kirHLUtuHz549RvkUnYguzWpc8evhmb6c0HRgGaRYG1wJCRJGmqkvWqyVxkmJMRN1a3n77be7cuc1wMARn+Qf/8T8iMg3KQOMqnrx8CoxwrQAb0/GEprEo72mrmroo2a62jE/HVEXJ/GrOhx9+SBEyrO7evs/TJ48ZDcbkacZqtaQotoynKZdXL2naLUlqiM2QKFJkaUzblMyvzzk5HpKmA1pb4BgymubUTcFoPJPAQAvf+MY30FHM+z/7mLPLOffuzvjBD37As8dP2awKri7PuXfvPvdvT1DqDk9fnPPhhx/w3nd/ic8/+4g4Udy/f4vHz57yrfe+T5y2nF+s+dGPf8z/5f/8X7Fcii3PvXv3+J/+539DHBuWi2s++uB9vvudbzEYDWmtBaN56637fPjhh7w6u+L6ekPbxmSDY7zfchDHjA4OuPfgEZ98+AmT0ZT5fM5/99//C957712W5ZosUtw5OOCjx58TxRmNEzm7d63siU71TTVKoxOD862w33pbGifsgr1hj3NqJ3P1O9ac1LsyfCawl38xQv+X8ygqT92CIxKgJQzjy6pG6ap/MK1WS6pKJNdKGeqqYFssqKoVnpZX5y8ZDmZEUcr5+Suauub46IA40szncy4uLwGCjaghCowSrQkWG22wIxvgfQsKssGAqijYllvyfMBwOKBalCR5xHK9ZLMtuLyac3h4TJrkDIdjppMZWi1oG8vl5RVRZLhz5w6TyUAYPauSi8sXTF5FLJeyB04nB2TJAOVFJq20I9Y5ZMKYy5IJdXtIVV3SNEviCOJI1DOr1Yq2tlhXCsDBDO8iFDEgIATeML9ecXlxTds67t1TJOmI0chQTBuGwyGRuZIBo21pvad1HoPBmATnDa/OzonjlHJbcdVeiUIkFZuz1ra0zpLlQ+q6FqVUsWU4zHj65DFN04gMvrV897vf5Q/+4IehAdtZStZ1g/Ph+mgttlhNQ641JycnvHz5kjt37nD37l3G4zHvv/8zVqsl69WGoqjIsoxiu2G+WJCkOVGUCWAYxxRFQdvKgNyOPFFkyLKMOI5ZrhZk2ZAsH7LZLKlrh9Yx63XB4dEJ/8f/8v/E3/hrv8FmU+OdIs3SYD3niWNhiDVVRdNWtG1F2wgRpalKqrKkaRoJ9KZTLfmQMyXqgDiAK1J81j2QZJ2SEGolrMguQNtaGTYN8inOwo9/9D4/+tH7rFYroijmzp27/OZv/kNOjm9JBtjTZ1y8uuD+nbus12u2W8mN/NrXvsbv/d7v8umnH/Pq/CVf/cZXuXx1xmqzxLqWom64f+8RJ6fHzBcLzs5eiSzfxBwcHLFcrnj58jmHJ1OatsFjSEyCNim3Th4wHh2QpAlebTBGsdmsKauCrooVVn9nr6jo8mJAFDFt22CMl6BZLPPVFcvNnFgnMrCKNXEb4cNg1oZwZOccznqqusJax61bd5jOZmzLksuLS169eMXJ7UNGgxFNXYX39CU4OrCiH4zsMdS9DwznhoHJelCFMCgTe80N51eXXF0vgirDEOUZeBOG6zLQctoQpTkuWALnyYBBmss1QsZyWZKQRZH8Di/DoEhDxwpu24bteoN1nsFwxEBLoPvVfMl8tWG7LamrJjgAOEZ5zvHRAYfTIY/u3yYxYJSTYZbdfUb6gcTOqxxARwlYH5R6sh8559BGwnpvMiHplZfO+54xvRvC7w8s99Qg4TnW5Yl0yqAdASWAfmG41CnH+iP8/BdtxzoWfRh0unAOnSUOofA2/Pd+HiRe9h9ltFhONy1FUWAiQ5wmgdmqWRdb0jwLVl9CoLHS6WK0AqNo2hYfSAYS3p7RuIosy8nzIXGSUmhRTYhyX8DoJI0YT8aMJ2O895TbDd6KRahta8pSk6mQl9jaXiknpZKco9irG3VWd/5lyft+gNh2g2EFnXpZe8KgT65dmopVXxRFlOU2gIEhm6C7jfaGLW7v/gH6NdG/j3ABrXMoJ9fYOfHhF/KRETaoCSHzaYyOI1zjewCza7oFpPREMaieHR0AOS/MYtupL8LMQGth5+7eoww4VdMQOQkXR+3O340hQD+c2P3d/n2wJ93vbWpeP/bVcrvcmb/chzYR3vje4rG2jqizj+vIZS7cSyGDQXlwWu8UNyisl+wYr26qHQVM8hijsHXD1XzB1fU15+fnTKZTfuVXfoXRaEwcJ1KLbYo+V6tpGiJtxPF/b3rTAbr7ewqEax5IG7JGRb2eZRmjfCBZO0oFRvM4ALk7gEn2KivggobtpkJrw2g44fDgCNsqhoMJt2/d5fatM168eMGLl2fcvnuX2cEB77z9Fj/72U8k82+15uLyAovnrTffoa4amsayWW+C1b68d0ewl/MKaxVYUXB66wCp6304x33f1X1mDRCFDJK2Pw+7CyeAE3SgtEKp4AkYLDV9u1NBdd8jVkamj7/w3oZau8a1Xd6JrBfXirrFNi1FvaWqGtpGfsd4PGY8HkOek6Yp2hjaupKQ+gD+RCYlywYorUVNvN5SlEvaRpTobdvKKFxHYZgpe+C2KMJ1FEsvrVUAmHZ5cJ1KSmuDc20YHu4cDACiWAWepMO6krJuiJwh8kZqNQ90CtlOqQo9GVMpiLosT9/ZjeruThEwzToBhzpihaAKAVjagUzWSW6KrG8XxJdBgYc8RxrXikLKSQyCrTsba4fH9uCf1A4RhhHOt+EadyBUUKN1z3zE7UhIDZ2SLSgbcDdsxV3IVQ13IsYEJZLe3Yddckw3kJVzvrfpeFCdzf6XB18Kg+1gNel3gPxN8s5O4dKN7J1v0SqitS3Pzp7zpz/5ExbrBcv1JZ89+Rlvv/MWb73xBp9+9jF//O9+yFe+8hV+8+/9fd7/4Oe8//7PmS8uWK3nQoq0HZkzASWE8TiJiJNYnq9G8saSJCKKlfTaUUwcpeKMcfc+RsfUdctoOCPOxA5+OplxdHTKaHTI9fUWo3JUpGkqh8kz3njzqwI24Nge3+PPtn/AYrVhu90wHmWkuSaqdU9qapoGbYQkaqKYLM9YLtZUdQm+ASXEdKM8Pti0Gy95p21tpbZ3njwfYKI01B1yBxTVlmwo9vX5yHBye0JZFlxdXZKmW9IkZ7td4bUo8pqm4eNPPuTBw0ckSYbShs422hhD0ziePXvBg/tvkWUZw3TCw3tvMV+8zbPnTyiLljg25NkAE0kekajeHSaOaL3YbHaVdRt6S2V0DyI0TYN1rayFAAJ65N6LTSz1rne01qG8Jokzmf1XNXUt86IoTci89KvdPZokOa0Lv18pWutpywqtI5IkFYu8LrcVTWQiUTk5IfhgdnEvIACy17rvFYwSoMwrg3YtVmlssBxvbLPbt2T1Q4jLEUWOdGDSM+yDPuoXgnP791IPFv0CcGn/v3d/FrBb99Z5QjLo6RIB2PpFs04VUKAv1J9/zlz0Jjj1581P5XUMiMWo6qwWbV9LdwQ8qYd2SVn/S44/X8EUMj/kffqOnkIvHfOK+XJF3VqUFguIyWTCtliHh7Cwy5eLOQcHE4aDAdY6qqri8PCQwXjGYDxDRzHHx4fcv3eXQZayWi4YTyZcL+Y0TSOSyeCzmqc5VtdcLleM8gGth6aVQijPh6w2FXmeEccygJlOR1xfX+FsyzDP+O63v8XR8UGwN5JmdjgcsN1uiaKEW7dvMxwOOD09Eksb2+Bdy/XFJWcvz3nx/Ixnz16yWVU0jdjp1LXiG9/8LnGkwbXgGoyOmU5nNE1BHEGWCKsVpUnTnMjENK1sBMMkDY1TQ5LG3L5zqw+aLoo1w+GQLM16lkhZlhwdjsQ2pa5AG6aTA3ntPCNJU5bLJXUtQ74oijg5OWE+n/cDrMFgQFVsGQwGvfVdW4r91sHhMdPpAd7Bs/YZ+SBhmOWMRgOOj065Xs/ZFFuqqsI7S5anmGBvpohAGZbrFToxjCYDjo4PWM6XIS+rpmlq0ixlkOdkec5gOOLW7XtMJjMUhsFoyHvf+ibrzYrZwQBlFGVd8uLlc955+3soD+vVCo3hzTff5O033+bZ06cs5tfMpgeslnPapiEyis1mxbOnzzg8PMB7R5qmPHn8lMFAQiInkwlxXHH+8oJbt06Io5jteksaK4x2jIYJ00lOFEGaabyvqaoNRbFiOjumsbV4nxrD+fkV/3/y/uvXsizP88M+y2x73HVhMzPSlu3uajMzPZymRqREQBBlRoBA8JGAXqRXCfqHBOhFL9IIFCBK4oikQI3I7pl209VVXVkmXUSGufbY7ZbRw2/tfW5k1XSPIIw07DqJyIjrzj1nm7V+v9/XPXnnHdZ3koHxk09/wfy3v8PZ+QVVcWC32fP8+WdEpXj04JyyrNnvDly/fsm8qglx4KsvnnN+8Yi/+slPUUrC4X/37/0dfv6LL6lnBW3X8uVXn/Pxx89YzGfs93sBDt50oCPf+43fmBQUH3/0EW8ur/npT3/Of/2H/4w/+G/9vkhi8xq0oTk0zBYLfB8oZhGb5ez3B6yJXF9e8+bmmgrLrgsoK4t60IrAAFGjET/ntuuEnaYVMXm4BtxUbEckWNnEmOwXRmbu2Ggci19RNSQmbvj/bDH7b/Jjv+8IQachJUDG4CKZlcJNhvGepmnY7/ZsNwdWixUXF6fkeWC7G2gOW14+f4FrFNpk3G5vOBz2eD9Q1yVZdo4Pjru7Nc71yXqtwBhhwYjVmCEEsdYCOT9d7IiQMtoc19dXeO+pq1oaCB84HPb8yZ/8MZ98/O3jxgS0XTN5+97cXPH93/wed3e3zBc1H338AT507Pc7qrImBskKyrNS7NSGkDa/iqp8QGZr7FBjdMVg71D0aO2IsU/XXI/zPT6I3VmRLWRz15aMjOXijPn8jO22ZRgO9J1Ha8t8tsS7yGq1wpiv6fqBNg3pAYzOiFHjXSDLCj549hA3KIY+gQEKsXOIYLQlBLHivL6+YT6f8fDhBfVizulyxTAM3Fzf8Gd/9qdcX19Pzdh95ogbHF0/kJeVsIfSNXJ9dctsNuOTb33Cu+++S5f8yW2eMTjJvbLWslyukKB6z+s3r4jBpOGWpq7Fk1obAa/0MFAUGXlR88EHH7PdbfnsswYfOmbzJf/g3/7v8Ju/+QM+/ujbbDY7tM7ToEaGyGWRo7VYCoA0y6OlSHBicxFTTssYKAojcwYhYWQZ1qRr3w/T131yMLLWpuvTyjXiHDrLWS2XhEGz3WxZrxv+vf/uf5+vX77g0aOH/O7v/h4vv37N5m6L0cLi9cPAixcvBEQYZC/6z/7v/4TnL77g8uoVbSf2pFe3N/gYmM/nvPP0PZ69/wwUbHdbzi+esl5vQFv2uwOZLdKwwHB2tiLPxWrw4vwxjx8+wznFMLQE1dP3Pc4PeD8ke6Y4MYrGwu3t4SXUdS2M26FPtZBJjYFkuYi1VslusxN7rpgC7EPA2gytDcPQc3l9KfkCRnN2dorrBwjw4OwhRV7w859/+q93gfs35XGPUS0fyrB+VC74NJRx3pMl+4VxUI7SKJtR1TMuHialRfCE0LFZS+MIGqsNeTnDFAU2kya2qGegZfgjQxqxx4uASkAHQYCaMEhQ9hgGnxvJ7PQR7rZ79vv9MW9AR4LvmFUrLs5XvPPkAaerOVVpIdWuro84bY/ACjLY1Voxcs1jGpyNLGrv/cRuiyHgnZ+GX2NeDzB9LFbW7peG+eNecN8GVJrnYRr4Hu08zFEJ5f29Ruqobg4Ti/4+cJWG/hPAkvLdYvo5ZZJCLyZgJA0D9dh6S0agGwbcIENEldig8npcYrLHSUmktcEWFiU+QsKQ9QPWGqqqoq5raepTb6RNhvORfXOg7Xqxn07kMGsyWYPzo0UJ94Zv0YdJORWiHOuY7E2SXwkuBnGvH7Gje1f5CKS58byNxymBTUcVpU7n3km2RcpkHF/npERLDft4/vU9EGg8v965iQxq0jEawcJxmO1CGkInpmZUEZPeH1Esu8c6JISQ6gjN4Hr6IeC8Z/Bx8uAff/8x/zOdX2XEjtCLjaFSEW2QAQgBM/aqcTJcfKtJf4uhOq3N41D3yE49qveO6/fI6B9fz70v/a1+RCWA7eCS8s5HkVikIadcR6NV52j75UWJOw5+0rB41MqA3KcEAQOGYeCwO3DYH1BaM6/nXHz3IVVdoY2o5dqun0DFEIW1LCABeMQOVCGDHO8EYBYQ12OzHGPzpEoNKD3mSqRreFRcRp2G5yOcemRqKywq5dTEIOvt7fUNrnMMXU+zb5nVC1w/YNMQ1jnHV199xbMP3ie3lnfeeSLWmRqa7sBmu6GshahVVTXDMHB7cyOs5ixDW2GORwVN35FS0BNw49LgLq39KTPIO8nN8V7UrsaYtD5aAUDiEUARxf64dibAOHoUqY/zKR96SCCBMZIlqq2ADumEhhBxvaLvYOgDrpeMIat0IiqKAr7btzIE7gTozlTGvJxDDjjZm/qup23aiUSrrUsh8VYU863kC3ovA2KlDLmxco6NmVTfwSWHGq0JIQ0K072utaawGbpSotBzDu+FsGuUemuIOO6zyTQWnaVjYCVqQqf9SC6awGj1F5XUhULMVIx5xCH9kaVc1nzvZc8eVaxMPXSYQCbvA/hxP5bfqbRGaSt/k4D55BYwZrRMH0exSY0IOCkfa1SQXlDIpKOiIcFfKt0H0Sc1g6zfPgRCAqsMEU1Mg+BI4lQxKoVVqopHIlAYM7eQtdYTxy1yWhxUOFrFvuXs9Lf8Mam5w1jPvk34ONZYTLdsIGAzgwsdd5s7fvSTf8Gh3fKzX/wVbbfho4/f4fvf/xZ/9qd/xmaz5tGjx/z+7/9b/Pznn/Hpp5/y9dfP6bpGVDzBJTvLiM0yiqomswplUtpnCNTzJfVsxmxWUVaW5WLOlK80XxGVxkVAG/KiQinFxflDbFbgXKRrB4gddVVTlDV1ndOrhpPlKd45uqZFh4zZ/JRWa4Zhz+XNFSEeACckBiXrQeLupJJeHFPapiGqDm16cfsoiqSeVeTWMrQDrhdSkEJygdywoygr8rKUu9cqFouasi45PV1yc5uxqk7xg4BbXRc4NNu0bci6ebs/8PjJY+azmizLabseIf4AccDoyNcvn3N6ckaMcDg0lNWC07PHKffaCUDc95NVp1KS7zkWxApRfI/uV7I2kOo5hTYgEUlC2NAmm9Zs0n42zic8QSxGvWfwHhdGWCCtd0HmVaMrS4xpDdQWoyULWfbXQJ7nUkcGhfJJoWzGdU+uXa30VMeGEMn0CNAnC+mYiAtRagvvB5kTRFEwiWoZRiqUvNRfVpXfB5DGf4w4x/E+O4JLx7/ffo6YQKXRwlnsRBMJI6maNPet9Y61DvxqgEiNry/e+/hXgkxvP8f99zV+fjymqKQIU0ocNKyeLKwjMalLk+239/d6hG/8xr8WxPqbMpi04mhEEaeFPBH3UEqGy6Mtgw+Bpm1EHhtF7aBU5ORkydnpCXmec/nmmlk9Z3HyiGq+opovWZ2esVotODtZirQ1MWe6riPGSFUVVPUJdVWRGfFkPjs9JbrIthuwmQelyfKcs7NTQKUg9AxrFO1hj61yHj98yIMHZ1ibciZiKjS9p6prZjOxF1qtxKovBAkld67n8s0VL776mpdfX3LY93R9JGJYLFesVmcYoynLjCI3FJkohKSQs0RrIOb0w0CWixWT1pbY9SwWy+OwXQuauFguMVrhgyPi0OmGCN7Rj8zPfIE2HUpbsZ0yMmTs+4HNdktRFPT9gNYSHhwRWWpRFGTWJjZOTMFvImut6xrvI2VZMZ8v2aw3ZDZjXs+Yz2pmdc3pxRlOieTBWJvyB7QMY6KCINYuwzCw3+9RxlFXBUMnTPpxA8ysZbVaUc9m1LM552engKGu55yenFAUOf3Qk2VLvA+s12vW6zV3N2uyLE9ZLJHf+N73MVolxs7AYlbx5s1WFrjgqMscFT27zZqqqnj0+BGHw4G+H5JKQOz2lII8t5R5QRgcKgxYramrkpPVkrpWLBc1eZFTljlFmUvBaAxRiQ/r3XrD6sRwcnrCo8ePub15w83tjtWsQBtNVmj2zZaqXspAxjtOT1bc7bYQxWc+MyVaGa6ur5jNV7KZnJ/z6sVrdKboXUfXH0AFmuYAMVKXNb6PwsIdoG0G2kPHk8eP2e0P3N3d8elPf8bf/fu/Rz3LicoR6PEh0vYDLoDJCoyG15dXPHl8xryuOekHrrcNbd/htZJgvzTBGAdTTMyteASYJlbbNxkC48J4vxk/Ln7HP6Nlwq9JNw6SpxKE1xCjQSmNVhZrCzKbp/5hHDQ77BB4ePGQ8/Nz9geDDw1ts2WzXjN0CpRm3+0Z+o4QPNYaskwKn75vaVqRgWujsSaTMj5ZDNzPDdBpCKcmO5rj0HAYRNE6DhBvbm44PN3TtnO5NqIiLytsJiSF/WHP7e0tVVVQlA9p24avv/4qFX2BpmnJM+FV+LR3yLWjiVigJrcGRY4hI3IghAbvt1hToPWQhvaOEIYkxbdYU4JSzOoV52ePaFuHc1d4J01KlluqWoBuZQwRl6yjZKNVKpeCLESKomQ+X9AcvDCe6MUiQMm+FWJEhcBytaTrO65vbtjt94QQUr6dqBj+/M9vpkGuqDrTOqyOIFOMwpgdVTubzYaqqljMF9T1jK5rUyg8NE3DdrNFKUWeZRRFjvdiraV1ORE1YgxCPhg8Jycam+VpP7c8ePCE+fxznIOnT5/xmz/4O3z/e7/Je++9z6xeIp4yerImskaYu1JFHu/ZOAHFY9P5y8weacIlt8lYgxBFj8MHsSxKLWZkavZRliy3zJcLurbj9mrH7fUWomEYPO8/+5B333uXhw8f89UXzymLEh1lYJFZw36/Z7vZSJNrDD//+U+5vH7NdrfBh4G7u1t2uy2np6fMFysuHjzg4uIRbddhbEGeV5TFjN55qnJOUdQobSkryztPnlJVJcZaTk/OWcyXDH2gbeHQw6HZc9jv6VJjAOPwccyTur8ipGFpcClsWhqS0eN8XIOVFiKQWBgYlBnt9QzaiJWPioqua9jvdxibcbJaoZTmzetLTk4XWG3Js/xf08r2b9ZjzO6Ce0Phe/vZCPSNmI/WYiWG0qg0AJwvllTzheQ49C1NsyOwB6MSsSmXpsdm2MyQ5WJHwRiMnQbtxMRCToodnerRkWRBEEJMnpdoKzZl/RCoy5IYGgGjgmG1mPPw4QUXFycslzPKIku1bZgIHTEESGQxITEERvb6fRDoVwFDIYh9mUpN3HRw0uOY9+CnYcZbXx9BHaRv0EpJtkKQAW9MZARtRM0XvGSkjYM6pvOSMuF4+4+cryNyMQ6ppqFvHE04mPqUibEXwmR3NAKJxiZlTLoQYhRwYwRIptelxtFjwKcBdlbkE1jkXJuUQfIYvKPr+xTgfnytRZGna0TswUZ7uiGRHIrcMoaWR0jN9ZhLNHq4x2NfNg7mRlBOfmi67N5qTlXKHwuiOB/Pl1yDXvZPm/zzk52kiuP5SIMHpSe/+0lplK45pUiRC7/csKcXkPrKI/FoAtjSdTMNPV2yy1LJesyJDYvWTAOb6fpTx9cm9jBhyshSo6cUyH47Ah5hggdkLw8RbfVbtezb6rDjAG/8+z5jWKX3dVxvfsXb/1v6GPw4VOulx3ABO4EfJoFNHMHOKHlt472plbB+jdL4GFAxEHB0bc/QpyxHHwiDALQ2y8izXKyLdDYBodOwRY1rXbrGoyh8QwI4g5d1oGsauq7Hu0Bdz6lqsFkurO8IDiGRxgQw6SjZzmMOk4AXoxUkEMH5gZjqUa0Cd7c3E2jf7PfoqHFO1O4y1Pf0fcfd3Q3LeU1dV9QzscT1wTO4ge12y36/J88yFDJ4vLtbk5UFWZGLfVJm8N5JxEWIyeIpEMJ9hakM7kY2ej9IdmOeZxMhYFSaMN5PbwFMyHOpTiCBtKd5Hxj6VMNqjcmsRAIEP+2zYhE10DaSQzz0Awol+c44FBIJINdRR98PAlJ5AbGil3VLsv7kgGulsMaK8nQc7inIs4yoiyPpgKReMgK0HK0v05qlSe49KWtDK8CgbE5RjIChZL/qCVySQa7VR5vHOK4VGllLpsxVOW7EZK/JOKCUjBqtNCPPnQRY+jjmhJEyOqXHktci660PIdXfISmLAypUExCjEGKFgKZjblaynUuDxEiYAKbp+eK9mj4o8JnkJ6V9IkSxZh9Z+6R6vu/7BDK55ArhcQm4CtGLRaP34u6lSLXGCDzJH7FwDInYoJKq4qgSHK9BFY/Eob9p8Pm36TGSbOC4x9wHmKY5SrIn9SEQVCAw8OLlV3zx/HP2zZrPvvgp7bBjvix59OScL778Odv9mvOLc5699x4AX371FW/evGG93tAPXQIJ0+WlZXBtM7F8c0EyM+fzmsXihNl8QV0X1LOcssrY7yW3aJxp6NTrm0SMs7ZARY0bZJ3QOpf1RGmszTFWZppBeXS06Gh5+PAd1ncZd+vA3foK5xtQA8qk+VRsISrcINeVNQbnBtquBdWh7UDXtxgtlpACEERcEEcT0GglxKGud+RFRZblaGPZ3u2ZzWfU85oYxfGrOivRlZmUQoc2ATGR5OZ1Q3PYcbJaURS5zHaszG4BrNXsd2vqqgSg71qUzpnPTsmyiq49sDtsqOoa73rQMs8IYSAEJLM09dvTeh4i4Ka9Co41oTY6WeIJ4CD3qdTsUXGc9XsBj50TS3abKdmf/OjPMD632OtrZfEhtSVaYbXGDwFMBK3ofSDLLJm2aGXQSsvaxZG8MQHJE3ADgjsn9Sw6kY3GWYSXJXasLdNzjN3Br1IdcbyT5O97tds9fPaXAJ7jrDOtsRxz4MbnOQJUb//M9E3xlwEhpY5WfCg1utv+yvUtxl/+3NuvbyT1jgpc+f2jW4E2UhcEgljJao0aVbsce6n7z/k3TWj/eoBJyYY7Posy93rjtJn3fT9ddL1zXF5dYXSkH3qGvsEazdP33ufiwQX73Z7bm1sePXrMyYOnVLMV9fyEp+++I5kfUZjP8/mcL7/8MtloyLDs7PyUk5MlfhiIPnC6WHB9dZMAlIKqFg/807MzkeGnK3K9vuX8bMXJasVHH37ArC5pu4bo06BLKZxzPDw7Y7k6oSgrlqsZ4gPb4fqO/W7H1y++5qsvv+b66pZhEHaLzSwPHz7h3XefsdmsKXJLWWTUVcFiXuHDkAaAFu8tShvqqsZYS0RhQ8ZJOaPpWpTWlIWoCarSEomYoLEW8kxummEYIEbKssQUMzwWtOXs9JybuzvaVljOPm6YzWY0TUuW55RVRdM05HnOyckJ1liu3lxijGSvhBBFsr9ccHO7JSsKirKkefWaWV1zsloxqyvyMuf8/Jxde0AZS9a2dF0DfiDTWm6EoBil0n3f0BxcsizMpUHUZhpoXZxfMF8uk02eoW16Vo/mrFaSDXF2spDslv2GN6/fsN81PP/yObN6gTaatm0hBnbbNYf9BqUCdWVROPpuj3cNZ6cLQgis11vKMuPp08fsdhturu/ouh570KxWM2xmGNyQPNeRwEijyYymKjNWSwGairJgliT6xmbYrMR5aNqWpm3x17fU9Zx3332H69evWd81EBx1aahmBZttQz84bu62rLd76nlJH3oOhw6tDPPZiqELeBpmiyVlXdA7KcQ61+FjoKwKmmbP9m7L6ckZF+cPKfO55HntOw77jkPb8OSdpyzmc7b7Pc+ff0Xb9SxP5jjf4oMUq7v9Aed9AnY1X734mneePuTh+UPqesn20NPe3tAwJIaM4hjLKhMNa40obBQErcS72uu3FtCRqXjcdODYfKciOtwbCP0agUsAbeuI0SJ2MRZtDXlWURS1DLGVKIWcc3jnyPKM8/NzHj16xN2dojnccUNkv9ux2/T4AC72ANhMNhObGU5OlgxDx/XNHW3TMgwtRptkVRTxzmFtNm0qKCN5CohdgdKWkmJq+sbzVBQFITiGoaftGnwQJujCKMqqEJDJw8uXL/nWtz5hNp8Jgz3KzxKgbTopRNKg0lrJX5DgVwHJ8nxBmVfoaAlxz+A3OO+w1mOtDB6kH/bJ2tOSZwUoQ12vePjgHZyDLoVoSoi9IsszyqpO7L5k3UNMrL7EwPOaqqww2pJlRhipMYCSIssnBQJKc3J6yvX1Nbv9ns1mI/Z4fc+srpnPZxOodB9g6vs+BbILQB+CDDszmwOKw+HA+cUpWS4DSa3VxDA/7A9s7sS2y6bgdu/FYgTrOTRNIlbA9fU1xmzJ85pZvaDvAyEozs4ecLI6pyoX/M5v/13+vf/e/0BsRoRzw2y+EBYpGms1ZZ4xSvLHQPpJiejDdA2NAPSxuBkZUaKqUjoNobmXIaL1NPwYWVEoTZblYjlVzvnyi+e8enFHs+spq4KXL9/wB3/wBzx88IS+dSiUKJ4Hhxvk47ZpePnyJVorLi7OuL5+w6tXX9P1Hcoo3ly+SpaCOcvViouLh2RZKbkJlUny/pztvmE+V9T1khg1VZXz3rsfMpsJWaEsS4gZ1oBSjm3j2G7v2G7XdF1D8EnxFdPAk/sDzDRMVoF+cBRFkTzlj8NWmxi3PjX3SouNT1RyPqwW1YDSCqM1rpOh1HK5ZLlcYYzl+fPPieExy9Wcs9XZv/5F7t+AhwyQ9FTQR/nk8euk4j2xvCJyDSqrku1HwTzLMXlO0zTsdlsOQ0dQGTa35HlFnpU4L4BOltvJaidMTY388uA9eDeBQfLa0qCcKIrDskoEopwAZFkpLEp1g1aKMs94+uQR7737hLOTFXWVyzDWOXQM06B7NKaR/fXI/oMRUAhv7btKqWltMsagg8AWWmu+2VWM4NKxEYnT9xwVT+l5Sc1qmDb7BESMJySpwqbXnoahEwM3Ddju43RxVFSpaYiGYnJ0GgFC1Ghvl0gx6WuHw0GyprKMzFpMAmePAKS8b+dElW2TitDdW7OG4Al4jNXYzKKNomn66X6OCAmpH7zkdqVjZzQSSD0CTES8G2ibRsh7PqS8AjUd27H/CiHI4HIC3uLUUI+tX4zp8lIpo2qsx6LsM+N7DFEGdCOgOCqZIKasPrGtDWG0ZeIeiKMY8f/xehhBxok1iZKcgOmeCowWW3J+hdkeFKk2TXktWhP8QHCBvjfMZpnU50ltYTIZ2Ar+rlFj3ZI6+tEOZrq+Q0xKQvm+SW1wDziKEVSyqhmP9/FxzIu5/zhajKQD/tbn9Vsf/zo82ralbTsOjfRFzgXyZMdrsiypOZI9aAInnfME51KmjFhNhqQKkaF3S3voOBwOok5BU5Ul87qGlLfQHhoGl9S7VqehCdM1EJJaBCD4VN8lhfBh37DdbmkODc4Fzk7HPEOFjpmQrYPH4wWM6nqGtpcMSmuT+t+n6+moVnOuF4BJRYiezd0tmkD0jv1uK/lAh4717Q1916BUIC8Md5tblHIoo5gvF+ybA+M1OhIuHz98hEZxCHu26zW2KyjrirwqsdESvEcLvpFsx5lqCLlUPc4F2ranbcXGHm2EQKmT9eS9O2Cq3RgtJWUdjaqbrvMYIn4IdP0wkaaMETWk904yuRJI7npP27QTwGSUpiwDVvdoGkKQXJAACCEpQ+sMok51+bGeFMW2pigkA1OZTNabIB8XZGPXSjoijGjI20QGedeCEx2Z7lprMp0d7+EY0GqQS1gfFUxWa6I6AtAxRtxUo42DvfHSj6CiOMAohZoUTGO/PNYLOs21jjl2IUAMx2xFH4KANRwHgSEEtH+77n67Dmd6jd4nAJIo/ZsXi6uQwPapTggQXVqDo0sqbrHX0+n9gTxf13f0w8DgBgY/MHhHP3TJTtzhvJA7XJR9ccx7inFUS3lCdPfy7mTv8el1xQQy3Z/T3oc+fx0ex5ptGkUf6wO4d0DGc+lwyrPZ3/GzX/yEv/r0x5xdrPjZZz/mvWfv8eTdh8xmBf/5f/5PePbeR3z08Qd89MFH/PCHf8nzF8+5vb2jaVp8kHxcuZ6ELBgVqORUEWMgs5r58oTV6QPquqYoLPUsx4eOtus47A8ySzU1WaawJsMYi7V5ur4D4NCqpyzqewp0KPNSAA4yqjynKuY8e/8jLqsSbRT7ZsOhcWIVqgPKQN83aDQupP7aZCgCWoUkgtEp+1tN6sMQk4mrBhWFGOlcIKHQGJtTz+a8vLqkquYUeUHTHGgOHdZkzGqZ3/RDy263kSx6Hxj6yGG/Y7vbcNads1gsE8Be0PfSTxuj6PsDg2sgKokvoBDRRTmnyffsDw2zeslmcwcxkNmcfghofey5375WxmtDY62a8nfHPC41AVFeSBrqSNAahbshAZXOe/IsT3ufwmuZJRg1upxoXAwYZSe7PKMtRZbJPDu9NOcdVhtUVBiEYD04cT4Z1zuTCQFOp9pTsvmYMoshrftJJRnTPFrOYXr/afeP0X9jTbwHME1rydvgz/Eb3r7/vgkujXa5Yx/CtBf8zavSN9VLskfc+7lvnM/7PxfC2x+Pe8d4DEeAUUhXKrn7CJkksxnGytd98GkOPtzrzZj6Nd76/aMt4q9+/LUAk7zQe8+X3vwRCXXsDns0CpuQzzdv3vDJxx+y363Zth1FUfD9732HzWbNXddRVTXf//736YLl/METLh4+ofeessro2oMwzIzmhz/8IU+fvkOWZbRtw9nZxzx4cIrViqHtuHlzTXs4EAmUVclsNiMEePTkSbKG88znM378l1seP3iXi/MzHlycsV3fkpujdZcxOQ8fP0pspRTGHQf6oWHoe5rdlp/85Y/42Y9/Rts6jCrxrqMf4OzsnKpaoNB8+9vf4u7minn9iFm1INcKleWgIl0f6DoBm+bLRbIJHEBbbJGTJTZ1PZuRZYa8MEivGYhh4HDYYbSm6xr6vmW5nLPrFHU9Z7k8wdoMN1yz2+7YH/a0fS92c0m9NA4hV8slh8OBfbtnsVgSY+T8/DyFhMN8UbLeHNjttiilubq64sP3nnKymmGNXKjzuma1PMNkNWXbst9tIDpyJQG7Ck3XB+pZxXJVUdU5r169pu8dWmXkWWSwkbJY8P77H7NYzGnbllevX5EVBfv9VhibqyXvvftdrAqsb+54/uUL+s7x9fOvmc3m+OB5/vxL/sHv/x6Xr79mc3eNtYau25LnAWhwbs9yWXBoOuaLAmsju80t77//jKqqefPmDa9ev2K9DszrGZdvrqiKkvfeecLZ6jFDuyGzkbbZERcmDfUfMF8sMTqjrpcEZdFRM9cFDx4+5NWr1xAiuTJ855Pv8OrlcyIHilnFo0cn8PUb/uTPPqUfQKkMpXqxwckim82Bl19fszpd8eS9x9R1hbGKzfaGzeGGvDpldbbiN3/7d4hhYHP3KUpplosFTx++wx/90R8lOaomKHj48JGEwLcN9WLG1dUVZxenGFNTZIo+b0Sp5u44HA4ctre8en1JXsywOmNeWv7bv/8P+LNPf8xPvvoFt4cGYyJdEKuamPLZLJroNL33wtJLg+NxoTsGyaVKZ2q+3l4ofx2BpfHhncboApsVGFugtWUxX1IUFZnNMVrYiMHL5lPPZnzwwQe88+QpWvVcXWb0bUfbtXSHRrIWrCz9FxdnWKMhBPI848GDC5SCu7s1m+1eso4yk+wjhHUmbGGTGIQtRVEwm80oigKFbO4XFw+nrKG7uw3vvfcOMTradkffC5vk9euXWGt55513+J3f+R1ubm95/vwF+734JLf7NavTwMMHc5bLJcPg2Gwkty/LDP2gsJkSiTyRPM84PVmiVUaMM3JfobVN3+cJsQMVsVaBConJ46jKGWpmCB6cU7hBczjsjgMkNWaHKMqipK5rUX5GyU3qe4XrLfPyhL53BC/XstYWH7oEioExlq6XweLZ2RmLxZy6rlmtVsLY6oXxuFwuubm5ucfSl2Dsru3Y7w8Mw8B8eYJNfv/GCAD15PE7nF9cMJ/P2W23bLdb5vM5zd6xXq/ZbbacrU558fwrrq9vyLOK3Bqoq+laE6tWT9f2tG0PbY/ScHrykN/73b/Ps/c+4N/5d/8dOncMmUdLztVisZBg+yjnwrvIMMTJsiYM7uhVHe8XOqT3mKV/xcT4lOGR98Nbiq6maWjbVgAzm+PCwMnJKdZktG3PP/1//hGfffE57z3+iIuLM37xi5/zP/of/w95790PKYuMYWj5zne+w8uXL9ne3bHbbLi5vuarL77g6uqK5XLByXJGlmVc31wToqesS3bbSFlKfpm8dst77z2jKDIKleFDRoyeqDQxGIiWsqj57ne/w2xekOeGLDOUVQ5OWGxt07K+u+bu9mqyNQCxN9P6OFyXz+sJcDLaEMyYQ3K0EIXU7KR1tut7GXCZQB8HhsGh8sR2CkdQ6vrmCucGsixnsVjg+wHvArN6wQcffPivb3H7N+kxAh+MxfxoqzICIAptTVKTqBQoLYWy4l5ei5aw2c4FDn2gmC+YV0ux5PHgD4eUcycMap0GIj7ZVMQQwEepme7ti0pbjPFTxkddz5kvVhRVhc0kb2I+n1OXBf3QU5Yl7777Lov5jMyCdx0ohdVKQK4YJnBCMtDS+0+fEyWIm9b7+8O0pmlSva8kZ0QrYQVyHMYT4lsAk1JqCmq//1D3gJH7apBwrysyahyy3asL7tnkvgVUqcjge9wQJhBIlJB2AlrG1+O9NMqk8x1jlLykEHDDMPUwY/bZMAwUtkx+9DJgcN4n9myWrHpGJYSn9wOHrmV72GMyQ/AV0Qdc31PmuRAElKZ3AbSarrsQAnVZsZjPp/2G4BJbv0s2iHIsRgs/sTY0SD6NqBJUshsNRFEqcFRuRJXUTdNxTKCeiqDG4GcZGI8DxNGGM4ZA33UoRMUxZrAOw8Dg/L2h45DyoMJb53MED72LQvbIClnvQ6DzEY9P7+9tUGYEAvJEPhiPlxtt9xJYGIAsqWFUuraiUugEhmltpms6ENP3iXpgcB3KaJSR+13FEfRK+YBBlAshOGKU3K5gjoq/+0OAyUo3WQUGZE0x6F/a/35d6tvb23Ui1Qy0nfTjg/eYZLsoa9tI5Emrbwh0TTtZHGb3VCgxOpxvybKCk+UShQYPrnfsNjvc4HE+4GOgni8o65osJiCCSJ6PapbjOfP9wNAP9F1H0zRsbu+4vb1lu90JeBk1RV5ilJXsHKtQyTrGOSGtaBDFYiaqRaU9WiULujgO7sUm2KiACj191xLdgOtbdts12+2Wm+tbXl9e0rVbyirj5HSBcy27XcDEyOnpCZe3VyzjCWhYr+/YH7aEcCFDfaVQMbBd34k9dFdiMrFvxg1oSNZzUmeOAFjwko+13x04HBp2hwOgKMocdFIikqwxo0+h6XINj8NguaeHVMsma1HnJDfJOQFdU6032u6IDSoJZHJiXzfIfVaXNZl1GD0gVnGGqp5jbU5ZzpktTzBFhba5gEharDVNlqFSBt4YKi9WniOQ7dI5UbjxPg7Tbpb+L/vb/XyfkRRhtSHLhAyrxpwbM0x7lNYak/LJIciWDoToyO7te0fVAIwjzwkYwN8D9BJolQAmOM74JrZ6FKu8qXY2VgblY18RIfpReTauRQn8H5+Q494wqdrugevj65mGs0FUxiD7X/QuqanDVDuA1BZN09AOPc67CbTqhk727gQudUPLdn+g63sCYnUupDXwfswuD8SJ25Le+yis4/j3aF/19kT41+SR6qAjgHrv3MakSosCkMfo+C/+i/+UzX6NLeCP//wPOTmf8d3f+JDMKn74l3+GzTS/+VvfpSgtP/7JX/KLz3/K8+fP6boWcYwqcK5PTkmBLAONB20wmeQWz+czTs8uODm5oCwrjAVjPZev33B7u6ZtW5xT5GZGkUeKoqIoLCGI9eSY7RSDoSgC3g2EINZxKhqydC9ak4t9XlHx/vsfERjohy3/9L/+J3z14me07ZoQOnRuafY7Uc5ET9N0zMoZeZZMG1WkyDJEjSlXvgsKF7X0XlHu0GEILBfn9ENkvdlx8eAJ3/rkO+x2O7Z3jVhMxxwXFIeuJ0RHVeU4N9AcOozJODs5hRDZrbe8fvWKGDWZrckziGlv2243rE6XHA4bUR2awHJxwd3dmvPzE95b1Lz77jN+9vO/IstKnOvYrPeAR5mYeklxBJvIYnq0bQNZ6xIB2drRcTkBulEUl9Ym+7QxZylSVjVZVtG2HXe3W2KU82CMZRgc0cuMKEboDg1FlXOyOKWu59T1DKUkliEEsYwfuhZjlSjDfMQaIdVmRQEqKakY1TQqWY1asWjsI0TROhlj8DFlPWNQCQQdUtsiVq7JiYm38Y2J5DbdT0cHt39lXtA3+xcEyPubZpvi8DC+pnFtV/9STOptQEzOjVK//Dvug0zjx9ZkmAQmGmMoc3FbM9bIDuiHdN0k1wB1D+JK46CJ6PY3HJe/FmC6f5xG9sXIahgZgrlN/q5EejcQFXz51RfMqpynTx/zve9+i+B7bu+u0Ubze3/n7+I8fPLJJ8wWp0QMt1dX9IOm7xvubq758vPPubi4YDarWS6XnJ+f8f7776EI7LcbtpsNt7e33NzckM2X5FVNXc/59ne/Ow1HN5s1P/rxX/L48UNOT5ZkRrFd3zKbVUn6LI1FVc8xNsckGxJZpHvWdzcMXc/2ds1f/egnHHYt3QCDUyhKlIqsVg/Ispx9syf6Facnc+azgjzT5FZjciPDRgTVr2Y1XdehbUZeFmgHJycnsrHGgNE6WVkZijxHK9hub3n06BFXl5ccDg1931PWFdebLoUJi13cgwePiFHRD57r2ztEaiqnd7lcSihmgMvLK5rmQFVIA10WJUWWk1vL7fqavMo5dAdc8ETlcb7j8aNnlHnGdreDoCRAs7AoVTD0gWWd47q9FNt5znZ/4PHTJ2TlShjIAAEAAElEQVSFFaDOBU7Pzljf7un7SFUavv+936LIKryLdN3A5599zh/82/82F2dnnJ2d8vjxI2ZlxfXVa778/Ct+8uNPWS1rPvv5C05Wp+RFxt3tNX/x539G22w5P1/w+PEjHj8+5eb6OcuFyEivb9ecXzwkzwucjzRNS9fuWK1mtO2MttkhVldiz3eyXHJxds7t1SsePVhSV4ai0FhruTi5oK7maJ0DOfP5KYNXtN0AdDx58g5/9hf/gjdffE3sHI8fPeH1q5f85m9/h6q23Ky3nD95RPHzL9heicVB2wx8/MFHdG2kzEv00vDVly/RxtJ0Pe++/w7/8//Ff8T/5n/7v+P160v6wXO6WvGH/+U/xfcdy5k0KtXZCd/97ofcrbegNKcPHvDZl1+xWCxQxrJd7/lP/s//Nx4+eofTs3OMNVi7o216yjKDaBlaw4effMIPf/QzHl5c8ODijLm2vP/oAS9fPWcfoEs3vtepNg2Sl2CVxmtN0BFrFNHrVO+kohqDLLTCCJfszjh9zy/JuWFiVvw6PMpqiTU5WVaSZzXWZsxmC6zNUGgZMDknajMjQdz1rCLi6buW/X7Per3msO0ZOmmqySMnJytp4lwPStgfbbvHWMV8LmrKzWaX5jtywG2msbZktKdhDIT0jn4/4H3gow8+ousGrM0wJqNtW25ubths11RVyWq14uOPvkX0npubK776quTjj76VFCEFy6VY933xi7/iP/8n/xnvv/8hv/07v8fJqTTMgxuIOEprcS6SlRnNoWF/e8Aoy3I5AyWDNkVLWQS802i1pyh6jM7QOtAPUsBqXZHnFVW55OxEobA8f/EFLnjavqVtW+7u1vS9w2gJdreZoapzsqxmt92yWR+4+OADNo1jv+3xSdbddR1d12HzjLzIaPue25s7PvzoQ54+eYy1lmfPnvHpX/2EvusoiwLvvSi3GJUCcj/drdfsdvuJoa1QHJoDxljeffYsMWWtWMLkOQ8fPmS1WnH1Zk3fOm5vbzk7X4pNQRSrjRgjz569j/dOGKpK1LdN27LZ7Mhsyep0wWp1wYOLh7RdQ/CKPC+n+1FrTTHP05DXk1kLOJzr8c4hxtYxMWUS0zRqvDoWTSEIQ12PigMVhZnskvL23rA7hEBZVsQIfTdwcf4Ia3M+//wL/vRP/5wvvvySH/zgdzC2ApXzb/3BP+Tdd57x53/+F1RVzkcfPuPFVy8kx6PrpuP+j/7RP+IP//C/4u7ujv1+y5s3r6jrkt51AvCoAojsmx0vvnbc3q358svPefzkAcvVgvl8RlWLhYEPmvm85tmz9zk/OZPgee0BR9tsOOwPvHnzhsurN1zevKLvW0he4DGKompkDcUIwYWkMkvrZGoIZOAmBV+W2en4iFWEEavHKGwkk1n6rpPzpNPoQqv0vD1N23B5ecnLly8pykxqnPUG82tE+TyqSmICTFQaBsVUhxkZrI2h44j7WkxDbecCh8OWw/5ANzhMXrJYnVPlFX3raPYN1ubkucH7HggCTPVOgu4DBBQuOEgsPB88fdugYpDw+Pmc8/NzqmqGtfmYdk3wnsWs5L2nj4gxkhcFRZWTGVHDKCJDLzWmVgptJOcoeocPwzTgGn248YlhnYCvMedmBJX2+wPW6rTnFBMoNNnyxMh99dJ4fL/58f1/j0OoETAaQY2+7yb1TPruaQg2qrsELD2qrnwY0h6gUUGhdZhqjJgGm+peFznWGi4BTCGIDWFdVpNFoNZ6yoiKEYahn7zhvR8IfsBHz4AjqoiLYbKy1FrhhoFmv2NoO7Iqm9SrXqukYpLBWvCi/s7LTJRuVvzoi6JgPp/Tak3fdux2O5wXBesw9JDesZI3dDy2I8CX9hRb5BPwEtIxFeswmaqO9o9a2zQc1UfVKeOgMUxqWgmhPp7/I2glmRjj+RztWLQxxHTOdMp1ER9/Oac+CgtYp4GoSSprCb1HwCIVk6pXEQgTkUNrsTnv+07AwvRKTJYlgIx03wro4NyYKakm5e8IKI4PyQQLiWgjry0km8n7dmHhVwwKpgFCytV763Pf/J5fg8d+v58sdQTkS0PndN8pJdd5VZQToEmI9KbDu2TXFjo0Oq1jCpPr0QEZEIs018t627aSn+ZioO0HZsNAlkuGbcAngFyalhA8XdviOnED8MmGbbdes71ds93uCD6wna+oqzkxgC0GsjwHpST7axjEQSN4ceUwGpNplOqFgHOPOBScQ+GwWq5irRzL0wVVoenaDUN3YLe9wQ0tNtMss4Lbuzec6FP6XtPtO0ymyfOcrus4HPbUdc319TUn8xXzekaZ5/R9z831FVFFbG4xuWSqqiDXsEFcaWwKuR+Bin5w7A8th6Zh3zT44LGZAPU+2ZiNBKCQ1KUoGUgaa7HGYrURkCtZi0bP1LOM6nSlFc67CeSXXVgdM+Y8WG1puwxjhLRss5y6WlBXFXk1o5otyMtSzqtSeBQGURfH0fbNGIjj8U9249qA18nuLaKDgEvKjixzWad8iGl9UUnBlJSOSmOUANZamYmdHk1JxN8D84WUIgi4AOVD2ovGLVdpIVOMKlrJ5JD7JkQ97noCcKOPOWEwAXyytSUltjkOAKPIm6d9ISqINsOn36VUREWd9u703qaflbpk2rlT7WBQhHuvIRKx0U3KJsKY9+TkVaf3ZqJC5xWmExVT7wbaviE6WZP7EOjCQDtA10PXie2fH1KN5MXiz/mk9E8Zbt/UlE6PESz7V54G/215jPeyWArqZNEo6ksBLyeQMEba9sAf/fH/i5evX9B0e1zsWKwq/s7v/y6/+OxnXF6+JrqB/+h/9h+xvt3w6uXXvHj+gi++/FKswo3FJJUaRifFkSYvcsmtD54ir5jPFjx4+Iiz84eU9RJrM1CeprtjGDxZUWAzS24LeucQu3tRJRqdobTUYJktyAuJ44ilZH4NQ0+mMup6lgAIGJxH6wJjCqIS+srp+QfUyxVX1y94/foL3M5RViXkFt/3dNEThh4dIKIJWmNNslnDI7akQRRPUfpVTSSvSj781vtsNw37fUPv++n45rnMBrtDA0GItmVRkOeas7Nz1mZLZnOePn2Px4+f8Pr1Fa73bG63fPj+O1SzFVW5oMgrhqFnfXtDbi2z2ZyyrBhiSWYH9rsea3M++eR7zOdzvvjyZ9zeXdE0O3zoAJ/aBoVzQgAY6x6t9ZSBqvQRgIhjXZbIi2VZoq0V0ClEgg5ybD2ElPUUFJJdx6hWzYhKiVNVXvLw/AmffPt7XFw8osgrYohc315x2O84HMQats0bnBsY9lucH3Amkhdl6qUs2mq88qk/kdcqpDhNXdVSG0bZlzWSTToCTs6rpD5WhAQUCkAvvfivAqMnMP6+wOYb3/dLDk1KMdpA31eH3v/6aIX6K37hr/zUN8vFbwJL4/1//3WMYJVO/x8/P0Ub2Ow4R7ImXRN66gei1mmPO/7s/T9j/fuvUsn+DQDT0W5g2lpiEOaXVngvQalEsXGb1SURyPKMh48e8e7TR9Szii8++5q6rpM3veadx+9gjGG329H2XgZ0fWC/W3N3e0vTNpRZwcnJCY+fPObRo4dSXLUNXdux2+/Y73cUZUFWzzi9eMijx48py5IQAm3bMgwDq8WS1XJBXZZkVi64qixSthHpYJtkdZZNPuvCDBq4u7vhxZcvuLu5IXpFdIrgIHjFbLagbXtsZqnqkqbZM68lEFMDZZnjkcVmCAOxc2SZTcVBkEWnlIK1KPIRGCTLLVmmxDJQxSkQ2fkBbRR1XdM0+4QOqxQ4rMTPuW0ZnKMsK1wKqlZKkec55+cX3N7corUmz8Qq77BvKIoSawx5UfDm6pXY8aTjcnZ+Qj0rmM9rcmOEuRARsCYO+KCYz1csZwWtVmgCZVGw2+85Oz1hiI6mb5jN5hA1eVESgmboPcvlKbPZkqbZs7nbsN3sMEqJD6e1WK0gRPa7PbvtjsNuj+9aurblkO0ZBktwjnpWUW5zTk+XfOdbH6FN5OnTR+wPknex2UYOhzXL5VOyvCLPCzbrPX362bPzM+5urmmbgdViTpkXiekG+90Oo0Udt1gsUEqT2ZyynJFlNUMfMbkwOyOal29e8fjxYzavrrm+uuNVeE7bNbx+/ZqizIja8/Ddp/zmb/8mP/7xL/j8F1/TD5EXLy5ZLRZUlcEPO5bLE7bbA3e7NXfba955/4LzBxfc3m3Ybw7c3e44NI7TxQKjDU2zJ8SOk9Oa/WEjYMOtZrvZ8OzDD7m6ueUXX3zBq5dv+PLzF2hdsVjMKIsZJycn7PfXoIKADssVrnUcmo67uw0xDHT7HcY7TIxEFyEN4MbFV2uNQaNVSF6tGm3Eq1l9I/iUqdAZh03HAdTbDOXR9/rX47FYLDE6x9qSPCvJsly8fZUlBLEP6XuxyNRpoT/s9ly6jpcvX/H61SvW6zWuVRDFEzizhsyOGQUyTO06hw8CUs3mNcvVCTEquk48kK0VBsqRUSe2QgYZtEm2QuRwOLBe7yjLCmuFVT8MPW4Y2Afx3K7rGSEoFsueWT3n+vqad997RtN0gKxL7777LhcXF+x2ez79yU/55FuGqi7RWhoFrRV932KsJc+lkd1sd3jvmM1ylLb4QVPWNdZ0RCS3bswbCtHjneTSzWdS8MxmkX7oZA3sNhzaHbvdntvbmySPPzZyKjG9jbHkGWlz1sxqyzB4hr6VYUjfS0h5ZimKgqbt2aw3lEVODCuxJby+ZrfdEoPYMo1DlhCCEA/SAA8QS4/E3jnKuqVR3e/37Hc7ovc8S6DT14tLLl/fcDgceP+DJ6yWS25vbsWWb3ZCWRT0g6LvO5TWLBdLAYp94PxsxWqxTMdOmGkqFe1G29Rsi0LARBn4GK2JIUnYg0/WjWKfMQZBCztqXAOYbAcVKXclKQGOg+bk+z4NmOW5iqLk/PyC589f8vXXr3jz5pKPP/4W7z/7kJPVQzQ5NzfX/Omf/jknJwvyrODq8gatAlZL81XkOYTAq6+/lnMcIy9fveTQHGTgaDOiCmkYCs7JQEWGwR2H5o7FcsZ8OWc+X0CwKJVjTMmsrsUqOEQiPYM7cLe54ub6kvX6ju1uR9MdklWXMMqkuNWMswgSMCe5N6lYhCk/RI5FUmWknDuV/PeNMbSdNPxaSxal5ACktVSL1WQ9q2U9iVJzFWXO4dBwc31D17b/Ope3f2MeI7k1kqwf4jEzJsRj7pD3iekWUzBw8DLkjmIFvd3uaLsWD1SzeWoGpeaKMAXC63QfBJ/8wKNYX8j51oQY6dqGttlz2O+o8ozZbEZZlpP6/L76N4ZAbi1dYpdrFTFpbXcuWeslyzCf7CWVAmUUKoxEjkByqJV17t7w4QgoK8qypGmaaZhqjEnstWPe2ghIjOzl8d/3B+nB++m5739tVCseg8mPOUgCIKQh2jcG9vHeeRJ1/jhGSSqt8VgpGbiNypKRoX0MQRelSVVV5Fk+fS4IAjiR6XzwRO9lP8LKSFOJwtAjw1ulxWZV7ORkHe/7Hq08bddSFBYym/IofLquDJmxkqOSAHgdo2SqjaSOYSDEgAuafpAhujSBotJR6aL2KdNKGS31GUcm+fg+ZQ9J9ZYSizqtjKiMiFMDOoJ4cI8YEB2Mg9R750Hun+NQ9K1r4d51K5+X63Ri26t0jtSxWR5/Lk43q5pATGNUApg01kCIin4YSNFQYj8VR5u/OL3XsSGWvkaGYSGa9Pvk2H0zdHnc+5UarUSOuVsCRh+hqfGaPeoQjp8f7X7vH5tfh4ccd9l7lUqOBvpolzkRSZxPiQ1p3RlJu9M9DkqlgZhWZEbyjmIaPocUGO4HyTfrhoHee3rnpwyJZHA0DaZiFKVUdGGUakCMAlQ1LW1SUR12e3bbDRFF4YPUeGgBmNxA2zZE7+X+V4kRbhrypHIZr5ngHEp5rI7oIPWoSq9JxUAMDmvFriiLCpIFs7WKoR/Y7jYcDgfQksk4DANZVrDbbjkc9pR5QZHlzGc10TsOXUNswBYWVEB5seMLw4BBrORUUuujFM4Fmi7lZXUdLnqxpkZ2ihA9PgzJjvcoG9FaJ2BYlKMKJnsg+KZ1qgAskv2XACckS4N4nPNFr/FBo3WGMTlZAG06IXWqDqUbYtpXhWglauOo3KSIl/XegBY7K61kvdZ+NHdPAMY9AqTc19LbSB2YCBvjgDGtUd7740qnBAAKXoq48bqV7xFQJHhPP3STqkgrsV/VymCUnvKb5PZQSb80AkyIzdV0RO8RJ6avMREqvA+48fwwrvcyJh+fQykBcgnxeF/Eca08/kxUOllsjUruONnRybkbLfRGoonHu5TRNxIMlMG7QNt72t7RDQNtO7A/9HRDT+96AZ3agbZzDIOflG0Ce5m0BqeBaVp7w3hwGPuJRFQd3x/HtfnX4TFluN971zEmsBEwRq7xYei5W9/y9esX3NzdcHt3Q+8bitry/gfv8ebyFbfra+q65Duf/Bbb7ZaXr1/y9cuvef3mFV3fiiJfmjmUAqNE3Wys4LpKK2xhmc/mnKxOOT07p54vyW1NiNJ3N404W2W5AL4qGqwxAgyAqFERV5XMGKxWqETeiFEywRQClMcgKpvMGkJUWKNAK3xQhJDzzjsf07k7ggrcbW7wvqHvRKGhsQRnsdHi+kBIa68xKilrRjWzEyWzSnuRgZOTJSZTRO0Iscf5jsO+YbmYUdc1dV3z7tMnfPnVS/qhI7iA0x60Yj6fY3QuIFuWcbI64XDo6NoerSyzajH1bsZYttstVVVSlDnLckVlT+l7l8hrhuBgPltysjrHGEXTVmw2NzTtVtYWawCpg8d8Ua3UVBffn+1rxIbeZAabGYqyxBMZkjp4vN7kfpN5UZ4VBBUx2ibnhZpaz0WtVM2o6wWPHj6lrOYoZcRmP2qMFvePzGYJHwAfHk45eVEpLq+uxV41z6RO9R7vo2SH55nU/6RZIrInDN6luY30BVZZog94hVxHxGmtkxmF/H3/MdbO9wGm499vAy73HZrGPUhpNe0Z08+M/30DTLoPFN2/j2N8+3e+/b1v/9xYZ00OEUh/Mqll0/k2xpDbDGvl2NnMYDM7zWb/ZfXp9H71r3ao+Jc9/nqAidQ4KKYKQJo+NR2GkXlU5Dnnp2f0/YEHD855/OQBZ2dL2nZP2/YsFkvKao7N5yxPT7ndHNg3A13v8RG6tuH25prtdo0KcLJccnay4OJ0ydnJHHAc9ms2mzvW6y37Q8usWlCvVpw/OOPhwwvavkusE8iM4ezklJPVitxKZkRmFTF40PK2tRYmSmalYTFKBj9D23DY77i6vOLrl6/ZNz2KAhfABWncF4XYYKgYya2l7xpCUaCQQX2WZ0QXUEaReUOWD+R5LsWIkrDPPDfp+xPjCZ2GwqlQU5Eyz+m6QwohhjyvWG+2EoCmxkY5cjjs2e93NO0hsRVVYhtIE5tpy9C2RO/IM8N8VuGGQX5flssgdxAfepPYjMt5zayuqapanqdp0VmGsR4b5ObNrGU+L9HBoVWgriqub65ZLGds9weCh9lsQbNvKYo8FQo9dV1gjWLoe/b7Q3rvRRpoGrLMEoLj7vZainwf2DatNP6DY/RGXqyW3NyVzBcLnjx5RNduePxwxc2NJwwHVBhSCPVAoUtm85IY4erqFqsMdVnRFjnNrkEn0/5DcyDqyPawIysAFmKVoCV8zpqMrKjwQZHrTPxHIxz2BzSGsqiw1nJ7c43NDFevr5jNaxanc8q84umTR9zdblnf7thuHNc3awEUrMFrz/njM7b7Pbv1mt1XN/w//x//Jd//wT+gyAr2Yc9+u+f05IQHZyui77i6veXpu484OT3l9eUVbjvQDy3B9ZytFuLbGgPN/sDLl684PXtIVdVk5YrF6oLd/haiks3EOAyG3vVst466gND1FMpQmRwXPDLG96lojjIkGIfQZmQJqol5JZ7TqUCAiWQURT2aFtO32Z3ftBb52/6Y1wtQNqmYijT4ERsZ78XKZwzIDWl4dfnmNZHAV8+/5vWbG3a7Dk2O1cL+ywsZpmgjTbX3Djf0MtxUwohcLk/IsoyvvxYbyyOwkl5YGqaMoZRZZsnLgq5t2O+3xOipKpG1ax1wLk6s51evXxG8YnCB+XzJixfP+eTb3+LQ7GTtyQwPHjzgvWfv8frVJTc319zcXPHu7F0mq6WgUqE3kKVNcbc7iK89NdZGui6SlQVKLTBa7BvldUuT7IKj7fYYXTGfL7C2pCpnzOdL1ttrtrsNtzd3rO/WCMk1BfgGn0oCS1nOxeYpCjMlz0VG33WjX7hYObghkBcFnRYVbYwO73rqWZGsUG5omwatvTC/MoPB0HYdmZW1T2mDsZrZbCbWqtaSF8VUYK3v1lRFyXw+4/Hjp2TW4p2QDHxwVFXNcnlCVV2x2d5I4HPylQYJoq7qmqIoqeqSxWpOllvaoWcMSBcCQwrwtMdh72j5pRAlh5iKyO91wU0FzlGhMBZrKV8kTQNHNthosySFYwomjqCUBcSSZD5fslqe8c9f/wVvLm/QJuNb3/ouVVWLb3W0vH71kjc3V5ydnhBD5OryCq0CRW6pyoKilHzDl6++ZrNds91vub65xkefGmKIyqTBu9j7xSDsNb/raYcdm11Bva6ZzedU5RxrSoq8Zj5f0vcbtPH40NH1O66v33B7eylkF+dS4x+mgXCMcmVJ9smRYTT64E85QYx113juRA2TxgXTIDim/6SAlUKSONZrJtUOsv96L98bCHR9D3vohuH/F8vc/98fPilhjg0GE/N19HcnDVPur33iaCf3+L5t2G73+JAIJrYkBiWWQIPcA2Iv5NEJxAo+oCLp/EaICqMVQ9fTHMQutGtbiiyjKEvyokh14REUElsjCSaWwWVg6HvyQvLY5PUHTJa/BUirCNpYuR4msOZe5tm9QdvIvFPqqPLwXsgNZSk5eD4NlcYh8P2stfFwhhgZoYXj54/AlIBuIREWZNrXu1buA2PG7kJebPrnfXADRWqgVLpXU1bbeE6VMNR9DMmyKg3bEsAzDv6NERtppTQxfd4NLqkvxgyDESyRV6TTa0QbIl6wGu3JrCEvc7TRuKRaIhr6bsANHjtavgQ5NkZrsdeyGhW95LJFAe1dGpIPXgATn/oOnwaJ5p66e1IERBmSqGTPNIb4KsCrlI16z1ppXGe8F36zkIVEFTwOEo02MlgO0lNMNZnSUvsFyeyYACfuW30wXbthDG6PcbJTinrMBJO1ziRLNBlqj85TcRr0aD2Cj5qIEZebIb2PewSmcSgc5U1OH+sxH9RoiCYBZ+leN8cr7gi6jpZPJAUMx0l4AsaIUv8y/r57oNh4LcZEwkRJT/3r8IhBQSJyyAIzAsVqWg9dPzBkoqY5Mm+TxbYWprF8LApKbZINZgJ5xL40JABW8j+7rhfwp+sI0eP8kDJigjgiqCiEmMFBiCldUoYxfdvih57gHH4YaA979tstoyJQaWFG+xiTikky0kZ1IES02eMKUfbbtD551wOyF6gw4LxLEUCSXRYAk+fYPMNGj7KyLmWZrB1tUoBIzyS1qdWKvmlo2wODm1EUOUWRYTONbzq6vqPUpYDjbmDoetpDg4lCklL3VGUhRgbncU6AMx/8hPRJdltSqEQ/gRLAtCailKyxUa5vyWc6gtsxiBJAqThZL8mVoImImlah0FHhI/gIWjt8dGJ01GkUkrFNlJmBSuuAtnoaKo/Db7Hts6CMqLrHHC1c6muO6i0ZmiV1m1LTHgURm55TmOeJzKFBUogRsMMZyQBBCooYwqTSGglTfd8lJa1mstFTonoTcEnya4zWEyCq0mRT6zSUTHvq/b12tP8krb1jJkpM98QIrrvojplZinugajqX94qhCZRXegLmhKzi8S6B9TGA8jjvfknJTJThr9EGoyVzq+nkemz7jrZtOTR7+qGjdz3ODZLX7nohmKQsvnFeQMq9AY5ZMWnNVWlDHgfkKl2Tv3aPaW5yVCzI/iOgqY+egGN7uOP11Qs+f/5TbreXtMMOlUFRV6xOFvzwxz/EWMujR4959533+PTTn/Dq5Sturq/Z73eAOCzoRCAcgdk8tygdAVFzjv3nciUk8iKvUErj+l7cmkLKriXVAQ4UGVrlKKyo+ELAGo1Sci8rxBVjUpXomGpejzKinrxPFiMorMp4ePaYzd5wWD7mcLHjGmh0RvQdYeggZFjE3cF5UffpdM2PdbBCyPHWFoy59Q8evou1M6xxZDlYU5HniocPn1JXJYMbePfdd7i82XC4aeiaPdkg62xVCtGvaRqKYkk9qxgGx+HQE6PMZ6MWsYGxhn7oafsW5x3aaqp6zmoY2O3WuMGz2dyhtWdWzTBaUZUVrvc0h0bqTKOJUdQqSh9r/NR4IoiuDOO0FmKzuLHI7ycEyeWJihgimZIIDmOQ71uV6GjIbEZRlMxmC2b5CYv5iqqakWUV89mKLGVmuX60N8wxygAlWsNqtSAvSslWikpEAPkLubQ1XG/fMNonkwB7q42A31ERCWiT4YO49UxrCBEzLhQeMFZqi+iY2EkTrJ+UtSoRO6fjJF/R03WRvqTV9PE4Fxn/rRNWoseeSsN961XuPc9Y+6SiWe7ltFdNZK2p/j7iL+O/p6VAxemrWptUcwowZI1NisAEMBlRB+p7FvyKcSirpvcyvmatFQTNaB35r7LU/vUZTLogBCmOlOyeaXAhVZGNKVxWRVbzJR+89wFffvlTfuu3vktdK5r9HV9+9RXz+WOGzlIvzvjgN77N69eXvHzzmhDA6oyhC1y9uuLy9Rvc0HFxtuI3P/6EaqapTAf9DRB58cVPuLzasN30tK1isTrh/PEDVucLVBaIfU9hFfnJkmVZcXt9y6OzB6CGNBIfuL65Zrk6w+ocrQyZySisRqsWHT06elRUfPXzr/jyq9dcXe3oY0nvRLElTZ40eMtZxbzIyKLDRLEfKStNNcvRVoMTG7myVJgiQhjQKuCGThYSO6AQWbixFm0yVIgURoOXYNBVXfFqd0d3aOkGj8lqbtaO3XZPVc3IC0vT7rm5uWS3vWNzd8PmbsPjR0/Z3txRFiVzW7K9uuL29SsinnJek9uI1QPaeELs6fqOLkTmyhKdB9VT6gWzakFRLdGZxTqw9Qz6nkLnlEUBIbCY1Sg/YIxmuZxzeXPJbFHTdD3RK+azOcF58sxhdYDYUdeO3fYN2+0a712ybnuEySzKaFanc1w88MUXP+Pm+g1FXjA0jlJl5NqiDZjCki9XkFeorCCvc+ZVxrCLxIOjoSXsdzx69JTd9pa2P3B+/pAnTx5ye3VHt2vom5bH5wueb3aErme/2bBv7pifFHShpxgc7RDp20BZlAQCrZdAU5vVaFMIS9568mj44Z/8mDzXnD6+4Pqvrih9TkfHSbniyfIxmVP02zueXKyw3/mI7U3Dq4Pjy1dfo3OYrSo+/OAxZ+6M2cuC189f8aP/6lMuTj8mC4ZZXrDr1vz+3/sB1hh+9OMf89kvvuT9j7/Dt3/jE168vuXQeR4/eshufUtoN1jfcFJZhthze/2a9d0lq7NT9Oo9ssWGtvsCVM352Yrrm1cUuWZ3c03Xes4XTzHDwFm1IsaMGQF/e4lVgaA1LsIu9IQsl6I5DTSEVaPvNdQyiNDJJm/qycI4NBK/5bcVTL8ezTjAvFoluxqDNZa27ei7YRrgOSeWWjFC13Vc3Vzyo5/8JV03cHl5xZs3O5pW2CPGluhCk9dQ1AIODP1ADC2KQKZyhkHA77LI+M0f/Db//I//mC++eMn1zZYiX0iOVxDFVF7kuCFg0CyWSx4/fsjd3S15HhmGLSHsKaqcosqp9AyjpRl88fIV+31L7xxZnqH/QjFblrRtgzGa87NzPnr/Q95//xlFkXN3e8ftzUs+/ug9QBF8YGg9OgqTvlMd1kpWSNPs6PoDaAGfsCdYW6HsCmjwfo/SPV53OAb6lBeoyMmzgqo8oSp3xEGxvtry+uUl27Uo9mTTt0TvwFtMvuBkWRFmmsO+p+0GjHYy3FAem2VkQYbQfSsN1qyasz+s2e/v2O1uePbuu4kUYFAqo6wyhn60DwGxNM0xJseYAaXFPvXVq1csF0tWqxVKGfqu4/LVG0pbcH5ywfn5Oev1mqKwLE/yBBBZlssL6tk1h+YVAUU3OHwApTP6PmAzy+OnDzg7O6UoFJvNNVlWYBOryRiDjjoVI0e2t1LCNvbB44n0IQX0Ks8Q+jTMlhyh4MRXLLPZcYCUGkjxYw9Tkyoq3UCIGqULBFyqOD19wMcff8Jh3/GXP/qM27uWjz/5Pu+8+wE/+vFf8vrVHVUxI7cZz549kzywm5bDYYfrD8zqksdPHjJ/eMHFg1M+//Izfvb5z7jbrNHWkFUlbd+lgjRZb+GEgQREHA7w/UDve3bNgWy9xmYpHDOzk2x/cH2y++sSIUQA4bfXNANxzATQUuCq40BmDKyfojOTQmAc7ArwF8GTmiFN7xzWaIIL9N4zDJ7cijLZKI2JsD9sUaUUqD4ETK7oXU9GjkGU0L8OjwEn4rEEYI8e20JpDiRb8tQMSCPdDxF0xuADh6bnzdWG3balqCqMzQlOT7lpwTuISTlHZOiFGKCJZEaDTx55RFCB3XbD4bDHuYGqrjm9uGCxWlHWFcpoBi8AqHcCwCqVhqzG4NqOpu3IsoJ8nstwzgV6HIWS3J8QpTksvUL5sSOQ9zyCOzGpgcah1Rhs770nz2XtlSE/KQtuDG8nXedRWI8mI0yZFvK7tFbkmQBgMhtLKkGVrDhG9I6I9z1ZnpPn0paMjLkYwUePNVlSTh+Ha74T5c443ByZe86JXUbQYFLOS/CRtu9wgxNwJ8+pylKuCydB5L0b6PpOyDHJFlwpTVEWku0RNDHopCI8AgYRL+tBWRC9px1a2r4jhoxhCHgHOI0lE6slNZDpyHJeUqgB4xtiL+oLFzy7tmHfDwQjWZ/9vgfliHGAKCSgABNIp62olnzwBDyZkhQSozUBjR8UvUsh7CMrfRimgYxSWgboWoA7WbcCJs/pDgdRo3BsKvNCsvRishhz3k8Ns/i7j98rVpPeeSJ5soISdj/jeo8BLcQVotitDBMmE8ViKkS0l8+I8k8GqaNXfJZlksGixrZb9hpUJLOWrvOpjvKEIMpBn4CP0TYkOCFJ+OBAySDDKFEKWJshWTSeqCQPZIwnRIs6xycw2SR1yGgX2LdDuseM9Ey/Bo/o82nuEYmElAEhGJOoNrpuQOuBGBV5JixjSAP4TNQ9RLHctplGZwqVW7wLOB0YdCBYxaACfRjow8DgO9yhT2pgJ3tx36fhdJiIVgJEmjTgT5b5UWMVlNbQ9B1Ds6fdFajgGZpGxv7GorSsv1qlNS2MyqyA8h5lEn40WmZ2Hu97mUGEDh8CtixRRU6vFIPNoahQvUOn4HXnHHmW01nH4EUZnxmNVYFCB07qnOumoW33HNqKrMzQVrM4rdh0HtdvyXMBbpt9T+8O7Jo9hPQeJtB/JLAwfRy87JEyxJOpnI4jaJHU1yBg3fhzJhK8kLEiGZmW9TLBy2m/8KjgGFXtwYktntJWwIyokqIByHuCOjC4A03jRCUWA8RAuw/JhSaAjmgTMTYXaFsZrM3RtoS0F2RGsjp81r1lbynrsBHLL5OhkuKGpMLPkuJxCm1XCs1w77iBMscswRFk9/GYiTT+AdKecWS7mwQ2WWsSKCYAF3G05FRv1X59J+Ck/Iyd1M337jKcE1A1JDvDGKG/N6jU416YcjnfJp0koo0Kxwym0QXCO5wTwlWMctyF0OYngGkkm4+KRVHDJhvTBP52vcQ8DIPUymLNC9BInpUWwCrEI2AvOHVar4+MqgkMIxEb5PP3Bui/Jg9LnOquNJDFI8RSVKDxB3q/4/M3n/LF1z/jyzefcXnzkmxpuXhwwWp1wu3mltu7Df/W3/8DHj14wOWra169uOTq9TVtO2BNCXEQl5OUuzb+dq1Gy0WDzWrOV485WZ1KhrSt0Gj6YU/THujahsViRVXWOB9wgydmABqtLESZsUYXUTYHXRNVBTonz+dkeYG1GqUCPjaibGRcNxRxkLo+V5o6L1AK7taRx7P3efc33udf/MWf4E5bmnbDfr9mra/QJmKrlr7tGJqOvu9RWuz+xvyz09OHnJyci3uRrTg/eUCzb9Fhz3I2sJjNWL5X8867jzk0W/7q0x9h3mxweNb7O95cvqIqMoyyVKXMV/btlkflCX3fom2HzTo8Gxxbht7TDTuyQosS1WqcCvTBsTI55ycXtIctN7dvGPpLitJQV3NmxZKMJU1luXJrgh6QVkBNgG16Swz0QhrVAxqP1QtyM8OqjExZcp1cSMgwGHItESx5liXSQMQow9nqjHm9JLMFSllUUHQhoyxmWFvgnaLghJP5uawFe6izObqs6XuxxC3ygm+9/z0W8xPqakaV14QA22/vaNsDd5sb/vzTP2G+XNA7x77Zc7e+EYcCBV6JCh9l8Qi5RKmQ7oG0iHhNiBZLzhACBQ0GARbHvEEvuxXaaobYAakXNIEQe7EOTPuB2LCKylKnuiXiExnBYBK4ZI2Qo8SVJxIZEvnrSL6VpVcJmJ5ApJE0JXW3RIwoRqWfAJ8Cvh8tVkewi1S/B9K+o0cry+yeTaLBmgqjskT4FYtTTUAhKj+jRK1qRjJYeu8jyAx/vSr/rweYGF+sInH3gHFRT9+QQMJmv+fy8pJ/+A//IctZxW5/zXa7ZbVaYVXJ42cfQpbz009/xl/+xY/Y7facn15wdnrO65eXXL2+ZOh7lvMZT54+xkfH2dkj+r7hFz//nJevXvL1yzdsdz3WVjx9+hHGKpF7pYJpGAbevHjN0A9kJuPs5Ey8OnM5WUZlPH3yLvumxWaWIisZesf+sGdWW9CBpt3z9Zev+PFPPuX2do+4UkUJG/RyDMqyZF7X0mzEkPJSct5//ykPHz6kqiratqeoT2kOUiDK5uixuXgeKhDv93pJ0zi884QAZV5QlgVuiPhewspubm6ECe0jQ+v4xS9+wenJIxlADI67uzUvXrygadvJ89gYw8lyNbFqHj684Cef/iVd12Azzenpiuvra/b7PXe3a169vgSQ4DQiZVnx6NEjlsulDAB7YbfXdck55wQnTMS+aSjLnBhmaCWN56NHj8iyLNmcGNpDw3w+J7geFQPNYc9us2bfSNjd06ePaRtP0xw4WT3gZDEnOMfz1y948eI5d3drDJaiqBhCoKxKTGnoD44HDx5w2G05W9UUWc7+bkeeWy4uzvBD5Ic//Cl+6Hn6+BF5NcMHxVdffMl77zzFYnj98hV1XfD48QVaW6qq5ORswdnjBV999Tn73Y7nXz3nnQfn3FxfMz8/pbYZfb/j0PT0bU2eZWRG8d3vfsL/5T/9v3J5eUtpM377t3+Ln/7oh2z2l3TPN2wPN8TsB3zvN77Hvm05Odny+MmH/OP/+D/h1esrXAjEQfPlz7/m2dOn/Nb3v8dvfftb/J/+D/97CGJzYLSirirW6zW7zR1Fbvne977D3d0du92Gd955h4uzU5SC73znO3z66adUsxk/+MEP+ON/8SP+9E/+lGq24PzhE559e8GwnvHRx5+wvX3FbvOGs9UJbmg5GMPQtdzcrVFKVF1Ga959/JjnN6/RRhq9EAJFlsuQIBV6WqchKEqUTOEe0z6tHd+0y5G1RiVrGBLg9Osx9ASoZyVd2+NcoE9Mr7bppvsZLRL3zGb0Q2Sz2XJ3d0fbdOn7PGVZMZvNRLZcKLIM5rMVMQZ6rVB4lOoIQYb5XT9weeX49vee8e//+/8eP/355/zhH/0ZX3z2mszOJuuHPLcYA8PQYYzi/PyMqioZXE/XtWitKfIZm40o8YqipChKnj59yvX1LYfDns8//wxrDf/sn/1R+p6C1/M3dIeDBDumoOUY4fnz58xmM6pKlIBd11HXNc4NtF1DlhlWqxNevf6au7sbUcC4wMOHDyjKGsgZlCWqA34IyDTec7e5InjParliPp+LPR2Kze7A9c0a58CYgiyT/Lq+79EGdrs9eaYxpmCz2aBCJjlNSk3gH1EUPiF4Pv/8c/7D//A/4Beffcrd+pr33nuM63uub67p2oGqrIhhmJQBKE1RVNLgJistYwzX19es1+tpiPvkyROWyzmnpydcXJzz6NEDnAtsNhu6rgMit7e3/PznP2Oz2QGkvajl5vqaImW7PH3vXf7u3/t7x1wvF6bCA5JlkNbkeZl2fikgxnt6/Pf4usTPOaMsxaIlElAeyArE5U8lFalYEbX9QZhMo2LABYzN0VaA6bZxPH70FO/h9PSU9957xv/qf/m/ptnt+fD99/nok0/4wz/8Qx48vKAwFYt6zgfPnrFY1mzWN3z11efcfn3Nb3zv2zx79x2cG9huN3z22S/4P/7H/zhZq1gCkUPbyDBfK6JK7Ph4f/jC9O/xXHvvMYNOtoaaMUg1chzAjLZ2JDUBcE/V9bZa85cex8M8/e5fktVrRFGXrE68P1p6gbDmxQYnMAxyPvf7A8KyNtg8Y79vyPOSxSLn9PzsX3mt+m/2I9WwQZjZcqzv5QrFiFWjfYQoR4wxuBDFnvdwAKCsSkKIbLdbhrs72rYluOE4uAleCFkKsswwq0qiT3lF3k15aIvFgouLs1QL1mndKzDJps97h0lZQPevG4Ww42IINM1+AmVGJvEwDBMIY0aGpxqHYdIU9L5/aw+WgVDKZUgDhNGnOwRh7It9pJt+R9O0CWA1v7SXh+AJQ8BaS1DHlmF8nRGmeyqEMLGSR5ujGEa7PfkZYYSHZA8Zp0GphMzHySpmsmRSafVKdcQw9Oz3e7EmygWM77qOPBfr7mEYODQNIUaqqhKrycyKTfW9gVwIUqujFQGxB+37HmM1TdMkRqLkAXkfuFuvxUrr/EyyJ3oBoI3SKM1kzT3mxzZNS9vK9xC15CeCKAmiNIF93wswnew47g+KZXCpkn1gUg4lEGbKT4pyXqZzEY+WhaM932ipYa2l650AWWkNa5tG8lfSaxdbqHjv+UTlEZLlaZ5lFOmYe3e0jbuf3xVG3ypiUhInkEtrZBcXix1ldLpWIiE6rMmp6pIsLxgGl7z5zTSwHa1oXXp/SmusUvRth/Nyn5RlLmoHE5LiRQax4/BXXt/xWN1/3B9o7vd7bLI9zPOcYRgSM1UUHu2viRUpEfp+YHBi6QagMzspkbyKeK9omlb6dZsJqDdEYtQQLUclXoZRmQwynRYQwGusytBZRl0qhi4w9AEdHYvFLN3TSZESRLkSEbDde0eIXtaBEXBNynRCJKR12ugsBZxrotK0XU/fNRiTkecFRV0zy7IpO9J7R1GckGcFVmei4lCi6ImxYPA9u90g+bTByuBOF2QGilwTZ4YiF1VH2wxYVVCVhuXyhCLLyRScnK64ODtnMVuglMENPbvtjryYcXJ2ytnZIw5Nh3cC9hgteSlFplnMZM8Pfkhg8IQqCSng3v6itVjpusExIssqATLTQ8s+obVG4yjKmrpcUFcL5vWSWVkR4kAIA8F3RHqa5pCIDdB1nr4NjDZ2Nu0hMXq0EmKA0RmFrSkyGVZqndF2B/ZtSze0eO/IihxsL7ZYiOrBZrJPHzM2IiE7rlEgQzvJz8rIbXKO0CZZPQuoXNhjZolcK6K+817AFR9SDpFK+XdGT+vn/eM51tT3/yifmO0dSSUqJIsYxQZUa0WWYiUU4jATwlir27fX9xgmotbgh8lq2nvPMDL+x8HlyJL/xkJ2fK5RDeym/cL7gAvHeiHG4z47vsfx85PyY7IHdlP9H1OOnqgQwhhBiUETsffqMKbnlo/HmvweuBfTtZsyXeNEa/k1QpcAj4eU5eqCF/WONfS+p+0advs7/vRf/CG360vuNpesb7c0u4Hf+sG3qeuaQ9Pyk7/8Of+Tf/9/Std1vHr+ildff8F+v5NsnRjFCq/I7tV4Y38jIoMsE0v31eqEx48esFgsyTLZ73fbtdRVIZLZjCqvKHPJ140FoIXMqCbysaiWVdRYnUkdmDJ+jZb5aZ7nk6PGuIwpBUWRT0Co946I5/Hjh7KWuY7vfPu7dMOer199xdD3xKB58OghRZHjh55u3+B9xOZZItwICeH84jEX54+o6wWZLfF9xPc+RYpoNus7bm6v+Oqr54TouDh/yG63EQvfEMFH2qZn6HdEHymKEqUUtzd3LJczcfjKHdZm7HZ7+sGlKJg9V1dXnF6cs1qtePjwAVnMWa9v6Xupv69vLlmuKlZLz7w+Zz4/Z7V6SJZrNttXHNpbgnPikKKU9I46kFu5djKTkxnD0IkyWGmD8gHjFNpACAL+ZUVBVWpxWSiEeKqiwffi7BB8j1KOrh1QpsaYDGMz8lzyTZv9nu12y+31NVprLs7P2G233N7e8Pr1G548fkYYFK4LxLmomKqiJvpIXS75nd/9uxhjuLy+5PXlK9abO3wIFGVOUBEXAi4EZvOStmsZvMN5h8okP9Z4jdICbueFQfukTjMG7wN92xATuBSixCwAadFR6JhLrtw9UD/pg5gcYlRGVAk0Uoao0romV+jUG8SgUn8ufySbSQArUdaayYFg5OgfASUhY4wE/pEgMFphTuBSkKw/nSzylREl+KS4urcXMRI7OPZgWh9tfkEUWShSHt8IhN2rI37F468FmEIY0oacmA5jIyNQefojN7LRiuWyZrmc45wMC/f7PQrN4wdzQoT9Zs/rl5figYnGJS/7q6tL1psbHj98wHvvPeG9Z0+YzXP2+4b1+pZXry75/LPnNO2AzWqKoiZEz4NHDzk5ORWmT9uz3+6w1lCVJVVZMatrYQgn6fEwOFA5RVFhlCUGKIs8Fa+Ooe9Yr9f8+Mefstu1tP1A30ciemrsrLXUVcV2u+Hhg1OUCmx3dyiVTQNRrS2zWUXvQRsj8rwYp4ZFArSEZdc2Lc5FbFZQzxYQPPv9DhUlTHi73U3WSa7radqO/a6hzBtpgrWRTI7Dgc1mwzC4FM4OVcpHKYqcq6srjEk+0Wn4lWUZKLFfqqqKB+dntPsDmRJv+5ubG05PT+n7jpisRPI8pwxylwTnCX1P07bSYGuFc5azszN8KkzzvKRrelaLJbvtHXmWcX52ijaashA2vRtaTlcnKDwhDvSuZ73e8OWXz9HaSr5B57EmJ2Q9WZFRz2fMTpYEr2jbnmEmzFe7XDDsrsmspq5yVssZy2VFe9il4YHh889+zicfaGZVzpPH53g6PvjofbbrOwbX4fyBRxcfsr6+ZDCWWZ7z5s0l5w9WZG2LyTMZUODY9R1FXlKVJUE5/uG/+/f4Z//0n3P16pLZvObBkwuuL1/Td3tu7jxfffGck5MH1IsZZV6xjjt+9/d+gz/+47/g8vIO1wZMiCjnKaziwcML/oP/4B/xz/7icz755BMePjjl9cuv2W7XvPvuOyil2Wy3/Nmf/zkffPCM9957B3264tXz5zx9+pQf/vCH1PMFZ2dnbLdramV4/fIlP/30U0w958HJjNXJGe1hw+EwcHFasd/c4nph/l1eXcoCaCy5NfhhYFHNOIReQtCVJssseAhGS7B8sn/yQeZsIUS8E3b4WCDeHyyMjK63AaejR+yvw2MYBtkU+4Fh8PS9S5kLcpy0NalA91MB7pxkxITRyizPMJmoTvLckFlFntcoFchzKMpI2wUOe8moG5xnuz3w1fNf8Ojp7/GDH3zCg4cr/vE//k95+WKDNQVGZ2lAbdHas9ms+dnPfsZ8PofEGAwx0nU93oO1Mvxq2w5lTSr+XdoT9jSHAy4T730i/Fd/9Ics5guxA0zy8evry8Rwc9O1Mm56eVbQNAe01tT1gubQ8otf/JyTkxPAYM0s2bpVtP0VRnushRBaNptLgvc4Lwymtt1zc33L+m5H2zi0Eis55+TYoBVZUfD1yxvqGlaLDLHqILH607nRKXMsgoqSqXdxccahecRyOeM73/2E6zdvePH8NRt2adP2DINLAzzJWmkaARZ9CMzqmqZp0tC5piwLiiLn7OyM1WpJWeYMQ8/Ll695+fJrNtsrdvs7Npst2lhub9fc3N7RdR1/9Vd/xW/94Hd49uwZn3zyCRePHk7H9jhMtKl5tckyKuUsxQgxseFQGCNDG+/FqlQyZe5ZZClh9mgNKlcCjEdhio91iBvG4CGD8z3OQ5bnCI6qePbsAWdnj1gsTvA+8kd/9M95/foyHTeNipHf+93fxRhNu5dQTx89r169TJlYA1kmwOTrN6+5vb3m8vI1l1dvKMuSrMjxIdA2h9SkpzyopGASd7k4ATvfLKDGLKVIGqwmiwGl7/s5jz+bfigVhOPjOHw4HpfxJ9/uj4+//z7rOMYjed4Yg1NOVAchef+HgLEytJGvGEIwU/M/rrWbzQalFKfn5//fLF//jXmo0ftiHDQpAejGMnek98X0fRFpXLrB0Q49ffCYzOKCZ7vbsNvvaZuDHGGZpyTwB4rcyj6Y6lyjohT46ZfNZjPOz8+o62oaFgmwIvaF4wxotEce1Rty36oU0Gro+17qr7Rfeg/WvD08OuacpeF/AmvGgdIxu+K4P8vnpOaV8OUwrRvjc2ktzZsQivS0VscR/ExDL20U0UteSkiWVRPpOA2RsmJUA2qM0nRuwHvpN+TeF+tr1KhIEjDh3tmdlARC1BjoQk+e53g34EaS1LwWlUQCLgYvBId9ypuq6pqsyI/3iSJlAJl0z2mxCUwgyhEgk3xRhbyf2WzG9vaOzWZDGAbKPCM4GborpSjKPClcOrSS3sCmOluAG8mEQVmCN+n60NhM03cJQI5iShWmgaZO1oD+3jkPctyJU+2g06DGOcmMHfPI7gOTo8pS9v6jtR1wzBpLa5K1drKGGtcvAVMF1MmyDG3MdL0pJTa+cg0erwPnRptWIAZpahNYNFp1dX0rA4FhIMYgtmDeEbrA4CTfR0/3+HEdHy84ecrjtR6jHAOlkeCVaAHJuswLGb6M73n8eUa5FmnLiwKAOifWa/Ze7aq1TqBFmMCWv+0Pqy1O+Wld1UrsbLTSYqIWDQQt1ss+Si5RTJaLad3wXizsXOqfTQSiBIwTVQKiNJktWcwgNyWzqsNaCVU3aaAGkscUIT2/ZPGMe7TWopZXowZSKck3VCMRQcLMB+dwQQBKk+xmpqss9fdlIYAFCJPeWot3M2IcODQ7mt0e78BoAZeMyskzjesVZWEpctm/97s1XRewOufi7AG73Zq22VOlzGRjNYvFgqurG0LQ1LMTht6TZzVnZ4+xtqLrG4gBO69ZVAE/eO7u1rT9Wob+MdlPTkQ+ldaGYxi80hrnj7bZKu0TNssoyoIizymKnLrMyLOKIg2Py6zGaEXwHSH2hNij1JDyTISw27eevg/EMA7yIOIxCnIsBZmsPSoTsC8N8fZtySaztF1B7x3KZmAzfFTyB7EwDdGl+lKsp/puYPQLEPX4Ub3ogyfqiPFmWo98jHTeoYOAPSNo7Z3YwznnGPyQYg8kU89mNhGejyWF0lqAlWT9qUMCHUnXVxB7Qu8dIYwAkwwg80TU1UqLCwWQkTFgoZc1J6S13oeQepc+KZ4FBHMxTNO6dJrHi/ZX37yj5er432inKwi7HL2kbkjYo+zJ8WjhN9YrAhiNtsHJGlaFKfdJmAKREDQEiGa00oSj+j+dtfE1jYz5VCCNM8oR3Pp1e6y7NUWRA+N+qsiUpR961ts7PvvsU9abO/a7Pc2+Izr48L2PWVanbDc79ruW3/n+7+EOcHO55eb2jv12R9vIwN1Yydge66eqqijyXJT0yUYxyzLKsuLk5JRZXcv+F0Pazz2ZzclsTlXX1FWNQovzR1ZQ1jXBRfp2SGCtxg2O4EkqC4PVFg24YaBvW3SEYALD0Cciu9Q9RotlpXeyF2dlTt93dF1L0x7Ybm/phwYVDRfnjzk7v+D87ARUxPcDvhukBy5LfJTZVQgwm68oyzlaGfoOVNCp7usxRlOWFVVZ8fr1S/qhYbaoef3qit61FHnB6ekp+/2O3XZPYzsURkgvIZIXJVoPBA+9GwiHAy4IGcLmolJ0KQf1cDhgw0bEFbklyy2qha5rE7E4x5qM1eqc+eK3ObTP2B9uuF2/Ybtfc2i3DK5NNVbqUbWFkKGVoSxKxJJQ4YZIaUq0lrkHSCaWUgHvHDFFF8RBJ5VnImDFgFGRvu3R0VLM6onIejiIgvHpO48wFuJMiGo3NzfcXF2RP8pRtShkgo80XY8bIM9r6uUCY8XGT+wKc65u3uCSvXT0snAMXY9WiiIrQFs8Tsj5aEprCMM+1ZVitYxSaGvIywwXJCYiy4yQg0Zg3gvwo1UCQ9VIpk+AjR5ts7Wom1PMjDZmsvKegJ2kbBrJLUd1rAgy5FgnpWsCA0nuDETNqGQCRkPaRCQcrYaP9qyjeklrIU2bcYaCEeKOScSdKACXUUbsUfVoc2rT7xprJjkecZpzMFmX/qrHXwsw+TA2b4nhqEb2wNH/b2Qx5EXG6ekKReT27kbY9W3LYrGirCr6fmC/P9AeOjbrLXlesNsd2G723N1dM5+VPHh4yuPHF5xfrOi7hpubG66vrnjz+pqrqzVRGU5O5mRpcVuuFlRViTLCRlMo6loCe4s8Jy8sRC3FQ0SyLVLxR8LJJINI4wdpMm9ubnlzeUPT9nS9kwJI5UhYshRedV2L/3HXEIIiz0Bp8Z/M8hJrc4zNUCH5FqaNvi5zlArC4ko7YT/0RMzk2RgIiZUhTf52u6Xv+sm733vPer0mBEVZlRRFzma7TWxwKcqVCrRtR5UXEwvxcNiR5xnG1FS1MNO9lwVslFuPA9NiVlHmOU3TkGUZXddh8pxqNsMNA7m1oBRBO4qyZHN7Q/A+5SeJxF+k3kAUuf9ivsANHcEPKGXJrKEscrrO0feeWV1wffWGqrQsZiXMCl68eMFh38rg0Qi7Xg0dSkNVVzx48kSUZc4nb/1BZIjJ77rILacnC0xmKPISpTMGL0Gx11dvkvw1YHKDsZHZIhc7HBxlZqmKApWa5kPT0jQdy7PUGLsONTaebqDpQFnH03cf8N6zR4SuZb2+pagKzi5OaRsJF7y7vWZ9tyEqhc4sZVnw9J0nfP7F1xz2jvYw4A4t/WGHaw9YteDZe095cd2gVMD1LVWVM6sfij1TlsmiZRRt20p4e5FTVhUxBhaLBYvFgqquWCzm+Bi4vbnmyy8+I69nPPr7f5csrzC2JCLsrTA4jFI4BZfXN8zmC7QxFFXFfLnk2Tvv8PMXX9ETyRLLLCpF0Pe8rQHvojAVXZTZ6nhJfIPdNT7eYmgrUH/dyvW37DEWQV3X4wY/XdfOO2m0ozQPKjW9cAx8FeatAAPS/I1h1inTKZfjGWLANi0+HOgHL0GrrWO9vqFp7jg5e8K3Fu/yWz/4FleXfzxZF8Uoa1YI0PUtd3e3U87SbL6QvLHb24nVDsJyrxdzYvJtzjLLfr9nvb6jrkQdFSOsN3dSCNqczGSE4Hnz5k0agMn76fuerutS1pNYzHTdQJ6V1PUCMLgh0neezEaR8JsCo2qskaFmH8WeASLOdbRNwX6/4/b2lubQ4j3EoImoJBeW/SIERA0Ua+a1WEENIeBcx5DyVqYckqhQ2nB2dsbd3S2HwyEVK9l0jsZ8kb7vGQG6iUULqVi31FXJ/nCgrudUVUlZlSyXC5bLJVlmGdzA3d0tL1++4PXrV2y21zTtlhACN7fXXF3dcnu7ZrPdsVie8NFHH/Hhhx/x8NFj6vlMhnCCGhF8mJjo4v2fpb0mWU8puA+ETLYUaVgz5rhopQiJtSiFjkoOWIGIKChkH035FwFhimtLlpXCYrU5Z2cX5HnFbLbg+uqGP/yvR9VbTt/1PP/qK56+84TFYiHFt3O8uXxN9APruxt2uzV93/H1y6+5ujJst2vW6xtubm8oyxI0UyGZ25yYPJbHJvWbj19SD70F9BwZskxr15HRefzZJKtPe844hB+VIt9cC3/V7xx/5htfmFhGwpRPBWAqfo01hKCJQ8RaM12vfT9gTCbqi8GRZfkvv/G/hQ+pj+B+sUwKoz/OLURxrohEpfDR40MUe4TMgrW0fcPgPf3Q06fmThmLHfMHjCYzKrF3hcGrMjOBCMZoZrOa+VzY9gBt1whQZYpkuzTmz4R0ng1a59N1p5NKZQS7p1D5byiDR9seuQ/lvxCPip/x2hqvxaPlQbqvdVIiT2zi4x49/vx9UGr8nZLPkOyR9OjNkW6TdI1+M8NpPDUjUBTCSGhjen9j7SzgroDVAm7HNOyPU4MlFj4h2W+Ja0Ce57ghKSsSkN71HT44yUwtZLgaE4ob770fhZ7uc7EflN9vU3ZWlmUCxHg3DfmU9zKc9k5snpDBc1HKa4lp2CfMxtRr6ZQFEEWxpdMeKkNOAbgZ1wSOoLP8rSYy4P39acwf06nxlfN2n+ATRb2T1iel9XHwrjUqhLfO8ZidN547yRA5KjXHa2UEdCb25r0hpewH4zUkA6PxZ4gBlXI9YwQ/iOpX7EykNpEBsSjs3OAY3BHAkiwfuR++CdJL061QSu4DN7hJNaWUSrWTWNqNakKGMYdKVvPAuB6LRYm2liLP38okEVWDSevNr1i//5Y+NAqjDLnJ5N8JlFBTiIEMM9Q47Rb3MxmgxAQqI4x1jVhTBpfOHWL9JvudQluNKQ1FVuCrpL4uchn0a8lmeMsSbryvx/tBqQlk0WoclkkawZjTJQoOUS6OQ5vxnoGUfZjsQK2x0zVgjUEVJSF0adAuQ6LV8pR5vcCkDN+i0KTkPELw9F1Pexgoa8t8tsC5jqqsUEi/CZEsl+t+dDzoe0delMyqldSyawXRo62AXbEIKCz7vahRnfcMvSMmuxydBkoy+M2xVkDhEWAaWc3GmhTmLvV4URTMCoO1JXlWkJmC3BQQR8BkADVgjBCSRKEQGYaAG6ROHI8XStRLZSwoowzNU9ivXCkKijwjyzTt0DN4RzQWryxDgMEHWieUmuCdKExDL0O6UbEsV4JccBFiUISgGZzYiZLOf1QBH1Vilyu0lz14VBaPAJNY147EgwxvLUdE52jzOqlME+A6giVHBZzEFUScXNdK0ftsCmt3qbcyLkuK4bH+TqrUMAJfw6ReEuDpHgnj/voTx+MgH6p7XwjptUbGPLrx3kn3971adLwPx+HydIzT5+JUG4/NRDruxOPvTOu5Ig0sp2bjm4iR7G/je4nj61fH9/XrhjG9vPqKqqzk2gyB4KW+CMGzP+zYHtYUZYb3FdpE5vOKi4szscv0miqreXz+FENGnc0I81OKwrFcLNls15Oyeayh6rqeMoi1kb3eaAE3qrKEGHG9uFv0yeWiyGqszSEoNndbht5hrIBSKwezek6Rm2PNG0PqkR0DCqO05JXuDwKk2CzNWSVTRgiSCPARpDYc+oHFaon3TiyQh07mqAHJYDYLmZVkso4qEzGV2EAbm6U4FJlnleUcpTRD72ianrqYkWXFvV44kudl6qlF8RODUBassWQ2nwgWMY6OPpoHDx8RoufQdhyalrofCNZNtZn3DhQ0zYHmcKAfeozxKTtUMrb7vhUVJ/G4JgRESbqoCPGMs90F13dXXF29ZLu/o+m2RNeDgRgsASPEjZFcF4Co8E4lm9AMhU5KRAcZRBVxQ8TEEozGByEhCbm5QEWdQEKbVJ/SC1ljKbKc65vXhOjQOjKf1ex2G9rVCV3X0Jg91hTyXlLGnaWkzAriQmaOmSkpi5p9e6DpGtq+IeBpugNoWUeCkpxh73tCdIQwoIYWbcGjk+KVBOSIjpL0PkYQSGmV6nKFxk7kADXmHSXwSIrA8blUqhPUMfeKVPqk7D0BmvSRdJNy78QqMgFBGkQdm/bBUbWkxlzBo+WqtQn0D0LCial+HsEuo1Sy7TOJNGYTgKQJyqXXIqrrMOUX6nsqpvt9330t8L+8pv3rAab/N3n/8WzZduf5YZ9ltjvuuvTPAXgACihf1dVqNqoNOxiMENlUyFAKSkFK/5I4lzSgBpIGFCdSaMBWUySbVezq8tVlGubh2Xxpbl53zHbLafBbe5+bD6hqSqGBCGxE4mVec8w+e6/1+/2+LhyHUHC0CFDTpp8boqLQrNcLLi5OGfqWL59/wTDuKSvDerPBFiXXV3uur3cMvePudseDi4ptu2W3vaPvD3z4jXd5+s5DHj46pVkU3N2+4cXLF7x+9YbLyyu22x5bVWzQlGXFcrVivV5QFqUMi2KkqmrqshBWr9bYQmFtzeFwIKEoioqqErBLikswGWDyY6Q9HHj16jW7fU/XO4bBMfqcO0WSprCU7KHkHdvtLYumoD6TIaCEMzfYopKw3XtMPucc9ekGN3aCFBphojrXU1YLANwo9gnWmsz2DLRty263ox89zkPwgf1+z253YLPZsF6vuLu7Q6HywEjUBIfDAas0ZVmAEmuJqiooyobNZgPEuQnUSoC3q6srKlNQnBbUdc2uF4DpbrdloRQXi4ab3Z6T0zNQCh8TdV3zZhyxGorCUpclPgyZlSJycjc6Vss1buxJ0RHDSFVaVqsV4+jpekdTl/zgRz9g0RQ8uDihKC54/eqS29stRhcs6mWOF41EAlVd8eGH38q2S3Iu+77Dpp4pULQsDI8ennO973n25DFVs2S7k79/8tGP8c5R1SUXjx6xP9xwslnSLBraw54w9lRGM6bEMPbUpWW/b3mSz6kLDmsDqqjz4H1Ap0DVaL7x4bvgHH/wB3/Eg4cXPHzyGD/23N7c0O52wnhWiqKuuXjygHp0vPPsXcYu8frFJburLe3dDYe7hu6kojw54Xv/xt/mz/70z7i+veH09IT33n2XH/3oR6BgvV7x7rvv0Pcdry8vWa+WrFcrXnz5nKfPnlI3C4L3vPfuO3z+5Wtubq6yN6fl7/zW30KZgrJe0CxPGMcbFGIpEp3jze0V1WKFNobVYsHTRw/ZPDzjs5cvMcoLOGlKkg7zZpySMAEdEc3kna1yGPTRr/Mnm+37bFMyWPjzcUiT2DEMTiwaEnifcF6yalRQohQ1ZvbHngZztrBUpShcjJEGUAAmaUSqylKWGqUjRbXHec04wjBGUu9wruPu7jUXD5c8fPyY7/32r/MXf/4jrt90uNHlzcvgAzOD+PZOeobHT2TQf3l5mfMNpqFWYGMtKUWquqaua/b7PdfX16RTcvEkdg9iIyPN6+BGrq6uWK83LBbLfF/3s5+32PpourZjs9mwWm64OH9ICpp2PxB9hzWKZqkpygVJR4IOpHQg+Mhh3Ms6oQ1vLt9wdXVN1/d5WAboaegmLNUQoO9GqmKcreTC6DKzSfYQYTIllDYUVnN28YAf/PCH3N5eUdclt7e3dF1/BBSSom37rBQyUkxkJkpd1xgjKtzROTYna8qiYNE0nJ6dsFw2JBL73Y79bs/z51/w8uVrdodrnBPF0zh6rm9uuNuKl/M//M3f5O/8nb/D+cUDEgo3SsNprFhMjWGc7fEmQsKkcNN5cJjnYzO7eGIRzkPEJMWSzF/DXECnzNoERULjY8QUFX6IxORRSpSRTb2krhbU9YLFck3wmr4bePnyNX/2p/+Sd995FxRst7d8+ulnvHr9km9/+9uslhtSSHz54pLT9YpPP/2ErttjjeLLF59jFSQCITiGcaSqCrGSdXIOpmZ2bnZVfqO8DfJ8dUB5BHumYaaB3IzPbF8lUwaVp2FKTX/PX/8KiDQNtN9q9d8Cqe4dM5pEtsmaCs3MLp2H8pLZA3G2QJtsi1b1QtZqbWia5r/rUvXf6yO4yZcbmXfo+7Zx8tmHFMXSzMhwOKVA0hpbVtS2YPSReOhIasoYslRVSVmVYo1VFMKAG0b6LtuOKSiz/XFZFlRlwXq9pK5rUm6mu06a56qwoDXjKEOsEGMGfuU9TPfcpB7qum62BTPGiMqosPP+mpLkhsafuvcer8X7AOY0IL9P+ri/5xztbKdBun/rcY6gewbDlCZp8cknCLCekptr4ynrgiR2KD5b3qV7Khytjs3OrJK6d3+ozCScCPkpk7UmtqIx5ay26rPqniQZPT6z/YwxFOWxLZqAluN595AMGJVZppGkFHVVs1wuKQqDd5KBcTiI0sYqzZRrZUxu2qwM3Ou6zoC0vHfvAymIckfn5rCqSrSpGMaALXrogKnpU/dbvQwyZeDl/mfmc7bTpI5SeVCaUpobYK2lgZWPOKFixBt/PA/310N58KzmlIGWsQaDQU3vY7pOTR7GzxkuGSwkE/Dk7eRhuQBMsudElNE57Fv6UZUyIcxMDM9sYTiOjKNjdGCtXJc210Ep5+ZO73G6no3RKC8Kw77vJecnD3bFNq+iqit0JoTot9bsiTBAfh+i5NcohmFgsquy2WLNKGZ7n5+LIyWKDKaTZBCorbl3pepsQZOBnxhJRrbfo9qhzGRMybhKGdyZLD91JrgmnaA4Pq9WelZCongrd2c6jgMT2TPjBAZOn/G05pHNb0PMRNU0r30gv5cmgEkpTA7PnnpfURhrYtJ0/QHnJEvu6eNnnJ9dCBhFwi6nbK4keTXNQNeNGFuyOlvRtSWLuqYfRDEbVkuMJhNDoTu0jKOjrFaURUNTJfpiQKuUbfpkVlMWDaUdGYZOnscIaFEUVXYoqTNRtsIYi1KyHgjInLOnrKXISveiKChsQWESxhQUpsBqcYUhjaQomaNaB6yRfLMQkT9lIkUZVM8AjAooBVWqqEJFSsf9bmIflKXFVpYxeFyMBG1wAXof6Z0n9B2DG/DR48KICyPWaKYYkvkaQBxdtEqQPCEoQiY/gEbHvMZksglqspGdFEch5y3FXO9pfHSYYN/CRWasJO9XCRkTktfmMA1fYyKpkaSOgJB2dh5G+hBIUcApUa/mXitHNUzrfIjH7N6YEtGN927LhPrK/ZBSytak0xU4KZfCWz36pGpSCfkAf8pxP49D5XVUzXdSBpjUZBjFTJLIn4a8Z8O8tgKoFN/ae+ZvTYSU6YwqmDI17//+z/rx48++T103mDyrDdkJQtTwkRAHNicrmqYETikyeeLy1SvqckG9qmlsg9KGh2cPuDhbE805PnhevXwpBKYY870uM1CtFc55JmthIJPLrVimJckdjBlkb6qGhFiiXl9f0x0GUIqqari46Png/a+xXIjTVec6ok8M3YB3GcBFaoyJCzj1XJNatawqSJq2bfOaJevoxXgxq+tRCABeFJSZWK+04nA4QDJSx5eWlBTBpXktMLpEqxrvPX0XaPcDTbmhLEogEoNnGFrKsmS12mALWRuXyzV93+NdLwBcWbNabajKisKKJe+7777HD37wr3hzdU3fj6xWDyk2so/o4MVCn8Ruu2W/3+LdiK2EHFPVBUWp2bdbVpsLnO8Zhg5ixW67JcaK0/Mlq/UJ5+cPOTt/TFNvuLp6xc3dJV13R0iBXCaL6ssljMnKHG3wYyZdWAG5h16sTmXebLNbggBQIXm8H2kWFU29JGRwyRhxC3ODZDQvmpoYPC9ffIktNM2i4vRkzc3Nlr5v6bo9KSbWq3NAEaNkfIYBiqZiWWlKU7NqTjk/fcjt9pbdfsuh2xO1pxsOOaNTiIL7fUdIksfYDwe89hgNo3J45PyiAiSxgtRGMY4dVVW8VUOIl5ma96uJaATH3j7pmAmr8Qg8KZgu3KkG1UpAU52vYzODS1PGkvybXKfInGgCqjSoo3pwqkeMVZCOiuRpPjWDWPmP0RZrCqwuslpNoyMolbEAbYnRENREPNFvr7/5LU29xtEu8yePf00GU4QcKDXtM7NkNWlSkI33g/fe4+tfe5fNquTN1WtevHzBk8cXfPDeuyyWG+7u7viX//Jf8clnL9gPPb/2a79GWZZ8+eUXeDfyta99QFFomqYgpoEf//gHfPLjT3n9+prDvmfoI1W5pKwaqmLBZnPGd3/xF9icrajKiu1u4LDbS9O+WRG8gxTFjzMGtLVYJTZzioKqtEDAGlguG3bbK27vbnjx4hU/+uHH7NtA10dGl/AxEZKjKASYUUrz/MvnPH54ToqRqjKs1svcXIpHMIhnf9sN+CC+qMYY1qsNh0PEmsxOGce8KEtQ2DiKH3zXHQhuoO8OM3v/xcvX7A4DISp+9Vd/hT/6oz9ju92y2+9n+w45RFbtfZx9SIUlJFZaq5XYLV1dveHp06e8fnkFEVarNW/ubqiWK24yEPLu0yfs93tevnjB6cUFj995hveCQLfZkq9vxXP+ZLNhs16yXNZ0neLu7pZxGCFpTtYnxBBYL1eEseP5Fy/58OvvUJeGFAODitS1KIasNYxu5PLykvfee4+72z3j4CiyTDBp5uHA2fk5KSrOz87YrK2EW/oeY4TtYwrFh9/8Otd//KesFwUuBl48f8756Yab1YLlsuLs/BRlS55/+WPWa0NdFVQenn/+Kbc3NxIipzX73YFXl9cUVUnfdzx8fE6hEkkrymqBNgVXd19SVIFHTy5QPvCjH3/E1e2OmAJ1ZdicrdDsKQvF7m6H6QN/++/+PQLw+OH7/NWf/yX/zT/9r+gXhv3da3bXV9ytKhZVwTe++ZToBr58/pyrq0s+/+SjLDUXb9n33nuPf/pP/ym/8iu/wtc++IC7mxu6ds/Td97h448/5p/9zu/yS7/y63zx8jXb22sO+50Mh7x4Zz9952tcnJ3y5Ud/jA0dvYosypIPvvZ1/vKvfkC1WOBCZHe35cnXvsa6WYmsXRmSl7wJW5SQfbSF7SZhvFpLGLMn5IZhUjikew3bcdCgphns34CM/6wdEoLa5wB1UX1J7lt8y0ZmypsQC6BRVIg5J2OycJj+TrISFlw2LJYaW3qqZYMtNjlbQoY4q3WBKQKH9gp7G/nud7/N//p/8z/jn/znv8tf/PmPGPtECpIxEVMeVuW8pOfPn9M0ixzwqOaBofeey1evKIuS4D1d2xJCpCzlPh1HYf0vlhKynlJiGAZSSrz77rvs9zvatuXs7JzT01NWqxXGGHa7A9fX15S2oDAVy+WCX/7FX+WLL75ge9dydzuQkuXd9x/hfUSbEqNWFHqEVDKOHe7QMgwdX37xOW/evGG729MPDq2LmdlMaiiKJU+efI3NqUMh/vVDF2d2ibUW76WZq+uGqm6wtuDq6pJ+kADm5bLhk08+48HZOe+88y5Xl1dcvr6ismJjqjiGJe4Pe05OTgDohx4fRmEnFSYXPSOHdo/Vlr7ruXpzxX5/4Orqkt3hlrbf0/c9q9UaYwq+8Y1v8A/+4T/if/o/+fe5u9tK42FsHrAO81C6qiq0MlRVkUGkyULVzhJuKXIQGxukoGmaBjcYYUxGj8gUnfgxJwnqVcYKIyhKgWaKUsonqymD+FAXRcHjx08xxuJdZOg9H3zwAf/sv/4dPvrRx/yjf/Pf4hd/8bt88cUXMjzE8x//x/9bVILvfOe7XJxf0B0qfvTRD7m8fIkbexnaJpfJBuJPXDUV+/2ewQmRo2kqQopM3p1xHmLcB5CmQu3ecFEJODodxtwvvtL8+18FqP4mwCql4+/Oj3RvsH//77IO5GY6Ha1MmOTwVuGDZ/QjZVVwcrqBGNBariGXP/cUI81iwWp9wiS5/5k/InPRLqzMhE9Htq8xRuKTUkKpJJ+t0SyqCh+hH0d27Q2H7kBUibKuWZaWxULWsdn+QJASrNVUZcOyaTg5OaHIlsVVZhyKQnMgEWd1Ztu1s6WW5IVJMzzZWDrn5mtysrS8fwgbOqFDnAfqKSmiCDBgykGIcbZ4uK8kgun6Z17Lj1agE4Akiv9xHFkul9mL3s7rv1LZ91vpe8qpPGbKe35MYtUn9n6WsqyyGiUxDL24DSSZRsYIuiips9LOey91BzCj3/dA1cnyTwWHd06GI9m7f1JqKgUuOAoj61xh5GeSEtXD9PqnQZm8D+Zm0Xuxh44oaqMZx5GqWlNWmUkMaCvZlCFGun7g9GRJJNL1LXdbhdhZqllZN+UiWSsq/8JqYvQURY0tBGzx3suekYOJU/5s7h9Fvmacc4QYGb07DvwyADgMA6YojzBJYv7eUSV3tE6crLO+ep1AIgRPXdWUhRXGsBsymCRWcwLyi+JjUlYmeOuxAVGEpZjX74jzIf9drO9cSuh8zZdlIRZrbmAcBpyPKFXOr0vraRB7tIKMPt83RYHVYvkysf2LUoALMilB1IZ2BpBmtQsqs0mP4GaKCe/CfA+7rLaav59Psfo5KWm1Iivu7Dyk0BPoCRIWPfcAzMMT+V05z9O/Y7gPMEx7qTzSpGac+odJPTyBV+n+/OOtvVbIAzoPqVMSAPGnKYpVigh3Js1rh54UhlbqcTU//pRrAEmLgjXFkcKKJmq3u+Ps7JRnz55yfnEGSlMEBcrO+1IIFUVpePHiBSE4rNU8ePCAwiRevPiC/W7LdnvLyeacDz/8Brtdx+s3tzkLrgOkpnry5BkQ0VHypgpjGIaBJ49WWYHv6FoJMhfFUkmRlQHWlpLFkW3pBBAW5vR90vH8tpWsSVqVKCUkMDAYkwdcWggIRimQO0gGZNZiTIlSWgZzeWBlokVHcZsx9z6PlAJuzIrB4NFR1KFBgyo0hbE0uiINgSFCdNKvpDFizbEOk+sje9omn0GeMP8BjiDl8aqd18cJnMccnQcS4CLguHdt/6RTx/2BXcwWhfOaqwKoo0o4xcnpIP985K31eTon95WqMfkZyJKGO8zX9Fuqo594femnPu5bdShRMnm+MlP8aSSolCQ2fj5/95T903Uzg29TcH0eyCr1k4+pJhLYW4/5k8//UwlZP8PHZy9/nMkyUBjJQvLei0I0KcZh4PT0lLoUNa4fR9aLNQ/PH5MyGeT1y9dSL4yeiMfUkbOzMx6eP5trxem8VlWF1tJjWFNkZffb17XwSI6EIx+E2KZrw+rZhqKo8h4ZKWxFZRs0stdWRU21rqmLZibrQKK0xwzJEILkVLctQ3ZaqqoqgzsZGEAUW8ZOYICmsiUuBryLjEPOt8ZIJhIw9A7nJM9Nm2K2OGu9QzLbFiwXBcMw8urFFU1TsmgqIFKUhvOLC/b7irbds1is8P6O9eaE07NTcXIxBcEndrsDr1694l/83h/y+vIlu/0ehebBg5733j+TWqsznJycoJSibQ9s727Z3t2wqh/nvKsNbX/Cbr/lwi3Zbq9wY6AqPbe3W4rC8OZ6wWq9oGkaHjx4xHe++WvEDyPd0HJze8knn3zCbn/F6A5UpZ4BdGMsy+UK7yCM4AcBqcWiTmYhKWnqck1Es+96pvXx9vaW8/c/JAVZY62WrMTtdksIjqq2DEPL+cUJIYizzMuXL1kt1ixXBadnQjYN40DfiwXioqqptMVEIQnapKmKJQ82F5wvLzh0BwbfsVgV1IsqO5QktCrY7TuqqmEYOu6217TdDYPb00VHHx2j67nbveH15XP6YUdSjrqsCHFkGHt88BRFdntJSA5SrhONNbnfkH4n6XjMBcv40GRdN9UMxT3QRsgfYgFp9AQwFUzONgJhTZZ5JhNZNGTbvbku1dNCGgjK535P1mutFAZNocW+1RY1xlRYW2CV1KtJQVRB7PHIQJRSGSAsMMoTlcg74Eg2+NfNaP/mDKYUIMqbS+LSgUi85U+KsFwuePrsMadnK3a7G/74j36fb3zja5xfnGBtAST+8A/+iM+/uOFw6InAm8tLuu7AYlHzjQ+/xt3NNV//ze9yerqh7zs++ugjnn/xAu9FoheSYhgDm/MVy/WasqkYxgGl4M2b1wz9QGkL1us1ICynGBL7ds8wjJRFkwsmi3eiuCoKyc3Y7W4Yx4FXr15zefmGFDWBkqSdMKOin1k04j8vaoN2v6eprQAkQ8t7H/wa1pYijUwGN7rMwpRA3K7tuV6taBpLWRUoEv3QUdWiMAoxEIOATIWxtLs7rt68yQPchqdPn1Ld7Pnk0y/ZnF2QVGL0I6OToWzfjzgnBcEkYS+KIkvcFIvFiqJULFcLTk9P2KxPeP7llWQI9B6MlUVrc0LyHkXEBc/3v/99QgysNhtSjKxXK5wbKArLer1mHDrutrc8e/qAR48fcnqy4aMf/5BDK8BX0zSs10u0smib5HNQilcvX3J2esrZyYblYklZryhKg/MCLn388ceUZcHp2Tn7bUs3jMQgtjMnpyc8ePiQxUIG28snT1gtoaoVuzctbhwwSrFaLlmvT9kd9tRNSew8Z6cbTjePUMHhxp66KXn07CkPHje0h1uGvsXoyGcf/4DNci1S9Jgo6xXPn79Eq4Q1cLJZUBaOZlkSkqEbA2W5ou1fo3rPYnnCv/OP/0f8n/4v/2d0aVhsljSVJXn4/IsvuLkb6MbE56+uSCbx67/6yzx+eME/+Aff48//4PcJ50sWi4LKWoIfePn8k5wZ9QA/7jkc2uzpPhBS5PzkhF/9lV/hi+fPubq64t/4rd9is9mw290RowQdvvveM15fXfNp/wX90BPdyO/989/lu7/062zWS/ox8hd/+SPef9gQYqLrO2xV8+yD98VKrO9pBsfudseH73+DL1684M3VNQpYLBd4bQhk24gUssVFxOgI98AlrdNbzfc8t1VvFyU/T8f+sKPtRGWjlcZ7CGkmUgI5ayVEsc2LUdi7VjS5PniGMatijFjqQKTvW0IUdvFiWbDSawqbIInybLFY8PjJOYtlRVEZlI5c37zkW996B833ePr4Af/V/+v3aA+7bMFXYEpN8AJyTUCQVpr1Zk1d1zlbb8dutxNryiQWJN557q5vWK/FEzcGh7HnszqJJAPTwY3EJMo3Ad1G+r6nKMROaBwGNIrXry9ZLpd8/Wsfcnbac3V1xfXNa/b7HeO44+LBCWVphBGn1jx++HVev37J2N/Qdy23247Re4zV1MqITVLShKAZfWDoEy+/3PLs6QcEB270OLenzhl3YsMUWK1WVE2N94Ht9pbr21u0lsDRzWbDarWiLGuePH6CxrDftfTdFmsMzgf6XhjPh91eWDAkhqGjqiVA1BgZWIxjz93dnaiLBsfQDex2u6xyPbDd33E4HPjeb/9Dvve93+bDD7/J+fkFXSfEhJhS9k2WfJD7KggBH/rMMpfA+aJs5gEmKVIZsQQIIeUcpfuFBtnqI0IOTzZKEXxCW42Kx4Glz3aqqpSB58XFA0BJeDeaRw+f8ubylr/4i7/ixfMX/N2/+3f5nd/5XYah54P33+VrH7zHv/n3/wGH9sDQd3z54jmvX7zgcNhSNyVKB7rDTry28/AzRo82whaaCqPRBbQRL/5psDG1sW9BRl8ZEEyf0f11ah6U5WLvqyqL488cAai3G+6ZmvcTa8NPNNrTusmxvJsKzQyJ3QN6HdDkoa+oWGxps5WVMK27rufVq9f/HVap//4fAiLJAEyys5J8/ikPYZj2KDnHE3lnvVnhAqT9QQbdGeSxBhZlgSblz30ajiROTtY0dU1VFtnKS4ZRRut5r3N+mC1sps+16wZIYIuCMlu6HQdM/idYxV8FmFJKDG4ErbB5iDp9PWOSQmCIIRf1MtWR9x7m4e5RiSQ2PClGCqww9M2U0SSqDKXERqxt2wy4ixIzhED0Xmwj8uP5FFGZMS3sSIsp7L11yDEMA6VlHoKRZOC3WNTElOj7SBoTwYXcdMm9q5VlssdzzhFyuLGcf1FsDsOAC56Q0pzBZK3FTtlH985jjH4meEzDRp8tJm9ub2iHEVtVLNZL7qt/QNE0De3Og4qQgaq6WmCLgvaw57Df8cPlkvefXbBcSmbs2emGuihx/ZAHK4rgHaFwWGuo6xqtt/I8ec2ZwL/jBSAAXF3Xxy8QsbYixMDofVZJK8o6D/2j2Gt/FTyaLfDy+RNrVc1kjT7ldaBkj4/5ehAAO7Ps87mcgMqYxHavKAsB4vLA6Jj9lJVqiIWdNrKXKNXQdS0phZx7UDF6GZLbwmDKkkSFG/r5WhtHYc0qo+f3NgFlQB7EScbgfA5TlKyHcRT1mVL4Gcw8HkapY9T5lE1j7TwAvg+2FkUloNpX9pKf1WO1bkRVyxFU1kryi1DCwk331GQCBmV1RCKD+2KNOCks8m4pYOy9gf+RnKYzoM5838r6lVUjyjBlQaYERlnUpCicsnWin4FYY/M+m+cdBunV9ay1iJmDq45K71wjyYqqiUlldUhkHHuub17z4OE5i0VNXRegDCSDizEDNApUwXJVMww9IYy07Z4H52esFs+AwGstTPLFkxXnF48oyltevbnm9vYKU+gZqC+MoipqbP4ciIlls8CHShjeMeJPA6CzsjJb58wgUq4nklgZ5wIHdB5ycSTGBJXXomlNyP+dbUtRpBhw40DXiZ0fSbNanTIFhrsp402B1hGjAmIFlEdOUdaQfbfn0HWMfiQSMWUtPVEGJ8rKoHQJLCisYlGXUj/3BwEvjeRkJZUBnsl1gZRtkuRaFFb5dP0ea12xwxSAXPJv88AxwaTQVLkQSLl+nhXmgMq2Q6RE1JGYs+mUEpePaU2R1zXZVOdckjS95q/Y4CL782SFO4FF+YHk9XNUBAuoGvO/jyrhiUDOvUdGfRWcShy1iF857q33pPuVtCitpj3rLZBJQ1Ka9Df0/GYCn+59Fn/dcS8G8OfiKE1J0lLPee/ougMqwdnZGevVCpXWeWAtlliFFRJ83SwY+p6UIucPH9DtOxSGSEFSie6Q6Ho/9xHDMFJVJRfnDcvlgsqa2QFAHD8MTd0I+cb5XDtkpaqKmbip2e62kOBkfUpZVjJz9RGXMkidLCoDSoUWIpwPXlRMRqOswZiK9WaR80nlHokZ/Pd+BGNZrVeMgz/eF4HsNuQE3M5OXFoVDK0j+BHv+6zUtFikrnUh4fw4k2liCHgvKtCiVCQl89xh6IkxoFQkJiFOeRfE9pdA3ZQkqzOZyHB6ds7jJxccupZ+cIBivd5kEqhlcBKbsFot8X4UIQJJsugDNIslFxePePrkXQbXQntgGBNW9ww9VJVl2S1Y9yvOTi9QSlEWC8lCOnTYouFi8z5Ey+urz/jsyy/ExalpsDbQHwaMqTg7fTADiV3XYoqSRVUL8JEsiYKiLGVv1IHleiN1kJp6qBF0oKwS/eDo+gPLVcngdkLS6lpu795QFpbnzz9hv9uyXp5hTYnWlrpu0Drhh8ioe1J2S1FYxr1n3Lf4vmUcWrq7gd51LFcLsXKslqyLBqskJ/C0XmLtu/TDjr339D7iw0jb33H14AWXV1/y4vVnXN2+AKuo6wVKR/qhJRLEajVHGujc0xkzEWkUKcffqPwzRc7km3L0jNIYLWqn+d9Z/GKU3J9aWUzegxWalMz8+yhNmmxc8x4z9ZwxhkzdAEVAqQJDykCRwWCxupBsdVuLiskWxByrIzCUIZGJJUr+WxiLM1ZmjpEJPeY+6eKvO/5mgClGaY4y42fyPk1kEp9SbDZrjE541zMqxcnpktOzE6qqYhhHLt/ccvnmiv2hx5iSx48ecLIWRu04DIxDS1kaNpsNh7bl+uoNN7d3dL0ACt6B8+C8bHBVXbNerWgWC0L0pBgkBC5bX8QoBb3SmrETz01vJIDbZu9mbVQeNkXG6Nlut1xf33K3bfEehiEQUt5Gc5hXs5CgsuBDtmAI1E3NycmCiwdnnJ6eUpSV2Fd5yaVQSjM4sUaq64au6zg5uRD034kyqaqXxJRw48gwOJq6QlvNMPTZCm9HXTeZIefY7XZc3e4Yh4G7uzsKW+RGMGYfY/msqko8WU1m+1W1xdoFJ5s1Z2enrJYbfvTR5xJQiQzNbGbI9n2HHwbc0GO0yVlPFdYY3lzdUDU1tiiIIeJHR1kWLFcrVqsldV1xstlwfVWz3e4Y3cDZ+SOUlgBk7z0x58sMw5BZAYICLxdL9rsDfTdQlAUPLh7Rtw6lbri72XMYerSW875arzFa2Pd93+Kcxw3kZq4kDB7nPN45Hjw4Z/SJpGreffcd2r1I213wlMmyOVvz9L1zfvzj74uctSq5OFujkQyWAKAU1hS40dPuO9pdS12dEKoIpcgOffTUzRnjeMDFAWU1v/m3f5PD4ZbVoubJo4d86xvf5b/9b/6YdujZt56bjz5mc76mPRxY1RWnp0vquiSFRFlIoP049hTWYDQs64p3nj5lf9jz/MVLirJiud4wBnjw4AGHtqXvez79/HMeP3pAXRWsViu8j2xvb1HZ7DwFT/COP/7jP+LZ+99gc7LGlhW2rGlWa3a7G9quJ+ktURv6XiTNxe7A6mRge3NLGEfqssAoKGxmt6HEuzYcmywJe0zoyUuU7HeeLXYmNmI+zUfP0p8jkKnrWtw4SvGsDYkpEyGD+nmoHVOaBzITiy4E8FphYrjH/pKmw/memBq0UZSFxhYV41ixWoFSJYtF5PzilOWiwRpDDIFx7CjLkWfvXpD4Frvdln/+u38qw0ctrG4J856poXJ/u5HHjx/PQ8dhEHbk1BwlIzaWdV1h8hoaruHi/AHL1YrCFtzd3TGOI5v1GltYOS9u5L333ifGxDiMLBdL+r7PYJOblU7DMHJze812d83z54lxfMhi0VA3FU1dUhWnnJ6A0TVKWTbrG+7utrhsTxFx2Ts5ZTm84/XrG1arZ3gf6buRyTpvCru/z+o2xrBYNlxev8lqAwlNP+xbVs2K3XbPbrfHe8disRAGebZPGYaew2EvDbmWwd5ys0apIyNfGKoju+0+M9Zk8OWcpx9GirLm3/mH/4h//I//PZ49fZflcolSmn4YJH8wg7dFIYxReWw9DxJjHgKKNa4M+KZm1NgiA5w50D5KGLVcg3KNxojIr0uxZkQphmHMTCZ5H9as6LqOlKKs33U1FzIp+KzYS/wn/8n/kT//879gvVpTVw1KaZq6xjvHq1evaFtRboUUKIuCrm8Zxi7L6UeUAZO0KMySDMi10oSU1Tsw53lMzGRIc+N/f8j81SNNigm+Ai7x09iT8j311SZ9HuzLw0yqsOnnpp/5aeCSAFfhKMaJKmdb5CHCPFeQgUFVVaK8bbu8j1liEBa/y/vw4dD+f7Zg/ff0GL1HzZZdMkyRwdH0eeacsBSFqcZxIG0LGVqvlkvWq07ql+AplQykjRGLPFsUpBioyoJFU2MLsQotyuIY9ITc53HOjJnYbkIOUsjnMyln7gOZkHIjexxqT0DADOJmlZqSmxxgtsiTea2oDPW9a3IClyMp51MygweKDDb5QMwqZaUUZVmitSYEzzCMbLdbhmFgvRayQVEUb4F2E+g6jmO2BFJZnSU21NPwSLIjwnFApcBFR0iiLLJlge41yk2Dv/xjWn5vCmFPeV2eLa1SYvQO510G2KTesEUhQ0OtJHdI3RuNpckONJG0meuTmBL9MMA4YqxhzM85AYJ13RCcQ6coYczWEFMUi5SyxPmR/X5P3y0FQElQWkNdl1hjWDYNhS3wQWGKBmvFJruuK/bd0fZoGmROn9d9wD9k1ZU0wQbvhUkcfMz7wNGe6i3Vhso1RxK1puSAyNenvL6J2QyiOhFAZcSYSupVVb41CL3P/J/2tJTExuT4dX1vSCvNuNgsTQPQ+BaY048Doxspy0rOVTK4ezXkDEIolW1eFFNe5azgy6/NOyevS03gmuy3AjD5+b2SJsBEWJ4TYUH2Qz3fGzPAGmNWcBzX5p/1YwLwjrWCqChTOhI0SOYn9rd5vZn/ABgZxMecgabCDEZNoL78rjirwER2kf7P+SknLAOXGYQqsChVELUlqUBIY/6MpffXtpTrCNATCWSGuQRg1EbPO4dWClWYbB8sa7qOCrBstzfc3F6z2+148PABZbazjvm3Cy12TfM5QLFarRiGlhg9SmusqVmtTmgPA28uL/EhgZKA+bOzU7pxwIeB2hQUZUEKkhdSWCtZDQnqnEVsKcAqbH4urY5qTfmE7tU3zFvIV+qioyVnVDl3mTDvpynmDCAVIHmC6+i7PW27l34SRUyizoxJMToJglfayB5tjdh8590oJRmi92PP4IVZHlMkECUj0YgVaWEtBkP0FkOJN5BSwCaJIlC5h4kpoXScYDR5zQkhFmfCyAyuxJQHe3GunUHIBioPDJOSa3y2WUROYVRxrrOVOlprkuvvpNMMIkUEj0wAOs3lgmLqlzPT/CuWdqTcG6b76qY0fTcDO+keYWxSK0VSnCyt072rO78INX09g1NyV6OSnx/3eD3cP1dpBiRVrq91MnM/MR8TAKnu31nzw87vnTy7AwEaUffX0nuPKHjYXwd//Uwe5yePGMeBEGQe2vU9ikRdLihtTVMv6NoeY3Imc1FRlTUojSkqygyXn5ydMgxj7os0i8WCul/OatwQA0ZrmmaBzZnoVssIWUgAEIL0T26Ici8riEbhfDeDqApNWYmCQvrGhFEGowwpCTgl5Joo1pa2wHiF90cwabbf1WmG+yUfUtahGGVWOwwdKQnRJsbJASbKBCplQiRjvs+8rAVzTQSQLVmNZVLuu3xvGasJwXE47PBuwFjJUR3dyLT+z+CIHzNYAKCpm4bN6SmbzZLT09PZdUCsiyPaHIHfuq6I0UjcCQrvkOyroLG64cmT9ygqJ/P0MeIGhyksu/016J6iDDhfcXMbsaaBZIhRURQbrCkobcNqccoH75UsVxVaCQnOaMM45jltpVkuVzx79h7kWsz7QNc5oEJn5VNMQ86I7ikL+boLB3rvGdyB0XeEMNKwom1Fdeu8pywtFw8e0FRNPt9C+hyGTmYW1lKUMoONQdZqMimq0BCNIWjNth24u7kiuRFcINSBx49XGfAUomkoFKEfMcFQpYJKWerGsK4azlYnrJcr/vhfbhniQfwmc80oZKec3clkdaez+sgy2QrOBD2tKXSZHRJMVvKqTPiQ/cBOtngzKdei1L3Hw6CSmdXEagaZjuMD1DQdVHldj1K/aCvaJy11tIBUFqPE0c1q+XtSQuzNuwxTFpRRBqsNwRZY68USPAhRKMw3iKzFf93xr7HIS3PBpVDHPSc3MUZrNusVZWGI0eF94NGjC5pGwIi26/jssy+42+4YhsRi0bBZr/LFq9h1Lc71fPjNDzDGcH31hlevLtnuDxmMCHiPFFJIiNxy2bBcL2maCh8cSkOhJxblcWEIQW4ApfINqyPWTo3TvYYgeu7u7ri53bLfdTiXcD4Rk5r/JOQiG90ojEgjeSZlaTg5WfPo0SOapsHYApQmRsVE8PPeo42hKhq6tsWaR/IB5QK4zM2VePD3FEYuWOecSED7Xs5DEJup/X7Pqzc3jKOATSklClvO73vySl4ulhRG8pwKK4uTKjXrtQBBVVllgEdhbYEyhRQpmfXXZ6bgomlYLBZzRsNueydFUxBma/CephFGw2LRUFUlZ6cnvKxrUrpldI7lcoHvB9q25XAQhqsbZSBRFHXeaGC5XHFze8c4Oh4sV6xWa1abDV3vOLSOsO0IMVDVNavVCmvEbuZwcFnpIDe2LUp87zm0LV3Xc/H4EbtDT0HF2dkJf/ZnP6LLG2nSimZZ8eDROTc3r3F9h+9a7MkKP3pGF3FBFpOqqhgHx363p993uLWAWNYqbFkxhJGqOiFYzagUIXT8wnd/gedffEpdlTx99h5PHj3jBz98zvWuZ9y27PYOW5W8fn1JaRSbpmS5buj2HpLY5Az9gCSYJKqyoDo/Y71ecHNzTVEJ4Hq7b9mcnPDw0SOurt7wxfMvsnxXrs2+H7i5viJ4T2kNwRq69sBHH33EdntHiE+xRcXFg8eYUqwhu2EgKmiHka53gCZEWJ+csb3dErynLorcfEysb1n1xH4tD7OyJ/ARbT8WhMcmUspYsdL4Sc/Pn/VjGAZ88EyB84kpKBtIeh6KQ2607rEzp3M/M9dIxOSFdZsiMTlQVgIxs03QYimZHjEqzk7XNE0tzOQQCSYQQsdyteS99x/wt/72L/PJx59x9abNdg465+eQ0Sx5XZI5IHLz5XKZFU/ZTiQ3WKMb6IcWpRMxlnSDZ73asFaasixn1u86K2z6oWe4Gzg/v0BrzTiMPH70dF67QDyUHz58yHK5ZLlsKErF5ZtXhBDZbNasViviZk1TV6xXF1hTgbI8uDhwc3tDyKCE+L9r0FOmmyPe7CnLiBsDw+hFeXOPeavzsHXoeuqmoanreXgWgqdtO968ueLi7Jy2bWnbg+TfLBvGcZDhtRK7Qu8dXd8xWfsUhRQZYoFopfj2gWEcxX4UacrLsubhg8ecPTjn3/vH/2N+8zf/NuPohanvPMoqimnYjGT1zZZXeXIgioyJ+e9pmkqa0SQ2NJOP9cTInDzfZ7uOvN/ZsqSuarQVlYyPufDRUiSuVgvIw0hrLU0tmYjSzMsw/cc//ph/9s/+G2KIXJw/ECVHWRBcz3Z7x/ZOVMe73RZbWuq6ZnR9Zrd7QMBPaQCQAsxIUR5CkNylJCVZUnkwNTfXx3tsOo7Drnmhyl9/+x6Wn7nX+E8Ndl7zpsZ/+hy+ekgBmb7ytfsg1lE1labXkRtzNVsZ5gFRHqCkJMPloiwZ+h5SLjjzUH90gRCiMIp/Dg4fPDba+fNgAhcT3LernELHZb4iG5kxRmyYVwJwd9YQ3UgRHUZBWYriqCisEJGM7GU6D44E7GGuo2f1Rz4mMFkACj3bpX0VmJzuvYmYMQ2yp5+x1jIMQ264jxY+97NIpnv7/p9ZVTwNot56Tqn5vHPyfsLRRlPlAbzLqo+7u7sZJFqtVkDMils1D/O7vp8HmsbabJ811Qjq3us9XvPOOyEFmRKd1UjToClFuZdVkgytOXPITiHp8nkHL37uMgSN2RZT5Yb2bYBGttZ75ywGGU4ajYlyD6UUGZ3koqYMajRNQ11VFEVFs1iiYqAw0nDGlKibmnqQ9X/M2UGFkfyevdHZUgPKQoZBaAuqRGlHP0aqumLfu3kAot52x5s/M+ccY7ah0fkceO9xo2PKP5Q3fXybx7rruO7EGFExzJ7vZVlmwEUW1wkgFYAl4p1Y+WHK3CMEJhLDdM/N4Ge+vyYWtDVG4j2mtS4Pg0lH6yqtswWwkvykcRhz825J2WpMckoUWqU8PM/DASN5s5Od8BTGfLz+Ze+V8HIBzNRE9kmJ+5vEZFESpv3j3r00gcVHMpAwsNVP+7B+Bg+tzRGsSdMSKiDqcZwP0/4oXyEvAbIOJI5ZIgpxTDEoUs6iSXmIp+bZs5o/I8mTcLMl7AReToHXCVHGBRPQOve+aRSLRhIEi01iTzPt6ynd27XV8fOfk6SSkFdzgUHW86C0YbvbcXV9Rdd1LJfLvLZntweV3trT5VwlqqomRCf1kZG9oKqWLBYblLrFuSiZTkXJ6dkZd59/hncDsMBoUWb2fc+odFZdiWWWKYQUMN0j5HuPDLUcwYJpXTjuAxM4KAqo/HOKrBAIQsxAyYwoihOKSgGiww0HunbLod0y9J2QHGKP1gUhCrHXeVDKgNWowoiCN1uYTteJkKFkAA1ie5mUxqRCsqCN5CdFayhUQUwCFg+6YLJqjinmiAdZI+Say+DgRC64rzBXaSakHMFrUGq29pnPhX5rDZ0IRkc7o+lr84/cO2JSRAXzxfZWr6yP+1YOmE8TAJYfcALBj/uYZATeX5vuZyOSQan7n7H8NR4r4vxYs9VtCqQ0ztfp/bVPp0TS91VKc9ea89XuqaOmmwYEuOP4Pkj3/y7nIeXzLK9rusfUdDPOz3MfnPp5ODbNGbEKcxZX28rsbsrHtrbGmpQH2QUKizGVkH6sxiqLGweqxQKdieMkLTNEW+V9NxOiMtlpIrzbDAbEIA5PQ+9IKeHHQAxRLKZjZOxH6bFR1IvFnMsTMrhpy0IUepmQ4L1H5wiK6d4xRhwxYvB4F0W9aM1c2wj4lCDJIHwYeoahZ+qHEtILyT3gZxtqub81Rie0VeI0kPRMXpj6ca0NMWhSlKyiqipIyTH0Pf3QYgyMbpiz+kRxVKBUhdGSQelcEBC8KDnZnKBUYrVaMzqfe7BjvzjV3cCcGyUkoYRFMY6JFC0Pzp9Q1o7t9pZD20NyaG3YHwb6IdL10PUlSg0Qd2hVUtiGqqoIwVOWFaenDygrzWJRMA59rtkMXdexvdtCSjTNgqeP3xVyVhAVf2EPhGgpbIkPjsG1JDx9f8BacRTYd1tQgW444P1AItANnq7fMYyOGBJFIUR4owpMVsbFELIqLKGIlKrEmoTzEZLBFhUpGSEhaQE+NKAThNEztB3eecyTJ/g04N0g7lZO07UHUipRqsQWlqIoqQpNeWIoS8tnn33Mq5vnpCBOEEpbtIrM2Z9JzaCoUZZCFxkUSm/VBoWqKKbohek6zgCT5DCZtwAduUetKIm1fF2lItelR8vaqKbqAqaZ33FtFmtCrayos9V9VxUjNQ0Z1FKWgH+LUDJb4RqLiZLXZKzH+CAiga9mLv0N6+2/FmCSm1bPb2yyuiIllIHVasGjRw8oCsfN9QvOTk9JMYAxhJD47NPPublpIS0Z3cjLVy8Yh5Gu32Ot4uz8hF/4hW+z2+159foNry9v2N61DL2cqGnNaBYl7773jAePLliuGpSCcXSovBF672Zm2+HQ0/cdSkNV1wyDE+upSthp3o9iS5JEnnd9e8PNzR3bXUs/RpQpCE7CKH0eoL18+VIC4oxBR4VSBTEGFsuGx08ezYuuLStU0oRuy+Ad2hhKW1EWBZevviTFD9AmS9KNpe97QoBhEFuQ0NRAQcgs+uileQ1Bsd8f2O/3tG3HZNnX9z1Ux4LHGMN6vebhw4cE1wOORMwMP0HDJ6sLpbTcWKbE2IpPvviUBw9kGEWKnJxu2N9tOT09ZbFcsN/vGYeewpwTvWccB4xRNPWS5XLBarVivVoSw4hGWAQQqeuKl1dXfPnlC3bbG0iJN2+uef/999HaUhQV/RBYrTaEqAgxUtY1u7bFS3AItixIBkJILBdLzs/OqKqSuirkpkau0xASRpf42HJ1c8MPf/hD/oP/6H9FshaosHbFy1cvGcdAWVXUiyXWavq+55133mdZN3z8w3/Fvj9wttngPBw6T7Sy+d3e3RJ9zwfvPmPsHXYYUaWnQGF0TXCOsjrB6gaf9mx3r/jgax/S1AtWizXYhn/0P/y36f8f/4TPX/4Bpih4c3nDP/uvfpdvffgef/97f4t3PnjMj7+/ZRxGQlDYUfPl51/w3vvv0tQ1XXfgdLPm/PSEbnT03UFYJWWNy9fEl8+/YLfbcZ7ZEd57ur6FFHjw4Jz9oePTL75gefKQqzeX3N485vz0hA+//Ut89qM/ZNf2OB8oUuDTzz6jqBekpHFvrglJvGSNEUZuxE81ILlfERloZmcFHbNFzvTn/ooU5wL8mCM0Mfm/spD9DB/TgJ/M6EnobFkjDB0r6Pi8ccGx+RMQb2Liy30nAfEHlouCGEdSKkhJ7E7LsqawBpDGbX26RFk15z1JQRUZ/Y6iKvmN3/wO+92Bf/pP/jkvX1wxOslf0soScsaFUoa6XvDq1Su5Fq3IvJfL1VsWOH3fcX19zWKx4OT0FK0XXF/f0PcDq9WK8/NznJO1sO8lK2cYez759GNWyxWb9QbvRzabFWQw3XvP69evqaqKZ+88pWoSv/s7v8drF+g6AZmd8zzMtpraVKBKhsHTDT32lYXriA/CspLMI82QrQFSVHnTFvAspsnGQ9bw/X7Hdr9jtVqx2WxmhrdzUnx2+wPf/PqHLJoFVVlK8V+YrOICY8TetWmamZWi8/1QZYsssR2yjKOjrmpShNvbHbt9xze/+SG/9bd/i1//jd/gvffeo+96BueICWzZUNc1U2bQNHicGODGHDNY+izxF6A4EYKDpGYVbMgMfef9TDCI8WitYYylbpps42RwIWKcY2KGWltxenqawUFhSEkGjdgE1vUCUuB//7/7P/AL3/4ODx8+5NmzpyiVGNqWTz/7MSl61qsl77//Lu1hS7vfcXd7zTj23N7esFzVKJXwPtsmFZqIklBpAhgyYQRsKbJ259xbQ0Uz2bJwDO+WAVDK7Ekhckzr1tQUTIPhI6PnqNqQ+zXNa1rKA4R0r4m4fxyBqJ9+HHFdWSNiUnOuhTEGogzkQpAck6IoIQPIRLHRnawajC3mAdbP+vHVYUxKYf58pz0IFC54CGJt5b2nO+yxZQVKs2xqxtUCqyCMmiJamvOzeR2e1IASBj4iIeeaYejkvst73Dj29wZOcR7CK+xbn/19+7NJSSFKjmk4q45AgBKFSdd1M2Akza6dr6nj9ZgHnOSAcD9lAB0VJTFbB5IgOEc/PX9uoiZwSymdfeFPuL4Wpj6IX79S0/PKe3HOsdvt51ykqqpEYVmIlVECTGEJ7rj/S2Pt31JmTeOrmITBHvJ/fYi46EkqcXFxwejdTOhyXgKpy7KEMdH23fy9o595VtbkQQHx7XtRKSXA9qKh6ReY0VFme71hGPI14FksFmzWa4JzpOiJEZTRrE5OCDHSdz19PzCOnroUAKXretarxbxWKK2pmgrnFbawVFVJWVfAPrskZHVwynZEKqE1GGvZ7fc511AyVoTY5bJ6TKwiF2kCwY+1xcSOvw+Ke+fRKeb9qKDruPfzcb62UkwMfctyucw2eQGnxmOGVR5Al2WJv/c8RhvKUtizzklNkebXkJVzMYrV3KQOHsfMUh4YhgFb9FSLzbxm22xhopBeymhRRAhBzgEyAKvKIq/pApiWpZU0QeckwDxlYGimjKb5ngNEX6EUppD9TGx7ODb1sjCgTKIsfj6y7sJs8ZzVQFpyt+YTrY/ZXhNJQqckuQUwg/BhIp1pQ6klTiYGyW6b1ztl82ck53sYh2xn7LPriGcCo2Vmn0H0kOcCarKny8Nx5AX4GBC8SGoDqQsyiSSD2ZOt3aRKiREhTMZIip6QPIXSvHlzxcuXr3E+stmcEZKiH8XqWmtRvsT8HoqiwPtATArvkzibNEu6/QFrKppmTVktxd3FJcqqZLVac3t7y2qzplk0eR+Te/NwOBB8otAFKcBiLaTOSLZpmyzc9PQeZHQVZ5eEox3qBJ4ECSqc96ZxFIJBilEs2aJYo+qU0ARUdIzdlr6/ZRz2ONfi/EC7f4nzkdGBcxC8JURIxqALy2KxYLVoKAqTewrZLwojIFRMYtetlHxG1hgKo0lBURcGVRqMFXLAthdClnOOMI4E70hpUhYJ4BYIGay+n710fy182yqzKMXebgJ2lFLoeyySNAMeWdmU1RaorxCaYK4BdL4n9HxVTS9D7p2oElG9DSTNj5ZvKenLp56QrK5K937+3nubrt15QC/fSxyt9lJK+TGyc8EMHE/2ehNQenzBMxntrfcZ5vMyv/6UUHgmc8D7GVMzySXdr1vunQ8mfO8eYvfXl80/k0ccLIucUZxSAH8HSjKBUIrdbctmc5prDakBUhppmgalIhpFUSv2XU/TVJhCM7aO7XZPSlGIU2UJKJwfCTHgvBDg0YqFaUhJVOnOjVhbUJiCpqnmPChbrPB+xDnpHUVRJT1tYUtUlEynKdtXK4VzgyhPvEepSGHkOnZBXEtAgKlJ6T+JCqT2hsPhMDsmKS0qEGumDE/Jup4yE+X+l9lHUZUCDGlLQl5HiFCVJVorikLjhkRVVoxjZIwDZWlp263k8GSQr6oqhtahkqK0Fbt2x+HQ0SxWFGVNCImrN5fYopS4kUzyW61WVHVFwpNSYLvdslzVGKtZLOtcj8U81wk0zQm32+c4p6hKyYja7XacnK5puzsu3+zxoefBxVP6zpOCoiiabAdYsFqveLA65dDecnp6Qndo2d7tuL6+oSwtq+WK1XJNUy7Y3bWMPmR3ggWrTUnwmqpqCMHR9gV32zeM3RZ0QGt4/uJzHj4+px3uQEnW5adffMHoHXe7PV03sl6dcXt7hzEldeVJweCcZxgczt2RomPdwMnmDO8Vtmg4P3vIZn3K4EbavqUfOtbrNZvNhmHo6fqW3e6O3e4aWxhi6nGhxRQ1zvco5yi1p7JLhn7k1dVLVAGL0wW/8t3f4O73tzh6tIkSCaCBKMCjBiyWQpdUuqI0FdaUKOWkN89klsKKsv5+b6G1ziOCSRklgJXK2UdaWwF40GgsWpcZ8Dn2PTJmuAcskRC3OZ/3mKyYsplckvsvlakmIhjKQNT0v3mNlblWIhC0xVqwJmB0QKuAQoDQiQzPsT39ieNfM1UQCx6FQhmbN0oZSFmrWdY1h3ZL225ZrwxNU9JUlrbr2e323NzsiFGRlCidTk7OWG8WfPrpx3g/slisODnZYG3J3e0d+11P1zraNpCCZCeAeDEXpaKoNM2yoiytFE3JUxmNtQZtxEqsH0YSMsyKMXJ1dUNTNygCu/2epi7QxpPCgPcdfd/zox99wvXNDufAqIpIxAdQxlIVhnHoiUrUAEqJhUlZFSxWC9YnG9abDcoU+AhpdKAtRVVz/eoVy/Vi7kt++Zd/ObP/xJszxcTd7g6wxDgF8BouL9/w6uUrrt5ccdi3LFZrvIe27bi93eKco6xKGa66yG48oLUECys0xMToBprK4l1gHHv8OHB+es7p6SnL5Yr9Xvw9Q7YOMsay2Wx4+fIlQ9+RYmAcRk43K2nMh5FQlFxdXfHhh9/iyy9fcH1zzS//8i+yXC3YbDZoowXF7jpWqzUXF+eYyhGS59WrV5mpbok+ZO9NR9f2eA/b/cBidYoLOtteJMqq4eTsjH50vLm6IiLMx7quKcuCvjtQV4ZXL56jaFFxw6JMgs/airJaEiK8fPklm9NzQgq8ub7it//+P+D3fu8P+fLlC27uOr7zi99lv2shRJqiJo0j3brh5fMvUGjOz1fY5pSkNMO+hhB4+eVL3nn/m2JhYAsoCup6hVEr1FKBiqTYEolURU1hK7QtoRDW3MN3z/nat9/hh3/1nPYQqKuCz754xX/+X/wX/MovfUC5LggpMLaeoU04/Zq+P9DUYgWZYhS1hCkIaN55/z1+/4//jLqq+PDDD3n06BGXL17wwx9+hLWasqqx1vLk6RNevHzJ4bAjxMT+sOOP//APMFrzW7/1t/CArVecnD+iLA1VBd/Whs++fM3drsN7xefPX/LtD7/G48cPKUrDn3//r5jK1KnOizkrKCU9qzCU8pm1FvPQSYpvnXNmrJ2KfeaF7uflkEKIbOclBfs4BAGDCosLHsMxdHZqeGIUJnJRFhSl5WRzgvMjw9Diw4HFUgb6Q1/iXUlZChtGKwnvK4oSWxh8tiPSWoI2h76jrEpQI7fbl/z23/8N1qsTfv/3/5Q/+P0/JvhEWVWMgyfENFuiPH/+nLquefr0Kb/8y7+MMZo3by65vLykbfvMmsny6rbHWD0PP40xPH78GICXL75kt90SY6Lve25ubvj617/O+x+8x5s3lxwOe548ecZ6vebm9pLVakNRGlarJcvVBxz2Pf/lf/lfs9tv6foD+8OWYWx59PAxJyenPHr4LnW1YrFYcnpyyhfPV3z8eWB0HUfrFpWf3wEGpaUYGEdhbikUXdeJXR0wDD1325ivZZvl+KI6vLy8ZHu3Zbfd4r3n8vI1zo3UzYKqLrBB7FTLsiKhGINI5rtuoOsGDoeO73z3lzgcWoZxZBgkYPU//A//I377t3+bZrkipMjdrsUYw3K5webMh2EYKctyBu60tnMeiYSldtze3oBKLBY1q9WScRyIPrJYLGam02G3k69nlqdYDhxB4bKuqKuGCAxOFFSHfcd6vWKzOWGxaBiGPYUt5yFu34+Mo+fi4hE//uhj/uRP/oT3v/41vvn1b+LcSNse+JM/+SP6VjIbdQao//RP/xg39LgYSKT8XgNlaUkp0PWjrI3Boa34bHsvBXy4x5KcWPH3h/z39UxpGmPfb3anRh8p8nQGn2KYAKVjox1D9uzX0zBgGjpENEc7pVlhEeQ1zplK03PeA6lkkDsBYDIsdySMibNyLMQRUxQYKwPZ8/NzDodDtjDbY2xNiFA3S7RSXF5e/v94Rfv/z2NwI6bIikBFtmcQ5SQJLCYD/fKZqwwIHnY7iqLHFiUGKI1GNRWpNJh0zFCKUaF8YhilsXRO5TXaonW24iKh43GY6BxMl6GwxI/2mqKEDG9dD/dZytNeOoFCMcbZti5GIeRIDX0cwvwk0JTeutZmpkjO5Plq8H1KUdhtMxnkONGZ8t2qqhJVvzHE6POAUtqNQ9uxO+xpqjoDz1LLRrJie3Syr4RwtOCLkcpOac1Z4ZASLmYbuCT3zODEalorw2K5Fju8bPGSUkJbS2E1/dARUjyu05CzReS9TO95sqKdVKRRKXxWbpZFwWJRE1Jgt9uhlKJuFujy+F5H72TokxIqis95URhWqxVuGLi+vs77YWTUHh8c+/3+SMJRihBg144c+sBu3885V0odreqqqqAwJdoojMn2lxkgUUpTlvLeFssFSmsBZLKKUbLvjpbFx3B3eQkzOJmEHer6ARUTOkGKkkMWQhTLDaPlvYw9ZVa9TqCL9+NcC07Xk1iDKKJKdId2vqYz7EUMiYjsNc4FlsvyreutKISckXKnO9WTthCFUooJle87pURFO3/G2QM/t8szeFYWlqIw7HY7QpjW/XRUguV7wPuYnTMEjBz7PrPGJV8oxkjUClUU8+c02Qb/rB+HdpBMm4nJWyhClPt2+p84k+RDyb48qb+0Fp5tIu+JMYKR6/J2f8f2bkt36DBas2hWVEVJYQuxC3Ue50ZiFHAkRi8W73Zas2Rd9CHgO884OpbLlQyDJgEHCueFgKG1IabM6M0M+MkGLCkjY/hMtFFG0bcDRiusEUVKP3iKsma1PmW1POXJk68xDOCjz8pNIVGSH+fQ9agManuPADBDpKxXpNRjzYjRBSlqulZs5utqwfn5A4ZupO8cTa0oywpTBJQJFEqxapYslhuUrYlaLEl98BwO/ayYr5sKl6/Tvu8ZR3HPWG82lIiKACAhWZqEgFLQd8IsT9GRslVXCo4UAkQBmAwRawzlshbSUpVABYZ+kMzZUKDNmpRKnBNlqAzKNXVd5EG3rMOjh9FFwijEiLKq0LogJUs/BobB5fdT0iwqrFFUfSkZIF3HdnvHMO4gqVwPF3n/lvVyUguJskYOnclD99efKfWi0MevJZIM30DW/XkkyFts76mOvP8NNQM7P+1Q+fFk3Zqfa6o1mche0suZjNaG/AoiR2vriZwIZAWsEBVgstmb1Kmyz/pM0piec7pPIdei6e2vTWWzdz7nN76tiJ4fZ/q6DSQV53V6OiVH3ChmdeHbhBu5Z44zzq8CUz8Ph0KTnMRkhCgEGiGeSETGem3m/lprA0nhwkh7c5hnrFVtqeuSbthDkhq0HSRHvU41UTfZaakXkLcpWZ8sCaOjG/Z57UvgBfgYk2cYO97cDFS2YPAdCSG1lEWNH0bKqU7KoJEfx7kmln7OSP5k8GiT6HtPTAFjFaenGwG6nMcqhdXy3qZIAVWIWpmkZ/cAUURLjlNZ1vl2mki1aVZ6CPEk5WsuEaKjsA3O9fneDAxjz3Z3kHWOQEpi31yVNVW2hh7HkaqsObQ72r7NQKrk58V4Jy4IwwEfBnHfiIkPv/GAoijpu47ddscwDGw2G4pSs91u+cEPvs8H7y5ZNBu6fcfhsKPt7nj+4odUdcFquebk5JSqrNEmsFzV+DDw+vVL7u52LBZLjLaQFIulpalP6Pot28MdZSXzfm1Kzi8e8+zZ1/j8s88oK8NisaRpVhhTsyxKQO7T1XKB1gU+AKmmblaslqesljWvX7/gi+ef8vkXz8F4Lq++pG4KHj16SDccKGzNo8ePsKamMEKQf/z4CavlGpPVU0Ie6jG65pvf+IDbmx27XcfdYc/rq1u++e1vST9SaJbVmuATq/U56tASUsHoI7/3B/8tZSV5t+M4sFmd0A8DJ9WS89Upi+VD6sKybizbbs+bF3e8/8G7fOPZN7nZXdO5AzZVqCKRCDR1xdnJhqqoMMh1ppUm+kRIO5mbIZnddVXfIzBIrmNMbxNPtdLifpbEhtuYTBLN5LaUhPioci4i+f9TzsaFBNN8QSlCSnnWkSDbqEvWI6ANxpZYW77lIqCVgK9CwEs5tqZCKYhjS2FKYgmgCS3EOMj3lJDG/rrjbwSYQkjC+EpaFD9Ro4T3QtQAga+9/16230mcbFbZvxG6tuP2ZotzkRQll+V2e8fry+dZ+aI5PTvhyZMn3NzdcXN9x83Njt22Yxxkc4vBUxSWZlFz8eCUhw/PaJoCbbL9gAsYk1UT0dO20lySGcjDOGCsIYZE0gFtFKPrKYh419N2e95cvuFw6CEJahcwlJVmHAfZlGOYG30ZQEGzrDk7P+X84pzFcikqnLJmGIU1orQ0H1pnRk1RUFc1Dx4+ACWhv3rQkhlyfUvdrFBK8n7atuf29o6u6/E+MriRvh9o25H9/iAbhbY4J9LGuq65vr6lKCq0UiyXS548fcT1mzc8fnyRF9DsQa11RvstIYjqJREIQd1jXubQyyhB0YN3XF1fz4OO0ha40aE11FUpIWZWFEbGik97UVj2uztubq65PThOT09IREbnSDGxWCy5u+vZH1qUKShKR1kuSUmGAs1qhdaKthuICEuhrEradsdyU7Df7bl684bN5iSzIgYUYl/oVMAmCVc1RcmDR49JCkY/ooxhuV5SN08J6o/ZHXoZ3BvLbtvR1A2r9Tkffmh4UwHJSR7Y2LJuziQvgIo4elLy9MOBpipRDLhxh7Yli8WKZBRJRVKAm5uO9999RFXWjM4x+ETRLPnmL3yboqzY3fYQpFna7gaUHvnok+f8xq/8Etevrvn84+eMztPvBrSRBnnRNLRtizYiK60WYkd2crKhbXucl4ZKGc3FwwsU0mA3iwWff/4lxMT52Tl2ccqLl694/fI5l69f0PctKIMuai4ePSGeLdndvubs7IygKsybW7788pKr6zue1y9Zr1Y8Xj/k7PSMN7d3HBU0U7E5FafxnqXKlDehsrWFzgvqBLAeh18/L3YiAM6LpHwKvY4xMY5hZk8qlYdBWUXy1cDqpq5Zr1fUTY3byUY6jHsOh5L2sGQYpBETdkSWz1th/0y+3aK2LIWNkiZGt6YowIcDH3z9CQmPsZF//rt/jHO9sIIKYZdbW3JycsJms+b8/Iy6scJoKhRVXdB2B2LU2bpPIw47wh4vioIQAp9+9glte8Bku5yyNCyXC66vr9jv93z55ZecnZ4RUoPzI2/eXPL8+XPW6xO+/vWvY8yGoih4+OAxT58+4fLyNV+++JwHF+egpOlMSXyM62bFxcVTEgFtIWnHy1dfMAwe7xRdO/DwwWOKopKiFY55HpltWpYFw2DmzXqylhK2vUMrTVmUPH/+nBSiWO4osZAMUROTADy73V5sP21JiDEPJhMPHz2mrmrKSiwNhn7k8eMnPHz4mHfeeY/f/I2/RV03oDQaQ10V2EJYNtOQ2tppwCePObFBJbi1p+s6rJVmXGtRczo3YHSNKGSEEOAz+/9+TsZktSbsVpH+D84hl6fm7OyMplmgtaXvx2xZkG1O4jHH5fWr1/zVX/0VP/rRj/h3/91/l88/+VQ8xVMUf/HoWa4WHPY7bm+usFZzd3PAR8lRKgqTg1UHlBZSSiQSUkBPdgdfWU5m1qfiLdbj29Yeal7LftqRpiY4AUqAYT0PG7JSZu6XM/N5bnbeVkWoDNr9tOf66mtI6vgSlZIBb1k11NUGPwRCE1nnTMQQEqcnF3zx+XNpxrUMyXb7ltFFjC5os1rwZ/3wwTG6QZpdK3XiZC0KaV5bJzs5N46SixDENjaFSCAR3Uh0eYCWH+s+YDOty+SCPzoBOgsMIBkT06Dm/pFSysxjuV5CFMKBDves4+4xfO+rlCaVomTNCHtVFD6i6pGBfr6+hICWlUjkYc4x5yYET8o2rJpseZSm/D8BoCYFgigZ1TzEaJpmVl1ONh+TSmgaIIjCRazxYko5E0kG8T5GUSikSCTXAXlgL+uZqOyrpqEderG8y6zBKSTeWENRFjNAlPJ5sUXOz0OAkykvaR5KqSOYNqmCdF7z5bUFfF77tTEUtqAqSoIXlVhMka7vGMaBqqqocnamJuJToO07imKVc0bMXG8XVUVVFex3t7x5c8myabCFze9JSXbSODIM8kcy5XiLFRlTwJCtNnKGggypPcM4UJaV7L0IMGMKO9dsch0ery3IOOM9Qst9ENJaI+vdbFsnF5H0J8LEFHBr2i+EUKe1ku9rjY4p51aJtZ5z/l5uUaCuq8wYtihrgWzrOg0wAaUMVVniQxBLw0xWIkZRhJDEzkSaRIL3GCskt+l9yXvMg917zfJEdiK/B1MapuwB7z2jc5SlpcpWwMfzwL3zZDHmeO/cz075WT7u9odZUWKtFTUTnkm5q3JfLDb1ss6EGGZihqxnoh4z1mIs6ELmAv3Ycuj2bHd7UkzUhw6rDWVRsl6uBLzyLtthOvr+wKKpJY+zLiny5yi2RKM4gawDm/XJvB55H3AhUVQKW4h6UOuCifSWoih8eic1lUaua58GUYFnkEybRPKR84vHfMfWPHv2NfoxklSgCAZbZpA+qZylOdDmPMSyKPNQzPHq9Svef+99xnw/T4C59yOjM1glveDryyuqesnJRrNeneEHGIyoOclWdME5YvL3rPml/itjBcYK+JYUPioGn7BW45Mi+QguCGgQPTFJnWWNJURNStN6gmRbKsksEoCpEOKnElKSNj1l6WUfirKWKK0xpkCriqLQlAGUiijtxVI7RQHllCVpSfJ1ERyaFDU6KIiyT48uUCggCJkjaIXD4IkEZYm6RBXiBJC0IWb7T2UViUkNzlv2ixMsQjoSkEwGBhVpXpPk+9N6yLx3HkVI+SJXk+WggEOy1ASmjGL5kfuF6f077Kcrdb4661NKESdQME372tHeelZcR7E4JEXE3T7NA8wYIlYjAfBzZlOZFW75caacwomgECeHg0yGeQstSvPLF8xOEVKuk7MSXx+LkuO5m2oin+0R752PHFOcCTpH282fh0OIS9nBqdAUcQKCI973mYCSc4gmvhwRrUJ2nzkCgJOLSgqGrt9L3xh6Rt8TvMwuR29wviTGmq4TNyWVVRIoL84V2bbOWJm9VnU5kxGl/kqEMJK5mdR1LT3bVK9FL1nwQVyqKl2SlNjyiTOSoqpqlMp7RYwCJGGybZ7NJB+Fyupp5xz7/ZaqKqlyzmVKkZg8/dAzDuNMbqorATyMKUlJ09Ti8AFpJipMqq0QRoxVgBbLUiukv91hz24vmcvWFFR1SVGMuFzv7Pd7isrgB8d+v5O6LkZevnzJpIKaXRVSpO97hn7k4YNLnG8zSWKgH3agxCmqKAuc84QQaRYrUB7jLednj/jBD37Ie+9WVGs5b2jP4PYMY2QYE3UsuOBCank0KRasV6dUtRC7htFBIYSiSCJFj4sj69UJ69UGrUtAE8JI3/c0zTlPn2o2Jyege0LyJDw+grYlzWJNYRtUsvSt59GjjYBzVUFTVSw3lexP7Z6h73n15jWnpw+5vL5j9CNnD854+fozur5ltd5wevoARYUpKhZLS0LTDQd2hx3bV68YXZvJJg1lUTNUK/Ad67Oa5DXDuKNrd+zaA4vNgqcPnnB+eoaPnqACh06IX3Vdsl4v8U5A0cN+TzcOnJ6ckgj4QWxth9GB16zWKyEsIEq6RVmKq4LP9Y6GwQ1yjVT1PPc0xqJtgUpSK0kfF/AuQCZRpQg+Bpwf0FrIKNI3JYzKtZNWaA3WWMq6zEQC8nOY+b6X8tmQsDNHwBhLYWpioUlJSIuFEbelFIVwln7aRpSPv1nBlKRpSxOvIiUJo1X5K8lzdnpCUQwUJlJXmqHviVF8vvt+ZOzFPqMfB2KI9J3c4Gfnp5ydnVEvGg5ty9X1DXd3e9p2JCU9byraiEXE48cXbE6W2EITo6BsktsghahzMdvMeZE2JjgcOlbrBcnI5ulVwtiUFxLJM3pzdU3XDcRUgLLEJF7vxxCrmFFFCZrURlNWBc2iYblaUZV1Pj86M0QSRJHnF0UxS+WstZRVhffSyE1DyGFwJHphcaqCtu3oup4u22c47xn6ge1uT9+P1FXN6IfjXs3EkDVif5MH9OPQM/QDWk/Sbc1qtcoMeRjGkfVmg7ECzO1ymJrOTICQjvkaXdex3+/F+gi4fP2KbuiZMndkmGBneagxch203YG2c/R9hwSs5UImQYiJvh+IaQeqY3OiKKo1RV1LVkYUloDSKW+iGh9Ggrfc3Nxy9eYN3/jG14FAYS3BK7qup5y9/AUVXq5W1HWDmppIlbjbbQlSK6NcxJiSslxibUlhFU2h2DUN5w8uREV4tyPFQW62hUXVJSkohqGlSgt0ssRoCG6RwVdhMGoq+s7LbaYMPgx5A1xwcnrBu+8lfv3Xb3n54Ia//IsfcHd3x26feHW549XllhSgXi7YbV8TuyAAQFFyfiaqlH50LFE0yzWnmxNOT88YxktCzj7Ybk4ojCYGaSZWq9UMNiXENsV7R9vKwurcgLWG9ckZpV4QhwXt7ob1uiSaBhcN293Aq+0rttsdu92eiwfnPHz4iOvdfraUOQJMeh5WybA4Vzf3ikF9b0Ci7n1NZe/Qn5cjRgizX3+2LAoBEzwmSJ5Hyt7C9y1prLWZLb7I97cM6UbnpFltRRU69IHghamgdMAWskFZoxmd5NIYqynLYmYCTSYNxmpc6KmbBU+envOLwze5ub7ls09eig9wAoMEy1dVme05As5LhpwxiuWy5vaWPBgTyxOlhEU5OgmGHN3A5eVrDocDm9WKRSOhvCLlV7TtgcvLS2FiL5bCoEgBVKLtDvR9Sz9IeOlyteadd95hGDtubq/ohpa6r7i5vUZsMQpsWbFcbkg8Bh1w/kDfd9zd7eljJFFydnpOVdXZbiUPE7Qi+jBf43P+TWZA1U3N0AtTWYarkXE8QN7IY/RoE2erVO9FXbtarUnA6HxucLXk0K3Ws0XBw0dP+Pa3f4H33/+Ad955j9Ozc4Z+QMjAhqKwQF5n48REjzKsAcpCGNrB51DQYcA7R1VXVGVFTEfLodWyIRFxXjL5pntW7m+whXgDz8xgY/I6K/d0VVUUZZXVUjnTYhTQLXifbTXk5/7qL/8Vd3e3LJdLQgi0XYvWihA9XdeybGpsoeh7JUOVYWAYBxLiI+5y0+mcFPva5AafaYD6ttJiYsgnvgIepSMjFI5D/a8e07D1+D31ld+9d6S3f+/txzzWA9P3/7oHmFinR6XJcWhgbIGiQFNSWUtdLjg7O5Gsy9sb6maJyt7OhTYkJM9MvpY45KHWz/oRSYzeobQSgElN4eRyTqdhi4AL4J1MmEKYvN9HUVR4T/Re8kDu5TLMKh/yNaKUeMqHQKEtISt3RXT0tk3O9PzTVFt+JANJ9wblQgiIpClHLDOHY2ZjKic1O2lSOEn2lLz7CYyYrqNpzJPB0HjMV+PedTbZ4U25KhMgNSldpr9P9/0ExMeUCDGhY5wtUIy1Ygeash0dabZnnXKRpKbOLPAJQItJFGcxUCAg0vS8MSUCIVtOyVqEUjgvNlTKiEevkACyFZEWctQxRy7lz/IeEq3IQPARfJmsrFBHAlnpZKhyH7TsupZRKaxRGJUwKjHkTJgJVAkh0g9jBqal9u77FgMUoRSw0CdCFBVXiCEDiWq+xtR8nYit+ARyiA2q5Js65/MAfyLyHAFC8hWbEvPQ8Qi8HAHT+d+59zLZCmq6erQSC3KTbRa9n+yP5XuFnYKLJy96AD+TFe6DrSmRgSip/bUShVEMwr5PMRLD1IgLKJDCBArm/6bjtVsYM7M+SSbbCx5t7EIIki+Zr6lpsJP8kSUqpI18UUDOfxrkdRqxG1PZ4QMt6it57/m8zblEP/vH6B06KJzW6HHM+WNR8qryRVGUxTSGPw7YtYDmorbu0UazaBqquqA0+WrTEVsaqkUJQQbUXd8zjmLFONkexRQZxoG7u1ucq1E6YktFmYEPsZgf6YcBsJTFAmNlWNl2PcPoqZtA1SSq2pAIiB27EIyCD3QHsRU2RpxNxD5aBkdWK4rSEJwDpWkWK2xR0/UDISrKCGUCbVK2jx5p2467uy1Kaeq6IaWBEEYOWbUo9YwMYEMYUaoiRsfQu0y0FUBAeDeWoqhRusWNA/vDgX7ocaoUZn4IjKPUgUVZUtU17l5un4CCmojG5/4k5t9JQcAhayyxSKQgPcw0nFRKQLd03xs9FaTkSS6B8zjfkxhp255xjAQvGYbGKBIyIDQGUoik5EEnjNfUWHzUomKKChfFKk9lJo8PiSEgRAgHaUgYH+ldYPSRMULSFlM2pJS7nGldMm/JZpgWEQV5i5zu32NNlt7+C18xt8tr0L2/z+DQ9FOzcR5KeWACWtU9HOmtR8yPOeUQHQ+x8s67ej7vasoX5LhPT/1BCAIY+uCJOitt1aSUzmQbHcCknL+b1U0h96oEoj6qphJTjyPraTJpemFMewwTPJdmGA6S5Owxre1yB+d9Gaac1Hm/mf6d95eU7S/JwKD+KpvsZ/iwhQIVM1AUUSbmmiWRgqcfWpKKlEWFVToTyEW1Y8y0n+drwbucp1uQCCglqqhhlPzNorSEMOa1J9D2rTiiMNktC/lE8MGINmRidIHNVmGiCJf90nuH92HOG9ZIxlFIntH1eO9QKlGWhqSS5CW7kZSSzDInsDdlgFpbVK6jlJ5IH3quLUKK+OgwHkKEvm9pDwfutncM/UjI6+b5uUYZi9JWrHULjfF6fn9GabyrISVCkH4zjB1t24m9faH55NPPaIpEVVnKsqAoS0Yndn9STynK0rLf+0wAlRnZ9u4WY3XOUHZ5vpsV+35gcHdyjZsSW4IpoGosZWUoSiE9xSEwjhFtFFpXLBcGo0qMKWYbbG0gJifreooMo+dw2KPVImdhWqxtMhlWImOsLRE7V/ksoh8pi5qyjNmGzVIWBX0PSi8oq4gtC/bta1arU/rhQN85rK3lvCkxaTNFSTeMuKs3LA4NJycrmkVJ1x/wcQQd6MfA7rClG1oGN9KNlt3umjc3b3gUn7A6WYqNrVJoU2CLEluUxBQ5dHcM456UPNvdNYvFGl8e0Mpz3p2jTSFZ5XgBN9uWdbOkGAxj8FRNw7rc0PUthTE0esGnLz/hZL3Cd4n+MFKclCRq+m4kBsWiXNHtO0rlQatc+wxo3Up9mOJMugsxUhQlTe2y80NBNAprIkYLkcSHKO41/UAAqrqU/FAgREeIHpeJwDL7iYjSTOrvsixlRm8tIFmyUwat0pJDa7XFB5f7R5WVTZZgEsEkjI5oYWOj0mTN/deTpv41Fnla1D8ZZZNBhpUwLZ1QOmV2eklZRoyOeD/gfcyLVaLrHFpXmb0eKHIB+MEHH3B2cU5K0LU9b95ccbvd4cdIXVZ5CGewpWWxqHn3vWc0TSVMQDcS4kDTLGRoNQwcDgOj0/SDx5hIjAjgUBbYLEMPPlI3hkO/o2333N7e8ubyhkM7UNoC0Dgf2e22+YNJx6YBaWTK7AFcNw3L5YqyqmVY432WCkbxgHeOqqpyOKUSdD7GuTAdc9Bu8IGDa6mqxHJZ0XY9bgy0B7EZ9D7QdQN32x2jc6zXJ9xsX0hAaRD7I2ErNnjnxabp7g6tFV3bUpSaqpJG8+LiAU3d0A8jbTdwcnpKVQVS2nK3OwjCWZZfuTg1zo0Mfc/Q9aSY+PFHP6Jqas4vLkDBcrnIln2K6DKjNgpb0PlxtmaKQYqFYZRsj3F0dL386ftIszqjXCzQxtK7URrpEAjez0X7MDjeXF5zfvZGkFklnqXtfmC/27NenEgIc7Y0saZkvdoQSAwu0XcdP/joOUVZUVYNiYAxNWfnD4lepPzRj0RlODk/x5SWoiy4ub1DVxXL9Sll0eCdoh/2VGOFKkFFTXB7ohuIpiRpLYGKKoOKyjGMI8VyDXnIf3p2wT/6t/4+t29uGV3LX/7lwG7bcXPr+We/80d86+vv8eThGc+ff0KMhvH6FqM0jx5esNvtaLuBRdtjipLv/tKvcn52xs3tHTHCxcUDYghcvX6NC3EOy92cbNi3rVxbuqbvW4If8W5gHDq0WfLg8VNKBrqtQemCpqnBxCw51bx5fU0/eK5v7jg93/HBN77GR599QRh7Jlx2GlLcDzmei3JyQagFTDJaFEzTYETlz1X//NSI986bNH7HYZKcO6NtHuzLsGMaEFVVJT7lq6XYVGrmxrEfPO2h53Bw9F3EOWlKVC4sjWEG6a3Vcy5QDGLlk6IiafkcvHeM/kDdKL7+4TOa5u/xf/+//Re8fnnL0EfKquBwGLCjoe00ZpvQVsCKuq5ZrRYoJUO8IoeXW2tJWsI4J4VJ17VSgGpDiknsSMtyVlgKINry3e9+F1PI/vDoySP2uwMuOLq+B2Vompr3PviASKB8YdlubxnGgcs3r3EuUpQNtih58OCMk5NzbAEhtuz2O5x7Dclh9ZKHD54QYsU47GSAoaRA68aB4Keg9KkFFMby5nTD61dviDGJ33TXUxRG7OWCsMCSilgj7y0xcjgcePToCfu2xWSVicqZEXXdUDcNShu++91f4hd/8Zd5+OAh1hZst3uM0ihEBq21kb0lulzIijScmCiLUmxTjOGwv8sZb0E8uI2RQtKJZUzXdZyenkHyDKNjt9+zXC6zfaM0fjIkTvPQuKyreSBcFPLeYl4LikKC31MIRJVmgElpiyoU3//+9zHG8p3vfIc/+ZM/gRRo6hrnBtpuzztPH9EPLdYayrLg5YsbxnHElnmYmdnyzo9ENeU9CHCaYB4qkz+p+W/3AJ37DfxkkTiRKPiJ7033bfrqb977dx69qp8OHE1D7fuqzfuPf1RS3WN+AlPRKLINAT+qusGPEF3i7OyMxw+fcHpyImv7MGCLQuqpokBpQ8xZNUXGxI5WgT/bhwC4wvaUey/NNsHTeZgs6WTvcpDB83k4rIwMW7xYAQkS5d96Hh8COufOAbPyJupINkechz15GiQkKO9zmKua2ZnH1y6DWAHVYQ4hB2kWRlECyeCvnAFwYZH7e4OjODPg5f1wD2jLz5lBFJ19wZU5WqVprefXe3ydRyBiUi5x/3wa0FEfSWNVle375AUEHzMIlp//SB2fX6fPys4yBMp7gNikAgo4vI+U5dH+c3BSHxvyOc7kGgFz1AyETfkhEWYwZf588uwwxjQz20O2hjLaUNoCbwNGa5qqRmkhSO32W/Z9j1ZgNVSFDJH7asSPjmFwM7mg6zY0dUVTN9wNe7quw3mHKUuU8iRdEsMxU2MKrZ6GdGLx6FGlEL2mcyOgYMo2fMLMVSrgfXgbYFJkFvNEXjme98nicQIYY/QC0KqcyZIiE0NTa7Lt40BGISHbf9vSzveQXCdGGMBKkfL5nl7TZFc6EdmZALEgA3SfwEw2oZmUFMgsfKPuDZwEnCpsIZ99iGAlQ0zn/Byt5NqSfJ8JTNJUdSmq4yh2azrbik1EqIl8J6pgi0Jyn4wWT30SRC+26nK93c92+Rk/lKj9gsvZZ5lcKLWtDBCttZTZotlYUT9DZBjEMujQ7gUsUgFdLih1IYHglWVzumK5XmAo6A4Db16/keGLH2mWov5LKpB6T9sdSMqxXNegI6ZU4I/qzhAT/TDSDQM221Xe3G5pDz3LtWM5imrTeQF2VS4qfAjs7u7wXhwBFouGftwSg8doRWENdV3ixoGu7/EuEIPMJczgKEZHOVbiAGIL+r5nv9+z3d7JgCkmlBoEZIqOYeiIcUThiXHAe4XRSxSeruvoDgdsdh3wIdL3I7YoQWm6oeew2xKiZ6QkxGzX6nK2WVlSNzXLpbgglEWVs0YFVB2dl/fsZRgquXRT1k8geTILOuZ7MhN4YiIFBVGhoiK5gBsH/LgnsieEnt3+wDAEYihZNApbOpQphMxbWlBBhn8KitJS+5KkCnzUuKCJWGwUYlNCE1LCYYnBEEexwARh+08EvqQtZVUwV2/3CD4zwSQd98JZRcNRHZNSwjk/D7jnSz8PTWeAR6kc7D4BRuqoHM6Pp6fNLu/XRxXO8b/3CZcCjuv7T5sBpOkHYMqi08bO7wEmgCkDQcZjtAS4TxudQolV+2ynF1F5DxG7O8nxTDEdc5sQ8rkQMEJWP02kBzk/98mnYgWfScxRLNImtbZY2jqpc5LKwNbxfSsj1n3MhC4119KT+iv9VKLWz+ZR1AIAeC91hbKJkPdSlRKHdkc/9FycP6AsKyCIs4OOeS8TINf7kaHviBGMrYWAWmSr1+jwcaRQBucGnBcywDB2lOVRhV7oguVqIepRJxlsRSEknCLbUE75vy4rSLtuoCgk+kLIGorgYh6Wj2iliDGg9KS+u39tCmkcpbIrS0lC1gJgXuNB5rdVXROToxt7hqHj6vqS6zeX3FxfE4OiqpY8eviEpmlYLBfYosLoktVqmRW3Kauh5VmauiJEAYH6oWe33ePcSCLyJ3/yp/zGr32H1XpB1VSIG8eYldqW1WoJStZTRaKuK0iRtjtQlpZxFHcRHxxl1WCSzD+GcSuWroUilgWLWONpMKXClmJnp43n9etXVHXBctlQFiUPHjydrfO9H2c7Y2USKsLoei7fXHJ+8oxyYUjREJLFx0SMCpSmahb0ncxvZf0b2e93aGqsBWMidb1A64YQOoZB3Mu6LlKUK0YfaHcti8Waw37AGU/TVJyePeDq+obd9g5rFBcXp5yfr7m9u6aqxPGgtEs+++JT3CjXze0Xr9HG8+LVJxRl5OnTR+iilGy9aFBo6qqhqcUiNVi5fna7HaI0GkErzu6uWCxWcg2Viqo2RDdSNg29C8TeUTUblssVL3cvxJYV+NFffMyv//qvgjPEAQpVMboR10lEy8PTJ/zozY/Yhx60JqTAvm1p2z2b0w3GGu7u7oQUZ8QusiorHj16TNOIlbWxlqYKmeAc6fqeQ9vSD6Mo1qoyg5eW/X4rzllJ8h+dF1tqhfQ7VVnKLG4RaJoVFWLhC1JvayPWmMMYcvaueI8qDFontI4YbTG6kHlTmlSk/19a5CmK/MuZtUNuZHSkXi34xe9+k93umvOTh9S1Yui3EKOANRHGweOjJZDDXZVYAxVFwfmDB1RVxX6/5/r2jpvbO4bBEYNsZIXRNIuazWbFxcU5jx49JPoRZWtsYbEJLi9fU5iIHx1d54TRMpLt6QrOTs8xRtN1LYXVNIuC7nDg6uo1z58/5/XlG5xXDEOiqkq8g+u7O6zVrFdrhr6ffbiNSpiq4OR0zbe+/SHvvfeMh48uqOuapDRt51ivlrMHalFV6KhZrRY0zYLFYgnA4dByOLS0bUfbtnz88acsV6dsNgmtJezt8uVLdvsDbTdA0uz3ewnoc54QM+s9ppkxMLECisKilWIcWh48OKdrDxmAqjg5OcWYkhgVbpR8pbbtefjoKc7DZ59/yaIWoGhivDvvBdgqC0pbks5l4Nu+bjk9P+fZO884OzsVplUepsrnK1koVWlJ2wNuHNhttygMTV2zWS9wQyuBfNm7uht6vv+v/hXf+PBbXDx8KMiptdIQ5g1isVgwtF0eYkqIn9KR1XKNYmR7u+ewb1nVteQqNA0uePp+oGxqytLigjBz/hf/y/+Af/L//C/5wz/4fbb7kY++/zEX5+ecrBdU1YLl5gLSgaKyNIsSY6WJIAVG1zKM0N722IUBk6g1FHbJ7d1rirhGlzVhgN/6W9/j+Rcfc7i+Ax1QpWbRrKmKDZiKsbtkfaL59//n/w7f+KPv85/9X/8JV2861ssCUyw5OT9nedqwvfZoEq9fXfLFZ5/x4MEDVqsV/aHlRz/4EXe7jvc+/DYxJLbbLSF4vvML30YDt7eycP/+v/hDHj99IlaJ1rJcn0CIHLZbLl+95PNPP+bZux9QF5p9t2V3e0uIinFwlPWCp09OuLh4Rrcf+eTHH/HjTz6nHwe+8e1fkCIxRnyQAMJxdCQi4ygNZiQXB4jXsjZT8TuxWfU8MJMiWPHzlMEk3YE+/pkZchno1dMgmhmwttawXq9ZLpc0zWIe7IgCZcT7RN9FukNg6BLe6SP7N3pikMC/sizRNjN2UDk0185NgTEKiU2QTIfRO56+c8Hf+/v/A/7FP/8TfviDTxmGabDU07YBaxPLsaaqipylIxZcTVNDEmn6oW1BR8qyzsWKsHjOz89ZL1eU2Tbv+vqaYRgQtQw5YLKYQSdrLY+fPKIsi2yJImGlJyen/Oqv/hoffPAev/cv/lt+53d+h/fe+3q2G+15990WpT2bk4aTkxOM/YaQI3zFzdUORc1mc8GXL67Z7oSUUBVrlsuTGUAvy1oymHSaX8uv//qv8y9+7w+4urpmCMM87KzKCmuFSXt1/QqjPc1igc1+zc1ywXZ/wPmALQqsqRicWLU8Ojnne9/7Hh9+41tZeeg5HA40TZOvEwkhT0hBn/K59MFTWlEBGyOf6d3dDX3fUZY1VV3Olit3N7dcXb3h1auXrFYr3n32TIrctsUNLZ9fv2G1ktyqZrHAlmW+dkX5Wha12KgWWcmRFCk6ymyF45zL14jk3oj9ruI//U//M8qyYhgGPvrRDxmHgeVywe3tFSlF3n33HZ4+e8Qf/uHvc/n6FYfDPtuzCDitSLhRglYlRHjy1QadbRAkyePYeHz1mL/6lSb+rZ+5p1CZ/v2VH7gHFE0Di8xoJ7319ePjfPW/vAU2/bR/Tz+vtULrAoXGOw/Jsjk55Xt/7x9QFw0f//jHXF/dUjVr2kPHdndgGBx1Lf7WZSH35vS5/Dwccx5MCEIKgreaVKZ/Z3DG2nI+//et6byT+z9OhXlUjJmpn5A6+XA4UNWVsPdJuOBBi1UQSombe5hqoIlVHDM7VNSl9wf90+uYbA1QTFxgJjAzhIAbA+t1Br4VJKVne8tZdTSxSDnmTUyq+vvXItOQkDQrX5RS+CBBz6JWyWzZlN6ypLuvkpmyeGbSSTwOxGR45+kHJ6rFcATfXGZ1TuDGOI4MwzBfr2L1+bZKOkYhXoUQsEZhy2Ie7A9OPFmKonjL1u0++DYpg0FApTgNzWR0+ta9aI0hWost5PElx6ech2jOOXET8I5DipIrEyIGAYa1LWnbVjJGo+dktSTGyGEYmHLtlC4IeNo+sO/GbIHCbEOllSKlIFkEmSgw9IPUx0oLUaEsOBwOlMUU9vVTwtSV/EkEUQTcU30KgJWASEwqZ9oIU9lnIlnw0gSrlMRaMl/PQ+qzmtXKvhkC2ksg9XSu0jjC5D2vEgkB/arC5Gs3QRSG+5hzjCaCjc8DJ61EdTSdA61zxlJwaJUIyb9lI0lxDF4+3hvSq2qtqYuaOAaiD/N1PTo5/270c55SUVix3bGyz/nxaDNolc5Apsrr9c/H4NPWBmPEunAYetrtnt1uN+cgNosFq81qttMsSys2MEScd4zjgmFYHRWRhcKnER89LvpMehVXizG0jLETBxEdhMFvFXVRYOszqmVB3RQslzVVVZKMAPLLkyXVssE5eU22zOtBDCQ87bDH4WiHA8VegJoQJ6KKMPYP+10mgBnqqqIbd3g30ixq1qsli0ru767tGQcnNfngmSw2tTEkYs4B9Iyj5G2WhWTYoR1a96zWNV+++BRrNLvDLa8uP+cbX/8ao9tS6gpr4OOPv08I4t5SlhVKaaqyQRvwoef5q09RKdGHgoR+ex0rStq+pO12VM1S5hpJ1PfT+jtZU07r5QSYaq0lBJ1A0rIv6YkfkBQqIvlzCcYh4HrwzqApCDFy6APDEHHe0IcI9FQLqJc1MRmMtmjTCKCiDb0rQRUoXWCsFfA8WVmvtEKZkkJZUtKkaHCj7BVDaGcSBcpIe5lEmSV5UkeCxXGfvKfm/QpRWykl6wjMCmaj9LzXTefGKCW2fop5Xzw+yFceVonCQXATRaZG/EQ9OL3Or7wiJr7T/eeZwO4ZRGOO/Jo+JOCou0p5nT8CWvdtU8WCTt9Ldn+7vs0qu5kcNVnohrfU4dN6OvV8wflZIdX1h+wWIWux9znXK4l9YIhSo0h9f8zNmR5rcm74eTlckKw05+ScVbakquq8noxzf9cPba5gpGZQ1iKxBbJnGwyFLmRei2TfzXVR7qFC9EdLxRhnggWIZWhlKyG6qiNJx3uPViaT6dRMHiE/h/cjh3aHNlJPpRwDIHtmIZlJVbZiV+AKO5PAUhIFXgiJeiLQkQGvTKJy4yh2xnXFcrPg9eVL7u7uOBy2tF3L6fkJ777/DoWtKXTDollhq0rWnZyp27YHAZOjWEY3TUNRlHO9aUwANKenZ7x6/Yp/+Rd/ybNnz9Amu3cRqaqSN1eXvHjxEu+8RE/Enqur15yenfLee+/TtnuMUpK/NPYslwtQFV2/wzkndXCAoRfrV+cC+8MtRTXZDzp2uy3vPPtA6iYlfeLu0LLanHF28YjCwn53y3a7l9otJGJSNIuK3eEWa1aglqwWa0LQ1LZARZn9XN3colXBYlFQ1QYzRIJH1iqlISoOuxZbNZCEOCZuWIp+9ChV8/Dhe6zXG2JQGF2yXp3yrW9+m5ubG/7ln/8pn3z8ER/9iz8kRkdCYnKWi4anjx5yevqAk80pg+H/Td5/f9uWXfd94GeFnU66+aWKKGSQtAhKJCW2LNuSLLesVgd38Oj+Mz2G7WHZsiQHSpREEQCRCgUUKrx484k7rNQ/zLXPuQWBkH/QDzZrYzy8UPekffZea875TdzdvkRphx+2vHzxCclHvvs7f5P13S0nJ09opnOSb/nqex+Q4orBrbBF4uJkx6SZ42PB4OFnv/yc9997h6urK4zWHB8fQ3IQPN/5xjeZz4948fw1fe949+Jtur5n27b8F//g/wUq0HY7uq7FFobL15cUZkZhCjZLR10ec3ZyJnZ2JFz0HB8v6IeeXdcyn51ye3vNervJFqWO16+v5LvWcs0X5WhTLfaSXd/jvads6ge1a0AZsYD33klf76U+fZgn27Ytp0ePOFqcSLxK1ezVdEIYcXT9mqIUm82UItoWogzEUtiGSa1JSTEMHT4cHAh+3fEbAaYY034B3zvEZs95RaSuNYvFBFTCDR6fF7j1esX9vVzACvEZF6W0pihq/vof/U2MNqzXO+7uV7x8+YrdrgWk6DJaJIbWahaLOY8fPyJGqCoJoA9ewI9nTx/x2Sef0HU9SksDNQwJY8TPvO972l1PWRl0Ywk+Mgwt9/f39L2HaFmvtjx9+jZuSHT9TjKU1KjEcpASdVFiTOLs7JTzi3PKsuD4ZCHMNFPSNFOS0jJw0wZjg1ijkC0hHhRjs9kU73tuBsdnnz7nk08+5dvfPsL7yNXlLaen5+x2wiIoS7FYkzwmaWg222xaGmHoHG6QELyiMMSQrfeiBAsLUi2y1+12m73kLcaICms61ZRlJRlHdUlVlCw3a2IUkI6MboY8gBkHBl/94APOHl0wn8+l+DI5TyI3rW4YaOqaqiwJ3vP5558LGBbFUqK10qA+enLB/XLJ1d0rlpsNjx69S4iertuxWq3QOjGd1lmJZCCJl2zbdbx4+Yof/ehHvPvO25yfHWFVgdGy4Isqx9O1LXUln1V8rjV1aTk9PuJ//mf/lM8++RTvE//Vf/Xf8X/5z/8BwQ3EFCirCSdnT3n14mcE7ymM4dnTR9zd38uiaErKpma92bHZrBm8o257Zu9cEGOHG4DYE3rLsAmcnT2i2ha8ePVLPvzwp3z727/DfDaTQWw0XN8saeopj5+e8Xt/9Xf4J//4T2j7wKvLK4oKiuaIfrhi6FvIKsAYE1XV0PY9m80GfXPH+ZMtp6enJODly5esNxvOzs9lGJPg6dOn2Krigw8+AGXYOcXrF5+RUmR5f8tPf/oTGaxEx+3lS9Z3lyymDd53MHiGsOF+1cr1pwtC1NyvOv7kT/6Eb33jG3z48S+4ujmEVvvg8e6QDXHwZI77ZtuYzDLVuTgem5cvkcQdwIXMCENsJRRpHyw+ZkWURb0HVfbZS00jeVtKCdC+2+H6geDFIzUm6AdPP8hQZOgNtsrSXMQqrqrq7GGtUUps1g6ChrzxZKslY8lqn56vfPCWsKKbmu9/76c0lfi3KyWDuru7OxaLBbPZnEkzw7vIbjvsFa4xREyh6XZbonf4skQB/W5LU9cooxncQF02nJxd0DRNzpy75e5+SVXXGbwRCXNVN6Qse18uYT6f4lzEmIqvf+3b/OyjT/j0s8+5ur7l3Xe/QiAwmZYofcw01UyaI44Xjzg7aQlDxWbd8frVJUMf91lKxhj6XjKKYkzYXHA3TUOX84zevHmzL7ytKajKCueEpSVezVDYkvnRMUoZhr6laSY8fvwWm+1AP9zjfWJ+fMz773/AX/kPfpevf+MbnJ6e0g89PtP5lNGSlaWkEE4RttsVPkjuVVmJfeKP/vz7nJ3JvpUi7LYCLt1eX7LZ7ti1Yi9zGLAp+n7go48+4rPPPuWjjz7iRz/6EX/0N/9D/uiP/k95GBJYLpc0k6kMiYpSGMvBC9DCQcVojKHd7thtNyhEMeUGz/J+zd3dkrfffpurqxuWd3fc3NxwenoqFp9rR/BSmD9//pzNds1ydc9dzgQcc0eSl6a1KAtS0sTkiUgmh0opN/YqZyFJBz4206PFFPzbDfuv2tb9uqZ1HDYx/n82g38IJj0cyvzqc49DWgES4oPnhF9VNn3hvQE+RQieGEqMMhRlQ93MsKbk6vKaN6+vWK3uWcynPLl4yvHRMTc317RdhwuRqq5p24EQk4TefgmOsRYbhxzKGEIE/cC6EyUqdFE3y0K4vz/yWrjLAbRKQd2IKnAYBqLP152xYl00SK5MUVT0fYeofOQ9eB+EZZ+HLiOgn1LKgzIZlPshq3DMmK12UCB578UORB0+W98PYvGsyJkXhwZjzEKKMdKYilIdrrcQRyb2AwZ6Sns7sf3PeRkA+MxAlr37oIwKXs6TtXn46L1gAzEJ+zge1gZgv5/pB9+NtpbkxVJPG1E6SL6jkKNataOZTkQVFjucG/Leo7O6SPZHsRaNeb6W8hBG9laVHRqEUSrnSOchoUrSLB+Y3/n8KqHc6f17l3OmkvDnbc6THC2ojBElQ0AsFrfbLXfWUmVbmaaZ0m+vcd4J09ZoUYYGUf9udi0hKtoh4qPBRYP3iZAsNod4Gy2glS0yIJkZ30LcyJaGWlHXtTSutqDOzenDYdFD+05Z1iIo6cNSknxIrca8L4/W2cOdsLeLVMh1UDeVXCPOZ+UH2RrH5u9EcqnG/E0Qu5yqrgAt+SpuoCwayqJAKyVuCF3PmM2XkgBMhbFgZF1PWnrE0d1AEYnO4RXZOizQ+h11bqxRB/BzFBeN2TR1ZbFGUxT2oGrIy7qolgo0MKlqZk1DUVp2u10ezMnziuoPRiDzyzL4PDmbY42VoUrwHJ1MZR3ICnxjhLFeVJIDaq3BGJVVDSnbirr9WiV7uvS5IQRcCHjncE7yM49O5mg087kom6w1YhkHLE4XkuGkAUS5YYxBWY0JERsEZDdK1PtRRSbzgsGXwkrfrhnuBmJ6YCVj9J68ghbFxBB6ykoxnU3EFqmIDG7D/eqadtvjnVj1Xl0theWeN37v+1wH5Jwh56mKiqKoiKkH3TNpSs5PjmjqmnaruXzzmneePSL0Gk/A+cjdzSU+GCaTCSfHp6hjT11ZJpMFu90dm82K9WaFtpO9ok5pqfmNtZjOst2J64c2su6OdqHWyD0oAIRUUHLPjFaoXtjORu1jAcQOU/KlRGOfSLpEFWLBZM0CYxTlRIA3HzSoBh/ENlAXCkyJtpKnIq+VgSMMYOVZk4ATarT2NAYiAgyPe1pQBDvslTmjO8QeB1F8YSi+PxRyHnhgUTfWjAohppCJRHlGllDEJPtdjJEAKBXZF3pZr5TGF1YPnlfzhXVYUse+8COQ382Y4fkF22Wt9kSq/b/Hw8+IY8XBjv4Ljx9fSwlgpjnUJCQOj1GKqHXODM4DxkQmiI55PqONb0IjNY6Oon6KKWGyFW+Z3TrUEMSTEbHeQmXymCLbokkOq1Ls75XCagorGcBKIXa4e3uoL8c6CzJ4NqYkhIRzPcGDG6QONbrkaHFKWdWSizReyUn2wxTlu41KoVRBYTVWNlD6vtuTiST+QF5rOl9IHRATdT2haRpiCPRtx9A5+m6QLJdEJpZqUn0gcowkI2M0k0lN09T7uVAIkZCBwrH/QQl5S6zW1f73EYSKeryvYHC9qN6S1LMRyaWX60j2dYDFYsHiaIZS454c8UPE9QLKJaVQlai0QYglIYj3gDKWttth9lk5Bh/EIvL+/p71ekUzqVgsZiijWa7X9P0OazTXNzdCjCkrtFHc3N0SoqeuS2azCRBZLObUTc1qdc/zV1ccHU1QymTisWLSnFCUC6pyQjZ5YrO7pK6mOOe5u78kYXn77bcZhp77+ztWqxWLxQxIDF6yA02UqIESS0JRVoq72zc01Y75VEigurBMpgalIs57NitHDJF+cFgL2hSieAyRoJzUokTazrFt7+j6NWWNqEWV1KNC3iqpypqiqLG24fZuDdHwW9/5K3z9a99kt16xa7c8f/4ZTdNwdnrMxdmc5f0aowt62/H4InB0XHN6fM522xK9ZrPaMTkz+N6DVTTlDJ0a+p3CeYNOFtcNvLi6YqBgiNB3LZtdT7vdoBRMmyvefvYW1pT87GcfEnzMKh6xB9TaMKkbCl3Qu0DfedrdQGENk3qa7xWF6yMaQwwJrCYRub684pNPPsEWRkjdef9YzGd5vYSiLDg6WmBtnuukyHa7k/9WZCJOXkdDlEy8ff+HwhorBHR3sClPJKyxzKZzwLDZrdls12g1EhgAlQhxkHkvgv1Ya0TFZ8RRZ4xA8CEgduvFvnf6dcdvBJi0sqQoUlVpqgxWKyaThsm0Zhha6rraI9xaabq2JYVDoKnCAmPYKygtzbY2GpSEgbvBH4p3RKpbViVHxwtOT05YLBZ45ykW071lVCJyc/1GGv3Bk5KEVRpb0/UtfS/Bas51sgBrg0qafmi5vbllu+kZhki7c9iip+s8bdeDUtQ5HDhmz3KtNLNpxfn5OWdnJ5RVkfMmDN5Hut4xnx/TdYMwBHIwLWoMQ0/7gduYqbRerTKSHXA+SAD64NluWobB54W0RKn2VxiuwnjVWliswYlUtG87ijKzMmNgu9sSnGz+ZbL0/QBJLr6qqmimM2wlQXllVYrlX92w7QRAiJkKU5QlhR03ix1DP/D02VOaumZSN0ynWTqKMBmTF7loVVXUdUNRFLTbHcHH7NMq3rwXj86ZzaY5awO882x2K66vr3BeConJpBaPfB9otztKW6CC5EctV0uurq74yvvvs9v2hNCTApmdbHIQpRSTy/sV07nk01RFiTWaTz7+iPnsiPPffsQP//zf8Fvf+ZSjecNsUuGCofeK9XYghZ5plTiaNaQY6bqECwaf5PsXC4BEcJ6bqyuKwjMp5PsPybHZOprmWAC9yZT72xtuLt/w0U9+TIqB/+g/+hsoSvouMJlM+K3f/jo/+vMfs1wtub+/p64Kzs5OKMo1XdcRs93dciky2YgEscUYWcwXlI3PfuROrpEYUFpTViWn52dcXl3Rth0oy3RxxvHiiPV2JR7dqyXeOdrtlss3V2zW97z3zre5ev0pygf6Xc/d9TXbzQ6lC2JS7HrP8+ev+OCD91HZ39c5v8+DCHkhTCkHmSqyV2sGl/LQbG8J8KvF8JfkGElyUsjLJmZyvoO1BVUloekjG8kYky07JaxSIfffyBAdm8GRaem8FwuRQaNswLmUh3Bj05Bt1hDGoIRfCps5hJG5ncQeVSXQAWPhrbfOiTHw5s0b3rzeYrSSgVjXsdtBDJqmmjM7mnG0cGzWLwWoMvJhtQIXHSEoYhBbqvV6jSkKsbCMCZJmsVjQNBPqutrnyMHDcyVBlOiENpp+GJgyw/lIiJrTs8f8rb/1H/PP/qf/ibvbOy4v39A0Nb/4+Bdsd495/PgRx8dz5vMzqvIao9fAwGazIamCEDwxg/Yy/NWoB2G5CsmYwCeeP38uw2cUpMhqtUbrhMn7n9ZyPpumoWt7um5gMp3TdR33d0u6ruf0/ILf/2t/yHf/6u/x+NHjLHs3sjZGGaDKxi4FnYB2QuQojaXtN7x4+Yaff/QhP//ZT7l4dCF2rJsd3icuzh/TtT0xwXx+TFkW++utqsSruevEpma9XnF3d8v5+dneFq/rJTReG5sHEYbgHSGKhYDSGqvl2os+MNquphAoypLdtuXm+oaPP/4lTTPh9uYG5xwnJyd87Wtf5fh4wes3Jff3d3Tdjl/8/CP6fscwDAzDIGrWPlCUouRLKdvgjteE0qCRwUduxvdATb54RguRh6vMr2tLf12z+quAkQwQATX6zMsIQamc85R/5qCCEgBgLAzHwcH4334NpvTFYw8AyF/d4JgdN5wcn3Jzc8/rl294+fINQ98ym045P38kOY/GUirF4LLlWx6YusH9O17wL8fxMAMlxkgyY2ZOIqk8ZNc6gz7j3iV2goCQaEScdwgCz/tezIzvkL8UY+2+EUiIzVCE/bUYvCfpMd8hN/oxkjhkC2mjsWWBzZZukmX5kGk9Wo4dGNMxs373w0F7UB6NQJBYIBwURL96HCyB9vO3/eO987jgCSnuwRx5D+NgMTc+6bCXS91uxmfar9sPVTQxJbHeyY8TVbQnxSTN/Ph6CazW1E1NkQefoqD32dJE773mTWGzxfLBelaGm1ZU00ls7kwe9KlsMTUCcSOD/wAy8wWGdoqHrNLgJLi3LCXrbjqVgUGLgMcpCnC/23VQI5YVZYUKVR6yS22uClG+9FVP5xx9H+h9J7YxIaFUsQdDZUisxIIqnyNhMIY8+MgAYRJSg0s+g9njt5ov6y+ASw//nfz88tMygJU+xHtRezzslcb1bp/Ll6/Hcag0DplijLgotoRSDygYElZryRvL54ysnrA5S3Q79PssRAFY3T7APCED3xSFHKfy7FarnHGixJrKe+kNkBY516OH63sEmAojWQMRGUiLBZOo7m1hKKzF5x5rDLlPMe5fU+zyTGaJk4GvLwdxqmqKvXqxiIaiEAvF/UxdKWxRILaK2Z4528jLoEVjYraWT2MG2fjshtJGUi1ESKuE0a5QFFn5M2Z6ANlVRPpwUUQMkAF7U4BNSWqBnDMkMQ4NEGn7ApdBrpS/+1Edpx/UFOOgSHLdJDtMpYi3ifmiQSOsc+ckk0NltSC5z9dGniPtt2SHD4mUHETPerVms95SmgKNZtrMuLu5wxrNXItqbzapWW8H2u2a+/srjk6OOT05IZEoy4KT0yNevPyMouwxOQ9FBksPMzStZKVkAG0EV6wt9gNqYO8wIgQAGZQpMwJKmoTkIglxQGdQQzIdjKogGayRDCdTSC5zwoAqcP6wJhz6QwHCFMKeTkln0oIoK2P0ext2sbIU8qZKRX5dSyJbgmuLyn+XQ2XQ6IFaI+VNnvH3EZD5lTVSp8O/7/9/BJw41JoPwJzxXOzBpS+svWlf2+0BpH0ndwB4Dv962LO+uH6Pta2Syyxfq1rpfabg+ARj/z2+xl5pOZ4H0bvtwaaInBKjDTo9sJJVKT/mi79QUs/YvLaO++Wh2lbYkNB5T1KaTKw0ucfJwEkQ0EEAhrRXq1orQKlkRonN3r4w/hIcMSSMthQ2EUMSe+Q8R5EZgcKM97h8jQKkR0iHsjYTJ0YyiSclscZ32QljrItMnn2OBAoBiyyT6QyVdqxWa+qq3lvWjVnKo726ycD8+P601rRtRwheMi1LK9bmQe1rgNHKXY+D9EyOEZvrDCiFQOzFIj9fyShrZDadwXQZ0leQs1Dz1ZyznmSfeGjHF6JHq1HNQb4Hch2aFU5aGyKG+WJOTB5lEqZU9IO4tiitsIWlsIaz81PKoqKwBVpD368IoaKuSmLwuGGgnEwy0RomtTiUWGOhzLa/tkarkrpeYE1B8IFdu6KqptS1BlXTdQNaG2azGcZohmFgvV7SDx5rZZ8MIeKdZPPYokSpHucGfBhwYcAHx2Q225PsbFGwWDQQxbZUAu6EFCU9kghMFJIBro3HFoldu0GZwGjDrpShMBVlOaGuplRlLfngaIpSrpmmnHCaAikayrJiMZ9RFZHpxFLXU4iJ2fQUW0TmszO6tiMGOL94gnNiAWkoCDExmR5xcvKYxAnTaUVV3TKbdnQh0oVA37UUheH46VukFHNeYctFUrx5c8nN9Q3TyZy+czx69ISzs3MWixmTyYS0iRglmeV9L+Bq78Rtp6pqfJ7tS+kogK61VjAVH9Aa3NDnPCWpV8rSYq1CqUiK0lNaM0I1Yg8aVcjgUs4V814IZ8pkcn6ibMr9Gi+t1QOXjJjtpDP4L+MHyfhKSZwkVBQQt4hgTcJYcaBTRvJFY87Bi+YvXmv/HRlMhpjEfzrljQ9TUNcVk0lDCDn0zfVEAkab3Myp3LjKRma0JSgHWmGsLH7JaGLM4clJAntHD19loKot5+ennJ6dir1cZs3E6PJiF3nz+iXOa/pBZPhDHyixDIMnRUc/tMQwkJL4l3ddZLNZsVqu6bqAc4rgFcvlhrYbJChcgS00w9DvWaIozWJxxNFiwWwuHsVijSIKocHtmM1P6QYnGRHWZOWXwblDoy2hoh3b7Y7lcsWbN5eyOGbFh3MhyxaD3IRFuUcOyRuA3KAKpczh/QF93zNfzCisZbvesN1uiZkBqpTYnMUobJyiUFR1w9Q2hCh5GXVd58K8QGlprLSGoippKmHut7sd69Wax0+eCFBVVkyn0/0mM0RH7Pts11dQlSWFLWhDR/ABtCZFCfF79uwpVV1iMnNNB8V2u+b6+pKYIhcXj6TZ84Gh62m3O/n8WmSXXdexXK4gKbq2J0WHSAjb3OwKI2LoezarTc59EWabInJ9fclv/847vPv+V/lH/+i/48MPP+S9dx6THp1RNwXtEBiCJrmI1aISWMzmWJtoe2idwhTymhqNTprryytmC0UxqymqGoViGHZsd9JgTSczhrbj+s1rfvqTn+B94D/7T/9TmvqYu7sbUko8eXrK17/xNj/84ZrNdsPllWU2P6UoK6wtGYL45/ftjslkST2ZYLNlVlXXKC8qrzGLRevDMGEynZIur7i/XzL4yBNdsZjP2e5WDENP126IwdG1UiR0bc/J6QWfffJziGJD5bqWbrdDG4tPMHjP/XLNarmCmNkcXhR449Btv/wokbSPxa8xwgYcBwDjzGMcuP465v5f2iNl5pmQ0ET+n1VKwlqwuWlWuZnIVj65QINDQLeATxblD/ZH3ju6oWdwBuNkuGL0gbUszH0LOVxX6YTKzX6IgaS0xP0qKfIgQgqcnk0pime8fPku19c/IeXsPbE61ZBa5rOOpp5Rlo2wgExmk6qIVpKhMzbcibj3oq+8eL6GkJjN5lIslxWz2WzvhyzydGFSjrJ5W9ocah5xXuTZk+mM7373r/L69Rt+8YtfsNtt2Ww2XF1d0fU92lisKSQHIBmUsvk1QgZTxRJLQFGDtQb3YMOOMWKsRWnFzc0Nznk0lhQT2+1OcvCMApVVTEoa77braduOyXTG7e09m+2OZjLla1/7On/4h3+db33n2/uBlxS1eUClElpJweyDZ+gHhn4gRk8/7Li6fs1Pf/JD/sn/+N+zWt1zdnbGbrvl9vYOrQreeft9UlJMp3O++sHXmc3meO/FavH0ROT/OOqqZDqdUFUli6OFWH/txGptcXQiQd3ZFmz0V5dlWprZFDzBe0iZ/Y6itAVtu+PyzRt++fEvefToEdc310ynM955520++OArVFXJbrdmeX/L3f0dn37+KZOmEpXIA5saay1FKaoTUZnIhEbrDDBlCugXB6dq/7/fdBx+/jCM/dUB7IEYM/79Vwf247D0IbgE4xjp3waqHj7Xv616+sKg4sF78j4wnUy5uHjMMAT63rNarsUeQlmsLfcZiFpL2SeDVvm+vPtyAEwPz+EI1CglIauknC+0HzSNRJsMtiRGRFCU9hm40UryMGOUn09R2Mq2sPuMBrGUC7nZzfdG9GAtRh2saVJmm43ZQimlnCc5kghcBnXU4efzQJa8jguY5QR0z2yzL163+TPlYVpMD6xxxsFPysq/fL0m1F49NVpvJiW2KFGb/YDLGEPIANP4Goc8q/gFMGq8hkflUwzxV65vIR5FL8Njo3KuUH4fKUQBh/SYBZRVI0YY78bIEFGsCGUdEqvScv/6SkkANaPSR0nvErJNy5hDcjgPuabZXxdpvOlxzuH6XrzR64qjo0VWlubw7ZTwPohtSBgHLAVV3WALsXtqmgarKqqiwOXhznY30HtN7zuS82A0GvNgkEj+7gXcERub+CDPKAOeppAhUQaF7N7e8C8+VJ48qTz0HHM/RiAm7dniB9usNNYJ9pCFNb6P8Z4b8810VhqZrOQUxqbag2CjN7y1BqeUBBjvlQdS1wjpgf1QUaLpBDTQalQzyeBSrGS/+H7NA0B/fI/eOZyVc7UHZNOoupdBu9WWLo6ghfR+KYYMMB2U+cI8ls9mfwPb8y/ToU22K1NkoGLMpJH/LsN+na+Nw3oEeXSe93CbrTBjMjif1xhd5u9WrkWjbFZNJEDIdNbaXG9ACEaG0+T1WR++j3G4PhIFdYxYK+ChtZqJb/YgGFrt63KVrXnlGIkIEYkSELA7BIeNCcUUozRt4Rj6gNYF3o9ZRdkdRMu0N+QZQd8PZEkQxtTEkGh3PVvbET08efSU3WZFu+2pq4a6KXh0cY4xK1JyrNf3tO2WsrL0fU9ZlTx58oQ///PvE+OACoEUZd8T8pgMYFGScakeqJMUWgAmkwEl8jrvx58RxxkdDQSNMgYVx/eebeLEzyy/jkKlkRCWh7SZ2KG0QUcZ2hllUNl6OqPHMgfSAgaOJGYJq4+QRns02ZNVsnnfGEEuJJ85k/dGBeO4Woxr2ljHkvf/h8pD6dEe9Kej4ugBQLP/Odg3tSq/zggQqdzHkYEkNQJx4+PVFxUf4+8P/zyWkr8KLo33j/z5oMx9+DN7DlS+tnW+mhXsr+2RVEgGhkfCTUyJqGTvHXPpxr1QPlPcr92ZMbq/vw/5OfnrVwJkWhI6/5u10nsVpd2rVYIbHljjiYLJaJOzS8ZaInKoVr48s4MUkszRtKWwkr8ZsiUlJIwRxbDa51rmGjPXmpBQOVNnrD3FBUny8Hxeo6tarOyHYZC89kyKcbl3KIqSWAVubm4gQtNMKMuK+XRGu7fwO/TMD0lPoyWiKguxBVaQtJb7ORzsFcc9Zbw/ZFgPKWdMphDQpkBrm8kABh+9DN5z7WJssb82U5T5bkohr1cyh1BZiROjz2SEAhXlXCeirNspQq7DjNZ5LqGoGosp4NXrFySVJNKl0BRWM51MqMo6x21E2t09Xb/BWsPQ96hUMGlSVuQHZtMZQ9hJ3WEtJmfpKmWoyilNPaHvB4yu0aaiqWvqesHd7RLnPHU9Fcs3YL1ZEYIor5t6Rte5PKMpsaYhZPJRTJKR6PJ8P0a/36+b6QxSkfPsNCmIjWeKmfwWBqyNkrFYJKyHdrmhmVa59zJoXVCWE5p6RlVO8syFXEcJQKWSZjadc3oyoJSmsJYQW+p6wWx6hNaWsjwipZ6FSXsSz+nJY158fkOIoniOKVDXE46PzlE6MJ3VWDuBpFj3Ozrfo7Vit91wcXYOCjabDe12R8Kwa3uWyzUxKbablpOzM0yhmUwamklDP/R5tlzinEObAhPHLNqSwYt9Y9f1WT0LZVEy+A4f5b5yw4C2B7CVJPVDSpBiIoSUa/Vce4+ECJ1JHUlcJUwSVRRIX2fKYm9zCUqsGuOhdyHP8RIjqWGcUah8jYFzXmoTxv1PfoUcZRSJgjX+BcdvBJic85hCiy9mHgaKRdOEqio4OzsmRs9mvcYQmE9LTk6P+eyzN/SdMO5iNEymU1a7DVoZzk4vOD294PMXz7m+vuX29o6265nOJuy2axKJ6axmOqt5++0nnJ+fUhYlk2bGZr0VGwhgsxGPSqUmuMGxvF9hy4rrly+4uHjC4uiI5fKe6aRiOm0oCsVuu+Tly+dIZoEE30+aGffrHTe3d4QUmM+nkufUu8w4Cqiy4uzsDBSkGDg5PWIYBqZTgxs8223PXb3OmVFTbGHouh3GyOI7WjB0neRZjADT85cvaOoFxhRMJjO0cdzd3eF8EAamVgzVjq7vMVqaQbH3KFCI3VHSkel0grGK4+NjjNbc3dzKoqeksXfDwDD4XDgJAzeGRNEUJBcpCktd1QJSlMKmlAY8UVUVZ6fnFFoztG32vJeLtihk83fO4QlE1+PaFuX7fKNA8pGmbthtltKEkxic4itfeY/b2yuIHlLAWM1217JeL5lOZywWCz762U+pS8vQd5AS15fXnJ2dUdUVZWVZrjd8/PGnvPPWM1HvlPWe5RKcACV3N9e8/+57wv7sHUYL46lvdwxdix8GdtuB1XLFx35N2604Pj5C6ZLzR2+xWyq69Suur265OL9gMT9iOq9ovSbpG7rdDpKl0BXLdsdQtNxfLel7mB/NUXbL68tbqqKhLmqGneflZ59jtebR00cURcnjx+/y6aefc3P9mqY2/P2//7e4vnrFp59e8vmLN9wtHV95smBxdEzXlqzurgG4vb1l5j3NbM5mueGzTz9ldnxKWYra7kc/+hG/992/QlGWrLdbiqLg/fff5+j4hOvrOy7fXHJ2ccann/+SYbuhrirW97eoKOyk2WROWU558/qKk8WESVPz9tOnvHi9xCRpAGLUwMDPfvITmtNTJpMZ9/ervSLnwM5nn2uwBzXMAwVB/GJGCfzqoPYv9zH6+Y7FurHSzI4WeXu2d/55rbXcyORxuTr8e1mWVFXFkO9DbRIhOLq2pe9szlNKFPYQyo4qUaoEZbPFUQAVc/YEmGTF4sJAUSS6bqCZVhitKMsZf+fv/A02mzUf/vQlu42jsAVVOSEGzWefvuTVy0seP3mUG0ZPQhQtZdWQUpGbitE+Rwt73TlUoelyFt58vqCuJ1grgPdmsyHEyHw+31talYWiqoS12O76bPWn2W2F+fzX/tof8M1vfoNXr1/yv/4v/5yXL1/ifaSupsyaI54//zlt21LXDZPJRILInQSbdt1WFAcq7ZmZKX8HwzBQNRV1XTOEgaEXla3Whtl0SooSuOi8WMxOpgvW6y0313d0Xc/b757x6vUlz569xe//wR/y//gv/p988MEHOWvIMpnIoEWNLF8ALQG4m+2GzWrN6n7Ji5ef87/+r/8TN7dvuLu94ub6kotHJ8TQYwzMpg0gZI7Z7IiTkxOapqbrOr7//R9wdnbG7/7u73J2do4tK549e8Lger73ve/xZ3/2Z1xeXXN6csbJybnYLGVv7cEP+wHzftAZpJE0Y96aUhR1TV3X3Fxd8+knn/DixQtub+/R1vCVrzzim9/8JovFgpubKz7+5cd89LMP2WxWzOcL7u+uabfbvSJhsVgwmRRonVinwDD0MtzXSaTfeUiVfrXXzMPoX2t59+BnHrL8x6bmYZP/716fHiiSEDD08Bzy1EISCV8YKDw8fvU19gOGbEERvLDzbGU5OTvng698jWlzzFtPLnnz6jXXl5dMmik/+PMfslyu2W5bCaVFagDvPDGpHLD+5TnGYZLPJBz5rmBwAlL7CCpFdBBLB1seAJ0YI9oadMzKIGtwwyCgCzD6qI02bWJvPOQmWWFNIFhpLvZkClQOptbS0EdRRSgtuZdjXtBoczeyxx9+HlAyQDNGcifLtAcfC6v2wHhMGpWZqz6TlPQ4mtkrciKaPEyFEWk4sN9i3NsFCrB/GHQZYxgyEBaj2Q8hxp8FSFodLIRGFUyq0HkYb7XBa0uMwz73xBpDYU0eMJkMtEFhLXVZIpkjFcYWxChrclCSzSBZBA6b7z/vvQSvK0WZPf33IJIP2Vs8D9by0EVrTUjg45hLAkZDsjI82O06tts1RVXQTGrOT09pahkmbMsKPwwMXUtlC6qiwJgiExFSZhPCfD6jLg27rc1h5xFje7ZtYNdFuiE7CSnFaFs7DulkmMuelUz+3sbvxBqpJdquo8v2N2pkNMdxyH9Yj8Z6LI6KIMahjhEAMqX9XhjCIWvOKk0KsvcV2pCKkhDcfu+SzxVQURjI5sFA8QGeLgOeNDKU5LXGLJiHyjd537LXaCWfU2WijtGGoMe8hoRJUlMZpbFZfTEOY8cjhoCPgX4/I065h7MPBs1gjaaqC2whrxfcsH9PMozNrGujc42m/jfsGX85Du+kR1RZCWPyerUfMO5VbwCa4BMuOvbWaiOgA/vHaS22ltjDPipDGHlNsbc0wlrPylEAU9QknXOPAJMa6WNDtoLRcr0mn6+1JPdjUTeMFjXee3S2N5bFU6BrWY9d3tsNaMPQtaACWqescveUpaUsKrQuaeoFKV/DMXohWhm5ZpwTO/vl3T2gKEpRZDXVhLqYsb7bQYr81rd+l88//RjvO9b3W2JIfP2Dr3J+seVuuRbrnnbD2fkJd3d3+DDjnXfe4f333yf4jhADPkiGyjhEjk6y8dxgUZkxPV6vct8XjM4KVh0y9ZRSVNZIHlFWN+RAlb1LhdGaQhusKTAYDBqjpO5XI9CjEslEkkqUuqHQTT7X4y8BjrSxGCwm5ZByrShNiYyzDmBx8KMtZk8IA0aByvaLLmfxPVTqjrVeUnr//Qjx4ZCT+Kv2eXEP5BwA+Id/PxD4RpXR+Fm/CPigxxgFI+CYOjzX/uUe/JvKtYL8+4FwdVBQjT8j9Usav8tx/VIjCJVV0w/XPxdRoyIziQWT96PLkOwJKgV0XrvH/A6tRsVZsb9PDiq/cSA/KvzlGIeqIbm9qtpYQ2FH20yTFbQ22+vFhyMC9oquvQuKygD/lwdgUknmXUpp6jysB3HxCMELUFcUeC8WkeOpUTrtgfmYwp44IuowTdv2DNmeuaolW0liSAZiiBRZcV0WJV3bsVqtmNYNk6YRR4S0Y1LVrFYrUQ5noqTbW+CNhAOpJwtt8KUoecqs8DFakZTBqFF9n/YEjroWIkHXD3kuDUVZZWCyRBmL1haf63zIeZHOPZhLmeySYkUxWY4WmVJfRMRZJURPjALYKiVZT97ldSElQhhAixVc5S0xOZQSV6+EANX90FGVDevtGqs1s2nDyekRr19vcG6g61tSMgxO8jO7vmM6rdExst2uCTFSmwKZD8mcpygqUtQMLnF/tyXMFYv5Ce++e8bd3TVaa46O5sznR7zz9vuIPayAH02j2G07tK4gSXbVZDqRbCWb0CbS9R0oJ2RwZekHB2hUMlhTU9YNBs1u1zL0nZDLU6Aom+xe5ICA1YbZdIE2BVXZMJsecbQ4y5nXci0530pP5jzBOebzI2azI3a7lq7zHJ9MUanEB0O7GVgu17z11lO22zsUMvcJEUJytP2KpDxVVbDZ9rgQGNod3dAznU6ZTqcMN68oSvj2d77D889fEGOiaaZ87avfwuiCn/3sZ5xfPOPi0VsURcHFo7OcjWQYwkARK0KKGUiVOt/UX2EyEZu8u/s7drsdd/e3rNZL1usNu6Fju11hCoWxCmPEfaLddRgrvVLXyXs0xoriVBliJKvsZA9t6tFWkgzQemyhMVbjvGO32+G7wLZts8JVACalFLbII5DcAwO5NyiwyTAMsm7HEHGDKKm1Cmg9yHptxeFI1nfJTfuLjt8IMBW2IiGKkJBCtoqbSpZDivgwcHdzTWnEKuDycsnb7559gRk3ncxp/Y6iLHnrrbf4/d/7ff7N975PVVXimZoiTdMwDJ34MRthwzx6fEE/9HRdJ19YCLRdR3u7oXc7fOzZ7TasViucS4QYWK5vePL4bdp2x2a15ujoGOcc6/UapTzr1Q13Nzegatq2Z70eqBvL3d1SNnZj6P2A3+wy080wrRvefvttjo+PaSaGsqqw1nJ8fJy92232yFSUZZGZU6PfvWI+n9O2Hb/85S85Pz1ht9vxy19+zIcffpiHZMeiHLKWrhtYr3bMpnOslsLIDS33y+V+c9daM3iRq4I0S5PJBB96UhLW4vHJgvVqS9d2eREqvjBICVH83Y3tCEkKx+l8xu31LbaweXMeQ53Fnip6x+r+jrKouLy84p1332U2m1OWJZt2gx86UhBmVKlgMpkwmUyE9RD6fR5TDAGX8wxsYQQw1InkA9pA27asVku2mxWvXr1gNmmY1DXHx8e8/+576MJS1xZS4PLNJf/qX/0ps2bKdHIBSWULiiCsqnzD/umf/ms++NrXefrW2xTllCcXjwje8b0/+1N+/otPmC2O+H//l/8f/un/+F9zdXkJwOLojOmk4nW/5O6yo0yBbtuhbAHWoMspjx89ZXl3TwqyQT26eMLN7T0hNkBNVSnKpmfwPcvVhjcr+M//3v+d588/5tXrz9l2a/6b//a/5q/9/h8wm81Z3l/x+WefcHvzmu9+9z/g9PSaTz67pu0VT5+9TVUaNqsl0fVs1vf4GFmt12zajrKe8cd//Md8/dvf4fGTZ3zta1/js88sr16/piwK3nnnHVFW+MjLl6948+aS0ooP/3w+5355x83tFdeXrzmaHXFxdpaH+FuePn2L+5tXpOA5O7vgu9/9Lj/42WcsN1ucEyb2annPybNnmEpCusPeiigXvpmZtB+o6QfFdUqgxIrtC8eXpBkHqOuG0Yc4EUX2P3oQI5uL92LvkTITAiT0z1iNVYaiEMuAsihEiWhG6wvJqnF+IM8uSVFUkEVmIfVDwhhNWTRoFei7DSG6XGyW9J2wRBSKohALUed6gvaQhC30n/7d/4TC/Cs++uhzri83ONXjHZRliVLw5vUVPnYYE9A2ZTavWB2M7PiqKiFpikrs12SwZ7i5uQWkMPrmN77NT3/6E2bzOcezGcYY7u9XzOez3KCvubh4AskSQodSkmvx4Yc/5pvf+hoXj854/OQRjx895V/8i3/Jbtvz5vUNbz0Z+OTj50ynDY+fXvDee8/4s+/9KSHU7NqWzUbs4rQSP1utR3st8STu3YAttARVO4dKCoUMVyZ1QzdsRNGQZOD14sUrdm2HLSR34h/+w3/I3/k7f4+3336bopJ/K6zNeEjMrBX4wQ9+wPe+92f8q3/1LymKgufPn3P15orl3T2Da1kczTg5mVGWhsm0Zrfb0He73LwK2zcmT9e1rFYrJs0d0+mCZ8+eMZ1KVsLt7S3nj2pRq6XIrt3wj//xP+bps7f4m3/zb/H7f/A35HrNg06Q73m33QrbSgtTNGZWr89D3tnREf/0n/4z/viP/zlXV9ccLRas1lvOz88x2rBarXnz5jUvXz7nFz//BW8u32RmjSi2TG6W5/M5FxcXDMOG7Xa1V+6hLSGJ+kAZhS7swfJkPFISlvz4V34Tjz+NDwG+OIg8/P3BM41M2wNSlR+fvvB4pXQGWUX5IoG2el/w/eprPHy8/H0c9MNkOiG43MykxNXVFUM/8Df++h/hXI/R8OrlJzx9+pRE4OXLF3RuoO88SSlRO35JmPXGmAe5M8J4r6oSAZhi9nU/BGvvlR5KPVC1HL6LcZBRlhLmrrQWu4lCZUabAJw+BtzYOFuDrUrIAGxMcX+5WGsJKomVYVmQogSztm0SgDYP9cbr/SHhR+ZWDwEmCaYfr0FtwCRNQbFvuEWFEjFKzs1DReZedZCHwiM7urBWwNF8b0iAd2QEVINPBO9RWu3VVjFK2K+Kh7+DImlFUVW4YWAE+WS2NYLVlkTAap33tpLCSM5O9Im75T3b7VbsUuqGqmry/SyDqKjFNtk5h0LuFaVEVaStZdI0kl+Uz6MAXekQgp1StvsN+VwIO10Dhqz0R+xDqqraA+xjrT4SOCbTCfXxMd2uJQwOqzRVUTJpanabHQkZfmw2W+xiss8xCSHS1FOs3WFtj9YBl1WZKavElBLLWfku8wBG639rzZF8rv5BLyDHQ+B0b7GbX1++35gHlxrnHNaU+fuTx5WlkEMkpPiwJ2y363zP5WG19/trZBgG6lLyjawtZEhT16IYyoQz7TRlYSSweEgMnRDcovKEweG8w/SG9Xq9vz7LUggMwXlCHv66YSCMg2zI1q1x/zkNSkCxDOKSEkPOth3XWucCdTlmVh32klGd532QoUHOckr53iKmvTpBKZ2/sy/BYbQAw5kMM64tDy2yZC8brzEZHo7nfBy6y5/z+pjMfp9KMRJiysB7XndSIuCx45qnRtBToXS5BzPkHo8Y28i9nVWRRakFTAgBlQQcCdnatywtWoMLA2m0TNMG7/u9clqsn9yeOCeWegVHx5boFSloAdxNSfCJzrW0XUtMnrLK9bs1NFWFm0wwxlBXDZPJnPlkjtEFd+0t/W5gqBPvv/M1un5DN2zphx2RhNWK48Wctnd8/vxTPv7455ycnDKdTuj7lm9841tcX31O1+0YBofVkcmkPBAIkpCYHpJo4pipk10pQpQc0JCEJEBMuKTEoUQZklJEncugnM+sFRilqUyFURaNxSixYtZG2NjoiCoiRaExaoZJExJRgPxsISih9RZlSkBySZJCBsNIXAApyj2HuIsopcUyIchcSvbJDEzk9jOlrH9RiOw9jYCJlZ5/fMyDSjGRCCrtz9N4qFwDjoCmXN8PbOMgq50P2YBfAI0eAEkPQaaRNKyyAloeYx7cJ6O68ou53z64Lz7XCHiPgNRY26YoWSqjDW+SOdEIeGqtaZqaSVNxMpkQ/EDcv7ecSddU+fpB+pzMqAfQShROxpovKKpSSgxZOUICbUEXcj3EXPeT66g8rWdkjaWHX8n+HAoc+aU5RqKpzm4JCEnCWqlFhcTjBKwdiVVRVEdaK3GUS+B6sfhFSW9ujGGxWOTvMrJeLbGFZdLU+fuTXiP6sL/2uk5mjioJyWqszUx2Rhq/bxl0m719c2WLPfFkt91iZlOZwSIAmsn7LFkdUpaS+StE94KkNMYWGUxVMu9wHmPLTAyR66JpGqyxYmWdM4OXy5UQGFSk0OznpaPN6njvGC3uW8FlwsEXwNMEKbBrdyxXd9zf37LdrRlCoCwL6kqAocF1qKTwUaIArFWcnJyQYkAryZTsu26v7A0hoI3m5OxU8pJ3W65vXvHOWwtAwMLZbEZVNiIOMBVKaZQpKOqG9XbHrutYLBYcHZ3kzyEkrb73zCbnaJUtCbXlxZvPBJALA4PvqGJNTAMomSf13SAkAS17cN92mWwjKi2AbXuHzcSsqio5OjpCa81qtUVrj55VdK2jLPp9LiapyDOJDmsNi6M5b968yu9xwcnRMdH2rO531OWMZjKjbuZ0vaOsFwTfsW133Nx9SlEWBNXjYsTSUE4Ms8WU9cbjw8B0MeXm+gaVHJPaMvRbppNGAERt6doBWxqSspiipigsR8dHtH3P0dGcSZ7XL+9XhBBoJg1VKa5R674nRIO1FRfnDZ9//hmPH7/DV7/6Laqq4MXrl/TDlpAcPjica/FBXGxCCnuyU9M0mZxhqWuxmNxt26zwgsLYfQ+olMz0nReQ2ZQlVdlwe3/HpJ6y3e1o+1b6xbKksInEIU5jJNw5N2DNSBqUa7ooCmISp7YYvexrWvZKbcR+Pca/mJz6GwEmpQbZtPOQOOlAiAMqTSh0xcSesL1dkmpDXSnqeS03UOGZHiVOHPTdwPbljq9/7Vs8fvyM1XLL1dVLjo6nkmlRiIImxQqtI2WhmFYVhMh8MqMpa/CR4Fq06rFFwMfEdufYbWC7TDgXiEQGD3f39/gwoEhMvKGyJavbLbvthrvbW6IzeKAbAp13qOToQ0tRlHLjGIOpDO2uxRrFdFLy+HzO5etf8pUP3mU+q1Aq0XY9wwB1ZZlPG2GZ4nH9Bm2gKuQGu7u7J8VEVRRs1xt2u477+xW3d0thuaeUWUSem5s7ptOpgEK1FFBppbFNBZsNScW8CQeqMsvllCCgtZ0To6XrEtutY7ftUFnKqbSgjTF4FAmjDFZL+GzfDQyjPU5QDG2LSoHSSPG4ud/CuyoPTQymstJg5WC9vmsZuhbXO7zz+MFB8jRNxfH5Ee88W/DZp68obERFmwsYJVlcVYEtLcpqiJbCFgyD+E1//PFHdN2G3/0PfgtrDLc3N5w/OuHzN29wUdhLofPs7pfcX7/i0anl7OSIdlDEpCVkOSVMVXD1+g1nmw0nzoMtKGoLynL55pa2U/yf/8E/FARYKyKR3f0N1ZmlXa2IQ6AsGrxbsd0smR0JC9STMM2Cws3oe3DBMp+d8OYXn1CtPceDw5YL6oWhsPDi+S/5k//lz/iD3/3r9LsNPvR41/ODP/szvvGN73B6+hZGNyjV8PHHP+LJo2MuHj/GlAs228jiyds8vjih3dzRu5YLf8zV1WuRMBLwbkB7cMstadYxPT7iG++9y4s3n2MKqCclqw28+PQl86pm8f5XsLOG5XLFydExwXnu7m65vrzlractVV1jjOH5y0sePf0qr97c0fnAeTnnyXHNqlvz/FXHzW1PjIadqliuO5FMog5FT0r74VXiiyyshwOMkCARRLCZK/74oGj/y37YamRRI0MsNTYkQAo4lRUhY5ZNyt6rYcD4hMJQ6ILSaqwGqxSlkVwa53qGQdP3Fd4Lo7QoNabQolSC7LE+htkaDE1m8XmiEzvDfaOZBPwqyzyUdS1d1+McPHo0Zb0+Yrve0e06tClJKeAGR0ry2pLpJPkHQ/ZA1hEiCu29AGkhUBQlZVlBFBCq63a8ef2K8/MzTs+PZWiRevrW0Q8DtpRCRyVF13XM50fc323YbrYUFxcczWfcXN3Sbhtmsynvv/sBVTHh+vqG3XbH4Dvefu8trq+vWa3X7HpPUc24fXONDz1Hx3Pef/8Drt68EQZHTLjg2KyXaGNoTE1pCtqupbblvukUFU2iLBvqeiKM7WpBVHeUTcGzt57x9//+P+Bv/PU/4vHjpzRNgzLg/Y7r13cMQ48bHNtty88+/Anf+7N/zSef/JLbm2u+8t5XeDSdEpo72tsO51qUL8AbkoEQW2xh8FGjohSGk0lFUWpC6MWG7m7CpJ5yenzM2dkpjx+dc79c0m2FfTqtZ7z15Cm/+OQjvvH1t3n//cckeryzlGWFUuOgU2GK0a4q4HyPVrBZ7YhRY+2Ey5sbdFFyen4h7FM07x6dohQsb2/40fKW66tL7pc3XF29ptuuhAkm9FOUFrbv+eMLmukEv2ylQtFaApKjkuZmZExGIIkVgtKKvT/32FenmGcrow2aZJwAX2iGHg4XxoHsiI2PrEylxseIOmjPonzQBMsgNA8cdZHPHZAUKYq9CPs2kf3rjY3zaD8bctC1sQVdlzg7fULfR37x819yNDuhLCoS0iiQ4NGTx7y+ek3ShrKZ0gUwhQC5NiuRvwxHTIqYFCGOwzM539ZKtoMA+FkdQpIBSV6/fB68CIss5y+mgNg2B0yhMdpirGEYi3c0RikKU9Bj9hZpSqjPouzIVlopJVFxpARKY3TCBQGrtZIBnk8qgzmHvVRbsRKJSXKkZECjGIIH79BWY5OoBIRELPkVQ5QgX2VkKOiCZE3FEITRnxK1sXtbElD0TiwqyY2qiyODLYOrSsugNsmwL4ZASFIHPAyJh3GYlogq4dF50CuWuSNz2mhE/5ckFFrlujMlhJXoPKYoKSqTc39kuh+ikFy87wluwGoBxopC3uuY7xBiwHvxq0cLM1bOpQA+cZ+7Y3NgvJKxpZH3nwhEJSoVWzWY7ABgSwlGtiYyqTSVKSiMgQF2nZPMAAXRW/FXj4ildQqo4NDRY1VCF4bBAzrlXizk/CUBOlQ+tzYzvmMMDD4whINVo0Jspb3yYoUZo2QpMtqZytehrSaEgzroMHgUyzOtRbHrQyAGD/k7TcagUtrnln2RZZ+tyJIWVViI6JiotRFGevCkDMAUJjeA+AAA4zdJREFUWiy7DDK8T0VJXTd7QGrbSdB30oqkI1EJsQOl84DDYo3Ge7cP89bZWkQa81EJJ6q84AZ0JtJV1pBQhCR5MFpZsRQlorShrirK0uKGYc+gDt4To5OBt5KhVlLy3lWC0V5Yp0SeA/8GIsNfrqNQlpCVFUbrvY2KEgG3LBcq5Xp/XIvzg/NeqkdFyNgbJJe7i0PmnbEVzvn8QFE+ufjgOcZ+IwVicKiAEFZSRCm5NlQSsFiRr3UE3CIFVBJCkJBWAj6NlomS1bFaCYhalhVVLcRCbQIpOVIaIHmUD3iVGEKk3XXk4ARWqzuW99doPXB6OiVY2VO6naPfDGhV4kxHV64ZZguaakZ0kYTl9e2Kk/MjfJQss8FviO0GoscqSx3ADlvu3ryhLhtMIe4Ej58+xXcdrd2J6lwXbLsNIckMJaZATFndOSoHjQyssWoPDISUwIwEQU3tGgYvWdtoIQ744AQMyeqcGHpCghgHSBqtCky0EPQe7DFB03YJqwPGbIUIoFWOHBjVQWKlN2YygcEWltHiSyF2Uns1DxmcIeXaUOVcFcnlJokt0AiyjfqjfMWS9MP7dlwUDyDVvj7La61Ea8lzj+9h3C8egqfj+wXhgSiliVqTlMZGRUm2Qtei7HJG4icMhdj+RZ0VyVndZawMgpX0G0knlElyvsZPFaNYOI0ZUfnDeCR/LJJI2uBTtpmz0id2/RpNYlIf05Q11ayCGHH9IOpt5ygKQ6DKrhdiqVZSE0PMyuiAdx0hiiLClpZm1lCUJX0QW1eioi4tAUO0RvI+iOjcbxEVYktmSSqSoie4ntDuiDmTx5blIVbiS3Bo67NKIQEhk09GoF7Av6RSVplnEJYgs0E1XqMJpTwJybwcUr5W0wj8i1ITJO8pjtd9XqP3tvyZMFA2dX5zikJZiqLMNpWKumlylpMQYEmJqizF4j0cLM6tsbkWi8RcKyor805tS7RXeC93ZGlUXgMigxvk1zAQWIsSKmd1JQKb7Vb6ImLOVB6tNQX4bduE7guqqqaqG+pqIrwZna3zClHHa2vwwWe795e8ePkpZWXo+h2v37xku1kzmR6RhpLQSY5kXRZknpLMbrGZzBIwNlLqwN36UlwMtMKlRBgC2hhQBh8iN3evefz4fXzwhAhKVTTVhKo0VKVkPemoUb6gMCVaJe5u7nn27EnubQ0pakLYiVtVkVDases8KZWEQHZsucOYhDU1mgqTd8kYhzxnEZvj2WyG9wND73A+MV88w6eCfuhJCaydyrWne5QymYgRMpA9zpSkzp40Tc5GlT6+sOJGI/2Y2N+G6Em+xShLXdmce2VItqJLA2HQmNIQtaZvHS4OhCi9nw+KYUiU1YyiWFAUlt1G0XcK5yVapSgSkywuGclYOkkNG/rILvSk2NLuWoqioO8d3kXquqY0kj1NlJ6xshXHi1PBOFLi0fETUTwTBBRyPTEGNrs1fT8I6KOUZLEqAXO0FmJOoSNK+5xbmvPptGRUuhDR2dknxsDgeppqgm40k8mMYRCVHxGqQlNWBntsub29x2b3pJHg3vU7ydNOAR89IJFDe2vTlDXFUUgzKf7FHnn/jgymMZxU5aGISGCtsVhdoIKl2w00RYU1BXWl8aEHFSlqmMw0KXmsjpwtzqhsw2eff07Xbyn7lK10YpbsFRRWUVeGyaTEKIXVWRoZpaFxfsvgOrq+Z7ftWC07+lbjXMAnBwbu7+9RJlKVBudbVNK02y2b1Zp222ELUS/5GElasetbfHDZE1MCyYuiplN9lo0pNus7ijJRZB9NpcgZH0bm6EnCaTUR7zrwwoiMiCKnMKIyWq/XbLdb1psN292OECL9MMo7e7H0m06EdJobaVuV1JMGZaW5LqzBu0Bhs6dxlq6XVU1KmsENdL0jxEhhZXAxZrqMgdBGa+q6JiqdJaueUZkQY8gMfY33iaGT4DJbZFdeI7J9HyKb7ZYmFrSbDd4lyZEaAiE6qklNM6lYLGoUThhMxqAQ/9yYYDKbUjUV2miqsmbnpIEfhoGbm2tsYZlOJ7hhYLvdYAtN23do1WC0IQUpmIZuS/AdhT2mc4p+8KSQhGGFou067lcrNrtWBiOlxWhD23ag1kxnM37x8cdEH6iKgt16xenxKdEPGK1o6gmp3+GDo+3WlDpRzI5BBYq6JimDGxSrbYupCrarNb4fKCeRZCYooyV/Bc/Pf/5TvvX1r9P3ic12yf3drWQdnR1xclrgXOAnP/0hd/crynLG40cXPLNzUqk5ffwYzo7YrG9ZXr0gpoHtZkvbyjVUWsP2bsmqmjCrSqYnE05OFmAkcLwsLdYoFsfHGGu5ale07ZajoyPc4Li/vWe5XNG2u/0Ct1pveOft7xBSQdv27HrPo2dzHp0vWK1uWC4TAxqnCrbtgOLAQNQP2SpWgj61Hi1uDmyWkIHSwCF4fNx4viyHKew+M2ZkIY9hpZLTliupHHrJCDIFlwMSIzGHT+t87nUO/XZuYBhsvjfzMKqQtTxlKbi1FqMLtBKmqaZAEfLrhzwgUbKpxIDSCpMZ6jG6nDXmKCvN0dGEk5Mpl/025yUoYexFGb6mPPCPURHT6O+b+4eYG6IkQxyKkpgihRU2/3a75vmLz3j21jMSooZs2xZlRFoeY0Qnsc+z1nJzc81mveH8/Izj42Ourq4IPjCfLairhvffe5/5bM7N7S1d3zOZNtilIQLOBySs2GOsoq4qJpMpddWIoiwzrpwbmBQTGQLHhIpQGCP2UySUlpwkITBYbFFSllOmsyOevvWE3/7t7/BX/9rv88FXv4pSwjJfL++5uX3D6xcvcYMwy7abHT/8/vf47Je/4ObyNbvthtg/4eT4nO2k5q4yxFAIazj4bDvpZEimSkij7ZawC40tKcw46IvUdcV0OmE2nXJ9cyMZJ0XFdDLn7WfP+PiTn/LW24+5eHSK9z06exkrJWv6aCWkyaz/6PI1KlZZ3kXuliuKsuL45ATvI7tdS1PXrNdr2naLcz2vX75gvb1nvb5ncB3GKFDiM16Wlmay4PzRuXh/533SWIMOWvJk9rjOWMnnAUGWKj3EfSAzY5HBk5yrh//1cKj9k8jvI6jEvkF7oAJKD3+SHGB8eN4EonDLlikji/YwfD+8TzgwZKXYFusGkgEs1taURUPfOW5u7pnWC4LfIc2gksBWP3C/WrJruxxOa5kvptiiIJJo293/toXq/+DH4RzL76Pdm9j9iqf7F/J1EFDQuwGXbWKMEVDF5OI+Jk+MuRExY82lJIsiA5PWFtmnuyd4aT7KagT2DrYxxhq5DtOYVxAy6Klzcyf5PXuVjJH8hBBzYLFKOa+vEBAjhqwmzkPZcftIKg99RM2ntdiA+CDZRqQxUDjbluU1u+s6iBFTCBkr/sq5BWSoUJislpXQXLFJsjkvwTD4kEklkCcK8qc8hI/5jRo9MrofWEjKxJCQ5BsqijLbN+n8eCXvK0WxjoG9stca8wAcluyckIIAwtlOc7TEGzMKUt6LRtBFhqyaMWMWELqEMftfxhhZszSUpQErFlGhMPQa8fLPAJxC7feRmC2ejRJgJqJwMds+5WBqpcRyU+VxuyLt7ZXkepRzu1/3Ml4d9+qRuAf7xvVQKfaqqcPANA/cR+Z7fk8PbeLGJWpky8c4AvBxP9gdf9fkoWqMArYVZv96kG0CU8pDfvKgNgN+GVBQOWNMabHiCl4ySY0yea0fs0CUgLTGEJVkzAmYlnN38jRJpYRVimAM3kcBF5RYDcZRJZNy7zLe34gaQ1TgGUDLtrApv+d9ukUaLbvkMx50s3+5D2ssOgNMAkwewE4lTDP5wQdrsRwHZUXWYhz+XSuC92hT7AEo9aBGhlw/JhlGaZWy0EHAxeQl4zlD1nKRJQGSUDpbx4/gaQRCXhMdw+gcQNxbLg2DY7lciy2nLjGmwuiGxCAfSx3WizA43DCwWm8xqaKwlqHraLdrjOlRJwWhFwDq5nrF0CG5GlqLs8dsy9HinLqZY4zlbnlPczKXeiBfe127xiZPYWosBZPC0m7EyaRSsi7N5nMW8xOqosEHh7YFaQmd7/BB1p8Y3B6QIGYQOQT5zswBDFJGybw/JpKOKBMzUKJIOmFV3JNulIokFYkM++83EWVuEzUjiTkqsULzWrIxGGvKBxZz8pwZElQyU7C+2F9Do9L9wNbLSkUV9teXRmclrNmDTiMAlD9Efn6p6aVeO9QFolBDAKFMXlLkzxFz75IzM9RYC+TPKADTSGlSjEQlpcBHQ0Jjos7+e5FoAtF4fBGIyZAoSZTYaAgxK4G0kAnlgrNIoNHYQ9tcP0ita1J+p/uSVMaAIdvMRSW1qVEGY0q0isxmDToFJk1BWRmUERKHD4F+GBi6jpgKdBfphpaYIif2HK0TrhfnmhQT282azeaeorJM51NsZcU5qOvo+oE4JOyizmCYlLjJgkmJftcRXUSrkmoisR0hOFy7Y3NzRbfdUpY1ZdNQNpN/L+vY/xEOZcSiGCUzA3GWiFndJWuD5Bsj658OQuLYn2TyHutIWZeuyHttJknEGPJ6JvXFmNlUGJsJInJt6b0TgjyL0eNstxTbcuR+CCFgciZbilEI7Og8PFe5xjX7eiICRou7krUWYwtA1KgKIcAYbfDh0CcZrUgh0ncdYssvPWnbtbTdNs995f3NplN07oW7vkNhCUFyv2IIhCjqaGMLsaG2oK2QXNCewe24X16jdaLtdtzdXROcp7QNlS0otMZqm5UnAhIklRj6QPBCrNZI/tHd8kZsIssKZcB5j0m5DtWart9lslGuKLTNOUA61/7yOUpbYQuDMhHnWqqqIiZLjJqIwZiY11ZP0pHBBYyp9ufVh46+b6GwGB1FEU4+r1GIF8ZIprTz4/WlibHAFnWuj0WFo3Rk5mX9LUuxFZZyXgh/3nuUFhedGCJ+kAyiwlp5vZRyHIHCeUcKA1ZbjK6JyUPOvrRanMC0Eiex3g/4NNqTC1g6DIG6nlEUBzeIEMT6LsZI3zmsEqUWmfwSXMxgnYWoCE6yzVJS+MEzJLGvU4acuZroMqCj0agk13ZtG5ItSSQBJ6PBlBqra7qip+9khlUVdb5/A5iB6HuMMkLKGWv9DLopoygy6DOCvDpI/SJWiFMUirZtIUHVGIpSsmt9L7aSY96isZquk1n34Hq27RpjYb1eC8lvtC0d8wOV3jv5/LrjNwJMwjqR5lTnRaSuaupaZIbrzYYQA2VdUTUlWnt8buCNKSgKueSm0ymJxM3NNT/+8fc5f3wkthpeAqyMEUbGpCmZTkoW84rZpCGEAe97ikLkxOvNks1uw3bXs155bm+2WDPD+UA3dFRNwW67pqwN1lR73/fBDZASTdPgk2K1WhK1WJBc3S6FqVhIVpFzjpOzWhiJVmwffvjDP+cf/l//M6aTyd5aQQYNIlNr21ZsqUrL4IQ17JxD2VoW2dxwDsPA/f09q9WKrm0BaNsdfT8QI3Rdty+mnHMkPJPJhJgCV5dXsrA2BtcLol1WFUVZYm2Zf07UCiEEsa2wKttPmf17IMlNvFjMWG8H+uxNb6xhPp9xvxq9+oU9oNHc399jC7WX1C0WC7qu4/Xr1zx9eiF+0ckAOgeHuixrtRg9WrjoPftQaclXOXt0wnw2wxpL3cxZ3t9kaxYBmR49Pme723J3c8eLFy+paotzPdXREbOyprtbU9elDCD3W5pms91RaA1R4wZPjHBzc8vZ3Z3UyEZT1hZjEtvdmu/94HsU8Z63LuY8Opmz23VoJZ6esalRsSaZCcG3LJf32H7grZMzeu+pixmVrdnpyE9+/CFP3nrMz28/5urNFXai6OOM45NT3nv3K0z/3jH/6L/5H/jd3/srfPLLj7m8ekNdij1M8I6qKnj0+ILClvzyk085P3vCe++e8dUPvs4PP/4p0+mE49kZKuz4F5cvePutd7i7u+Ply9eslkvspObq6hLnBsra4vUxj588IhnYtjumzYR333kHg+Hm7o4f/vDPmVQNj7/2mOgjr1+9YrVasd1umM3n2LIkJs/xsUhcN5sNb95c8p3f+jpH86M920BFiIi/rgw99N5b+aF0X9aUcXGSIwRpwLV0nRlcGr3Nf0N63F+yo7CSs+Ehswa0NMX7MfU46Mk2epm1tpdqk/BGNoiRZTgqLaQZFlZPTGL5ZAthBY4gnoAfJYoS591+ciSMRIAgBWeQAEJrrLBQvNjHjFakw+Co65Knzx6x277i/m6XG/hECFCqCo00QyFAzIBkihIcu9vtOJ4f56H7IRC0UlGY3inwi59/RF1LzlSIke12y8XFBdF7nJeuJASxd3jx4iV91/Nbv/XbzOcLLi+v9uvYdivg6mKxAKVYrdfc3YmKtJlM9j8jKh3JANntdnvLPwlyDhhbiOpIKfq+R2mdARZRFRRG03cDqtZEEi4mZvOC9997n7/79/42f/jX/4D5/ChnFkUury75yU9/xC9+8VPurm8obEFhC6KLdF3H40ePsEbx6Se/ZBiE+aeUoigL6ih2XCF4EmKB6IKjsAaFsDqdc7Rtx6OLE+azEwpdP7CvyU10IoNhBbPZlHffew/+GGbTGVXO62sqk2Xacp977+WqTX4fju4GR1nWrFct9/dr2rYTZURVM5k0OOdZLpfc3d8gtqYy6B6Gjt1uyzB0VE2JD46iKHj8+DHvf+UrPHp0xuvXl5mprKgqUcqlFIkEdDoMRRUHO45x2LdX7KgxLPmhZU8egDxQUH7BAmVkoT44Ds8/3ncP/+uoePqLhouy9kljeHiumNWKshePdlSlrLNWbN1iiJycHNN1A6mw1AUoo7l+c8nJ8YJyNuXyas3PfvYhn332OV3byfdqLRcXF4QY2ey2bLdfDoApppxXoJSobMIDH2prqes6E35kXQzZ4mkcKoqC7FDT6QRDDi9+eBTWyFgzgwNaF0wmE7bbiA+eXbujrBYCBHlRRtnMujYmN3he6lcBs3JWwT6DKavttRbQP7NJrdaYqiCExOCzDV0GmMb19KCAkvo+6oDJg/5xyG/1IcsvBk/wEsS822zQWlMpRdHUFMaIMirfQyFI41nmHM++79nttlTZWrqwhTDmupboAirJaLHIdsZ6VLbEcV8yuWYzD2zd8v2RDhmCY4aYrEHZRiulvcXhaBu7tzR7UF+UZXnIYMrrWIxhvx7EnBWVsmKHDEJJ03v4MyqDPvt7WH4vrMUoRVOWhMHRtz0+Z31BwsdIDI6+N9njXYu1Z4xCSM4KzjHLxIXDejISeQ6WVnm4YvapWoxr2yEfKO3rLG3NF9au0XJjzBgcP4MoNiImA+LGGCGuKVE3KyVZHCF4nPPiFw/7vd1klvPYfCutmM8X2aYm7vfr8fVjjDk3y+9t1YoMaqYU9/1ZiHLNeu1RXux+bFHQNFXOarR0bsAHUW6RgcKUAkqX+/vYRCHboQ/ZMjFpYpbDSOB3tsRMh0yuMZBeKVHDjeu4cIFyM/wQS3lgTfiX+RCy4gF+9nG0AVWZbZ+ByHG6ng+VB/taZ/bufsvUKCQ/rJmUWC2qyxQjJsOtISXiIIMqscMjD09zKHsUIoDUwBqVSVopiiVpymC4G9yeMDAOWiS/QKrxwTn6vqfddmx3O+ZzRVNHdNKUWuN8VglosYFHabrY07U77m9vmFQzysUR1grrHu2Yzqe0ux2bbsfnL56TYiF2R1pyGra7DSkqHtcTyrKi3e3QSlGWDYWJ6NCy6sXuj0pRVjVHxyX94Gi7DlOW2EJsmo6PTvGNWEBWjdhSmm5N1++IPhCC3mezjACTCpBUAi+2ZRFQQcacMUTaOGALs19fYkwy6Ewy9E4x5XvXZwBX1vUY9xwgISslS0JsVkeSgzV2nxk4Dlm1zmBOErWhD8V+TdRao0O2aCRbiNpxoJkH30oxRItKZg94aaHZPwC0Draa4xqgMqlhLzQPB1tXAWx0ztNTjKIbUaubPJwXgD2kgwpZfonjik8CTFXJUEX596g8XjtCAcqW4kQQreROxUhVlzL4VoYUMyhUaJRVBB1QaqwV5HMrJapqncG00Yrdak0AonfoGCXLRhdMSoN5+xk6CWFJ9vUOPwSGvmfoRS1SlJa+d6zXW3wILOZnJAPttifFRGkNm+WWV6/fMJ1P0aogHlmiNmxXHevVin470DBHJQvWEFTC1gYN3F/esdvsqIqG88ePSUYUUe1mzZvnL7m5vBK16WTK8fmjf4+r2f++jxCdKJwzUORyHhOMfYsA3SGEPcnCFJnoHYWgMfgeF9z+/pK5YVZxI5nJh3tIrm+tFdn9ljFLs6oLWSN7BylRFQ1VKffwWIMmhLQhcwuxWhblswClcu/5XMVJTyy1iWXMEbWFKMSVHkHkSMrvsyhypuykJMTIze3Aer1lvV7hk+TG3C/v2G43hBCYTBq+9rWvUxUlKQxCUI8e5wO9c2y2Ym1fljVVXdNMJswXC0QBlWgay9HxjGfPnnF59UYUST7lfOlEXdecnZ1mez/F0LcE70gpstmsMIWhKCwmZ5Xe3t1SVjXTacLYItf8Ma+pJT4e+gGjBShSSmNy/2ytYbftmEzn2SE7cFafUpYFzilS7o2bRt4fWohnbghUVSOgX17LRuW7MR6jA9ZI7tZuuyLFwGIxy7a27N0B7u7uOHv0hLquqWrpy0PsqarRWllTVw1lMWalOtrtjrop6dxAyDlZZbY8HN1L+r6n7z1u8OICkRTe9bKXI4twVRXc399nQhD46Eg4IZLlOtI5x/HxaVZQiepRHG8WOOe4v1/StkOuXXO/QGTSzGnqWmYd1lMUhUT0eMkz7NRAwGUXBJm7ee9ZrVeZmFzJfMhI7zIMjvVqzWQ2oarEYk8hs29b2n19pKz8rCg3FUYLgaf3PSrnGk6aKavNGqUsRSGk39VygzUlk7phOpmwmEkckSmEeNjuWk5PNNZKn9c0DbPFDOd6EpHdbsPrNy9oZg0vX75Aa8VsPpO+sKj/LZLQrzt+s4JJPWAYIo1Cu+uZzxbMFwt+9MPv87f+6Pd49PiYpoFIR5UKVpsWpRqmjWHaJN55dsLt3Y43V1egey7Oz5hOp4TcROx2LYVVNE3BxfkJ3/j6BxhyBhAJ5zestyu6YZeD4GG32zCEwGp5S0JhrKZtB6qmZD5vmEzEym67XbNcrUghURYVV1c3bHZbdFGBtrTtVjzCVSJEubBXqxX3t3eo4yMWsxMePXqMRm7IqqoECVSRuqnFh3KQDfbkdAoqkHrZsOumYTqdUxUlOolf6Ycffsirl6/YbHZywfvIixcv0NqIoqlvmc7KPFzwHC0WnBwfcXt9S7vt2LkWW2gWx3MZ+EZomor5YsbV1RWbzYaUxLdT0GVDWRmOjhaUZZGDFBOTyZS71Zbddg1ozs5OiEPkk88+JEZhF0ybivOzJ7x6/ZKi1Dx+fEbf93KOlvdYnbg4OyIlGXwOvce5wGwyIYVEUVRMZgvqeoJKBq0aht6z3iwlr4CT/VDj+PiYN5druq7fL37vvfceH3zla9yf3DG4gV/+8mOmi4azs2Pm9YS421EahQ+SbyBoeUFVTfA5iPD09IIPP/w5y+UqLxwdptC8//5bXF/d8Obqnrq2vP78lnZ5ze7ihGkzQaVIXRo6PH27heCYNVPq6YxkDbvtivnxEYWtialGAxePz/nnf/LP8buICpof//inPHp6ztn5lsl0jrEFX/vaV/kn/+yf0FQVx8dHfP7yJW9evuDR+QVHsyl9bTg5O2e7bbm8vOazT17zx//zv+Zv/r3/iPl0xunxglJ9wKfPfsr15Suc81RVlRVHMISBm7sb2h+2fOt3vkXrt5w/OuPJ+QVF0nzSfcblqytub255cn7CYnHK3e0NXdtzcX7B85cvuF8tOT4/YVI0NLrAh475YsLlJXz22Wck/0dMJpM81MkFPIG+3WVLPI3VJmcuSSEBI0CSc8BID5qRQyM6DsC8PwzCvgyHUoqqrNCIdUumTuybEhmkZfVPGgdeiL2PigIe5JBJtDTxKWbblsHjnCb4AaWgrkvKQmYdISRIhkKXKFUQogF85o+CdFKZ0ZkOeRtKKZz37LYd6/WW5XLL/f0dbhCmz7O3zjk6OuJf/osfsFy2krFXVjjfCUHBSvOJEnVPWRRYrei9Jybx0U8EhqHDGEPf93nAXnE0n/Pi+Ys9M9GaktPjszxEEwCuaRqMLjg7OydkgC2lxFtvvcVoSzp6Pk+nU87OzvAhUFUV5+fnaGPYbDe8ePGCYRg4Pz/n9OwC5xx9Vi+hDCdnp3KWovgyJ4SddX+3lFyOuqKuGtp+wFalBJz2Hd/+9rf5//7//ksmkwofHLuu55/9s/+Z/+G//8d8+tknONfxV7/7O9R1zWKxYNJM6LYdq/s7pkeLDEw73nrrLVEwOkdMielkznq7kkGli0xqi4+Ovm8pLHKNaY1zPUor6rqispMcKikD7PV2C4gF43q9xnvH+aNHRBQ/+vGPOT495w//8CuSKZDCnqnd9y1NVaOSEgJlVjyU04bVasWbN5ecXsz5V3/yL1kuV/S9fCfr5R3T6YSUAm27k+EMEVto8UG2wpYsS0szrWmmNevNitVqKcGoxJx/ItZJDIATNtheBJkHpf/2sR9vMDJy/qKC6TeDRL/+52XwLI2QGtHaL2Q0Hd7HyGIdweOx0A9hVH6K1ZMM2wxal9iixpiCm8vXfOW9r/OV97/CbtflXEvHcnnLj3/yQ169egnZXm23WzNbLFivN1LoOkddNf+bP9f/sY+UbdGk+B+BjxGMGIGE8c/ei42cWA8kRpbzMAwZaM5j/JRIGTDXWtbABLRdv89IMkbRNFW2/dH5dcTKTatD5tCYbmS11G8jyO59FHsCH0iFEIB8cGitKfOwPSfwUBQFIOQalYcLD3NQnHO5ZpA92RjJ87NWlI56ZKv6DKx5R/A+k6lEMRScl0wIDqSrEaCisFlBNLBrtygNVSwRYoEMbVMeNls0aj+AHr+mlCd2XwRu9X44Hdm1Hd576lrl3FdxDFBZhRu1fO7FYkFVlsKOjCGf90NoeV3XGdwSYkA/9KKKyfXL+Nom2yLGELOFVh6EY2RYjc1qloTOKqRkZGhSGMNk0jB0PbtS2PWjBYa1hah1tKJ3Xhir2S6ud04sPfYAWScg+qiY0zI4HNelzMMX5wej8E6+D50JPlJD6P1nCtmSYxykjtc9gNEHxrFWhhxXDUiDa0Y7EPKwSJGvVbFyKsb7KgWsVmKTouQ5xHJGWPLyOcIetBlyPxVCYLfbCJhqDbrIAGtW9RltiEoU0CFGdJDrnaSxtqGqJIQ+aZUzEUcFk5wnk8luSie0klrK5ms7Jcl0SC2EcPCqJwObY/bWCHqhFD6DSYd1Xy7hkVyVvhziJQAGf7DZ3J8P8hqRYmbae8jX+QgkGsguKWYPuBMD6+WKFy9esl6vefr0KYujI5rpZJ+XMQIV8h15QtAMwTO4nuBGtWiElK1PmwpljYBSMRC8oe8GdtstQz+glRFirNyYWFPsv1OrFUGBVpGqgELXqFjgWo/xO9ywJaYBpT3FRJj2hEBwDte1mHrBbDqlrguqWhPSjqdvvUNRGN77Sse773+Ny9f3/OxnH9O2a0oFqAldt6FtV2JDrhKVNRwfzSA1bFTgigbne8qqpqjmzOen/PAXn1HMjjBlxeLoCOcHFvMTbq6uub66Zbldcr9cMbhOhm26opnVdNstKkWq0nJ2ckpd14xWlZvdlvvlEt9nVZPSBN2LS8GDvMs+/10OTRmtrM0p5RG13BfGyg0ZiUQvj9WqROk8l0kHwk+MEZMMVkmeUoyJIQTYpx1xIJyOw/VMKvJKHwBlpUl5rdNK1LWH7HC5zwWUyaRYJaqn0Q5M7MMUZlQoSaOL1jIQHfubFCU/qu/bPXAF5IyLw/0h5DKxN1QZ2O76ACoSVcBphyOBKglOgRfrsRAdMKJ0CryoOKJOYu1noXfxQHjI6/VojzbWlVqZrArN5FB1+BwmW62LnZis9TbnsRg0yUeC9/RDR1UVbNuWECLXV3dURUe7a9EkamtZ3S7ZLbeooFiZLaVeMpnNWa+2rFZr2nVHrd7QLNcoa0lGUzQWHeH185dsVhvqskajKCpFSo6+3bBbLrm9vCZhaCY9mvrf/6L2v9Pj85cf76+rGCM+Bubz+X7fAclM2VvfPjjG2nKsrewIIilHSp5+2AnZPSUmxQSU2ddNxlqUVWiMuGakhC0Szg14vyP6iNEBlMPamBXs8p5CdGLTa6zUECrkuiFlUo3CFAWNLUlJgAajdN4nBpxrsYXYg46g1QhsqVzPGFOQSJycHjGdNrTtCQGZIYxEnLIsuby8pG1blm6XRRGKqqmYTGqqqgLg9vaa+/Ud/Y2QXlJK7HYddV0zmUwpi4rzi1NOTk/o2pa7u3tev35FXdWSF+U9VVGy3a5F0a8RSzVXQnY9cM7xi48/pq4birLak1fKsqRtu3xePU09IwRF1w2otCUEERa0bSQph/c9tzdbZjNxsbCF4uLxGdvthunkhKqs6PrEtpdMy2EItL0jRUNdTVEJrCkpbMVsuqBrQ17H5LvfbtdZWapoux0hOKqqzHM+6dOvL9+IA4+KoCNdt9uvvdYWaGWpKiGoaQXeGc7OThi6Du/lO13eLnFuLcILoxniQNPMpDbY26OmPK8WB67pdEpRlGw2W9p2SyTQ9Vs2uw1d3+KDxxQF5/oJwaVM9ErU9QylrJCjn84ocqTNZDKhaaQ3bnfdvm4urFhbz2fHNLXPhECPLqaMZNu23aK1ZfAePQiwhJE12HWOXduy63pxIlOy9pZ1hbayVjs3MPgBt+v3s6rxvhvxgrbriBkrWSwWFJUQULfblqpoqEtxNhn6FYvFghgV69sNIYil39tPn2ZCsvSEn/3yDW27RenErt3y4uVLJtMKSDRNTRoKUAU+yj4+Ei//ouM3AkwJlQNY476wLydT1usNOgWqquTR40eUjSLSy+BRG2aTOShP23W8fP6SxJb7u5bNbkNhoCoM3W7HdDrj6HTOTbrCFokUB7brO16/+Ayt4NnTJ5If4TsJxgqOF59dcXm9YrWOXL7ZUBVTZrM5zaymHbYc1VO6rqPdrZlOKkJZMZlOCc6zWe+4u7sDJKNj8GNTm+i6Nts2yfDxO9/6JtE7hn7H44vj/UDAGEM1ndL3IzNVU1php04mE/phDGgT9vt0uhA2XAi8efOG58+fs1qLb3NVVUynUxRxj8o2dY3rJSy+bpo8VDrYMY2Pgzy412IB17ievu/oh46UApPJPCuYZNN49OgRRWEEuEpgCzLg5MV6gkhZCFNEbCecFBF9j1aKRxeP+O3f/i1++MMfcHN9TWEeYe2ZMG+Cwzvx4OzagdcvXzKZlExnBbPZnLqZcrw4Znnf0nXCRN9blSCL/KOLMz75+DWDEj/f+/uezz97zu3NksV8zpPHT3n+/DllUWCsDM437ZZiUrFeL9ltt/J8WrzTvQsM3cB2vcWYis16x3Yji5x3jvfefcann3zKi5cv+cGff5//8A++y09/8Ke8iYE/+oM/4O72islE4V2Lcz3Hc7HFGplIzvVEN0hwtrbEUgCAf/ODP2VWHHMyO8UHh/eBrvOcng4cH59wdHrEv/6Xf8L7777L40ePOD854eOffcijR+cUpaZqav723/17/KP/9h8RhufUJvDNb3yHxXSCAtabLc8/e8mbyztOj885PT1nt9nStT9it+0wpqSZzHjy7Alaw/HRgrqw7NZLNvd3vP3sMdO64ezihPfS2/zspx+zur/Bmponjx6z2WzYrNes1yuOjudcXJzTDy0XF+fcXl/xi48+4rPPnnN6ccLJ0TFnxye8vr0lpEAIYh0ijE6VAaZx+DEO1XKBmxJ+z/bNQ9ckDYOEhEec//IomFRSlEWFRuH7AR/6vZpkPIcyNJTZW0hiORCiw0cl2TNuwLlyz9ZISeFdxKSY8wREQSaNlN8PLcU+SZFCEvVUEmm7D7lJSxGlxiD3hLUa5zxd79lsWpbLDavlOr+mJtLjY2I2n/CNb73Fi+eXXF0tCVHULN4HvBeFozaS5RBzpkKVN8jRbs4nhzZa1KeOXNiIrLcoSuqyZjqb8/HPf8H86CgPjCuMLjg5Knn65AkxRq6urnjvvffY7USpUVVVLpa2+7yGm5sbPvrooz3Tfde2fPzzX3D+6EJY8GXJbttSVoUMf7VI0hWwWW9o21YUDlXJ0fFx9kiO3C3vpakOkQ8++Brf/e7v8Z/8J/8Zu92aH/7we3z00Uf85Cc/4cc//pDNbsdk0vDs6VMuLi64vr5BKc1icczpkWG7XhGDoyxLHj9+zHvvvUe760l4Btey3QycnZ8RUgtKChPIdksx0A87vC+ZT0u8k9y8WTPaS8ngfL1e02SfbK2FKHEyPeL4+ITvf//7LJdrbq/X/N2/+3+TPBArVl3RWrwfBOiBXAzXOJ+tV7zj5YtXLBbHKGW4vLzk449/TvSeb3zjq5RVhbGJ5QrWmyWJQFkJk04bKOuC5eqeH//4h5ydnbPZbuhbUcgZo8VONjX7ItD50SJktAeRdegvuAP3w/aR+Z/FCowWw79OtTQe4/DjoCR4kN00rm8cPPn3jZ4a/08Gr6NiQqkRVLJ71pdWRjJnjGXoIsYk6lkJQeH8eC/DdDrlT/74++x2a7a7FVdXr1mtJchWGU1RVqxXG1KEoizRSNH/ZThEDRb3TDatNS4rViBlkMXuwaVxHwNyE6/2SiKxLxLF3jAMMkxLo7pdobXNwLiwDyUjSMJYtBIwxBqVLUTsXrVh7LjeW1KIOJf2YfO2KChLAT5iiEQfqOsareRzeC/s6IMVV9rXrV/IPMyAE4D3AXB7u5FRfeGc1IBGAcYQvD9YA8ZI17X0fUdTNdkWTtiRZVliR/ZxtqFIYyZTDBCzdZ02aIOAF0aUDCkDQJAH9XBgyuXvQBlNymtViIHBD2hvKPfgudg++yDnpq7Faio9GGRnVBxg37wJwJQyiSrs98s0sn9HRgRZxUJWD2UyyLheqARGKeqqwGVVpTUamyn7o1WdWINbul6svZwL7HY72nZKUej9ANJam8ltHdZ2KBX3CiOdAbiRoeycEwZtVAfF0B6YO9Rk43VAPr8qJVEDjerpB+ooOS+ShaDVmNEktqqDlwa/LARs1SrtByNay3UUgoCuKelsRc7e+WEPviRR+tZViX3wXn22DlRabKZGVwqtNbYQKzuyKkosBGXf6dqthBZnO51Cj3bN7L+nMeR7zOMqchA5MUi2U9/tFYyjgioGhX6wflRVJaBTOKwX47lNeQjjvN8DitF+OUhTI1AZc5h6CgdQPW/GABmEyor8GESVlO2XSGLVjjI0TcPZ2RlVVVHXYqEVnTimtF1LUoqyKJnOppnBn4f7efvNmAMRWfuGQY3uULIMaLEyLsoCbQzWSh8F7NV74yAlJUgzODkW+9HCFGKnb0y2xCzFajQlgh/vM0Nd1hyfnHJ8csJ0PgMCzaQgMqBthbGW6WLC+5MTnj4LnD9+xnp1ixtWNOWUQk+YTBaYouItc8HrNy+Yzt7jeDGhKZ7w+vPPieXA8ckZi5NTnC4oyoq+d3TdwGyeSFGhDTTThtOLM+ZnC067k+wkIPeHNZC8gyDqsPOTE8rs1tIPA6vNms+ef8bd6p5+GLKNYEJbQ2nlHkox20LvlZDZLm4kDCDqHB8D2d0LsVkOkh8UM+AUcwbTg70rRkeIOYM6JQoz5nrIdyx7WH5cBlZCCCRd4FMiek/IIAkKmYGEARcVyoy1mkIHybhI4puKSiMgY/b3OSmKHV9+XaM0JL3v1YhgC4sxhVyIOWpib0GY7fgKpUipFOOrCKYpsDnrNqqIU54BIFkIBkLONdOitgBQUZFcIiUDRhM1tK5jRinKvSiOGD75w1A+OXxWqcUcUWC0ZVShjfuv2OymvXepJjJ0DqtMJplA33cym4kCID9/8SlGiZ1lYQy1NXjfMviW4X7L/eqajz/5BaZoUFqGnL533FzeEGIkqEQyoAvNpKxwnSMMjhgSz19JtnRZKiqrYHAUpSFGmZddXl7+e1zN/vd9vHz92Z68K21zYrW5ybaNmTSXlb+jmhByTaAPjifG2r1a3uZ9uW3bPaCCEkLRnoBijOx/8aCO3u6WBCezTADnWxrfUFpRANV1JUokLdnwSvtMOkj7+sIWBd45hkFIYDHXZiSp1ZwTRYqtupyNKrOJwTm8CzkCoKAoxUEqRdmDB+ezUkQLuFGUGG25OH/Ey5evWK1v6fsl2iiKwTKEhtpVkt2kHbZMuOAZWnHiuL9fUtcTynXF+n7N22+9x9npBYvFMWdnF7z11tss7+9zTZUY+p6qqilLSwg+1/rl3kLfDV4AkuzMkiBn/PQ0jWSity0UZSb8qNFtqhT1KAPeB3oCxiZev3lOXVfMZhNu7wLbTceTx4Hp5BhSlefICZtKqnKKNRVDX+/7FLHVtFSlZGEbren7Ye8IoFXcW9g71wNgrWEyOWK5bknI/MAWmrs45JooEIOi71qxnSuEvFeWlvV6JYrlFHHOs1ovISnm8zmzZoZGrrc+9qAUdVVjtLhQDc7jw4DW4uQynU9QVpRqqERZFZhC75Wju91G7O6UoesHqqKSz2aK7NCSshWvhaTzvpP2IJtzTubn0eOcuPhoZdl1fbb1BltUhOQxSqIsNhtPWUpMQkxQVRMuLiaQIrt2Sz8IiGgM2EoUhmjJ4HJ+2PdxSsl5ricVxumcDSyzDj8MpBhpqppiVjCdSg0zPlbu21rUrLrgxfNLrLWZoGvo28D56RPKusSHgcXsmKvrS6q6ELwhKEgFQx+EmKhL6nr2F65N/w4Fk8pPioQHZ5bHZrNFJc+zp88o65qkehSKoixJeOpmQkiejY0Mg+NueUnXyZeijLDLN+stwTmCNcynNShp9puqlCLNWgkEDOBCL8GtzrNre1arHff3A9ttR3k0wXmxZ1I2+8ZjCMnTdT2EyLSq8S6w67qMqgrg43P2UEKa9bERK6yl6zomdcl0ckLTiC2gMCAjwYf9uSiLiroU9chyuWK33e4bj9VqzWQyo93tuL+9Zbvdstu2MozIdgqTyURCwrxHoWmamq7bUZYHW72yLLJKpZShQszWd8bkAllyVrpuJ0oBa5nPZ8QwYK2hqsWOaAwYT1GsqLzr9w1lip7laolzvQxwi0KAk5iQEFuxUymMZde2+bmg71q6tmW33dF3jq71vH75imePL7D2nKpqWBwd8+j0bbx7wWazwxhNVRb7pqu0xV6Bo7UMy53z3N3dk5JmPptTT6aIT3bi7u4em2SwU1UzJpMaaw3OD4QUEE9ITYgiLUyRfYHr3EAzWVDXBYWFEHouL1/z0Uc/5/b2nnn1mLqa0HU7tJKQaBB55ugdmrRmiJLLkGxAF4nCGo5OFiij2HUtpemYz2bsdj3F/YbgIqvlGucdVdNwfXPLdrOlriuur17xi48+ZLleUk9nfOu3f4cPPvg6/XbgzYuXtNsln3zc0203XJyfcbyYU9VTlqsNTSmD76dPn/DJJ58jRaCEOi5XS8prgxsm1FWB1Ym+3WJ1YlKXxKGnLi1NWQkYMcjguh96nBsIwROiw7meuipFHpoSn37yCccnC2bTGSfHx7y+uc6MLhmCWiNDDKN1DggXGwHJrBiHq9mTXz1ggCUZ5u6zIr4cvTgg58Qai0Jk0MJMy/rRvA5bKxLkmCI+iApsDBsOQYZEgx9wwUug9p49mpvonPkiWUuQks9WGNmqIkViyI2TkiZLmrW0Z56OjHLnQlYvtazXO3a7PrOCxOqprA3B9zx96wTne/qh43454HwPqRQPZx0pcraO4jDECT48eO8R7wIhAzkil5ccqevLS2xR8M1vHtO1HUVR5fDeAueG/WDIZ+Z913V7EEAGfGZvwwPsGTb39/eI7Zqomd5/732ePH7CbDql27V79sg4rKybCShNPwzs2pbTs1MZLnRiIZiA4+MTfu/3/irf+MY3eO/993n9+iX/5s/+NR999CEvXj7n/m7Jzc01KcF8OmExn1OWFdYYjhZHXJxfsFtvOTo6Zuh3WfqeWCyOKGzP8fExt8sFm/UVdV0zeE9UAW285BbkAj3GiNFpfy2NVnbeO7QxxK7FBcfR0Yk092MQK5pHjy54/uo5n372Gdb8a/723/6HaJOZmDFfKynhB/HxB2GMbzZbhl6sW7fb7d6CLARPu9sxm07wwdGvdyyXt6w3S4wdJ4EpN/FinZdcZHC9gFYpEbzDKGnim3JCWYoM33mPC/5gsaNGdZDKLPpxiP0rQ4+Rdr4/RGWQn2J//Y/35cP79/BnvvjfFRyUSweAaW+5xUMjzMPrjuIqrYyA715WzRiUsJPqGYvpESkpZtM53nuurq6Yz494c/WG7WZF3+/YZTveEEZri0za6R0xM9NGtcKX4djb6GQwwntH0uoLoNN4jANRn8GbvXVeiBRlSZntBvcMYQ6kAGvF+iIEL41Nzs7Jz0zwnhQVZSZkiB113DOkISsztLD6U1IYbagqsYMzDwZvIIODFKOs8+TVO0YCfq8IGdUhB+b0wTZCqbTPmVAZ7LHawJgLFVO265S1OORw4kJbCi3vrcjN52iDVVUVRWH3Kubx3JicG6KS1KRlYeUzJLKl3wjaHKzb9raEWu8HEkqpbCHiUaqmqqsMGMr60mRiTgghWxeJMiflIdhDG9bDrzS+VRksKrVvuOW+VA+Y+aMqIxyAJtI+xzQV4jJg9QjwjWtuOIA+xuKi2ys5pBaSXqSyBU0xoQvbbKMiNnnamD1onvJ35fP32/cDIYoyS1QdMnAdPfEfWnym/fuXdVw+Z36v+1JABhoKsSTzbkAlK+9DjSSUg1JFnBO0gGnpwJCW59KZNOdzjalzXonYIY45v2I5XhDy2qUykJckpDIPZiWzzKgiZ1nJvqbUqA4UG5qiKATwDCHXD3pfS4wqhxHQPazPck+kfK6SHm0D7R6o3L+vjFiNmZli3yXAhMYSxgKLX7/S/2U8Yq4rEyBKv1ENN5IvADQoyb0y2mDseK2Na+nIv5Ch0Ww+o6qrvdoQnfPGxnNrhSQw3lfSw2piUWTwWzJsgvai8E8HS9qEQhtDVTeQNKYQK88YEyrKMDQx5sRlRU3MIfdqtFlLoKNYTRuI0aCtELfqRgMltpQMJLEnChSVBeWxRYUyBzWpLTRPnxWcnh3j/QadDEZVFLZG64L5IvCDH/053j/GmClV0XB8csr97S3NdMbRyRleGZpJg/NDHhQnAXlLzex4RjktSEQ6J3ZPSieMEgseA0gyemRaN5h82XrvmUxnMmCrarq+w3nHYI6om0bUmCj6YZC8vlzHxJhwQzgQCVIGk2Ir6k0SBiWZ1iiSEl2sXCcH5aTKuVYjcJ5i3FtsjYdcY/9/8v6s17bsyvPDfrNZ3W5Pd++NPoJkMEkmk5lZVcqSLFuSq6wHGwVYBuRH6xsYhj+QoY9gwYAtGBJURqn6zMpUNmQyySAjGM1tT7+b1c3OD2OudU6wMlkwUA9yxgIuIu65+5yz92rmHGP8uzg/t1LvB5SWnKZI3ifjlNwl+1BevpkS7nSUAbyQH7PzRghMyitIJJ3QWeE4F35RgEo1K5gElNI5R1HNd/a0djw8HzF7AdpksouDKJGSgWSMAIQIsUUbhbIS6q5SolAK5Q2agmQM0YCJhjIWYgeVoihZyOtyXptjdqRQeduVfJ38DCPZdyEDTjFbUEOgrBSEJIQHpdE+So1OzpfxkqdrlMI7GBUY7QkImBTGhI9ZZmUkQy+FSNe3+OCRV8rPqm2JTkrEWgHi4QZ0oCw1i8qyahp5fVanj+03w/IZoBuOTNyXiRAyuAcmhZYAZWAi7eT5i57sIBWTms3kLCObs5S8c7LOKcUw5izKIEClUtkJA5VtIJX07iFnwyhF1zticjgrmTMxiZJHes5xBn9jFMszYwxFKnDjOJNmYs5/Sz4Iico5sfEf9vj8vY8BJmMLjLWYvsj9t2J04q7U1AtC8NTNkrKQXKimWeD9SNsdOHT3TLn1u72cm5gcbhykR+3Fur0sK7abJUUhIFZVWeqmpG5KmkVFVTes1isgCZgSfLbDdvOscnd/R2kKuv5In52hFoslZV3RZSenaQ4h1y7Xxjplu0A7ry1FYUlKk1LA+QFtDE1TUJQGpRPjONB1ouoprNjTGV2I+sdYarPAGM1YlkKy0AKklEVDigalhGAg8Qqy5jg/0g+d5K1GL7WbtSQsKeZMJW0orPxBGSYip7VSO/rg8hy3YvJB9d7RdS0xBRbNEshOKHX9EP+QARWl5OdELTWuj44wBpkz5gI+JgG6lDEYDH03cmyPLJoV1oirjDaGlAnVk1II1Ez8klnPZPsa5/pGSg+dr0Uh5BiypWMp19ZaAb2dG0HBwpY4J6DoFK3gcq0q6zrZllJ6xqLQjG5SfgtY1Q8OF33uQ3LmWvL4IDV2VYlts/duJvYMXYfznrpa09Riy+f6wOgcwQUUmqqsKYtaLMuN4fTkjCmjOOV9tqpr+n6Y67gU/+aa9jcDTLlQk75Iin+rtcjYKsOHH32EMjqHSxnqyuLDQF0pvHcUVoaOu909ILlGExJqjRGrjCFysl0yjpI3tGhqFnVJU5cEP+DDyOAH+mHEe8U4RIYhcDz2JCRUzntH17ecnK/loShLktUMfYsbR/oE4+jpul7Yj57Z5iDjTUzdpNbS3Nze3lI+Oefi/JSqEgb9NFgUv1l5CMtCspxC9Nze3jOMHUqJ/PG4P9Bve9rjka8+/zw/PB7vfGaNQtM0dJ0sLmVRUhRWpI65COu6jqauqKuapm7wY8g3tJHPksDj6fuOvmvxztHUFduTDe3xgLWaZtFktZLkmKQQuN/dMboo4XxaFEF3d9c4P+YC3pKi3B7WWsbB8fr16we2Q270ZcFts7WAZxwC+7s77m7vODvfsD1bc3Z2znvvv8fl5R368gqlkjAZlKK0lqauM+orjD+lFckn2rZluz0VQBCxSVIucNPegA/UWrNcL1ivl9n/twfrpfDSKgNK4itbFCLhHLqe7VbURSE6YnQcj3v+6q/+ChsD6e23SUozDgNajQQv3ttDLywCWxQkLdYjYhvjxJu0UJyenXJyfsLdq5a2H9lsLPv7W4qipO16+qGjrCs2m1O++uILusOev/O7P6Lvj/zyFz/jy+dfUS7XfPu7P+RbH33MzZsbXr94wfMvP2MfEs+//JIffP/7fPy/+YdcPHnGT3/8pxwMnJ9u+OD997m6uqYfAj569sc9xWhAeYZuwcl2yclmyxdfPKewJaREu9+xqEvOthuO7UjbtRRFkTMQhBHQ9S07LRuIzTkJn3/2OT/84W+zWiw5PT2Vxt5kcCkPmYD5XlEKUm6chG2aSWJRE9WDN/sEhMQ4AR7/ztrqb82RUsoB8eKHOroeeACXHgNMIUrWkoSQR2EXR/BR47yblTMTK19+PsSgpOA3ZWbeq9ysPQyJSA+DElkXZaA2AdkkYSIPg2O/a9ndHznsOobeY6wWy59CUTeW/W7P9vScp/2Grmtpu1u6Yy/NiDLgI9oE8RLP71EAcDchYvMA8IE9mhnTZcXl5SVGG7773e/JsHgc8WUJjWzCKUZ65ySzRikOh8OsTur7fl7TM7ZJXdWcnp6y2+3w3rPdbvnoo4/49ne+zaJpiCHOg8YQxK8/hMB2u5WvxYjzotAMIdANPdoY1kv5OX/wB3/AW2+/jXOef/LP/in/+B//9zx/8RXDMHB+diGFWkgUhWWxaLB50HZycsLFxTlfHltWqzW9nUAQsR2oKlGtrFYr4HIebidtMYVmGHtskZnB2X7A5kLJu5EQHMM4UlYlLsuu1+ut2AAZgzKGcXS899773NzdcnNzxy9/+ct5aPgwrJWfPY45rF4Ls2l3dyeEBu+zurgVYM85jFYsFjXHw4Hd/par6ze03Y6y1Lm5zTYmVuP8gEGK6rv7G6wtUeR8klFTL2qMlcBTMzqUGoAHQGli6OYnLj9fOs8uHgAmGTw9gEdaP4Di01D314/HX3sMQMnwajLsV/Oa9tf8CPLTRk6Azg2FgKkp5v0PSwiJ1WLJen3CZnXC/X3ParlmHB0vXrzg/fctzkuY7TB0cw7NMI4y7FPC9vU+5L0xzaDF3/bjcXZKCJ5h6AnBQTKzgkis71Qm8EiB6Lxky0w5ZSklSldirKKYLHPmiyoXuSgsZWEJwZD8NLZKedgv61hKeVCZyOSLmKdJ8lyFEMQSItd6RmtUIb7mKg8IhCkfZmWMgAjMg7yYCUVt183N+qSYmjKdpFlID2xymfbIwAKpnVKMVGWJNVaaHe/wOT/SWmFNm2zrNwENZVVSVeVcB0iNLYBZiBMgEykLS/QPpAghrJAzSIT0ZazFWkMECQ1PMYc9M6try6pCd90MEk+As59zrgSgiflaTaDSRDqQvS8Dd1lt/WBtpOfBmwzW8tVMKQ9hJgBxApnkc6KYM4jkd4Z87U1W4hSiWCYSUsrgnJy/oqqpFivuj2O2LpJ+bLofSBNAJCQBN44C4Cc1k7YUCpIMWh4D4dP7n/NWYM4TmgbDEyBi8sDJRbnPQgbBlNEPuVQziCTXzMcw32MToUNrTcoAId4R8rDe5Pow5rDmwmqMkWG30pOyVM4pJiurlAwNSmPx0ukyKZ+ma/mggFCi7svZWl8HPAEExEiPvidmRc0MjiBZLtNz9jWiwXQuU8IoscxLifn5TCAqsW+I7fNE6tNK5WfYzCqKCeCP06AzaWG0K8kIAll/Hq+pxlrqZUOjFjN4HGOQYbd69CzGB4BeKY0qFdkgikkpFWWSRMTn7xU7aXlfBWJzJioOFSRziBiF9AKzAiXGkC0eBexNMYH2El6fDDoVaJPAJ0yhqRrFeivMZRleeYpQoJT0j5Dr9CTKyfVmy1qtQI+EIWAoBMzKQIX3HSEMpOSxpuT0/Iybm1t0UbHabEi2YL1esm8H2k7qr9LWVI1Fm4rEgqQSzg95YJxJC0Cpc68WAiopcIEp/6yoawbnadabDDB5VGVYrZZYUzC5wBwObe4lkzh5dOL4MV2/0fWkfSImJ6hBygCMYop0fgDQZ7Qfeb7I2U6omRw8HfPex8PAfVbOQV4zI4G8FqjsBqPE/nS+A5WCKNkxstjm/04AGRBtQqmQr122IYsRH2zGxRIq24oxr9dTX2xmsGnOzDERNBgxjpUBotGY0mBsSQoCqFsjLjAKR4wjhgRKhvNRRRKGiMaUGu3kpKiUc5e0ISpxwJAcymy9hOy5MSQBEvJeF2IiaUWIsn7F5AgELAY/RnHBUuJ2NPpAzPuMCGViblWi9ASIZZawR6XnDdERoiWlaegstoA+eXzOTPPeYJLGoFHK4EMg4RnGxDhoVDZddD4xuEg3un9va9n/3A8f3awymmzfosv3sXogIU1EiMQUV6Ae/ZkUUCrPZ6epjIBKQsaS+SiP6oUwqfyzpanzDhWnzO0MOCVPsJLPGMJIKKv5+2NKAmJlRb3NuTt+dFn1nJicXCQfbiIBOUbXzeSVkOsMH70My730u8MoSnlxTcnWwkZJzq+VnscWmtF39OORQ7eTGjrXaD6MDH1L8E7+7qRvPTk54d133qawJd5HqqJgs1mKFatOGTRphOQTA94L4aHvWpqmwnvJ/dFasT+IpX2IkfVqQ1nVhMRMYF0sFpLLYzSqKnHez0pKqctSrou1PJvBUxQNp2ebPNsQUpM2ZFelkcJONtgRqy2mqKlKiysrIfwqCD5SVTUxyLwjhEhRVFij6ceevuuy1bUFIjHvweOokCx2wTWtFnKHZFnLulKWog4ahpFxDDnzSwi/XdtxOBwoK8tyuWAcHW3bilI0kwKSEtXXRGKXydj0LAjAGaMX0EoJMUlNIGgItF1LVS0oi+yuoJhJuOM4zqRa5yWLy49uJiBNe9JE2LTGglWilFcSeYASp59xHDLJMGe+Ooda6pmgrJTU/029lNdFR1SBfjgQohAqitJghimRXfKe/DBK/TTXSOJmlJJYbhdlgXeSo2SyQKRvW/p+oDpfUpiCuqxYr9bsdvfZ+jvQNNntIUjNVBYlpyensvXlmroshEQitoBB5u5/w/GbAaYkTZc0SwqSeLGfnmx47713eO/DDwh+R1VaCQQswQRQGNqDhNl2nWRuJFVycnLKR++/y69+8Sveefcpi0VJVRoWC8XQD2gshkB0A31yVJXFjT13d3dc3+xZb59wd9tyf3tEKcOTJyfEICd5s1nz9OlTQhywpqJeNqyWDcmNtIeWY9tx6Fp8BOdDtoNIDMNIUVSPChTxEF00FTc3Vxz3d/xHf//vZPWSNGNaSxibHrrcOGq0qXLorMjmpsyQT37xCbfXN9xdX/PBBx/wx3/8xwzDSN8PlGUtIezOMQzirX44HAjB03eBcUgMY49CApZ1bp6apmHX99g8CLm8vKQsZeExeaF/+vQpuztLTJIrUpYlRSnB4H3X8dWXX3JyfsHJyTYPnyNVLfYr0qDBYTfifaSuF+wPR17/6Uuenp9xenrK2ckpm9VaVFXeySJiNJ7AZr1hvdxQlg22KHn69CkXT59S1xIY3bVHAc2airPTE9569hQ3DlSFpe+kmJcFR3N3v0NbSzf0jN6hfCm1aJAAvicX5yQCfX9gHBfUZcHoJdTXebF7KopCWG5BMfQj9/f3XL5+Q98J+m6j4Ue/+7t89lc/5+7+wOvLKxa1o67E3iP4kc2ikWteWoqiZl0tUbEkZp9vowrqdc325IRhrzne9PzhH/4bUnD8wX/4ByituLy65cmzpxz2lyLXrRcopXj27Akv31xxePWGarHl8s01T84vePb0GRfnZ/zsJ39Gsd5SV+csFkuqsuGjb3+X1y9e8PrF5/THPf/5f/4P2O13PH/1hpu7HV98+SX/i//o79PUBjccuX5zyUfvvMPPuwPUCwCOd3dUdsH52Rl1PWJ3eyg0zVoC3IZRwt7+6E/+iFW5EpWILXn5/CUk2KzXXJyds11vGKJHOSkArXrEfkUKeJWtANB6tj4AabonSwJhXudChyggxDfkCCGJnYKx1FVD3x0Zs+R98slWOqGtwkSdfcZz45KZBVGlrw0LEz57ZltiVDiXIBVU5ZqiDMQ0ZhZxXteUWImI5DarerQhJivPTwwEJ8/d8dBxdXnLzY3kms1s7AJicvTDnqJKtN0N29OK71Yf4H3ki8/vCU6KTq0qKZysFV9ercTCLkGVmxn/CLCRAZV4FV9evuFku2W93nDY7dmu19zc3AOKxXKFslIoTL68ZVlyfX3NZrMhhMDhcOCtZ+/I+0aGp9FHnj59ilKK+/t7DocDJycnDF3P/n5H13VUVZWZ0WEeZl1fX/PTn/6U1WrFe+99QNcdKcuSpllysVrx+7//+/zoRz/i088+41/8y3/JixcvuL684e72BkWirktsoRnux+z5W1OWBYUVMMxohc2DVmtzDkUemD5/8SXb7Zm8Fy3b+fF4pFmKctWUnkObMtio86DYk1Jgf7gnBsVqeYrzsN5uMtNJgGZtxHbKWsOh7fmdH/6IT375C4w+sFqt5mE9cgfKMFCJjVHwjsIqrt5c8urVJe1xoG0Hjrs96+WKN+1rSJFnz55yON7z+s1X9P2R0fX40BEiEt6phc1D7s+j9/ggw0ChM0rR04+yP1SlzSBTgRnEAlYYPjIAUKSZKZVHzDANVJkx1gywfn0g+wDW/ruR778OhHp8TDZAX/tRavoVMnibGnyx6JMhVvDkgZbFpAKrK1x/oDsOjKNnqEd+8IMlP/zhD/nLn/6Y16870BqfB8zeiR3MZCdWlmW2c/nN7/dvy5GCqPkKo6Eo8OOYuecSWB4yy9eWBZYHa7Qpe1IGxHKuhBRkqa2wjYXZC6REYYVFNo6GcVQQfAZrFSEwg9XwMMSXPJHJgkx+lFY5CydblKUkzVjMb+PxexNbJtA6ZWZ+3gdS4ti1cy20WCyoF022NBI1T/BhtrmANDfThIhGQG9SYlGLbXPIw6KExXuPcTIQwIqtiuxX8rOqqmKyCZkGwzKUmJojaRDDo+Gd0RqV7SC0krXAFkbsITNpIMZIU5aP1GiOSb1irBVFZr5+k7+/VtnOKA9eJgXUYrGQIc04ZlBGGvcUhaU+WTD5IGHsEVHcTO7/Kl8PrVS244qM44BCVAHWaLFTthmQyYcuLDHI59KI133IVjFmambVQ27YpM6abAdlYPRYTSWNoVIGrQQAIvct0yMe4/R92cotf+/jzIYZUM/nJyHlm8l2tZN6wOXnZ7Li1vphr/bOf22tFFKcnKPSeyIBN4rffjSGpq4lBDmDu2PXIWBdHuobjTWLPDjWD3Z9fspUG/Ee1ut1HoSJzZbL90vXd3jvqMuK1WqVCVNi+ei8lx4GRdCaqk5zpqLKgLR3I4VtBODM18B7P1tCT/uFsH+VqBF0HuzyAJp8E45JbZjiQ60/PadT3SRfhIlINA1KHpSACBAUBERKOlvvjo6Q/Ky+VpbZlhGtKKpyBrgmS1LI7YcRcFGUKH5m70sEwASKyXD0YQgqdei0KKckQMQwBCJxBjFUYQToVGRVXrajtJOqVGcigwD51pZoVUFy4qKbJjA2TFgKaIuyhkIDTs7JZM18drEhxoFje0+KDdvTE9phoBsHPImyMJw9OeP208/Z73b0fc+Td96iXEQg4INn9A5Tlnm/ELV2CokhRIyy6KIUK6NKVF0pJTSG7VPDRWGFyAnY4sGRRNYMsVBLaSIamqxadDIk8yO73T1/9bM/5+bmDf3Y5rVLlE1eO6LhAex+dF9ZI/eO0YbHAFLMm6IE3wthhCR2e4qE70U1ao0WlU/0SBpUyra1OSxeMa+JKTlme+MkGU1KMbtvJC8kKJNVD3oCk90jO8XssTx9FpMtm1MIE15FzKDTqES3o6LYGebgONBKiJcDGORzxzQyhCN1pTEqgnNUqsaNiagtyRZ4o7GqntWzIFaGE9lDSL3yuZMPpBiZVHnTM5CS5GlnxI+kAp4WqyvwEH0kxYCxCm0i4IhErJIhv8bk9bqCOGasTkD4kCI+JFKqUMqigb5v5VlXBjLokUQ0hYqCPi4WG5KKuLFnHPt8/4DzkRAVtvzmzA7gQQU09WMuZytO1z2lB/vPWb381/Q2QLZjlr+LG80D0AvMin1xXcnkIeQ1hXgeMymV5xo3erzrSdHhxm7eE+Tf4myhKvuDgWwpPROTsiq/qnLmIYnOwTBIxqkOAWsTJq8x3gvJlmzRVtcV1pasVivquqaqahSavh85HG8wJqC0p+0PQkS1ssZao6nqEqsbUs7vSzHy8uVLLt9ccnJyKhmehcG5gfv7G2KUmJFmtaRQtSjLs5IkeM84SB9+cnJC2x4pygplDLYwrLYbtNaM3tH3PX3fi+1/3ktdVmJJhqj8dxx6qW+V7B0hegoVaZoq1yiOYzfw9OlT6moJSmzl6molgGRRZTvBRNOUdF3H8XjkeDzy8Xd+S1w5Q8T7wDgORCfXoqwKtJG4lYnUM2bl6tnZRSZ5iQLn9asXnJ6eUpQlIaoMVAkBte97vB9JKfDm9Wva4xFrLD/60e+x2x2IIWGMnq0Ri0KUqN45hsGDFtKIc2MGWGuxNSQx+p71esHrK7GIL8oSZR5ZdqcgINlBxB4xIlZ5SrPZbLJltajo33rrLUKUusMU0u9VTTmTDgtrMZnQJj/bSVZ9tkQ8tonoAn0/ZkeyBoX0ctpYVJTefIxjjhsCULNtu5DK42wTqawQ+h7XMDorsye1WXs4EPBYW7Beb6hrUUodjjuGsaPvJB5Ca3F1SyGgqYgx4oKTtTiJW9mk+PfjAHkeFYKnbY9/47r0mwGmR4fRCKoVPe9/8C7f+95v0Q8D6/WSukpURaC0gdLUdO3I5dUuB3splquaYYS6rDk/eQbe04/XsGhYrdcUxrNqLCfrBatFg1bQ9nturq5o+4H9ceTN63t+9as7uj6iVEVCWDDDGFksltQLCRLXSgCq6GrOTk94cXVNDMKmUNoSnATQzrY46oGlOC26SgkrtaxLTk/WfPTRB5SVhBY751HDgIuK1eaEyY9/s1nx1Ze/ypI0KahWqxVoQ1e3RBL/w//nH/PixSvG0WFykdQ0C1arJZPs7urNa05OtrRty+h6CYVOiHdnVbI/5CGBscQktoMoGTKAKINOT0/ZbreU2ce9rismMbj3PqPG0qBvNxtICBBYwtnJhn5whKBZ1CccD8LwLYzl/OSc/+q/+j/x3/13/29evnqBUoHf//0fsqhr+rxRKDzLVcNhv6Nrt2zO1pydnfHkyTlPn53x+vUJSnnW6yUpeorCcHKypa5PWK0XtH3H4AYZhMXI0A9cX1+zzxkSu12Hip5SJRaLkvv7e777W7/D+dMtpgi0/VEajxSEme96/vk//+d897e+x3vvfyhsKieh8HVVUhUWO0JV1my2JySV+KtPfsnHH52zakRtV2qLH0fWJxtCTPTDiPaa5EfKYsSEHoPlbHHKf/lf/h/5H/7bf8qf/tFPKOuK9hj5l//qj1lvNjx5esGXXz6ntAVj3+GHnn9xc80/+Af/gJtdj60Nb7/3ET/96U/R3/8BiUizkKZ7iPcoJblczWLJ/+O/+W/4z/7j/xCjIr/69Gf8k3/yT/i7/8Hfo14sqV++4vmL19zcXKGSoykN5ycbysLy7ttPObY9KMXf/Tt/lz/9059Q6JLtainD86s3bE42GCN+q8EnLs6fcvv6Bu8Db7/1Fq9ePOfP/uzP+M5vfYf1ds1HH3zAL371mahXsv2IQk316FzMynqZvhZ2/GCvkoc+Smebs0xh+4YcY9fTdz1NtgARwFhC0ZWSgUbf98KySyE3yvqhSExxZnBMrHvZlGXIE3zCu4QxCxbNCfVCAWMuTsCHERCrs5TtFMQ73Uq+gHPEoBkHx2F/5PbqntevrjkcekJMLJqGstTZvzcBQezTVELhqOuC3/qtDxn6L7i56hh6J8wkJRs6qDmwWSspsISbrrLFjQT+jm6gLCqxP1UJ5x3X19dcnD+hrsUir2tbsYYKl5ycnLFcLjkcDsQYWS6XtG3H/d2es9OR3W6XbZwK2rbl/OQcrTSHw4Ff/vKXtG3L7/3u71BYyxQY33Udq9WKpmkwxvDJJ5+wWDSsVgsgst/viTHy5NlTTk+3XF294b/+r/9vM+slhMhi2bDf33Px5JztZsNud8CNPccQOOxXHI973ly+5ub2iufPv6LQlqEbWK/XDH3L0IsFhCiHxU/ZWMvoHU/euqBZagId+/YKW8iwLQRhLRaVpeta6lIzupHLqze89ZYAYzDZtg6sN5s8KLKUZc2zZ29RlfJ7Fosly0WDAvpevIPLyuL6QRpgI/ajwzBwdnrCu2+vGMfIP/vn/0wAwjdvuLm9RunIy5fP2e1vMFbRNCWb5QrnepIW9pHOCrrHjdHge2FwyTKTZfWd5HppS1U1ArgM3QzC/s0YiqxYk9d+NoL+/+n5lbrh68OQr/98nf+kX/s+5oEaCHN3IttOzELvo7CitdiIPX3yDjdX95Rm4DvfeYs/+eMfU9drTk9P2Wy2fPLJz3n1+gX7/T0heqq6ZLlccn+3o2s7yReJD/aRD8O9v/3HNOCc1k2tdWYdixKlKAoBJ42ZXyPDazlPxuisDFGZhffAeNOZ5Si9c8wsPhlkKh2o6hI3jATvxaajrrHaSA2Srb2GrieFKOoNYyjLrO4MYj8Tk8qKcxmeyfAzWzhMtlQpSXCs1oA0nN0wYIqCqmmomgadbaasFaZ+H3vxeq8qGUJYQ1FaSmWoq1qsIYoCP0hDopTgslVVEbK1CUnuqTHnvpGBlmmIBQ+DEKM0tigzuCvPp5mI4knABJ+f2xkM4sE+43DY432YiUjOefb7a2nW8mDD5jVb64e1I0z3e37GE4nkHxjwM9Nc5wGmmc6jNHouREKQe6WsTAYa4sxAnxijcwaPgqTElmh69JNKs+rCGEM3RCLC3nZRmlVrBCgnAzw2q3uGocukuIIpW04ngZ+NMWLDkhLalPPQV/Ixw6zmmhi/2mTGcr4XJvXplNs3ET8y2fwBAFdk0ErAfaMUMUBQDzaDxutHa5icO5Nt/SaXCRfcbIEzARFVWWKMDK6HQfaSB4VQtrcKAYzF2FKusfIU3hODx43CphQyipBlhrHHO09wkucQrTCZSdJUO+fknOmsTM65D/JcF2JVleuv0hYZNISowGcwLeXP5Z0Em0/sTmG4ikJLhm7/Hhax/z84xkGshGMMBOfndbUoi5m8Mo4jkzZFnvM0q4HI/QApSO4tkUJFfHAUTYMJD1lmWmusltDtwpZiI5PZv2KZPilYFPhMDvA9Oo5ZZZjdQB5liaREJo7KMM2IvvDRAF6us1KT7aUM0pNVhGwXqrRGRcnjm1RHKiFMei9sezJ5tzTFTH5R+FkpH5UmaoMpLEE5kTcpsUl65513GfojwzBycf6UpllhqgXKliRtcDGy3W6ARN+3tMcD+8OOpSpolg2LekFqD9zvd7LGZWBIxYRGyxptDEbXeKXwUZ6XPlYEbdBFMSsBE4nj8ZAJDjKcjVHAtJSHUcZWoAw+OKxSnJ2f893vfZ9XrzZcXr3i6uolbduLklAJucYYMpgNIGpf13V5nbdi458im9WW5XrJYrFkvV6zaJaSETc6+n6g6zsO+72olZVEMNSluOQ4N8xE3kWzkr1MIVbjo8xlZoV+BrCsKST3MMqATZxXcu2mEJJs3oOwhqasaJoFi8WSzXrDarnJuZeaFFPOmoHWDwx+JHr5uS54nM+2tj6xPG+yACgQlaNYXLDZ1FycbXhyespf/flPOexHutHTjoG997ShY7L1CyGIwkSJSlbANej6Xmxxk1iXxXwPTMx2rQ3J531OQyhGNAU2FZLd670oa0shhIUUUFaIUERZ+6y2EAIqE2CSSrgYSFqBP2KUycpqBzqQVLZ+IiLmVhadNMlrTCjEqikEgu/B5Aw1q7AotP1m1LMA52dP5xppUg4d2oPYj8WUFbxG4gpmWzzZiB5b5KWUZovewjzkjoqKPQNK1mYrfz3Pbow2OZPYoitZD2N8IAsB88x1IhlNefKSYW8l2iUJzUuBgGMm11P5vowkdJTMNLFvW6JVtjFVolZPSkCnyfpe5X2mKIo5i9N7l2svO/+O07MtyXii8VxdvaFt2/w9lWRDllWOmRBw96MPv8XQDwx9z9D1LBYrXr54ns+zgGRtdyAGsewvy5IRRb1oWK/WeO949eoF3jvJMzIPCtzHuVN1toWb6jMQhaHkXUo2dkwjSicOhwPO95lYpnn56khRlJKJWhoRLgwdRkW0quiHI5vNmhAD/f6IcwNPnjxBK4sbA29eX/Hs6TvUtdgAgtSETVlkB4JA2x4Yx57jMAERoqDzTtxdhrHncLhjsVhkNylx5GjbIxcXS0Io5xq960aapmazXnFycgJE6rrM95Lcf4fDQezosnorESAGxrHj2B5RClYkYioIKdI0NcfuKOBMjBIdkW3IhdDhZN0q5L4wxrJeL7FKE4LLhKoqA0tjtuIWa+bD8T5b3Om57h/HlAksjrY7IPM7IUtrZWgWYuMvfZ3GjWKfPvViUGKiyu5uQqSRmJsSVMq/35GSEGmmCBKtzUyqsbagLCuSj9TVCmMK6qpmsVjifcTla+P9iNJxduyQflKcYpx3uXZS3N3tqetyJqP6MOZ9IjCO/Zxh/tcdvxFg0krYHiRPSg5r4a1nF1RlgXMDZXkiQ2WrsUVEG4cPI213ZLe743jcs1w23B8TT55dsKhWvHz+iuubr9huoTAFhfaMfctq0WBVxI89MTradsc4DngXhL2QrAxHvNRYkp8xoHVFiIHdfoc1ipQci0WF1oq+67m5uaOwhSiW8hzHOWnGtTJYO7GbHhrE5aKhaRqePTnj7WcX7Pd7RmdZLBeUhSaGhC2KR+iheFxOi5LWlnEc2WxP6LLfvfee/f44N6uC/hdsNhtevHhBDIGiKBjdQNsd803gWS6b2R6qqiq22y11UzG0Awkwuag+Hg5AwhrDoq4pyxKj10CiKiX0zhhL1w8ia3ceN4wUW7EUstZy3De8//477HYdu13H/V0rzZTW6LLEGMVPf/pX5B1DZPD7Pfv9fvZm925ku17jnWfoBcRabzcslhVnZyecnm64v7tisWgYxh3r9RqlCl58dUPwDkXeEI0SxUCtMF7jtRK55P2REBIBKfx0tnoSD2lFcJ7RD4x+JKnEZrNBZzsRsbDyDH3Pk/MnPLm4YLN+ycElfv5XP+P+7o7SKorK8M67W3ZHKFIgRZWBQyPycm1RpkTpGtCM3pNSy9o5Nuszttstq9WCrm2JUdN2PS7A6GO+5yy6rglak0Lif/xnf8g7773HcrNhvz9wdf0XRD/gx4FhdFw8fYurmxuu31wRg2Kx2PBf/Bf/B771/jt8+slfcn31msvLr/jZz39ONzhG73n61lMuLi64u36DNQWLpsG7kbPTE+7vf8X19S331Y6mrLi7P1BUC7abDa9vLnn18iXnTy+yh6zi9OQc30V60+KHkaZpuHz9mtOzE5pFw8XZEz791ZfZamAqXFRe/GCyq1FKZZCJnHnxMLVQXwtcevDz/6YcoxsYx4GysFhTZkZmmdUmYnc3jmN2aZAhkRF/SxnqhJTtDMRbG5WyHNhndkP2X9c11jaUhcqMMZWBxDGzvIUpJ02A2OGlANGDHxN97znse25vdtzeHBhGj1aGwiSaxgo/TyfEVcaTlLA50IqyMnzwwTO0uuHm+sDx2KPUlJmRcKMwNRKKcZDstKapGJwTlqTV80B4kvJ67wg+0i1WDwqncWTRNAzDkJteYTZOw9q6rnn27FkOaixn2zxRA3QsFwvefecddvf3/It/8S+oq2pWPYGE2XrvGMeBpmm4v7/j44+/I9aG4zi/x/1uzziMGGsYug6Tg5JjCHjv8EEs4ozVtO2REBzb7ZbtdsN6tUJryWdJMTKMw9xEMA13y4InT56wWW85tDtAivFnz57Ru3v2x10O4TSEJNZUKjcUzg1oVaL1QG97jscDRWFYLBZUVcX9/T3nT9aMbiTEkAG+yDtvv8PxKLaoMbPqjVbYOoeVojLLZuSwv+cv//IveXL+jO3GEwLsdju++OJX9EMn1yWJcrbxFdpAVVmKwuDipLp6CGZnbkJk0D8hMdLniGIg1Iu5oC/LEucGYppYfGlmBU3T3se5Kgolg0aZjDIV1V9bh6bpF1PDxL/9mumluSFQ0wVjxpGY8ZzcPE0gz5SJRh7MamVRxhIi4BN1veT8/ClWNTgX+eRnnxC9BMhOQZ+ffPIzrq5f03Ut4uEspJPjoUVpCaAui4q+7WYbBrHf/Nt/xBTyWF7Y7LYwQnqIMkUXwCUwjlJz6byHTWCFfE3nIXxPDIbSqNmCN3rJNJiynSBhC8NC1/L7o1i7Wa2oq3K2GxFFkNQ98jrZD6ew8MdkqDRP/B8IUSk/G1N+kMnMU/kskj33eK1TSqGtRRkjoedR1uhIBn+sobAlVim0SBPnNXIapumkKcqCODFJtABDMSWc96QYMiOd2Spr+t1GTU+PADqlNUQrgE3wQSypdGakZzUECJh3OB64v7/H2iLXxoph6NntdpRlxXK5yuzXR6B0zPZZVs+qlRlUzXtp8CmzMAeUNiQLRrA6UgoZZMzPchL7tJASPkZCiqg05YJMA2qT7UGkQZ4UF2LPLQ2p0jpbSAmb3jmTySEZdMzWdCGzLSeFEnwdB39cL4k6TIsFChmUyd8rViey3xaVrJGTomoabkh2ChQ59HuykZWrleZ1b9qPpsxN8mea/s2YYn5vk1XeRD4qyxLfObFTzqzqmEEwhShEyuLR9yN/3CBe9tYWWK0pyiobkIq1jy4kI8wWBZOVpQyg9FwfFEUhhAsf5s8suTfFDJABWbXkCM5nIFMUU4U1qLKUc+5CxtvSDLBOdijee0gJrcQqbRoEfBOO3f093smQ/LDbg1KsVjI42mw21IsFPudSTMpOyZl7yIVLMWK01KkKUUlYI6zy4D0ORyLOwCk5o0WW8smONg/vZ9ZG3v0TgDC+Y3ioA1IG7sWiU0v+NAiBK4ZssZjBQiW0zRDkrg/BMQyyPlorQ7AQ4hyaPgez65wxlFX6RWHFrhpAabQtBExNQlMIySCuO4YUPC4/x6vVlvbYMjpAlex2A9o0uKBpO8+mqqmqipOTLV3b48ae4AdINhMbKkIRuAv7B8WXsoQUubq5I4VEaUtWayGhPthTCbuZ3uc1NkEYBYjTBikVFdqUolaKEZ+khlRWXFVGL6rSgGaxXvOkUKy2K47He8n2cANjGJns9XQ+f8aU8r7KmsVixXq1Yb3ecnZ6TlXVFEaiC4wp83uW73feMQwHsbUPgeRFARAzKYQUKUpLVZUZYFJiNf5IsQySZ1MUJWUhQ7n94cj1zfW8J6eUsHno19QVi+WCoqhYLiTzxRYlZVHJ/oxGJY3Y/EkNMuUOqZjYH+7ze5AarVSaWhfsbm+5vX7D5c0l3//4ezQLgzXQ7++w0bNdlDw5P0dXC277kftxmFXqwQsgXui8ZiN19t3dDcf2SD90jH2gbhrpe5xkmWsUJlv6RZUY1QhBo6PNRgKS4RWiw0XpPYuiZLHY0h0HGaQOIQfeZ6WaIl9XIQ8SRIUQo0OZlHvHSCKgTEkMg/zOZOl8olSG1DvGdpBaJyt2lc7r8TfkOD15IsRcM/XHgcViNdvlzzbARs35jUbrmbQ3W5bmvQtyHmIGSmRllGfAaMuUmZhiVm/m3O3CCrgllpUPtZDWAkZMVrzG5BiFRySv6b86k4xTEovpiTCVtHyvFsRZnmknVnFTrxajyXZjJWUpmZTTz57OQfABkiFFLUliPtI0C4xOrNdbvBI1++3tDVVVUpcFMXj8OGIzCcA5R13VjAncRMhJSM1IzkjTUpMqKrSexuxyTvq+l/z2lKgXC3n/bsAHqb0ek9um43FdMQw911eXEC2r1YAou0p2B/K8J2X7PYtSQmJIqsCagMmzGWs1wQ+MoyXhCUHe493dHUVR0DQL3n777fl+UHnfIqY841DZulLq78KWspemxHK5Znd3m9dS2dMXzeIhy1hptus1+90OH8Jcp5dlQUpB4lKA0Y1ZOSl75TC4Oa9WITbZo+uoao2xhqIwomgLjj7HFySVxELfatwgoI21lYA1KZCI1E2V3WLMrNwcM2FpUtXKOW3nOhqlKKsSmNRkCVs0hGGQ2WaKaMSVQUgXVpRitqQwUn8mJH88+SgiAidkB1uARqxQp5pyIjBJDm/BohECWojy/sqixPtADJKjnrxCq5KmFqKKNRajClwccy3MDBgXRSHkkhgYOkc/jvOsJaYw22bHJISqrh9yfyWRR+v1+m9cm34zwISSJiUHK56fbHn21gWrVTOj4FpLHoi2wth0wdN2LaMTVKsqC/RxFGa+1uyv70hhZLFoaGqFNY4+9CxWGzSR4B3O9bixZfIEjRFSnDbhXAwqsUqq6gqS2Nr5MWKtIoWIGx23t5L9UFeNAAOoHJIldjEoWQiEfZEeFrhHfvOr5UKyIkxGp5JkF6yW1fyQDaPn/v6Oyf/ZGLnR27bFjW4OI56YbrL56cwKf8Znn30mX88b7PEom761cmNMVjaT1RPAfnD0nTDEp4FHVUl+S1OL92cI0mSXhUVrkxvyQJ9D1l1m3tZ1TVUWHNYLzs7OKYs7grtmd3ecbY9ikuHIz3/+CYumJKXI8dhyfXPD3d2dDAiCeF0arYUxmBf4zUYUMev1ku12TVUX1E1F2wcKa9msV7zSN5IRVRiqWODjyOCy72nwKA+rVc3N3UEagIz4SjgcMiSYCsP8u5VS1E3DarVBZZbrOIzUVWC9XrJaLiVTQHtevniB956qKnh1eYWPit2xp2akSBGbRMardIHWBegSa2qSN/gx4HzPODrKQq7pe++9w/1uTwgFY1SgLeMYKa3YgJXWUJQV3kU+/ewrmvUZtlqiTOTFy694+uRUwIay4Onb73B7f89waLm7u+PNmzf8w3/wD/FDC8qwXK15/txxeXVFWTc5YHDDMIjaQ0L4Iu3xmIeYkWHoOe4Gzs6ecHu7Zxx76rDgZLPm5S9fsjndYo3F+8jp9gx3Etihue9vKMqCm5sbri4v2ZycsN1sMcoiTF6YGMk6s6QSzFYK2a1KhlT5dcDMdv368c0pEp0TlpqvSqpKWJ5VqPBeSVMURRo9sb9kJp5ZaGpSZ+Tg+GkAme2RYhCbrRgQkMlUFDb7fqfAOLpslSf/rrUUoJOwIgUJaR2GQHsc2O1a7m73HI89zkVhTBSeGBTioz5dSwneloFYwBSG07MVXSe5P+PY0ruQN9HM8jA2Z48kUJoaGTwFo1E5hJFEXt8mH1uxEK1rUXhIkyL/1nWtFDiLJSrvGcZYVqsVx/w8PPyRoma1WnFxfs53P/6YH//FX8gAIwTqHFg/9DJAHno1s+rlGjqOR5ELay3+u+MwkJKobCegMHif7ajE+si5kdENxBhYLhdsNqKOKgvDZr2WwgthtaucXyKh5Sav+bInuCzDPz074/quJx5i9t2XbAOlydYaATc4lCqxpiEEkb4Pw8BytWK5XPLmzZUU6MGTSNRFjdKGt569zeWbG16/uRbGi59sYgT0kbXf0R5bLt9c8uL5c/wYOR46QoDDYc/l5RsWy8lWwKOV2AQqHTEGYQojxR+T2iA3w0llgEk/MOhkNiMDAR88RRJP6rIsGccCH9LDACofj9eaB7AnP0bzPz2sP/MgP+XMjqTm1z1WAD0e8n7tyK8XhusErPNvBWTOfUXKrD+lKcoa5URduF5uKW3Fdmu5vb7j888+x40O55Nk/PWW65sr7u5u8/DNMmVPPH6/xopKIPqcS/HNiAYRO45sG6KUNLH5XwRkMg8DzmlIrjMDO05Ncoy5qYgQDaa0VFVeQ7RcZ/Fs9zk/qEArla3sRgkBt5aqsIyDJ4UpqH6yA5F39IB/xEdfRAgzE6s6Pso0mRjJSs37QUwTay/lYe6DpeXX7tGJHKJkr5baqhSFYCaGTFk7qCS2X5kxq5XJ+5HKua2Sv5aiWN0mfh14MGIPFHNIr9bz0AKNXAOXMatsdzRZwk1rqs/kACEZ+NmaQ5QSdrZIMsZmENUTQ8QaYfhp9bBPPTT0DzZdU85QSmBSAj3lbshapHOtKY3fw3M7sd1hAvlEcTNVOtPr5RoIYCH5Adm2youCSeXcoGkPnwbf009Rsmk+kA7IdVX+PI8B4+lzCsDk5/vbZsunx8OMCQxSPAbNH9Yrub3kOhulAPNoGEUmpcSvNbFaiY20sDhFAZASuHGQMG4z2X+KfaVY5oSZGDafLYXkGThPikmAUF0IYcM5vA+UpfQ5k42O1rK/GvMACkkd4AlBzee5LMu59kj5eiiQ/S1EUhTlIkn6RKPF8itlxVzK10yIQEOuZyTrp7CGlEHgx6SEv82HEA4d3bHl/u5OarVxnIeVMcq+LSomucOqzNaOORtGxZQVeaJEOfZdVpeqWVVaaENdSgbEpNQfR5f71TgPOMdxkKGPUfO6ASMpjtkeL2bKiLwbayRTTk3rn4LgJraxzeqshCkqHuoETRgcAYhGWMnD6DNDXWpqAThtrk/leTfG4sMD4z9lO1StDcnIYCeGgM0ZcNNAX+sS56BrHff3LceDA1XgvKJtR+pFoO96VosFVVFSl5ZxaDFqjdWS8lMXFQYrz5QKGKsZe8fdzY4YEnXVYExFTOqRitfgM1A+9R4peAprKZRkaoWk8EEcX6b8kqquUEZq7N6NuLFn17bEBEVVY6uCoi5p2wO6bzFO3BXG0VMVVe5laxSGphFwabs54eTkjNPTM1EEJYUfI4nJ6lCy9AQA7DIhzUt+oBukp1dSU5dlgRhn5D08SL0udq8ToUheN+VQ7A8tJ9uLTB7IuYD5Ea/rimbRUNiCpm5QegLrZf1TSZFizl6MGbS3D71xUzezXXkKkUVhUaNnvL9jOOzZXb9hVf0Oq2VFCCO7w47kHcvVipOLc5rtGZvB00fPMI6Mo8M7z8XFE0y2ik0xEYJjs1ixO9zT9x0hOE5PTlgsaiEcdAPBecpC1j8fA0ffQ1CooCWjK+9Nh3aHTw5lFM1yydnpUw77I92xpe96jEr46GR+U1jqZoEtK5LzuF4IgV1/lMFw7nXKSmzjw+gIYyQ6UEmzKCqKrGrSxohqysie6cI3J4NpszyR/kYJ8SeEQFUuiMnjg8zPvPcYm0lKSsQDv16Tee+JRupQm8klol16IJTInCeTSZL0YaLos9nKOc3K0hQnMqAlTmrlaUaqHjIL07SnTmukmgCnKbNyIuDpPJeQemQc9dcIG97nHDlrKWzB5MJqCytKxq4XUrrSkGxWrMrMw2hDVS5ZryJVWROj5EAWxuDHgT7m/HoZouSaSoA40kQqEBA3pQfyijEZ2AqemO39YwgZCJK9KARPJAphKUcTTCDKlMM6ASrBB7wf6LojXbfPpBlDSjJHEWKSYhwdVWUySJByXZnfSwzgR4ZBMvG0bubf2XUtsKAoCk5OTh/IaFqR0EKoCkL8jFkZ75zLe5pcK6PtHJtQVQVVVTOOHcbqfMdJtvTryyvKsmLRLLCFxQbDMHaMbuTYHlkuljT1ginzOgTJCk55b49ZjZTybDpEzzj2lFUlNoIxoq2SrD9iJok5jClyTqyQsZu6wepS7qVMTAkhZDJKzgRMinHsiFHcfQAWi0pyT52QocuyYBhHuSdAnoVcS2o0hS0pbYk1Mo8lifrPT7Z3w4gLAppaXYKV9TWkUQCgIH263DcVxmjJiCRhdEFQ0n+kGBmjp64LqowXyO4lNtxiek4WB1lM7hWmpBIfpjmukNPkGZPaw4eEcwFjinxuDHXd/I1r028EmMRv0qOUp64MP/jt73J6esrp2Tmr1YYQPGW5xhYKrR0xkDckKQS32y13u6usRjnicBiV+Na33uHiiaZpElZ7CgN1qXNQ8UDwHUp7mnKVUVsJrlUaCq2JKFxIzMFjpTC92+OO7eacpiqIPvDV61fZ01w2czCEMIDW4m+QpJl8yC1RmKKg7zpc33JzU7JZ1bz/7jPKUhgn3nlchKeLJSjo+o6ubbkJkfVqOfuGAvzsZz/DliXeSeDbZrPhs88+x4dEXRasVis+/vhjPvnkE26urzkeD6zWC4ahpygsRbGgqmqRaRalsN6953g8Uh5HXu+uuLq64vT0FOcc2+2GzWbDarViuVzNQ0xRBSCAhg8M/cjk2ThlOhmj6LsVpyfP8CPc3x6oqkoaKKMZx0jbdhwOO77z7Q8ZBkfbHvnqK8Pl5SWr5YK6LLFWczjsMapEoWjqBaenp8QYaBYVJydrtts1dV2IZ7oLKGU5Pz/HGs1y2VCUlnHs8VYWczfKQPr0bC2gFfIwb9dLVqtFbjpEyVUUDd7fk5IS5oDyPHnyFGPl4W/bjrOz8wxAAUk83Ieup25qbFEyhgS65PbunoqeVeFZlTAOkrWkjEbrElsuhMWQBvpRcrdsUfH9730PEzW//OwLRucoc3jp6GTK//L555yfnXN6csbooVme8OlnzzkcB77z8Uf0/ZHlsmS1XBEj+JNzPvvsU+paAmT3+z0/+clP+fTnf0lpoVmsKQthqz159pTVekNIin/zL/81P/rB97FWcXtzJ2yMFDCFZb3dcvnilvVqzXJ54G6/5/WbF3znu9/lF7/6BWVRUBQVXTvw7MmS0zODGzxfHb4Erbm6uab66jmL1Zof/t7vUeiSkAY5n6TcOGVQiRzMNxcUE+AU541NNrI8MFEarSLxm9GLA+ScgIHRldShpK5rjFZ0XaLPxYhzDvRUjGlCmrza1Sxzd6PIv6dzrZWwakKIjKME7VpTCstOA5SA2Gx4FwBD1dRiS5Zz6mJUjIPnuO+5uz1yc3XP7e2evvN4n/BGiALjGKgXBWmy7jEFmkDwEtpaFIpURi4uVqgU6Lsj9y97qrImEfExMnpHjFkxkBKD85RWihyX1RZ1XRFSZPQjMUJTr1BGhkXeB2lg+1YUm534Pa9W63ntLIoSrczMMp4KPVsY+t4RY2SxWPCtb32LH/3oRxADq+WCi/MzyrLk888/B2SwNPQ9dVnxq1/9ar6Py1KAfmPEM3cYHEqlDAQ4YXOZSFEYxrHncHjISlkuxTK1LAuaynK63bBYrHLwqp5tqYahZBh67u5uaZoVXS+qoqZpxNt5vMPusmIq5y9NJkPODXSdqH/r0jNJ29u25fTsjNVmw+X1jVgUGTMHN9dVxVtvvc2XX3zFl188zxYqkdvbe7ruyOnJCVVZ453j9uaWzz77jL7r+eqrLzDmNTHAfnfPdrMW7+LoOB5b2u5AVVshbCDgW5jVS9lEJ+UBtpL+P+UiL2XsSSsJDZ8UOWUpIffe1/R9xCUv6oroHwAlADGnYrLqkUI6zc8Pc4H560BSZLLwfOx9/rWf/OjrMUapQdSUU6Az6BXzIP3xm5JKL0UpU+pqQbJiwXNx+oTjoaeuGhKK16/foJRBGUvdVEyWmgLehaxI6Hjx4nlWMaZ8XaVAtHayCgj/Ppax/9kfmiRWMPnvk3f45Nv+GHA2jwbnOtcKIXicEyJNCB6jCoypMjiTZnAjBY8GqsKiUqIde1zfMXQdZVFSVwsKaxn6gRAFsEmIuiLxACKnFOb3JixUTd1UuNEzjtK0ayu5mSm7sNmymJtyAJIwhU0OqfUxoKLOz5jsy6YwGGdmcMJakwEmhUoCaGil0GJHLoP5nNGK1qKMzCw3sTb6tRyMFGZFibWWbhggSVMuGU1R3pdSefeQ578ohJk4RdyOQy9gf87RWSwW7Pf7+f4tioKyFOVLjIGqqHDjONfOxmqsXsyswCkPpus6FGKd5KuKYXB5YJj3USth7eRV1NjiEQCTMweMwudMOJDzEXL2k8mg1My4zfeYWNJ5GWtrhfMuk/MWTMzNhJsVYA+goygvtH6wUbTakGyRVYo2gyQPQOBjNuoElksj/QgszApHrXW2qzOzoid/0gwKSs2hJ3uQ+JC/Ql7fpsF7THA8tjjnsMZSTkqh0LNcLmfgxyoJoY8oiJF+lAGzNmJVqK3Jaqs0g4wKPe/rzg0YsxCmsdJEJRZ13vt5T05JnBdcJubZbAU5DV9iTAQfaDtRcc2Aso+YpnkA8bTBiCe0vK+UKF3BIR3ojp0Ak1qDzaCVUrme/WZ45J1s1ox1hUoRN/SEkKirmpSg7zvJVSgL7nb3HI5H+n7g5OycZtHkoHdDaSx1pWi7lvv7HdeXt9jCzkMerTTbzZrCiIUnCXo3ctgfGJ1nGMS6d7PZsNvdzYOwiyfn4iKR9gQvFi/H4wFiYsq5LIylMFJzVYUMaoa2BW2wZUnSlq4fWW7PspWmRZuCsQu4UdRVkUTXDXQ6D2mVDEDXm/Vcq3ofMIVY8Ews9XEc8EnIRkZpkhE7vYTNBFgjypLOS19+ONC1XxKjJcQS7zXH44jSO56/eM56veDs9ITlYsWbNzdU5l0KZVAxUduKxhbsuh4XAsYG7q5uOdzfo5TBoOnbDl2UWbWbct6agC0TfUxXqwwgajwCEu939wyZrR+ip1k2QJJ85DAyDD2vLt+gdcJYhbVCIvZJobSlKiqMNowmsV5vWC5WNM0KayRDpa4WQh6OGj+S1cDgRqkbTVZgKKUpbIU1BUY5khXVGCFm1w2V3REMPozZYn8i3gSUlbVcI4NHWY+EjLzZLnj67L25zg5BsuBG53JdJzOxdpxqvZDVzhZjRC02jqIo1VpT6iK73CSa5VZqYecgeCprOd5f8eblS7747Jdc3bxgd3vLZvs2ZVXjqpoQAqvlms36hMX2nFppNuuaX/zil7y+3xN84OMPvo1zD8PPEDynmwuGoUOpyGK54Pz8lKoqM4HOs98dMqkvMIwj9+0RlTK4JNwIIHJ58xpUoqwrNttTnj59wtj3HA97dvc3hCAs/bpuWG22nJ09pagWhGHksN/z+s0bXr1+jQ+OspT83LeePWG5XDH0Pd2xZX97wI+OrpVhcV0vKOqKMTgZeqcwE9y/CcdiIUpGHxxkpxJtFYWtKUuYFPLGSmZKn102SNLnTIPmqf41xlIWDUUmgsj8Rvb1wogFuULmAybbx02qI42aQYcpB0ZrTQqjKFxyXfpYFS21WCYbZRBpzm5KD8psscQUstEiKZzL5KEYMpA2Mg4eGwuKwmBynaFVkXPgxEFIfq8osbRVjEOgrgusgaoIqKRpypWAYi5AVDRlTVlYSAKOifJDCO5CaLEEn+j6kb4b6fqBxWKBsiorW4OAaimJKxjpQaBhLGUpwJiP4j4z1WrTjKIwhhQi0XtIntJCYUAT6LoOHzpI0NQLlquGN2/eEGOiyISbacYtOXgB7w6MbsSYRFXJ3hVy/SNZRjmWJdeAU93leJzRJTXxfn+XgR+poboM5I2jw1rDdnvC8+f31LbOVuAiwNjt7jk/u2C5WlLX4v5yefmG/X4noHzTkLUkGDSr1SorpaY+DBpbM7qWY3fg/v5WSGZVhdIWbTUQub6+ZrmS3HltFCEFqrqeYwOKoqAw1WzDOtXzMeacvhhISXE4HHFebPLkvt3Q9x3jKFmDxiratsu51Rlw856Q8/VKW1KXVb63QxaepKw6yspBrVEI+G6MxQTDGORnx2yT7mOkKEpUdpqYWLFqAoF8wKdIWVbUTTkrj7U2VFWN6+RnyHuyMFsIpznvfFYyWpOjORTTQFaJIfcMWk5OBX/d8RsBphhGjIk0teXsfMW77z1Ba0uIMgw9OzulaZbE2DEET/IDx0MrTHwnrMn1es1xOHB3e0VygU1ZU5dPqUqLRtgtdanwYwspoJLD2JGCSErCSA7eUVaapSkISTH6hGs9RpfYsiCkwP7QMXYtfrXi6Ab6vuX66obvfPdjRh/wXmzUQmaLTGhgimB1kZmFsjg2tqAqDTF6+v5IXZcSRh8i1hTYwgpbve8ya1Xz6uULVstv0/c91lqWixW73Y6f/+ITmnrB+dk5f/EXP4GkMFkyGWPko48+4r333uX161fs9/e5ofO5ybfEmGiaJUUhftVaa2mGHzWEh/2eqqpY1A2LuqGqKlarNW2r80JRslqt80PS0vUDy/WWuq7Zrjds12sg4rZLUvC0xwO7+3vawz43wxrvR5zL9k8J7u933N/fQPLc3d1RlZbNesl2veXzX71gc3Iq7J3CsljUuLGnbgqW64b1ekkInqapeHO44vr6nsSCp2895cWLV/RdS1EaeqdIKeQCUYatdfmaoR0Yh8Aw1NR1TUwwjB41aE5Ozrm93eHiiE8jh0NP0yz41ne+y/nFE46HLivWFJvtkouLUz791RfUdSlS/r4nGhgp+MWnz1nbwLvnC0LpOLu4QAYHBXWz4b6V4aQqLDrBF59/xdO3P6CyFctFQyIwxIGUA6JDTJycnePaTrIOlKVZlqyTgFmvr28Y48h3P/6QP/qjf8OHH32L7373e1xcnPLhhx/yyc9/yZurW15d3mB0wavnX/Af/N3f5bd/+EM++/RnfPrZ5yw3J5ydPcGnxIcffcibN5cURnG6WbHenhCT4zC0tMeW3f2BH//lX/Kf/K/+U27v7/nXf/xvePXyOd/7rd8iaWHIn5w/BQxVvcQUFWOIGCthuvvDgddvLvlo31HYmhhE9qtE/IIPIs8ls6eVVpisdBNmW2Lyqnfe4/0joPdR4PQ34Ugp0nUthdXUlQClAn7HuTgAGXhEYma5yTGxaWQengekOVBYJMdG5NtJ8oFubq5ANVS1NEBTAdp1A+MYWPpImXNGYhT57u52x+3tnqvLO968ueP2rsN7PatKu9bTtY7FsqGshAlijIHoUDoQUiR4YSwvVxqtl2j7hOu710w2flMeSErkwlQULsvlVgpQo4QNnGC/32fGk8W5gcNxT1GWkk0VtGT/nC0z0Kzp+5ayFJuqqaEEMihsKEozF3xTgayU4vz8lC8++5Tzi3Pe/+B91psVb739jKurK/a7PW3bYYzhzZs3vPX2W3z729/ieDxmtUIeAKM47A8sFou5UTcomqpgvVrQLBfEGLi8vOZ3fvgD3n/vPdr2yMuXL/n444/RSjEOI2MaWW9WrFYLnO+4ub3ipz//GcoU3O93hAgffPAhH3/8MS4euLl7gc62FVW1hGhwTgKry7KkaWrKqpgzXIwxWV3lWK1WXL55w7Nnb7FebVitl5Sl4dmzZ5xfnGcGjYSZ7+7vub294uL8lOP+wFdffslnn/6Sz375KSenJ1xf3zD0Du8j+/0tH330IXe7G65vbtgf7mQwGwb8OOLCSN2UAiyp6e7+dysZJ+ZvN3TSDinxr26aRS4SnbCUlVjaPjw5+ad//Uu/xt6f1CQPagF0mpl8vym/aBrOzsompOZIKqtS8tdFwTDlx4g3f4xke4ZAWTSURQNYYvB8/qsvubu7Z7PZcHl5TbNa0jQ1q9WKYegy+1MsE45HT4xHrK3m33M8HqmsIaaJefvvPsd/Ww6dM3lihL4fGIOQQybVknhhR7lOURqOJoN3KQUIHqvETlGlCDnvsch7llzjRN8dZ6b99KcqC6qqpCgsClguF7hhwGd28WpRgxHV2ZQrNrE+i7JgsVxS1zUpdXOz7nJDIHWSZPAI2C2f1VpNnXPsHlvtOe+JJsz3YAxewlaZXpNE8RTJtn9DBiYm3yhZs4fRo3LuWuIBvJjybQRTMfPXpwyevpM1clr3UWlm2045jEZpDJJdQogEL7Vx3dRst1tSzjERQtsmBwCn3G4JI7QsC/oWwjjSBc+iKh+GFkpBBr9mwMEYBgZImskbfbKQmVRcAvw9DEymxtRojdIFSWnGkEOhM9E/hgc2bowR50O2Gk2z9RcExkFUFTGZmfG5Wi052W64vz/Q97divWoKrHrQXUxKLpfrqHKyccucRam5F4QoOVnRB5INuR8K80BoyhhT5PVrWiAf3Ttk9j1aPrsMViflluF4aCW/RjEDaTc3NyigsJKHsGiKOSNSA7asHnI6UxS763FksVxglMGNjvZwpKxrkhWrGuk9RGEcQ6Rr5Tlu6poC5n4phoSpxHZwHEeCngLFNSRN8ImyFJWiBGnLfalF3oDKQ5+u69Bas1hY6roWICqDUNN1HUcJaTZas9msKAsBTKzR35i61o8uqx4Kzs7OGLsRZQUEGjoZwr26vJJA8a7jcDzi4ycs8/pWVRVVWVLaSu7jCEMfuLne5T5UURSG3e2Br758ycl2S1PXpCj3TNd13N/fczweeOedt3jr2RNO1ysBoI1Y8ezv7+m7PcfjkV/84uccDmKhZpTY5L/3zlsy7Mwg6uF45J133uXk/IKqWTEMI6XrsdWCSb16enLG4dBm8D9ysm7EQjOITVvbHYmkbFUslk6JxLEbZuswpRVd33O/3zFktQ9JVBuFsdRFwbquMUBMChciDCNnF+cst6fz4HYcPUYZ2mNLU9dSnx0OvHn1krooePbuuwQSXbvBjx3Xtweu3rzi8vIaEDb8OMI4aoZ9tpIjcdwlTCF1kHNiR+RUKcCx93g3MPQd3XEnRNGs5lVaycA1D5StNdzeXqM1+ZkPxOCyQjBilLDWjS4Z+547c4s1FWXZZGC9pipqgg+s11tWqzVlUZGSoqoW9P1I8JMiQ/r7lCWkKgkZoa7kfZdlydnZFhAlPdHTDy2TdWcIA947UgosGmFspwRaWQ65B5CaIvDm8hXjOLBcLdhut9iymkkswXvacWSzOQEF0SiwmqHrGNqR9WrD0i4prWG5rDge9jgM6EAYen7853/Gp5/8nN3tDaumpj8c6Y8Di+WCqt6gTU1RbbDlGlussEXNeP+Kn/7Jn3J5dcO3v/NbnG0uGF1gHAPO5+y7whHqAWMUq9WCZVNz7CTntSgWvP3OOf3ocd5jF5HlueTu2Ay8pSDuQ+fPnoji21qKqoLoWC9Knlw0JL/k8vXn3N7e4VNL9CNNeULTLPBlLVmh2w0ffOfbhJjy/muoihpjVb4/Aul9R20KvvzyBc1ixZOnb+Fy1tdkJfsNEYoCEjXS1A1KLeb9bX/cMww9KUV5vkjs950QHEPIucNC6ksRfEyEiZyaNEkFwuM82Nz7BIRcJbWBDP69CyjCrBad7E01CLFGGG+kZOd+SJ4XeV+TE8WklnmoUfVsq5fmmlYAY4WiMgU2ZNW9EjB5+vlKa1R2fxLVZaCwi0ywG2c1JoBCE7wiaVE9KiwXF08Yh56hb2mPO4wuKIpSQGLEjWmKMSgKsdDf3R/wLtevWvP2229ji3LOhCpK2fvrssruKh19388Wa+TzlVCUxUPmTaENXSfMrqoqCVHyk/aHO7GYQ5OS5AWJssuLLedynf/uMrG2psrvIabI+fkJq1WDtSXaFBhtqevFTDaWmVBAk2aVf0xhdkyRzE8BoBaLBX3fs9/vads2R59M2eGd1OrEed+73d1SlhXaaPq+4/r6ihg92+2G1WpJ27bc7e44HDvWqxXr1YqytOzzrDumSNe3HNtbQhhpuwPjOFLXNWdnZ3MciuRwwTBmQlEh8TWSuzPZ4gqxK7iE1nJNYwwCVmU1XIxQ1RULU9P3HTe313zyySe899571HWVLRtHtIqkOIpbgi2oyyVKmxmEFLKgEDVQ4tNirWGxqDFWrL3v7u7Y3+8ZhoGQRkztKVOZLa9Fcer9SMr5khNhVaVAUxWoKltbanB+QCuxzE54ur5lcANJQVVWohB2w0xgtFbAxkSeg40Ro6us+pvy3yt8UAyjOHScbE/+xrXpNwNMrseWJR999C6/9/s/YBhbjLYsq5rFsqGqahkKhxHvOsbhkJlmFc7v6VrxgRy6I8ENNFXBs2cNKbUUdoVWImuryxqjnbBJVMD5gaoqGXxmJ1tNXWs2ywXOJ0YHq5XizetW2FApoGKU7KS6ykBVxZMnT4S1pjwRD8HJhkqOYE7SGOhsXadmFDBRlJamqTOyOuQHdSCiaFa1SPdJrDcbNps1VSHMPxJ4F7g+XnM4HPjWt75Fe+z48suvcgMiA6YYxR94vd6SO9bZ/39qaqcFZnuyZbfbMTqxEzh/cs7tYZi9nVOMGCUqruVyydMnT7BawplRovap6gVoQz/KOTg/P8UYQTStLUnR0dSWLz5/zevXr7i9vZGbmERTNLMP/Waz4fb2luPxyDg6rq6uGYdekPnCUlSSRXB6eiqIcyF2ePvdDVonmqZguarlAR6mGzux29+TUmK1WoBKHNsjw+Ah5RvbeQ67e0IYgYC2hqYpRPoIhADDEFmkgvX6jMv2Nff3R3xINMsNSlsmP2YfI3jPerXkgw/e5fnzgd3xyH17ZIyRoq65vT/y4uUtZ0vD2bJhXZYc9h2baoUtKgKWqqlF9REdiUTbtnz22ecsq4qmWfGP/tE/4v/+//x/cX/fElzCJc3NzS2LZo3Wiq7tud5dcv70HbYna9w4cjx0/Pmf/YTz81N2uwMvXr2kHUb+0//sf03bj9zuD3Tjkbv72zz4sCQM50/f5v645363Y72/51sffsT91Q2uk2vjk2KxXHPx9AwPdJ0jxYqrN1fc3F5TFCXf++7HfPnyBe996zt89fI115fXnJ6/TcrDns3JKR98+BE3N68wRYnzga7tKGxJUy/w/ogLI/Pg9hH7xPuJMRxnKe3k0Ruj2Lg9AClpHkx8U46Ex7lIP5gMnJai2ImyXunM3IkpK0tTmrMT8g+Q/yRhFIrySEv4cB6EhxC4391xefUaU2xYp5KiSKgclOjdKHYUVQ1JLMdGN9K2Lbe3tzx/fs3t7Y7DsQcmL2QhAmhtCFGJl3wyUpCZRIDMeI7E6FDJY62maeD8fME77zzliy9fk1KkUImYPEqZHAgpm+AwCPtJTcHoVlhOtiiwhcmWjx3D0EkRqOD6+oopJLPIRd40PJ4Y2tpAVZdUOeTw/v6exWJBjJ5hECXIu+++y0/+/M/oh56YItvtlqqqWC6XmbEf+cWnv+Rw2HPuLzBGFKETI3wuZGPKStaK9WqFiwNaGzbrDc2i4Ve//IzSWlbLFVprdrt7qqrKDCJRJzjnxXbVtXgngFDftzx//hVv3rzBOcdv/+A7+TMX8/4QydkdEZFlZ6/ucRwwumezWhGTxznN/e6e6vIN7777PvvDFUpp+l7O3cl7b7HZnGRSSeLu5pYvvviCtpNwzZfPn/P8q9fsdju6vufs7BxtRNVxs7vn/n7HOHY433N7d8XN7SXj2FFWcp60UdRlJYPsmZiT1Tzq0U0+ffnhb3kGKgytUQ302lLXFVVV4n2J9yNhDFnylFn3abK9IndRMkR9UC99/Xd87XHLqo7HnewM8v4Nxxw2zuPXTRktsiYWhQR/pqy4JlnGYcQNicEEmnpN8Inr21tubm8JPlI1tSgBFAxDhzGaYzsIY1pLKOykwBKFnRTEo/dI6HWaVRB/2w8JxyYrbDRlaSmwFFoUkqgc7q4fFExde4AE1ihWi0bsn7wXe7usUJEwdDWz0MUrXYbdITcfwYnVQfIeP4zgozD/gmccevpuEIAiA3/eO/q+p2kqxB9cQKApnzNmn/shq4GMUWidZu/56f6OMRKYQCi5Sd3oCN5l9bcWF+yUZta10hOLMqFiyPYcI0VhiLNdtdzEzo9iMWGM3G9xUuWJnZBk++UhVEp4JdliE2BblpI5OI6iGrHWUhUlfnR5r5vsAxVN02Az09Yqzf5wYBxlKLlcLOS89322WUmkIMqlkElFYj1azIHD8zOZ8vAxP88TwUEbsZCYSGE+KXwSQkgMk7JLXBJAzqF3AliKhVdW+WT7QWMMZVFC1ELWm8BBwOiH53TaMyChrNhc13XFYtGwaHqGQYKgQyaO+CDe+Ck+MGRTigIi5cEPMLOIH5jEWmqM2W5WZfW02GiknCEzHQ81WZr/Luoo/zUiTN/34n2fQRXx9W+IGXgpy5LVSmxjg5fBZZFzw4qiyNY7sk9JdkmBNnJf62lP0IaU2ddN02TXB2FchvTwmatSlDMxJKIWe90URN1krcnPQCb0pQebc5jqLeZz4JzL+QaTQtbhgjConZP3V5QW7QNT1pR8HgFspzzdv+3HcrnOoOMd+/0l9zd3jKPPassSW1iC9xwOR65vb7m6ukYbwwcffYRYiGmG3uPUAxH0sO/o+5bFYjEDSHVdUZYFWhmGYczrYYdGiaXXEt68ucY7R1VNNZGiriu6wy3ed8QY2GzOaKolq+WCphbLsUIrqqqAJHZ/T58+4+z8AhcS+/2ezdkFMUE/DOgQsCmifKQdWwFwY0RHw263x7mRfujY7XY4P86ZeUppNpsTxnFkHEaxg9cKF0YJUHcDIYoFjzVi7Vlow7KqOFtvMNoQfaLrj0QNShX0fU+MnvPzLe++/R5aizXo/u6et956yk/+/KfEKBZK5xcXLJcV49jx4qtf8eOf/ERslooClKwBMrT2mewp84SyspT5GvbDQOtloKXSNOCQ4Na6LikUuDQytD0++Uf1VkSnIOSBmazhUV6RlAcDm8WK4zGDO9qjSzg5P+Pm5o7usMNow2q14i//8pdzPpI87zqTjBYsFzK42x0HyXNSikW9ZLloWGcLaqs1bXcv+5Af6fqO3e4eHz2oOFOREpGLi3PW6zV1VeNHTz/IoHgcB4axp+vanBXi0TrSNA2LxQKjDc6lbEe9E7KyLagqS9MsCaGhLhZURU1pNX/6J/+Gt99+m0Vd40bHX/74z4lh4OJszap6hjaR559/zk9/+hNcELX8zdU9xyM8ve85ueg4ffo2l5//gps3L9nd7blab6R+QBOMIiSFi2KZrK0S0DKAHz1GWXwMdMPIiBLiy5QPhgypRz+gU8IoYdk3y+W0M6AwoBw+tIztLYf9C968+YSuPxCjQe9rjrtbnjz9iOXJU4p6iV0YUsi5TFEL+UEVokYJIwEHGtrRcdfec3QDVJZ6tcHYKpMyvjlAPsDQduLaUEkvK7ainq6TtbAfBtquxdivq/FnNX/KqpSQcziTwidH1FnxnG3wpiGzPAegYp43BFGpT44NKgNGqAf73ZTtyYVo9KhJSmriIBNCmnO88yg9c/BS/v4plzc8AL8xW5lNpNr8X6U1ZOUJkOusScEk6uspA3winCprMKokeIc1RsjmPqAw9F2bs5Uk4mS3OxKCx9pq7vNFRe0AsXofXUdRldR1hTWGYRDnib7v8+vADaPknlqpC8XC32T3gnyuUxKbVaVy/lPJolnL3lcYjC3Ruma3u2N0Dh8Cha0Yh3G2l18sljT1UlSaPhCjByK73R1V5amrSDBWMg+TojCiNHLe03YdZWFljlwVhPD4+pHBTXFfWC6XVFWRbRI9MeYcsFz7DGMmJIyBxULmoN57FosGiYUx2XZupO8HFosVSiuG0RH87hEJHYyR2rMsa7SJGJNISnF3f88yz56dG/jow4+4ur4UpZf3jE5AL6MrlJUYEJOJncYU2W4uUhTVnMfcNAv6ocU5jzGWJxfPuL29ZRjcrDKrqpqUPNH52TrP6IBWhuVyRVVWGSic7mNxGgmIukgeS6m363pBUZSENOL1jphEsKOV5MXqbMcsaio116diUYj0LEbh/TDPiYfxyJvLl+iiomoaAQBToO2OjIO4xtR1k1XS4tJgTME4Do8IeRZbZDvi6IkxsNvt/sa16TcCTE1V8PF3PuQ73/6Q87MTXr1ppQC3D7YMikRIueEeHUZFYlQkxLev7wf67oi1lvWq5OSkYrVSaBXQKmWpMUgGkgxEKiwBQxjEvqcsDct1TbOqULrAe8PhkBj7gvv+DuflApGiBHFlf3fJzChIyhIY6UcJ+5QCJ1vfMCvMZuQ8xWzDVljK0tK2LYvFcnrlo0VT5ITD0D26wGLB8OrVK5xzLNYStnd7dzv7QhtdZFBHQtW6riOmSFFKcbjZblksl6zWa1brNYvlSoKT3Sg5GlZCzaqqZLFo6NoWsgyvsJZFs6DIVhkpN0xlVYvtVEhZFbXILAaxsnNegi5l0NEyDr14p6YoipQki/nJyQlfffUVbdeJDNIFYs7FstZS1WUe3IjNV13XM5IdUwAtQ90QQ24aRRZ6f3/P3d2OKfT05OSE3f0h58bIQjb0stBFl4jB4YObmQ1iAwbtcczKDUMMiuChH0a6bqCqR2xR0nUd1oj9ynLZkJKXQMHcaIPmxcvX3NwfUa7get2yLhu8Fw/+lL2dq3pJYsQFiHgSms8++5xV1bBdr3jr6TM+/vhb/Pznv2R3dyC4wDgolusNpMjgs5WXBRsVMWlSMrgBqmrFft8yfv4lSUF3ds5isWSz2XBsO26uLzk/PeXy+pq/+tknfO/7P+TFq+ccDi3XV9e89fRZZvNmBkM7cGgHTiPYoqBqGpqF+GFfXl3x1rNnfPD++9zu7jBKsVmv0YXk3AyDo1iWFFVFtVhw/vQph+OeGALD6Oi6ntVyRTfcMvqH4ewDEyX7mkaRQU9qrqkOIT08hxOwlOuTb9AhWQzei3XEOIr/9eT3OoUQa6XnEzUNe9TXJBhTQTYNseVcSiaAp+uO7HZ3rDcJY2uqKKxpnT2vSWI/47SwP4ah53634/LykutrAZfG0c9ev96L37APkhGjMKjs06yBqCbiAASjiJBz2iJVqXj27JTbuxv6biQRKEuLn4gFme0yqbhCcKQUaRY1uixlY8+sJu89d3e3lGVNWVaMTs7jPCTODCBtjOQ+5PVaawk3TE4A/v1+JyCMNVSlhPP2Q8/usCPEwM3NDR988AFlVVE1NVU/XScZ9O72O6yx2Q4mzcM82fAfbKOMMbhsVSADT5+tfVSWqQeappy/JymIRp6tcXQ4L6qvsqyEFZMVV5vtZv6dkK0IdHqkUhEGvs3WU8aIzYnYCNUkYBiEAXxzc0PfjzgXSOmE/W6PRrNarjk7PSPGyJdffkldl6xWDa9fvZY9cXRzmHDXH+Qzp0DfdyQVub2/5nCUomm5avC+JySHRtjCkwLh8QKQ/q3/+XUAetqTRW7u/ID3owyvc8E+OmHF5Rc+fGcO655BpL8WJPo6mCTA1EMdMK1Zv348vMdfX8zSv/31hBAq5q/Lvb3bHVBYmlrUgofDUawFW9mDF4vFTOZIKXJ2fsrheCeZQopsr6WzFaAouLROQuBQCaslR/ObcEzKDFKaVeAPLOWQc1U8KJOb30z+yc+h1proAwOJGKbhuag+BLSYvP8FaBAbMZW5cszNd4qBQEJTYLUoM4PVRDcSo85rR4Aoz8IEak3NlfOSb+FGn8HmYl5viNPzHnNNE0ALEJ/IIEOQDI/CWslazaouppD76TOMIylI4G0MnqKuhfUaIiEH3zOBIVGeiFmFrAVE8U5sx1KKhJjwQFXZGViaVEc+51pJULzB9T0+K+xA/O1JCKtVyX7mBsnb00augbAT08wKVRlc15p8DSd7EmH9TdZxafIXzIrJKQxbGy1NdwaKYozoIClxIIqmlAFwOf/yOSTX0GNL+6gGkvW4sEXeKx/YvpFEUImkp6GCWDRJRpA8u2UhdoLGamwws93LOAoxpOv7zNIsKI2EaD8QdnJw8jgy5UTN4dpKkfQEdM+Fw7wyPYDx060t701n9udjsGmaFgkAqlDKzmQLay1jGB/sDMsSN46SERAma0GxlrNabLZ88FnRoOe+U4YX8n4EvBGiXFmUoHLwtBJLQulLinlP9N7P4OFkszoR+uQzyP8L4JlzZBVMrbL0fI5h0FR1hbEmKyPSDE6VZUnQYT4vIQrLeDqP34SjKCtCFzkcjrx6+QY3OunRfQTkHlTGEHyktCUn2zPqpma1XEkmgi3QSJ6uy2qgGCWXy1hNWRXEJDmOShsBdBAloA/ZktIWNNYSYqIfHKBwLkjebF1RENFKhi+n2wv69ogtBFQuipL2cI+1BSkmhtHz9rtnVHVDHEYZ0qXEsTvQjwGfhEx13Pd0nQx8pVtUHA9HfLa+7LoONw5i+BnFwvL+XqIAvMs2qDmAXJ4NT0pCODFWCKwa6LRFhZ7KltmOKNAOHSlZ6rphu9nw5OKCRdPQHff0g5ASTs/PiCmyPxy5ubtluVnhgwz4Lp6c8c67b3N5eYn3I8o8EF2buuR43NN1HcOwp+gMZWGypZ8jalGdldYIUIymNBXrVSPWXDHQ9R3HriXkWUI3dBSFmdd9jUKbMjs4aOq65Oz0nJubew77FtBstyesFks0kqkcU6KqKj547x0kiDwx9k4sF0/PWC7XNNUi53GIUtZoy3KxZNk0onoj2/D7AWvAarGfisHRdntkoC7rmtaKEDYoooDGRlEVBu/Aq4TVcH52IhazdUndSKZuWZh5byusWOpWpQBMRkvGiDWKMHa0fUuXAn/+J3/EqydPeevZU05PttxcvyK1O5oSSlVyff2ablS0g8PHBEoz9AMpRrrDgZjekNAc9jf03Y6uP3Bs90QCnkhUWjKLIrMFoCFhSKToxOJTSw2UlOy5UV4u5yNFEkGUZjHw1a++4MmTZ9R5/iT5Oxo3jozjga6/Y/Q7UurzvgBKDXTtHdFaGhVo1htCkmwVZSTvWuxONVEbIpHoPM4PBAIkR+c64lhQWjNhFXxz4CXYH/bEGKlDlclBas4ATdmGaxpMm2yzrr7WXk1ZnvOEU/qoXHtONfPUPU2KJtn601xnzEqjR+9trkmR+kBPw1bIBKWJXJdrFS22ZtP3yn8VE9AyEY1kdhvECSJNr5kyPfOPzQCYqDykXpN9eszZZuFh5utGkve42NG2LSol+r4VUn+u6yS7PjAOAwpynecZBrFjFAFAlPqssBSFprBTjhXsdoPYGD+qAWKM0n+qX3Pticw2nSFECmshkW2BYbkU+zqlNME7lJJ1OqZIN/TYxj66wGqe9UptLrVJP/SMbsD5RAhQFjVWWxQWECBwIs2JejOKE5HSD4TnOGUgyWeQHLssfUsatKEwBWn0Gbz32dklZcKHASW1U0yBrh/ouy471BQCosSACo6xH7ILTa4Tjah3hEipMTlWoR8GilJcItCKsiqZMjmF4KMY3UidsxhTTIzeURU2Wz6Le4jRViyufcDoR7McY+bPKVbRxQzcjUOLVgZrS8qcDRmzFV/INt1labNdvWAlUjeqfD9MAhOTb2I5hxMh7gFMlYd1Juo/fjayqknufclEdX6k77pM0k4kAiGOBO8Zh07OsYKYHNpIZvcE8obkIckswhjpTb0POXdLMWWQ/3XHbwSYnpxt+Z0ffo9nb52jCJnhJQ2SzZI5pQQFjxPI5MUb0egSY2t2uxv6vuP84pyz0xXbbcVmU0DqZuld9BIAr7QE1TW25tgLawgUdVVQLmqqxlI3a2IqKeyISkvitaMfNMRIHAcO+x3Re6wxLJaSz4MFF6fEl9wATyi3fljYVM4lSSmH0Rr5Wtsec06RmQeeU7Oy29/TdgdxJaws3jt2ux2ffvoZkYg9HLnf7bjb7aSJCoGyqPPDDp9++im73Q5RTQnAdPH0CevNmtOzU7YnpzQLkWP67DHr88ZRlAWr1ZKh7x9Cb3ODU5YlNqWM8CuKQpp58oC/KEq225O5+ZrDL4MjOkcMnrISS0Kjp4Bgx8nJCT/7+c/p+2G2SFLGSOhvbgCtlTDpsiqznUsCJUBkQj7n6AbKqsIWBT4E7u7uubq6oSxLlhlcs9YyeC8bm5JQ4KYpcYPCuYG2PeabWwOaEIRZIAOFgqKoOcQjx2PH8dhSNw1VU7Pf71mvKrQVtqELA95H3DjiQsS7wJdfvWJ/GGB0LArNpk68/d4FISlCTBg0Rdngo0H7BNphbMlXXz2niJqLs1O+/b1v89vf/y739zd4N9LuB8IojIiYkoAsRBIj2gTKylAWFYO2NM2G3eGON1eX1IuCmoKiLLm4OOf6+oabmyvOzk754quvePX6Ff/X/8v/mT/7iz/l9avnXF1e8/rVa4qiZPSe47FjGEbeXN7SLGtGHwQsahKj91xdXbFZr3nvvfd4cn5B13VsVms2pxX7ztP3A8vVSgq+ouDd9z/g5uaaw+6eYRi5vb3l5GTL/eE1bTcxmGUYpPKCLWqleV5HyMqlaa8VBq/Og480L8zfnEOGf8Ja7+j7at48ZiCJaUPlr0XfHuxrJtn5lIVAHu55nOs5tnuOrcYWjhANRQYhrFEYDX3bEpV4ufZ9z93tLa9evubuzjGOUlAUtqYoBAwSRZrcz+LC/DAkl/cswZqFlUDDqDwQ0BqePDnj+nrB1ZVY7JVVQwghs1OmjZLcRHtCGCkrAWKmwMyqqonJs9vtqKqG7fYEkEGfePVqUhrl/Bg9Z4ZMBcOQ8xiapuHVqxd5jS7ZbDYsLy5E/r7b0Q8DZVFwcXGB1vIMxwyOaiO+wre3d6zXa1bLlfhC50wgpRXL5TIrG3rKRUHbdfPmPBWYQz8yDjKMmT2atZb8oUKKKQEiw0wUmPIlfAwUOX9lsjzSWoPReBfz8yiFyxRqLIoE2cuKshD2WxTf4ufPX7DdnBAD1FXN1eUVm82Kk80JH334IVVVcX19zXa9pDCKq6sr3n3nA+5v7yGHUXrvZ0Y6KmEsXF2/YRhluLDeLLi5aYV8ECMxWSYXusezuGn4qB41KI/v+YdmKJGSxznFMPYU1swDzmnQOwHaMH0P/xaC9TAsfSCVyJ+HRenrkNNfd6ivveKxolOezcevm1pjNa+ZJHnfu5t7jK6wpgEU19c3tG0vA5a8RhSFkeyIwvLee+9ye31J20o2jbCjChSGkKSZlHMWKErJIPl6BtTf3uPrWVkpAw6Z1EDCjQPBF7k7jagUscbQ1PVs6xGMJyVHSkVmm4niNGRL2JTEGi2GgNWlYFVGwFNSmowZIIr9RGEMqioxedAVvUwAjBZr4MfKKJ/ff4iJ0UkAtzDYhPA1gQSzdVtM+Xeq3MgHfFb11HU5D/PJmRVEqee1kq/3fYd3o9jnxYSqJdQ+EYnBkWIGYCZALKn5+40x0hgHCZAPmakefEBVaSaAWWvpe7FSUshwWCmyAsILABIjRVkSnMO7kaQUzo3ErMoyeRgaQiD6MAcpGy2+64U1xByenmKYVZxa67l51knNgI7RmfyWw91VtqcQgDDKZyTlvAwAhZua7bzuex+I1sy1kNjwiS2W4P+K4IXRHzJwley0300gTt4HUDK0KMVasSwsRks23jCMtEexGiuKggaFXTay/k8kuswaHoaBlKZMrmKuL+wEnmYLzSlzK2V7nQfSijwTEiquiUosdab8wSRzznx/TEHtZlbTTuBTSnJ+Rdn1kHv3sM7LfjixrlECJlVVxX6/FyWCNjRNhVKSk6NUwvms2A/iaqGUpirl2ZVciEBZNg/PynT1lJotVCfQs+uGDM7qeViVAOcdqYss1yvKqiImsiuCm79/tpSJETcOkLPZvqY6/1t8iNq65+5+x+XVNU2zZL1qMmFtpG2PlFWDNoaT7SlPn9YscobxRKrRSnM8HGjbflb2lLZAG0WzqGkW1fyshBCIzsFESooRpUSdtgDc0ImwJiX6TiyLThubbaIMZV1AUBwOOw6hZbVasNv3aC17wTgGFosVCQXaoAwcjgeu9zsObUc7DBz7npeXrwVMnwqKlAjOZwtFAcnE9ilm8gB07S2TI4HMbKVP1nkdNDqSlCgDxPEhMkYYh4K+jdmeJxLVDXW95uz823zwwbt89MH73FxdcXNzyzj2LFcNb7/7loSgh8DN3T0n52eMw8DmZMPHzcdcPLngT/7kTzi0bX6+ak5OTljUDZeXb7i5uWK/35FhdbROlKWhqZds1xsWTU1dFhgDldaUpUEbqW9cDNzd3+NjwAXP7rADBX0mqxZFQVNWbLdrlishzZxsT3n9+pLnz18RfOTpxVuA5uTZGZGUs2tHPvjB+zIvGAaur67Z7cTOsK4XpCjAujZlXosKmqqa17xhGDjshYBVFUIsMCZyZ1Te4x5st6yt5DoEcX0oy5qqLmSobDXHNnF2fiagUllQFDbnjgjIVtgHdUJTL9BK45zj/u4OrRXdrmVoe8LQ81c//hN+rgzf+ugjfvjbP+D2+jWxvWGzMOg0cHf9inqzYrXYkIxlcJGx9jRNQfA999diQVukDmMSSgd6dyRpj4+iAFXGCBVcgQqB6B2DGxiHSF3X6MJSWINTEZ9GQpzSEVNWnslQ3Q0df/w//Wt+7/f+LhcXz1gt17JnGU/b7un7AzE5ykL2GpTsCZvlCu8ch8M1TjnKlWFwAyEZjK4pzUJIyClIjh0KF+T+sZU4UYTk6caOWJR581FovjnDg+NRACbnBiRjNuLciAuOkDNn6zpn6WSAaVKny54u+/u0Z+kZCMq2dFnxM+WRmjzgTkY6fODhdTz0ZNO/pSjWaNJ/PgaXHoNID2r7x1//9f7p671fynm8zP2bAGcJ1DztzXME8mDcMzoBjmIM0lvPX+8YXCvqc+fnmklAqUTb9Qw569gaIe8P40ib89t9yPt/IZZni0Ut9W+2GxvHEaMUdS1qa5fBK53Pp0rMNezDZxbBg7hjTQSgKOtXIUBFN/aYIABTiIFDKzPQqqrFBjtKFrfSZlZuKwVt3xGCkzlcTMQqZPBb9k6SyQKBr8cGSO6UKLzdmIE6HpRgAljmWk6Jirsbjl+7j2wlNZaxhkTKggXP8bjneDhwPB65OH+S358lIDZ3VVXPZLiUe2gXAj4GIjJv9D7kOldqzHEcZU/N91dRlDJ3qUBnwKTrenHdseJmE4KAPikmfHQEH7NTgiinpvvYGCuOP0jOfdt2VGWV1VBy38UIPjj6QRRFdS1RDiE85FnpTPCaZjbGyDybmCSGZVL6kR0RpvDpuTbXGQCcyFOTI4rN50PsC6uyJGqIUWZ5QwYZrTUUVYEioI1YWYYYCM7lPkp+rrHT+5aMPKUsfd/9jWvTbwSY/uDv/Q5WBXb3N9IkJ8Vbb71NWSxQ2lCVJcEdyJUbISTc4IlBU1Vrmjpxc32LIvDsyRnvvnPO2em0+FcEJxugbESydshNYnCjBM4X1lLWNdWyko28qAjBkGLJdrNgpOXmNjL0HXVd4XoBrorCsl4vqaqK4BxJZf98rQhe/EGnmUogYTLCHaKEJK83a1KM7G7vOD/bCvOtkGFA0zSMo58fCms1m9USrTXHY8uLFy/48Y9/gik0b73zNrd3O66vboT5j50BKlNY/vAP/5Db29uZabBYNZSlZbvd8PTpU9brLZvtBu8d+/09b968ZhgGbm5uGPqe0hYyoDCaxarJGSiWsrIoncNr82IdM7hT1hXKaDabDRG5qWUOHbm7vaUfWkJwHNsAOrHZLihLQ0zC3DSFJRxF6q2Vom5EhTR6R4iOzan8XJSiyCFxKQWKwuSNToaRRV3hs6Lq6vqGFKGqa5KCly9est1sufV3mUWoGIcBkxe3cZQclhfPX/Huu++hlGEYHaMXVnZR1mxOtux299S1qAyGfsCNnpcvX7P41vsURcVmu+Xj737E//hP/xXjGInJsL/bMz7xjEFxdXekP+zR/sCPfv/7DM4Tu5btRtP3I7ZoqJcFUVm8v8daw/PPnvPFp59zeXPFd3/n2/zOb/8WF2cnfPmrF3z60y84dA0qJQFQU+DNmy/54MMPWa9PiaHgZz/9jNdvbigrKWj/1b/6Q5r/eMnbbz0DEp9//hltC7/61WcURcmzp894/uqK/+3/7n/PP/7v/1s+/eXP+cUnv+Tv/b2/x/3uwNXlNcZYzl+8YkyeqtZU9YLNhxd8/uWXtLsDP//kF1y+ueZHv/d7/PlPf8qwO0JRYRcbkor4EDBlwdmTZ2w3KxTwi5//jMvXb/j888/5T/6X/wk3ty85HHaELGGWRQ5QE7PZzBuP94ngs21JnBgoYvMTc/Hx2Jrlb/uhjeSwOD9y7FK2r8zh8chwRGudKUR5HPM1prFstjYzsidmzmS7Ob9eJdlcho6uHfFOGrt+dIQU0SZyuNvTj56uHTgcjlxeXvLyxSucL0lYlJLQ9Zg3OZWLNOfE5mOshOkQLDn8XSrAojCobNWmAKPAV473P3wCKvHi+TVDdyA4galSjHRdR10tqGqx2AmhENBqGlbmXATJ+JFiqiwFHBL7nyCDnzwk7FopINv2yKpZcTgcZkYKiIrpfn/gGA94P/Ktb33IYrnk0B4w1nB+8YSqbnhzecnl1RWv3rzm2LXC3mxqiroSmz1EWVLYgru7Ow6HA9vtltVqBWy52d3gRs9utxc1mCnoRsdXXz0HFJv1lqIUL10fItFLbWmtFqm1OdLljf38/AnNcsmxPdD3A6enZ5RVwZwZk+ARgoIxinHsSdHgS82yqeV5jbnQHgchCWjDYrFktVgRgwxPE/Ds2VP+/t//+5xut9RlyfPnX/HixVdcXFxw+eaS4+GIMZaLJ2d87/sf87Of/YymacQaMB3YH29ZLEoSkdvbGwY/5EBOGRhoO9lWCQT0daCHeeD4eECYYu4tEzO41vc9VWZtCcgiRIQJJJrA14kFJedrArHS/PsejqmT0Y+eu4dDqYfX//r3PW6clFIYTK6p5u9Ga5uLZp0H1aJu2GxPqcsFTbPieDzy2WefgRHGVvKe27s7drs7fvCD7/O7P/odykJTFYYf//gvePPm9cOQPD9T3gWGfI2bpsIYySj7Jhwx+geQKZ/7SR0ZghNQsn+w0fRKsVqtWK8WuckaMSqybGpKK2DBctXIuhqEmENWMhCiqMOMxqiK9nDEagH0rdIEJ6ogrRSF1VhVsRsHdMoq41qanUiYQZCqkiHKOA6M/cA4jNRNI0BUZkBOeQ8+7wNFUYAxaCQc12fGZVMI43zacwst+29ZFmI3XVa4oSeMorwS5Zs8ZD5FfHBUSixAQog5w8lQFVZYjgBBFq6yKLCmElWCF9WVtRIO68ZRbEMGCRcmJmJZkVLKuSiepml48uSJ+IXn7x2HIduiZfJUiPTHNlsTStN2eiLKvsc5WEW2bRM7uxFCpNCasq4wtsDakbYTC1Ox/dPzukIKmMzsxOgM2INDBhvKSEi2zkrVmCSmSLKMZI0RNZUww10GUhTZmjAlQiZ7hSCDSZOC2KSmiBtFrWp0OQcmG2Npj9JA1nVDWVbE5JFQ7EkNJ3Z505BgAt3n9cgYike2iko9gDzkBljuLVmLBYR7IIHYQs7FNKyR3AGxOi/LgpOTjQxsUmDoEdtHYygqsbRVMOcSeOck+4s4K37FQtVkAkS2AyTbeKiEtQJUJuTZHZ30AsEHQh3nDACXVSTSb6n5/U7s0CKr6qYsCVOIAs3HQPKRQolffxcD5a5itd2gC4NykmPVZSveorBUppAch8nGRyu0+mZw6//4f/oLAYl94oMPvyXZVViUSVCKkvb09BydVQchBAojypKJPHR7c8f93X0eUCqKShO1ZrGoHq6PMYzB4/+/7b3pkyRJet73c/e486qr7+mZ3VlguQAECjTJYJIAfBKl/1gmfaWJBlLEQgQWBMDF7hw9M33UXZkZGacf/PB6ZPVAC8hAkwlmu/GY9ZxdXZmVER7v8RzBMcRc5M1yQ9/3dF0v121wNPWOWmvKPGO1XErvePkdmdEsVkt0AtokXH+44eb2Bh8cT59ekCQpVVmwWp6y2x0YxpHROzo7cPfwwLY+0PQ97TDQ9R2t6iRvLSovlVJkJpHFUrSSSlPJlpscM3QYCG7Kh1QkcXg1DqPU19E6UswVFRqDMSmb9YKrD5fUh1r6s7zif/lf/zW//Vs/4WR9zs37W776xRdc3VxTH/ZYP3AYWiAjOMd2t+Pu7oGqKkhMSrEuuTh/yu/+zn/DoRWbvzH+cs7xox/9KBK2BsZeLPwUcranuiI1CVlqKLKMVVVxf3fFd99+x367w3nL+mTDukT+fnpKXuQAx9zqk9WG9XLJYrEgzTMCcH+/pTDvYFzQdT2rYs3XX39D8ckGbTS+89QPLQ9lzKGuKn78+e8wDpb9vuHu8oH7uwdOTk45OUnRBAiWzjr2250QHLQRVdjQSk5f13G/veeLL79kiArK9XrDi+cvefr0Kd988w23yZaT0xNe//AHLKsFSV5yv6v503//U7SGP/mTP+bFyxek+UJmH1kmFoqEqFiSRWPd1lxdXfFv/+2fiuuLDmRKlESJtux2D3zxRcf9/SVf/vJvsPUtRWrZLDJePX9KVmjaoeHQjezqlhDg8vI7tMmwXlE0D/zoszX/8l/9Ph+ub3nz7gPNsEdnEkXglSczitC3PNxfcf3+Ld9++UuKNOX1p5+yOT2lWCzpgc4HkjQjGE03jvJ89z3eDjS7HW+++jnLKmV3f81qdUqRVzzcXrJ9eMdyEfjs0w356TOC68TxgkwsFBdr3nx4x665woUHWjcKcTfkZGbJ6cknJOmaaVBvB0uR5pyu1lgrKu88SWN+V8wL+c3ZL1HmWVTaWNq2po9Wwy7YozrCGHPscQgKH2x0VArRQjscrWK1NqQmOlQFMNrEX4/9ko69kwyeRaHzcdMz9TtH+s2xr/oYj+TZqRb5VZhIhZOLy+N/iwIHFdUVk42xlf4PLbEd1gmJUxvwY099uKfvW0IIYpXatlxdX9K0tSjjnCPRhs1mQ5pm3N8/oLU+noMBUSp++vozAIahp+ta2l4IjVmeRgJEwdhbiNZ6RkM/dFSLBWkiNan0qJIpdGgaUBwJLkopvHXoPGNRVUwdmlFCNlIQ3WDgcKgpQ4VzNtq6BfIio9t27LZ7DkkLOovOYwqVpOBGFoslRinA0bR7iqKiLCYVkqbrOqqqQhYZ7rjccfF5ZRKNdVOurdSJSappu462afDeUpQJb9+/o2kOFEXO+fkFL16+YrvdY50omq6vPxBCYL9/wNoxOnBxzAlDBZIs5WH/wHotn8swSGas7azMncaeLMtF5W/MUe1zd3fL4VDLvFrDZrOBoAjRbrzTmu12L3m7UakzqdYSY9AYdvs9V9eXnJxs4vsXAk1VWRZVSpblNHnPYrkmiW41Y3R9MCah7T3dINeWD+6Yj9oNQ/zzxBMBDd4NZLlGm5S+txw6i1Zika6CYsTT95KjZlSCNlFt5RzOqqNbxHR/jsNIXdfc3d1xdnZCb8WWUZaEci+ZVJGmcf6iEnFSiETmsiyFbHAk06WMY4c2kKaGLF/+AyfT/8uC6dPXz9jXW8lQwqPSnK/fvOXVi9csKyniDJa+a8Wnzwfuty2ElG+/ec9XX71ht6v51//zH7Nal1SFJjMWgmW3fUDhyVJDWWSkqcG5gLOBwXqqckNRFXjE4i4tM/qxIy9K7BgYhzuqIkMpj1Yeo4UppJUsiJaLirPTE9KqpN/JgWPjJth7GWw77xBhuwybAjIkSFMJ8spMoMikgUqT6SBVeAd3d3e0fYMPlixP+OTlC9pDz939Hff3D6Rpyu/9/u9yaBuatufs7IybmztwMh3bbE75oz/6I/72b35GCI4xBvSuVgtWqxWnp6ecnJygTMJisWC0A/3YoxLDYrVitANte5DX4y1lXnCy2XBycnIcquE9OjI7dSLqmIvzJ8Lqi8WYcxZjFHlaMh4C2/t7hk4koN72qES2nSAKpp/++Z/RtSLxl1PF0DY9h/rAfr9jtSx59uIpYxeH5FmBt+449EMpsrJApxl9P7Cva7a7vRwu9QEXxINy6DuZTfhAakRuarB03QBBfOKXy5Kx70mNqJW6wbE/NKSpkoVhCJyfn1LHxnuwlrdv31FVJU+eXFCVGUonnD/f8JOf/Jhvv7vh9r6m7y1JkpFmJcoYsiSw7x3epORVRVoWYteFk2Jfy+/RacvzV895++Zbrm4uMZmiKFM++fQlJ5+v2FQLPrz9jv3hhiKrMGlCluZsb+8wP/gMpTwPu1tWJyuabsAFQ54aTldn/Ief/hkvX76gzFNOTtcc9jvabsB7xaEZePPNOy7OVlgbUMpwd3fHdrvld373d/m7v/uCv/vlF6TFgtFajE1woeeh3vHJp6/4z3/1t+x2e7Ik59NPPuXuYUvdDzTWcbXbUe+3LNZrVusNm9NTlB/QRnF9fcPV5RVv334rD5dEo4xGBck1s9bhrQxtpSEMYnfmRfnhXMA6WUx7cWg8PhS0Nsdi4jcBJjP4XhiOow2MtmexXMSAQY9ze9ASPuiD2HMoJ4Mgrz7SDKlHCbk2XsLJJjvCj6Tq3nuG0WFdj/MpbdvhnSZgUNphx47t9oHbuy23Nw+IUFCLlYLWcSik4yDWHNVA0zmmtSLNEqpoERQAvMJrKd60UTgVwPacn1dodU6aKH7xdzckWtN3DSEkKJUSHGTJEslrGBmDo4/vc7I6yrMkMt0dTVNzenpKlkljb63kFZksRbnIQh5HhmzAGBWH7Ibb29vogzyInVvwfP3117z/8EHUUUVB0/W8ff+O3b7mcGjoh4HT01NQhu2uJknu+MM//B9489VXrNZr0hN5bthxlFDoTM5drZPHrKtR7O6WixVd17Pf71EKtrues7MLqqKKIZEpbbs/LmSdk/totdmwOlnRtit80KxWS7Isf1RphQGt8sjEEk/gI6PbNhhVURaijpUlW8rLTz7h5KRCIUO9k5NThrFlvxMm0slqw1//9V9jjKKPymEV4MmTNMrbDdUi59/8m59ireX9hw9cXV+ikpZFVbJYVnRdw2W9JcmliBTWvsNa8fqdGpKPTRemwaf8c2AyH9N6sqmbOssYCuztcaCapmm0w1KRYfxxF/oRDS5KzadB68d9z1EFdbzXoqXfcVk1Lb7CcVGu4jCaSCw55uN4FaXpE3OZyBwTRhLI4D9PhHnonOP29pbT01M6N9KPI8FLLuK+3vKwfeDq6op/8eMfQYCqqFiUck2FEBjdiLUOF20ClssFJpGly2/KUeutQyfquKCcmtosTeUzcJ7UGBL9aJWVJlrsRqLiyEQWvVGSvSOWGo+LTe89WZKQ5LksY0b5eedJKvk2RqMIuNGTJWlc7npckID5wTq8tSifSoaYV5hUzvQ0k+xDvDAfszggk9pXR0snh1I2WtP0EETVM9g+qjh8tDOKrHgrNmBVWUKI718Je9sNPcFbsc8xSVQq+SPzkgBpouP9C0kqgwnnXFxKe8pcBppHFdY4oowWJmxkgbZNI1kYyZR/A3meU+Q5Q3xe9X1P33VixZ0M6DSJzgIJARlUeusospyiKKiqiiwX9jqIIlBFVeC0uJDXOhKC/AwV08JR+gJ5bj2qqROtJI/AGGFzB1GUasQhQexghc3roz2hw4MXMkZwXoY2Sp6lo4KgtVhLJZCo4ajwIQSsG3EdpHlCojRpZNxnqUbria1sj8qPru14CA+sVzlpKb79shxToMSGarLxk/cT1fQf5SdNy320DDNQSohoQViNajrXlBYLr/izEgareOKL/7uEGfd9z3qxpKoqhn44Mpn7UbIOsqhk89ZKhivyHB/tEJmUstQarcV6YZ2iNOMw0nUDZWnoxzHa6fm4aJJz12rNvt5i7XBU6KZpytB1x+us62L2VyaW3SrWMzqqt4ZhpG1bskzUikqLPdD9bktSSEZk1/ccupa2a+OAIoPMM0YniCQqmPzHD5NfYzgvhClnPc5rysWGKi8kp+JwADSXl1cslyu00fTjSNt0khsRn0VFYtDrpaj/gmPwYnnbNYfjQhBZGYiKJy6ur+r3QgjVmrLIOT89IQueqiooilTyYijpG8NwqGluap48f8449mzKgvTiDOsdBkW7b2h3NUrBs6dPef/2nZxLi5JVnnN9eYUdeoK1aGcpU0XAib0RgUQb7NhhIhPZaAOjiyRbYaMHO5Jn8SzTCXYQO5y8PBFms3cc+oGQpJgkiwRcy/Z+z/npU16++IRyWfE//fGf8PLVp9S7jq9++QU//5svyEg525xTFiX3+2v+9//jf+Pp+UsSI3kZVZbx9NlTAmIttNvtqBZixZ7lBXlesFgscVaW6omJzxjnRLWjtVhCJ5XkuA4Dzo7gHF//8kv8AH3juLu/x44apRNa4zF6xI0Jrz/9lEVVCRnMWvCOm6stTdNxOBy4vrrmZ3/5N5yeXXB6ekauV/zg1W+x3e0YxwGC53R5we2H7eO5iaI+NDHXKDCOFnwmBA9j8N5R13t0ELWBtWPMlJb72AXJCgwB7BhYLRZcbJ7zox/8hEW15Ls3VzS7nrGr6ew3/OQnP4kM+YzN5in/93/8c7L8L/jRj/b88Ac/4MmTc/rOPz4XFORpQXNo+OIXX/NXP/sZ+22NAjaLjF57HmKGbJKm3Nzd89XXb8hyePL0gs9fP+HTl+ecbzYMTvHhdkd66ElXI/v9jl2758XzF5yfP8E6SPKSH77+lCcvXlOs3pDqlIAoNseu5cuvvyaMHd988QvuLt/ju4bz0zXv7IFLk2J94H7fMHpYnZyyOT/j9MVTqjzn/GxDkS1pyoQstLz94j+zvXzHanXKxcUzUpPC4GnHnjddwy9++R9pDjdsNhuePHvOq1cjb9//DJNqlicrlMtw4x6lDc4ami5nbGvOn/wY78Rut297/uI//RVVlrDerNicnZGoBOcUrh9o2lFcFP7Hf6bD7/9vKI/S8TyMqpssM7igYk8HSSo9h3PRUgvpsQKOEGysb8TSODFSa0ivE5XeKi6ReJwBKKRO1pEgEz6qDY/LqEhGge8TAr/Xe320LJp+y1H9dCRHfp9oCNJraSVWcB/bpWttJFOUAEFhtFiH++DI85KLiwv6vo22Y57VesHLV88YbU/T7HnYbhnjOdAPPYNrSVXC6AdMYqjKQgiMQ4uNKvssz3j69AmgyPOMNMtp2479ro3UPqmPynKBHXpwjlW1YBxHsbrTmjyEqOZvRfUKJFocYfb7muAdy2pBXXf0TRvrjgFUwnK5xgVRa61XS3SqSTPDYlEJ8cdLjT7VtT4KQvpeSO4yiy+oDzv63pGlJUVeHTN4ur5lGDqUJtrMPc7zQBYNOmbAjhYSk3B2doY20A4HIYcNK9qu5fb+jiwv4tfK53Z2dsq7999RLUqSZCWkKwP90KI0FLksOe76B7SW7wcJ211/tL2TGYnUbnlRYEzCbr9lszlht3sQNWeaslwuGfqR0YprgveOapEBsqAVxVOIyixP8LKIOjk5IcsS2rZhvxe3HK01bdfS92NcwggZZupXvBclaBL7vGGA3UHy9yRmQix9pbYWW8txHHBBdhPWDwzDEInicn8oOEYkOO9lPhLkuWwSdexvhqFjtAPOjzLjz1O6rmVwPTrVVPmSosiPpOK63sclYEme54BmHIQUo5XUc9aOFGVJUQhB+HuEzV+Bf3TBZG1DksDgPG3Tsr/f8vqzH1MtltJkq8DQDdLQxm34fn+AkLPbNTSHgSKvopLLghfZXXM4SA6RgTxTZJmw84yJG2gHgxM1CybHKxMtHcRzkuA4O93QNp3YihWZ+OYHufizNKGqCpbLitZKkxuIjLw0IUdjh+gF6b34ynrPFOy8KEs5OGOYVgjCitfRViNNU7aHffzBPnqbN23D5YcPXF7KNrbeHxi9JcsyTk9PqeuW9tATgOVyyR/8wR/wZ//Xv8OHERWDtheLheQpZBnKiG0T6jGAer1e07YNm/Uab4WRJ6GlGevVktVygTGyQLLOyfuzjxdBWVUsBrG3U1phe4sj4LTH2YE8z2Ro7abBHOz2W4ZBLFXqpiExOX0vHvPLaiFezVlKUIqma7k4z+NSycbmPj+yzcqyYLlcYozh/uGecZTsD+dF7dD3ElRcVUvGwTIgTaoK0hRn5RI7SEB2lmYsl2tpoK0w9buuo+1GijyhyFI2J2uqRRVv6AytTQzwPGAHkRCnhaEoMxKjMfFh0B4aBmsxAWzQbOuGu4eapEzIlCLYe1Ynp3GImJCkOUVV8uz5MzanKy7fet69e0eSZTjrWCxzNI7NSc5Bj6jg8C6ACxRpzg8/+wydpbz98AFPJstEMozKMOSypTaGLM9YqxXd+Rk3d1vGEfZ1zX/4s5/yJ3/0h6QxN2a37fn5z/+Oolyjk5RPf/g5H65vWaxeUVZL8sLQjg1ZMlKUBUM7MvQjt9e3PHv6DL19oN9uJXTeSfOOUmR5Qaoztts94ziSpCld3wkrN0kwJokFvSyNJhs8KcBlqeSinZq17qjmm36fZxrc/n07o19vJIkMuFwcUIpqT7LMUNANkn8XVbHHh800AZ/ON/j45wcSzBvVCwFcXPhFCRDOiYfwMPaR/aBo2wOHuqU51HRNyzhISLu8FhMXg44kMoqTRM4/G/11x1HsIqyVRYiOyyhiDgYJeImJxRg5ZxaLjIvzFZere+q9P0rBQxC7o2EYKYpcQiSLTLKS8NhRGMjraKk5+c8+PNzR930cKGUURSnPnSm8Pdoj6Sw7MqQBDvWeNE0YBs3V1RX7/Y4ueubLgMuzG+pjIHpVVZHlkWKtY18fUNpgrcd6T6Y0VbUgSWUw4D0M/ch+XyM7ehNZ8yl9ZymKksVCFkTDMEgR4WSxliSQJBk+SMbH9fU1dvRCFPBiZ1gW5dFeSYrax9wdFf9Z7E4d4h2s42cm2SXGiH+0tZZnT5+JLaENNE3LerMgSeR6G/uRX/7yl9R1HVm5Ygey3W6ZLFe//fZbvvrqKz777DMWiwWLZsHoRaFUH/Z0fYNJNUqH4+v8f1rHya/YbvD4fx4XPfB4VqiPmhhnLdaNJOYxB0QW3SAnjUYpf2TITQslmJY96qO/h+81MRP+Idbd5Bv+va+RjiiqOafgWh2VWvLfDBP7T2FMSprk2OFRNTApGXUw5LmhLCuGrpOaZLvly6++5NXLZ0frMbEpFFuEcfDHoj5LHpXFzn9s9fXrDR3Ph0mkNik6gGN9Mv2eJDEUkWXtolXvZN+mggzcnPV0bXe0jD7+8gGdSv6Adw7FY14MXtQ/3kv4ulyTShY5WpYuzjqGfpBFsB0AYQdaJYxyvMcojUrEQtNFNrxXPi6zOwluja/bO8vQi+WX0mJXOuUuTIsBgiZEJYGKKqngJQBXKXnvRslyVhiZ8dnjJUskMYpEq7jAlQGr9w43hqjMkfvReY9RBjsOODtd00R7ZbERE1KAjqHBUj82TcN+L7aPRVnGYaFnGBpszAFM0zRmhhQUeU6SBbHMQ5RUzlqx2sjyo0Jn8pF3TmpsyeHy+Ok6QQyhjEnQOuYZqCCB2DYG2scBieQFWry1BDflZmmCElXuo4WfOBYQr8OP8wmmHIPp6BCSgGfKNs3zXAhyzkbmrqEoStarNeMoTgEq1gVKTzYdomSz46OF4NFGkY/yleA4EPmVmOy7mDbvHyueTLzHRKHk4hIrBLHiGMcBVLSljJbZRpnjdxvGkTxPxZIuviBZ5Dmscwx2lPskiPXJMT/Ni+2aMYqqMkf7n4mNPY4jox0/Ii8pJrtTH5V4IYgzw5R9dTzvlVjqegKjc6TBk+hEFNreU9c1/TDQDf3x6eSDuDn4IHkh3ufyxxgtlnu/AdjVDWkcinggM6lcNcrEQVBCUTyy5vO8kCWnc8eBZd93bCN7PE0T0izDd5K7MwwDox1jnmyBRpHqhDRPyCohKDaHmoeba1x/IDWK7vBAnho26yWb1ZKxSmh6yX24WKSMpIzdjn3fMAwDeVmgdH4kAFy+fUtzv2XMU9p6z93DHffXV6xPNqwW0gfv21bmCIk+ziF8VHHKgimhb3sC4qKSGM1yUfHs6QWr1UrC4LsBISRksrgPlod9zYf7e4IS4uOiXNE1PRdn52xOTzg5P+X501d8+807Lt/fcHu5pasH0kVOWS7IihSVeV42z9nd7Rn6gTut+T/Hhk9ev6aqKgLQth1pnrHenLBcrY8Z0METHUDG4+J8vV6SJqk8F7SmaxtCJEeMXcvP/uqvePrkKcvVCmUS9nWNTjN0NkDScegGgnon6qxxpGs7ylxy2S7fv+fy/Xu6ruP66pb1cgXecdjvhKSVZfhULGtVorj88MD1zRV931OVC6rFivVyxbIsAI11njzNjtkWYlfryXK5RheLiru7WwIu5hMvSNKcXX2ISyrHu7fvKfIFQ++x4sZIVS5pm04G6Srh4vSCV88/4cXTV+Qm5/7mHj+KnV4fHQdWywVlnvOzv/xLvvv2Wx7u77k4P+f25pYv379lv3ug2e2EmKIMTTsKiz0rOH3ygpPzM8rlEqcS2mGkGwK7uufmYUvTHBhGRz86bm7v2e8OvHj5gk8Olmq55sn5J+wfGpIcQDG0Pdvre3Y3l9y+/8Dh4R7jR8yigqajG2sOTS9h9sFQ1z3jdk9TbynSFPX6JYsyp21qSjy2vqcPlgxPYzRGpZRFBj7QPmy5WD3ly+tr+qSn2e345eGvcR4WyzUmFCxyhU88/dBiUYwuYbvrqMoLsuyUYDWHbYO3miTLwRr6w4BTW5brM/wYCBYSlf3zHHz/DNBGoaNNrTGaYRDCiPMOz2NNNAzDkQSldBKf+VMWpRYCkfjbMjFMpNblOEOY8neMmizHxa5rmjkQ68OpX5vIfR9DSIDR+jYS+6T/IRJGpbebbGnhsR/73vuO6qkQiIRlUXprJZbywYtgwUd3KFS0VSMhMTJAn+YL3djjfMwxXq1gtaRpG1QTWK0KqQtDJ7238/RdT98f5Fw3hvXqhPVyjdHyszZJTjf6o11yiIr6RVnEbFbJaFs6mYUGHgnAk3sCQJqkkRDoQGlMolguFsecP+csbdeyXK7FvQaxXcvzFKWgKHKyLMckJWlafdSjeFCxBnIdIViyNJXXOw4oDFlakGUGawfsOMZa1nNo6uNsz8as5SnjalLJLZdnkpM6jNzd36CNZ7FcSk6S36Il1UZqNUW0RF2ITbYiEpUyuS51tMIbhTC33W6PES1t22KM/MyUTuPCrhBSVFSpiwrqMU9QHGs01jU4N+DDyHqxInhZmnk/UhQlISRCsrOeJNFHItY49lElGAmtAQKi9hkGGzNlH52YuqEjDRIxhIbgwtG6UGnNEBedzjucH6U2dn3szUe0liVXYJoXJUJalTtM/ruBgJNlYrBi3djUmEQBHqU9SjkhmUmiDd672P/YWL+HaN86EWFV7Glk6TVZDzon15eL+buTzfyvwj+6YBqHTuTrVi7iYQhs1ifkWUHwYgfhvYXgJLTYuiMLqWl6wHBycibShOAQ/ZfBW8izgjQNZCkkiYpNZhz+KQhO2C7GpASTELQmzTL6oUcFz2azZL97S5po8jzFj4kwA0PGclmxXi3JsoxmbOTDjAsTk0iRx8Q4DY/Bx1onx02h1o++7jKsiZ9KbADHcSQrU4xO0VpYrHYcOTQHmqbFGJHVmdQc/dgnJv904RVFIUHNtidNFXlRslqtqKrqKF9L00zYHLEJlvwisRI41AfGcTgybcuikKyARMLH8NMWX77fGHM2FouFbCS9l8bLewlqtFYa/HhDZ2lK0Ja63klwamRRl0WGUr1sNJ3cfGmWRdWKZb1ecajv6XrxKw1hiYTnSu5HWZaEIMxA7+U96tgMToPbxRTOa3wMmJbPqsxyxiSTIYVOUCg5bNKOIXqgt22LIiVNQOmcxaKCoEmzgqJY4u5uqeuWoetBe9BeHtJKchKMDuy3O4ZhJNWaQSY0bPcH0hKyoUOllnI5opNAkmiSVBr/s/MzXr9+yfb6mp///Euu3t3gR8vZxYrlScp6U5BnGX0LQwOLcskwKtartXja6kBeGnZ7sXwwaDKTYRJ/3F5XVcmnn72m7S27fUvX93z19df8ix//EK0Ny8WSw/6By8tLikXPYnXCcrXh3ft3vHr1hCTNqBYlDJ7+MBxtDPuu492793z+48/pnGXftRR2ZF/vOOk7rJM8L21S9nXNMFqSNCE4S9s2TAHHXdfHg3rKWZqKBMmvss7HbbiL13U4smomksqkxPlNweTXKghHpoks7TSJThjs8L2vOYb9hSmE9vFnJgomUScYnR5n8dbGZR5IMRADAJ0fsC4wjtD1DXW953CoJd8tIIyWsiSgGXrLOMqgelIwydkmfq3OGbyPkl2nj8OzSQmqghYbRTxpIrLzLNUsVyWnpyX7XX18D9MQbMpcqKqKsizYbu8jgz7QtS2r5fJYSKAUTdMwjo6iKChLT5KkHJqG5XJ5VFw550jjmTOOIqNvmsPx2mvbhoftvdx3kekdIlMWIMtzFsulsKirUhj2w8hutyegGEfLYEQibUwiA2Dn8SbQNm1c/OgYCplwsANFUVKVCwmbnphjSh9tgYoix+gE75x8H69ITBJDMgNFUXw0OIzKwaBE8caktAlH25lpQOe9xySJWOMpRdd1LF89wQ6Otu0ZR0tZRmb6ONI1LTc3N9ze3uK9Y1FVlFXJw/0B7z1t17Hb3XE4yL9nWUZVlnQ22q8e9gxjj0kMqGmg9+iJPD22PtYVHUls8R5RsbiaVE0hKmSjXg5rxyj5jk2ReczGIOjjkvX4h04NT/g+S2661z76TfG8emT8//0F1MfLXpQ8h8NHU+Pj13x0zx6L1fA49Ndao400R95L3WGtxSQJWcwk+XCo0SahbTuurq64vr4+DpA/zsMLXt6b5KEl8Rx4HKj+pkErhY8DTUE42rJO2WdawdD34I0QUFS8l47LBx89qtX3hvQhNiNiW+DE1sKIrYV1jnEYH5fA8RqZlhRAtDIccS4TxY+CEDNBfcx0E/OGxwZ+yiqy40jf9ZJ1BNGuQZYrwXsSpYRAFZ8fWokVtbUjk//3tOTRSkdrL45KFUU4Lqa0FitHpRUoE5tkUWgRYoM9SmC4tUJCkHPHSKh9rKXVR5lIChidJdfpUdXkrGO33z+G3SLqm34Y6DoZnEwZPdNy1WiNMZLtqGIzKOe+xTpZzDwuccTSSnv9PQWTWAPKwEIdzx95j0YpnJrOHwlK904WSyHmq3gvtkhMtb9zsZ71aJNEEoVkw4hX/mMtdBzOKHn9U32VZRldOx5JJjouyqpqyZRf+L3zJyLLMoY+kljCYxab1A2Pwxz10V+/f67FszLEs+yj5dLHy/6JkFeW7vj++75jGHoZtquAtSOJz+O5KPfUMA44n09/CKjJ4leGJn0/4KwMdBKToLJHJZqEJhMbe8nrmN7XpNZ9zBH46DOPC6XHAdl0H0YVq4q5XMY8KsfjsMKHIOzV4dGOcrIL9n5SQYQj0S+oR6vBX3eIVbnUZ955fCZKP4/UUplJMMmkFJNlYdM0jMOAyXOxEEIyylCaoA0GfVRg2k5Yt6OWDF4TVfWA2MP7lINz1Lst7f6B1arEDi0aT39Yc7L6MYsyIe0MyjpK7Ui1pjRQaJltrBaVPCfjGXV7dcXQdijvcL1id3uLa1vSkw0nVcl6veF+14ttTJaQ5xnLVUmRZTJgVIo0yRg6iw8y1EmNZrNe8eLFM6qqkkVN1wEGHYQRHpTl3dU1Fo1XGXmx4nRzwdg5Xjx/wenZKeWyYrff8cUv33BzeU9XD2S6YugdWZ6RpTmrZMXrT1/z3fgNeyQT5O133zD0LSenJ6KOHS3dMLBab1hvTlhvTlmtNhiTxqHqIGew9xxqYZoH7wgMdE0nBB8nypir6yvKUn4u1aJi3xxAK3prsfuapu+42+6wVjL+gg8sygKjNZdX77n68F3sLZwww4MjBEfwmjyTTBEUWDdgx5ahbxi6jkTDclWxKDPyosB7OByax3pKKfJlSkCCypWShXjfH8iKhKJaUJQVJklRJqHvJKfk7v6BNGnROiUvZJCsA9zf3Mszygnh9tNXr3lydoFR0NUNrhvAOwlZJ+BWHW5ZcfPukna7Z5HlvH72nNAPXL1/x4f3N+zv7jAY0qJi8I5+gKTzoDNsMDSdox4b7u4P3O4Gbh72XN7cY90YM/k60iSl3tVsdx272vL8xSuevfyUh9s9VSXPDDtY0mBw7UjiFRmasRswNsAwYg8d/e5AYsT9wfctbTtwaHdihagVfZXTtTUFiroTtyNrFKGsuN/3LF68ggDNtuXi4px3SUVuUhIFh+aBalHhbYvtG4JtqUrwfiC4gFMaO1qcbSDZoEnQIeF0dc66yNCJwo8B2zsIQphJFJT5b8Y5CzFPMTyeo8ZopgyVcCS5qY8cZDyJCvGZKUQ3sRlOY2+kvq8V+qgH0lode9LHsfL0rI0kmePiKL4+PWUpT4SUv1crx17u8XtExRNSBsS2Lv7/x5rkmO8NxzpqshgnyPdz3sW6Sp7jIUS3nCAKLCEr9EK+CiPK2OPPMUmMxHqUKc5bzCDZa9I19ewOOwhT/qmmqpYkiVibaZ3SD6JgCdPsNi76FJNQIWG5EFch99GbnKyjFZBnGU10YCEuhsqi4vrmOhK4oI+W14nW4oAzjpSqiKRRjdZptNEugMeZipBkLMEbQujFwSaGpE/WwVMP+f3P8VF5pBSxponWyEPHMLQoU5CMBmt76rpmtS7l2oxnsA+POdHTz1ps40TZO9XUSol6ebTyXrx3dL3MpIpCiGdJIvMTbRTDIPNMeZ9CYJHXPmVrZvL5Zpph0IwxsyxJVHTzlms0jdbI3imcCfiQMgyRPBYmFxIfr0F1/Lk6R1zqyCdoEkM/SIZkmqXRmcUcZxt26jWUXKuiTHJY2wsZz1m8H2VeoUUBa5IEZSR/S4SACmlhA0rLNWLdgPcDyk+9pSMoF68tA1N/Fz87EaXIQs9af+zFkkTFOdzjjEM+t9i/eXmG/kP4x0NOvKcdOvZ1TdO0PP/kh1TVAuc8bduxqnLSxNAO7jF/Y7BcXu1p2oGyWvL6k+dUZUmRK1IjFhWr5QlGDxhjSRJHagJuDAQnGThKJUcPSK2N5C5FRu/Q11g7cnp2QtfXKC0sehdlhsWq4snZOZvNSdzUCyO/61qUlsY6URnKK9woqicfPvI/TlNubm7IXz1jykER/3C52r1z7Ou9ZINUOVkmrMb9fk+Zl1RVxWq1kqZjtLjguL6+4Ztv3gIGrTKstdzd3fHTn/5UHvJuOnzh9PQ02n6YSBAU6V9iMkI40LQtxOHxMPY0TU2e57G5kaIhMUaCt5SwEpI0i0O/niRNWK1XaISpOfQ9hEBqYiDtOKCAIs/IypK629K2B4bRA1lkjxYMwyjWEd1AWchmNYne8y9fvuTNm0se7h94uLvn2bMTsXqxg2zu81yC8pIUox3BQ1mWNAexqhiGkYeHB8p8IZk9zuG8pchTsiQjzwpcfFBdXl5y8fQp/TjiVWC1WnBoHqKFoKWtt5yebhgGT2JyFss1Whse7m+o3YAyAbWSYUBiRJ1mvYkZURVoUE6CTA9NR/9+R5IlbM5fsDlvSdKASuWA1MawXK/47/77f8WmKvjqi2+5v34Q721lMfmCzUlF9WLN9m6g2Tpyvebb777k5uqGpEw4OVlRLk7ZPjS0uwHbes43Zwxux83NDW6sePXiCb/33/5LPlzecWgso/VoZfjr//S3/NYPXrLenHB784E02tUcDgfutzXffPcdP/jsGS9ePGFtDKMfubu7iYeMYrerefPmDT/87c9Zr5YMwdEp+Iu/+QXLzTnL9QnlYoFWKaOTZtuYhGK15Jtvv0WlmtVqTdO0R5np1GxbKyeqC1GaPwozIExP0r+HX8V8+XXGFCA/5cCMMVxPCpEMY1Jc3x1DyB+LrIlJ/H3Ig39iNTza1E2qMXxcTsWHzxSM6YPDuYH6sGe329MeLImp2JyfkxQ5zkOfDhwOPQodB15iSdQPNZO0eGINyt5Gk0bprtYJBi+KSeNwRnGoe4KCPDNcXJzx9rvmyF6SkO1oVxQXTeM4MvYDi8UClUwKDX30LbZx2KjiQ7TrOrRO8ChOTk4i80XOmiovjtkcWuuouJRnQrWoMIkhy3ICsogZrZVcP+fIi4LzJ0+x1rJardjtdtR1zS9+8QueXjwR8sCwi0PShHoveU+r9QogMqlF1Texv/OsIM2K+JnIZ51lOcHDfncgSaKCRScSfehlUT9GRUSWZd8r0Keby9oRrYI8g5WJSqapwJOB2XKxIMvk+dQ0jSz6FwuyrGC3q6Nd44gdBtq2Q2vNmzff8PTJGU+fXLBcLqn3PYdDS13X7PdiVbjf70XVqMAkmu3djr7vxK4vldbC2vHISpcCZmK2TePs6Q2Fo7H3Y+hrOPY0xyFhkGdZ3/diYZqZqECQ57UP7vj1UzaZ/AJ+Bcn8cQn0uBxywR0bGVDHAnxqfiYEZLj2qzB9zeP3mBiFspRsDg0nmwuCl4Vn28rP9uTpU6rlUrIJh0FUJwhR58svv2S1rNjvhamcpRJCKkN0uR+VloWlSeT99H3/K1/frxumvJWJyWa0ZOxYa8V7PRJ7ssiObtuW3cMdi8WCIpd6Nzh7bFwUkKVJLMzjPaseLRKcyDilDovX9rTQTrSKr0cULaIssdKAExetXhZVUyOXaENIwXixpPNBrOtKI97qYksr6idt9HEhYV0nVqneQ1xsSZMp9aLRhnY4RFWSrIhwXggBCoK3DPGcxMsiVCslVqdW7gOcx+KOJC3vfbTpG0jTJDZLYhmRRau/YRjp+56iKCJTU04t5yxOP2YCaaVITSLWDUqCkgH2ux2jdaRpFskHJUQbuuN9OS0Qg5w/YpVpcc7GjAF9JA1MTb61A94naJOIahOxiCDEhlRL7qnRsiAx8Zxtg2dyPpgUNvK9p6V5iPehx6MgWlw4axm9By1Lt6mJT9OU1KSE2Od8fL7Ln2/wjsjcTFEqj/WcOy6XQyTTTSpTsePwx7JLPO4f84g0Kvag6vjzUNFyOhzfi2jUlApHqzn57DzjKAeo2JH7473Q9z3DKPlS4zhiypIkDaA9LsSacPrsokVdlmVyrynF/nCgHy2FKUnzjMJIZl3byMBBxbpJnv0mWn8MwhQ9NsYywEi0iQHL/mgpMg2gldZHgoeNZMA0FT/8adhikoTMGHaHWpic8L3zf2rQiTY7fZ+SGE0Wh0e/7ijLSlRGw4AdREVMpqJjQQAji20XpJ7r+57D4UDfNpyenrI8W1AVJXmWSKaADwSn8MjsITiP9prtdifK7bJEKSXZS2VNYhR26PB24P7+Btcv6buavjvwzVeOJxcn/GSVsAgl2JZ2f4vVCYvc8PrFE0yW8/TFS7a7mv1uz263Y7fdohQU6YK8yNnlJVVekCnNIsv40evXwAqT6ON5XZUZr169OjoSLKslZVEJscN7ghebahm8ygBL23hdtx0qCSgDdzf32H5EmYQRy+2w5bc//wmf//C3SNOUm7sb/v2f/jnv3n/AW8n8c16xu98TvKVYpWSLhKdPLrhYLmnqA3Vd0zQN9eGADg6DxyrHu7ffsNhuWD5sWa7uyPIF6/UJi2pBluWijEbsZrumFXUiNZlJ0EGJ7aryXDw75+rmiu1+x+n5OedPzlFJyq5puL294v3VFYBkTq/XPH/6lMEN5Drj7GzNpvqUPC952O4py4Qk8axWa6lFU3Fg8cFDGCgKw48+f41SisOhwWMpq5QQLHW9jz3VYz7tallFVvqIj9mKKM8nn7yk6Tr29Z5hlEzuIl+gkwwfZAh5enZOUZQoApfffSNqt1yyCIs855Nnz2C0BAXGBQ77B4yGMs8xStPv92yKnD/4nd+JYfSeH372A16cP0EFw9B59tc79nWLbjwWRe8sTdvxzZv3hL5hu0g4bO/57v0tQ8hpx8C+6TAJ9G1HW3cUaUpiEr788i1v393x/MUNv/8HBqVKhqUiz3Py1PD5J59zmmRsV0uuP3zHt1/WMFqc9Yx1i923nJ+v6EZhyA+DY3tzj1mt2d/eMewThu5AqQ37rqUbezIN5YsX/OLbN2yKBRpZxJ2tX3CyWLPaZJydr3hRnuIZub5suLu5Jls6Pvu9F/Hclbpivc7EEhbJgHr+7CUvTp+h7EDXN7Rjx/rkApWkGGVIFYTsN4cwlWViATe5K2VZJs/SICom5xzNoY2OTe5IZglHMpvEZ6RJdrSN4zgbeOx3YgC0kKLg+NcJCo5OCH+fHCzPxcdlhfx7VC79itZIKQU6iC7huKz6PolFlk+T+inOi4LBeRUjUHwkcZr4umU2YC2R5BxnCaPDjmJJFuwoOZ92FIJuVJGgPUkKJpVeOS+W+GCxVsgy19eXVOUStU5Ik5IQxJJZ6q4knpupECGiQknst3N2hzoutRJGJzXwOIqKdbJ1L4sMItEhTTMuP1xivRM153IlNbIWhfShOZBVCV0/Mg7iVHKhUlbL9LhgmRxbsjSPC4KU25sdWVqiVYaOZI663lEUhRC3gszlT09PpY9WMktQSpFmmv1+y9XVe25utwRVRKKTkPbyPKdtG5q2YRjEitXZQFmVpFl6zPrLMnHQstbRtg3kxN5UsVxshDxmsuPcabEoCcHF2YHUbmmaH+u8siwZbRuv8xgXoxWJycStSwdMIr118LJ7SNP8uJBSqcY7sb0dxw6ULJ/WqxUgUS0gThZpmuKCiFh8cChjyIucuqnxfUcypGRpRlkuyfIcpfSROO2x0Y1hoOv3+NAzjAPWDSg/So2apvJ6vSIxUhObmINuEqJjibRnmVJk2ZJhkPii0XaApVqsRIEX+67pvsqyLLrxWA6HBqVi7lqWolSK0RLnsqh0zJf0WNti7fiPKpjUbyJzdcaMGTNmzJgxY8aMGTNmzJgxY8aMGTNmzJgxY8Z/PX5zJAIzZsyYMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkz/j/BvGCaMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyY8U/CvGCaMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyY8U/CvGCaMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyY8U/CvGCaMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyY8U/CvGCaMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyY8U/CfwGH+XSckM0/bgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "random_img_plot(train_dir, num_images=5)" ] }, { "cell_type": "markdown", "metadata": { "id": "K6WqJvyZQQXf" }, "source": [ "## 2. Creating Datasets and DataLoaders Function\n", "\n", "- I'm taking only 20% of the train and validation data. Because it will take too long to train and also entire train data cannot be fit into GPU Memory." ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "oGMCQKrkQQXf", "outputId": "350f3b25-e594-4ab3-867a-d6a08de9ffca" }, "outputs": [ { "data": { "text/plain": [ "('/content/Dataset/train', '/content/Dataset/valid', '/content/Dataset/test')" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dir, valid_dir, test_dir" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "w6vQaZ6jQQXg", "outputId": "962c0a34-fc07-49a5-a62c-4f7fac43ac30" }, "outputs": [ { "data": { "text/plain": [ "510" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(class_names)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "YRb2oOLtTTnz", "outputId": "5c5b13af-3eb8-4679-dcb7-0767bb203838" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Directory: /content/Dataset/train\n", "No. of Sub-directories: 510\n", "No. of Files: 0\n", "\n", "Directory: /content/Dataset/train/NORTHERN JACANA\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/NICOBAR PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GOLDEN BOWER BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/AUSTRALASIAN FIGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/LUCIFER HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/COMMON HOUSE MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/RUBY THROATED HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/PALM NUT VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 192\n", "\n", "Directory: /content/Dataset/train/AMERICAN GOLDFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/COCK OF THE ROCK\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/GUINEAFOWL\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/ZEBRA DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/GOLDEN CHEEKED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/CURL CRESTED ARACURI\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/GREY CUCKOOSHRIKE\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/INDIAN PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/BLACK FRANCOLIN\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/NORTHERN SHOVELER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/MALEO\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/WHIMBREL\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/BLOOD PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/HORNED SUNGEM\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/TRUMPTER SWAN\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/SCARLET TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/POMARINE JAEGER\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/BLUE MALKOHA\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/ANDEAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/GOLDEN EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/RUDDY SHELDUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/ALBERTS TOWHEE\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/PYGMY KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/ALBATROSS\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/MYNA\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/GAMBELS QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/CRESTED WOOD PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/LOONEY BIRDS\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/ELEGANT TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/EURASIAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/SHORT BILLED DOWITCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/FLAME BOWERBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/BLACK AND YELLOW BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/MALAGASY WHITE EYE\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/TAILORBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/TAIWAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/PURPLE GALLINULE\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/AMERICAN ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 147\n", "\n", "Directory: /content/Dataset/train/BORNEAN PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/MALLARD DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/BEARDED BELLBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/FAN TAILED WIDOW\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/DALMATIAN PELICAN\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/CALIFORNIA QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/MASKED BOOBY\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/RED TAILED HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 202\n", "\n", "Directory: /content/Dataset/train/FIRE TAILLED MYZORNIS\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/CROW\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/CALIFORNIA GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/AMETHYST WOODSTAR\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/JACK SNIPE\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/GO AWAY BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/FASCIATED WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/BULWERS PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/INDIAN VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/TAWNY FROGMOUTH\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/MASKED BOBWHITE\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/HOODED MERGANSER\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/CRESTED COUA\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/PEACOCK\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/WOOD THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 211\n", "\n", "Directory: /content/Dataset/train/FAIRY BLUEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/STEAMER DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/OKINAWA RAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RUFOUS KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/SPLENDID WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/CRIMSON SUNBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 198\n", "\n", "Directory: /content/Dataset/train/CHESTNET BELLIED EUPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/GREEN WINGED DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/CAPE ROCK THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/DARK EYED JUNCO\n", "No. of Sub-directories: 0\n", "No. of Files: 203\n", "\n", "Directory: /content/Dataset/train/JACOBIN PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 204\n", "\n", "Directory: /content/Dataset/train/WOODLAND KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 194\n", "\n", "Directory: /content/Dataset/train/ROUGH LEG BUZZARD\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/CHINESE BAMBOO PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/RED LEGGED HONEYCREEPER\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/CAMPO FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/MERLIN\n", "No. of Sub-directories: 0\n", "No. of Files: 209\n", "\n", "Directory: /content/Dataset/train/HAWAIIAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RAINBOW LORIKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/BLACK TAIL CRAKE\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/CAPUCHINBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/RED WINGED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/SWINHOES PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 217\n", "\n", "Directory: /content/Dataset/train/BROWN HEADED COWBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 192\n", "\n", "Directory: /content/Dataset/train/CUBAN TODY\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/WHITE THROATED BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/VIOLET TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/BAIKAL TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/GUINEA TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/WHITE BROWED CRAKE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/AMERICAN REDSTART\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/IVORY GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/EASTERN TOWEE\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/BALTIMORE ORIOLE\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/BLUE THROATED TOUCANET\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/AFRICAN OYSTER CATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/HAWFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/FLAME TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/ASIAN CRESTED IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/NORTHERN BEARDLESS TYRANNULET\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/GOULDIAN FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/CHATTERING LORY\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/ASIAN GREEN BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 220\n", "\n", "Directory: /content/Dataset/train/BLACK THROATED BUSHTIT\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/LITTLE AUK\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/CARMINE BEE-EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/EASTERN GOLDEN WEAVER\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/CROWNED PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/HOUSE FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 248\n", "\n", "Directory: /content/Dataset/train/RED BELLIED PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/CEDAR WAXWING\n", "No. of Sub-directories: 0\n", "No. of Files: 180\n", "\n", "Directory: /content/Dataset/train/SRI LANKA BLUE MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/SORA\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/ABBOTTS BOOBY\n", "No. of Sub-directories: 0\n", "No. of Files: 180\n", "\n", "Directory: /content/Dataset/train/KAGU\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/LIMPKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/TAKAHE\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/OVENBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 233\n", "\n", "Directory: /content/Dataset/train/COMMON STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/EMERALD TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/YELLOW CACIQUE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/APAPANE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/WALL CREAPER\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/STRIPPED MANAKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/GOLD WING WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/CHIPPING SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/VULTURINE GUINEAFOWL\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/NORTHERN RED BISHOP\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/CHUCAO TAPACULO\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/DOUBLE BRESTED CORMARANT\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/CANARY\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/CRESTED FIREBACK\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/LARK BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ANDEAN LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/KIWI\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/AMERICAN AVOCET\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/SMITHS LONGSPUR\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/OYSTER CATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 207\n", "\n", "Directory: /content/Dataset/train/INLAND DOTTEREL\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/CANVASBACK\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/BOBOLINK\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/TROPICAL KINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GANG GANG COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/BALI STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/SAYS PHOEBE\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/YELLOW BELLIED FLOWERPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GOLDEN PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/JAVA SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/JABIRU\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/BARN SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/ROSEATE SPOONBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 193\n", "\n", "Directory: /content/Dataset/train/PINK ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/GREAT KISKADEE\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/PARADISE TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/SUPERB STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/WHITE NECKED RAVEN\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/RED BROWED FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/GOLDEN PIPIT\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/SAND MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/WATTLED CURASSOW\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/AFRICAN CROWNED CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/EASTERN WIP POOR WILL\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/RED HEADED DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RAZORBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 194\n", "\n", "Directory: /content/Dataset/train/BUSH TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/SUNBITTERN\n", "No. of Sub-directories: 0\n", "No. of Files: 169\n", "\n", "Directory: /content/Dataset/train/INDIAN ROLLER\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/NORTHERN FULMAR\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/CASSOWARY\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/BALD EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ALPINE CHOUGH\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/GREATER PEWEE\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/EASTERN ROSELLA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLACK COCKATO\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/AMERICAN PIPIT\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/RED FACED CORMORANT\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/SPANGLED COTINGA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/SCARLET FACED LIOCICHLA\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/BAR-TAILED GODWIT\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/GOLDEN PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/INCA TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/BAY-BREASTED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/FOREST WAGTAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/TASMANIAN HEN\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/AMERICAN FLAMINGO\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/COMMON FIRECREST\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/SPOON BILED SANDPIPER\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/EASTERN BLUEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BREWERS BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/CHUKAR PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/IMPERIAL SHAQ\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/REGENT BOWERBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/GREEN JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/HOATZIN\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/ANHINGA\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/ECUADORIAN HILLSTAR\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/CRESTED CARACARA\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/OSPREY\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/BLACKBURNIAM WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/PUNA TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/CRESTED NUTHATCH\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/SPOTTED WHISTLING DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 184\n", "\n", "Directory: /content/Dataset/train/JOCOTOCO ANTPITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/PHILIPPINE EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/VIOLET GREEN SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 201\n", "\n", "Directory: /content/Dataset/train/CAPE LONGCLAW\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/MOURNING DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/ORANGE BRESTED BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/ANTBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/WHITE CHEEKED TURACO\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/BLACK-NECKED GREBE\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/EASTERN BLUEBONNET\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/GREY PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/RUFUOS MOTMOT\n", "No. of Sub-directories: 0\n", "No. of Files: 189\n", "\n", "Directory: /content/Dataset/train/EMPEROR PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BROWN NOODY\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/ROADRUNNER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/RED BEARDED BEE EATER\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/BUFFLEHEAD\n", "No. of Sub-directories: 0\n", "No. of Files: 184\n", "\n", "Directory: /content/Dataset/train/VARIED THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 193\n", "\n", "Directory: /content/Dataset/train/HARLEQUIN DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/ANIANIAU\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/ARARIPE MANAKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/COMMON IORA\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/BARROWS GOLDENEYE\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/D-ARNAUDS BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 233\n", "\n", "Directory: /content/Dataset/train/MARABOU STORK\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/CLARKS NUTCRACKER\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/GREAT GRAY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/EVENING GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/TOUCHAN\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/LONG-EARED OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/IVORY BILLED ARACARI\n", "No. of Sub-directories: 0\n", "No. of Files: 149\n", "\n", "Directory: /content/Dataset/train/ROCK DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/COMMON LOON\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/EURASIAN GOLDEN ORIOLE\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/GREAT XENOPS\n", "No. of Sub-directories: 0\n", "No. of Files: 149\n", "\n", "Directory: /content/Dataset/train/HOOPOES\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/WATTLED LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/KING EIDER\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/BLACK VENTED SHEARWATER\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/SNOWY PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 130\n", "\n", "Directory: /content/Dataset/train/AZURE JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/WILD TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/HIMALAYAN BLUETAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/APOSTLEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/CRESTED SERPENT EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 181\n", "\n", "Directory: /content/Dataset/train/BLUE GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/WILSONS BIRD OF PARADISE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/BORNEAN BRISTLEHEAD\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/COLLARED ARACARI\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/MANDRIN DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/LOGGERHEAD SHRIKE\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/GRAY KINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/EUROPEAN TURTLE DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/EUROPEAN GOLDFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/TURQUOISE MOTMOT\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/VERMILION FLYCATHER\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/TIT MOUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/SCARLET MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/PHAINOPEPLA\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/BLUE COAU\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/PUFFIN\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/BALD IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GREY HEADED FISH EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/TRICOLORED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/FIORDLAND PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/RED HEADED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/CRAB PLOVER\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/BARRED PUFFBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/AFRICAN FIREFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/CHARA DE COLLAR\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/BLACK-CAPPED CHICKADEE\n", "No. of Sub-directories: 0\n", "No. of Files: 133\n", "\n", "Directory: /content/Dataset/train/PURPLE MARTIN\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/GROVED BILLED ANI\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/CRANE HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/KILLDEAR\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/EASTERN YELLOW ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 205\n", "\n", "Directory: /content/Dataset/train/BLUE DACNIS\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/BLUE GRAY GNATCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 195\n", "\n", "Directory: /content/Dataset/train/GYRFALCON\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/RED TAILED THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 130\n", "\n", "Directory: /content/Dataset/train/CRESTED SHRIKETIT\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/ANDEAN SISKIN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/DOWNY WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/ASIAN DOLLARD BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/ELLIOTS PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/PEREGRINE FALCON\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/WHITE BREASTED WATERHEN\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/VICTORIA CROWNED PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/TEAL DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/RED WISKERED BULBUL\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/GURNEYS PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/CACTUS WREN\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/COPPERSMITH BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/OSTRICH\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/AZURE TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/GRAY PARTRIDGE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ROYAL FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/SQUACCO HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/HIMALAYAN MONAL\n", "No. of Sub-directories: 0\n", "No. of Files: 151\n", "\n", "Directory: /content/Dataset/train/NORTHERN FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/MALACHITE KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/GREAT ARGUS\n", "No. of Sub-directories: 0\n", "No. of Files: 189\n", "\n", "Directory: /content/Dataset/train/BROWN CREPPER\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/BANDED BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 194\n", "\n", "Directory: /content/Dataset/train/PARAKETT AKULET\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/CALIFORNIA CONDOR\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/STORK BILLED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/HELMET VANGA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLUE GROUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/IWI\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/LESSER ADJUTANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BLACK SKIMMER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLACK VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/GILA WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/ALTAMIRA YELLOWTHROAT\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/RED FACED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/RED SHOULDERED HAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/EARED PITA\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/HYACINTH MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/LAUGHING GULL\n", "No. of Sub-directories: 0\n", "No. of Files: 208\n", "\n", "Directory: /content/Dataset/train/CREAM COLORED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/GREAT JACAMAR\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/DARJEELING WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/CRIMSON CHAT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/WHITE CRESTED HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/FIERY MINIVET\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/AZURE BREASTED PITTA\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/HORNED LARK\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/PURPLE SWAMPHEN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/AUSTRAL CANASTERO\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/VEERY\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/EGYPTIAN GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/EMU\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/HEPATIC TANAGER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/BLACK BAZA\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/CLARKS GREBE\n", "No. of Sub-directories: 0\n", "No. of Files: 182\n", "\n", "Directory: /content/Dataset/train/BANDED PITA\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/BEARDED BARBET\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/SNOWY EGRET\n", "No. of Sub-directories: 0\n", "No. of Files: 132\n", "\n", "Directory: /content/Dataset/train/TREE SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 181\n", "\n", "Directory: /content/Dataset/train/BORNEAN LEAFBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/HORNED GUAN\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/PATAGONIAN SIERRA FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 130\n", "\n", "Directory: /content/Dataset/train/FRILL BACK PIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 209\n", "\n", "Directory: /content/Dataset/train/RUDY KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/CINNAMON TEAL\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/WILLOW PTARMIGAN\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/ABBOTTS BABBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/NORTHERN MOCKINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/MAGPIE GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 142\n", "\n", "Directory: /content/Dataset/train/CAPE MAY WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GLOSSY IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/INDIAN BUSTARD\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/BLACK-THROATED SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/CERULEAN WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/ANNAS HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/BURCHELLS COURSER\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/CRESTED OROPENDOLA\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/NORTHERN CARDINAL\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/GOLDEN CHLOROPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/EASTERN MEADOWLARK\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/AFRICAN PIED HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/VIOLET BACKED STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 201\n", "\n", "Directory: /content/Dataset/train/GREATER PRAIRIE CHICKEN\n", "No. of Sub-directories: 0\n", "No. of Files: 203\n", "\n", "Directory: /content/Dataset/train/STRIATED CARACARA\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/YELLOW HEADED BLACKBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/SCARLET CROWNED FRUIT DOVE\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/MASKED LAPWING\n", "No. of Sub-directories: 0\n", "No. of Files: 131\n", "\n", "Directory: /content/Dataset/train/KOOKABURRA\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/AZURE TIT\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/BROWN THRASHER\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/GILDED FLICKER\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/PURPLE FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/NOISY FRIARBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/COMMON GRACKLE\n", "No. of Sub-directories: 0\n", "No. of Files: 177\n", "\n", "Directory: /content/Dataset/train/MIKADO PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BANANAQUIT\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/TOWNSENDS WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/NORTHERN PARULA\n", "No. of Sub-directories: 0\n", "No. of Files: 196\n", "\n", "Directory: /content/Dataset/train/FAIRY PENGUIN\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/BLACK THROATED HUET\n", "No. of Sub-directories: 0\n", "No. of Files: 145\n", "\n", "Directory: /content/Dataset/train/CHINESE POND HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/BLACK NECKED STILT\n", "No. of Sub-directories: 0\n", "No. of Files: 173\n", "\n", "Directory: /content/Dataset/train/GREEN BROADBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/INDIGO BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/CAPE GLOSSY STARLING\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/CAATINGA CACHOLOTE\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/BLUE HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/VERDIN\n", "No. of Sub-directories: 0\n", "No. of Files: 182\n", "\n", "Directory: /content/Dataset/train/AMERICAN BITTERN\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/MILITARY MACAW\n", "No. of Sub-directories: 0\n", "No. of Files: 208\n", "\n", "Directory: /content/Dataset/train/MANGROVE CUCKOO\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/MALABAR HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/LAZULI BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/BELTED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GREATOR SAGE GROUSE\n", "No. of Sub-directories: 0\n", "No. of Files: 184\n", "\n", "Directory: /content/Dataset/train/ASHY STORM PETREL\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/SURF SCOTER\n", "No. of Sub-directories: 0\n", "No. of Files: 185\n", "\n", "Directory: /content/Dataset/train/COPPERY TAILED COUCAL\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/ORIENTAL BAY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 157\n", "\n", "Directory: /content/Dataset/train/DAURIAN REDSTART\n", "No. of Sub-directories: 0\n", "No. of Files: 146\n", "\n", "Directory: /content/Dataset/train/WOOD DUCK\n", "No. of Sub-directories: 0\n", "No. of Files: 214\n", "\n", "Directory: /content/Dataset/train/COMMON POORWILL\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/VENEZUELIAN TROUPIAL\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/AMERICAN KESTREL\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/BAND TAILED GUAN\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/SATYR TRAGOPAN\n", "No. of Sub-directories: 0\n", "No. of Files: 170\n", "\n", "Directory: /content/Dataset/train/NORTHERN GANNET\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/OCELLATED TURKEY\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ROSE BREASTED GROSBEAK\n", "No. of Sub-directories: 0\n", "No. of Files: 174\n", "\n", "Directory: /content/Dataset/train/GREAT TINAMOU\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/EURASIAN BULLFINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/CASPIAN TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 213\n", "\n", "Directory: /content/Dataset/train/BLONDE CRESTED WOODPECKER\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/RED KNOT\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/BIRD OF PARADISE\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/PYRRHULOXIA\n", "No. of Sub-directories: 0\n", "No. of Files: 209\n", "\n", "Directory: /content/Dataset/train/WHITE EARED HUMMINGBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/CUBAN TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/INDIGO FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/AMERICAN WIGEON\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/CAPPED HERON\n", "No. of Sub-directories: 0\n", "No. of Files: 137\n", "\n", "Directory: /content/Dataset/train/AVADAVAT\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/IBISBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 141\n", "\n", "Directory: /content/Dataset/train/BLACK HEADED CAIQUE\n", "No. of Sub-directories: 0\n", "No. of Files: 183\n", "\n", "Directory: /content/Dataset/train/IBERIAN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/HARLEQUIN QUAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 134\n", "\n", "Directory: /content/Dataset/train/SANDHILL CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 156\n", "\n", "Directory: /content/Dataset/train/RED BILLED TROPICBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 212\n", "\n", "Directory: /content/Dataset/train/RED FODY\n", "No. of Sub-directories: 0\n", "No. of Files: 167\n", "\n", "Directory: /content/Dataset/train/ABYSSINIAN GROUND HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/SCARLET IBIS\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/BLACK SWAN\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/WRENTIT\n", "No. of Sub-directories: 0\n", "No. of Files: 193\n", "\n", "Directory: /content/Dataset/train/FAIRY TERN\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/CRESTED AUKLET\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/HOUSE SPARROW\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/RING-NECKED PHEASANT\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/BLACK THROATED WARBLER\n", "No. of Sub-directories: 0\n", "No. of Files: 135\n", "\n", "Directory: /content/Dataset/train/PARUS MAJOR\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/TURKEY VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/ALEXANDRINE PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/QUETZAL\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/COLLARED CRESCENTCHEST\n", "No. of Sub-directories: 0\n", "No. of Files: 172\n", "\n", "Directory: /content/Dataset/train/ORNATE HAWK EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 208\n", "\n", "Directory: /content/Dataset/train/RED NAPED TROGON\n", "No. of Sub-directories: 0\n", "No. of Files: 159\n", "\n", "Directory: /content/Dataset/train/SAMATRAN THRUSH\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/DUSKY LORY\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/UMBRELLA BIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/RUBY CROWNED KINGLET\n", "No. of Sub-directories: 0\n", "No. of Files: 186\n", "\n", "Directory: /content/Dataset/train/ANTILLEAN EUPHONIA\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/BLACK FACED SPOONBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n", "Directory: /content/Dataset/train/JAPANESE ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/PAINTED BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/MCKAYS BUNTING\n", "No. of Sub-directories: 0\n", "No. of Files: 188\n", "\n", "Directory: /content/Dataset/train/BANDED STILT\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/HAMERKOP\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/SNOW GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 190\n", "\n", "Directory: /content/Dataset/train/HARPY EAGLE\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/CINNAMON ATTILA\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/AFRICAN EMERALD CUCKOO\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GRANDALA\n", "No. of Sub-directories: 0\n", "No. of Files: 152\n", "\n", "Directory: /content/Dataset/train/CINNAMON FLYCATCHER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/BRANDT CORMARANT\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/GREEN MAGPIE\n", "No. of Sub-directories: 0\n", "No. of Files: 176\n", "\n", "Directory: /content/Dataset/train/NORTHERN GOSHAWK\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/KING VULTURE\n", "No. of Sub-directories: 0\n", "No. of Files: 136\n", "\n", "Directory: /content/Dataset/train/DUSKY ROBIN\n", "No. of Sub-directories: 0\n", "No. of Files: 140\n", "\n", "Directory: /content/Dataset/train/STRIPED OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 143\n", "\n", "Directory: /content/Dataset/train/GREAT POTOO\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/ENGGANO MYNA\n", "No. of Sub-directories: 0\n", "No. of Files: 165\n", "\n", "Directory: /content/Dataset/train/ASHY THRUSHBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 164\n", "\n", "Directory: /content/Dataset/train/SNOWY OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 161\n", "\n", "Directory: /content/Dataset/train/BARN OWL\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/LILAC ROLLER\n", "No. of Sub-directories: 0\n", "No. of Files: 138\n", "\n", "Directory: /content/Dataset/train/BEARDED REEDLING\n", "No. of Sub-directories: 0\n", "No. of Files: 144\n", "\n", "Directory: /content/Dataset/train/CRESTED KINGFISHER\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/RUFOUS TREPE\n", "No. of Sub-directories: 0\n", "No. of Files: 274\n", "\n", "Directory: /content/Dataset/train/GRAY CATBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 155\n", "\n", "Directory: /content/Dataset/train/DEMOISELLE CRANE\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/STRIPPED SWALLOW\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/ROSY FACED LOVEBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 139\n", "\n", "Directory: /content/Dataset/train/ROSE BREASTED COCKATOO\n", "No. of Sub-directories: 0\n", "No. of Files: 197\n", "\n", "Directory: /content/Dataset/train/AZARAS SPINETAIL\n", "No. of Sub-directories: 0\n", "No. of Files: 168\n", "\n", "Directory: /content/Dataset/train/FRIGATE\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/KAKAPO\n", "No. of Sub-directories: 0\n", "No. of Files: 154\n", "\n", "Directory: /content/Dataset/train/AUCKLAND SHAQ\n", "No. of Sub-directories: 0\n", "No. of Files: 187\n", "\n", "Directory: /content/Dataset/train/SHOEBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/DOUBLE BARRED FINCH\n", "No. of Sub-directories: 0\n", "No. of Files: 153\n", "\n", "Directory: /content/Dataset/train/DOUBLE EYED FIG PARROT\n", "No. of Sub-directories: 0\n", "No. of Files: 166\n", "\n", "Directory: /content/Dataset/train/AMERICAN COOT\n", "No. of Sub-directories: 0\n", "No. of Files: 158\n", "\n", "Directory: /content/Dataset/train/SPOTTED CATBIRD\n", "No. of Sub-directories: 0\n", "No. of Files: 150\n", "\n", "Directory: /content/Dataset/train/WHITE TAILED TROPIC\n", "No. of Sub-directories: 0\n", "No. of Files: 175\n", "\n", "Directory: /content/Dataset/train/PALILA\n", "No. of Sub-directories: 0\n", "No. of Files: 160\n", "\n", "Directory: /content/Dataset/train/VISAYAN HORNBILL\n", "No. of Sub-directories: 0\n", "No. of Files: 163\n", "\n", "Directory: /content/Dataset/train/PLUSH CRESTED JAY\n", "No. of Sub-directories: 0\n", "No. of Files: 200\n", "\n", "Directory: /content/Dataset/train/AFRICAN PYGMY GOOSE\n", "No. of Sub-directories: 0\n", "No. of Files: 179\n", "\n", "Directory: /content/Dataset/train/JANDAYA PARAKEET\n", "No. of Sub-directories: 0\n", "No. of Files: 162\n", "\n" ] } ], "source": [ "walk_through(train_dir)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "id": "qRg_w2XDQQXm" }, "outputs": [], "source": [ "import torchvision\n", "from torchvision import transforms\n", "from torch.utils.data import DataLoader\n", "from torchvision import datasets\n", "\n", "def create_dataloader(path: str, \n", " split=False,\n", " split_size: int = 0.2,\n", " transform: torchvision.transforms = None,\n", " batch_size: int = 32, \n", " shuffle: bool = False,\n", " num_workers = 1,\n", " return_classes: bool = False):\n", " \"\"\"\n", " Creates a dataset and convert it into a DataLoader\n", " \"\"\"\n", "\n", " if transform is None:\n", " transform = transforms.Compose([\n", " transforms.Resize(size=(224, 224)),\n", " transforms.ToTensor()\n", " ])\n", "\n", " dataset = datasets.ImageFolder(path,\n", " transform=transform,\n", " target_transform=None,\n", " )\n", " \n", " classes = dataset.classes\n", "\n", " # Making a split\n", " if split:\n", " length = int(len(dataset)*split_size)\n", " rem_length = len(dataset) - length\n", " dataset, _ = torch.utils.data.random_split(dataset=dataset, \n", " lengths=[length, rem_length], \n", " generator=torch.manual_seed(42))\n", "\n", " dataloader = DataLoader(dataset=dataset,\n", " batch_size=batch_size,\n", " shuffle=shuffle,\n", " num_workers=num_workers,\n", " pin_memory=True\n", " )\n", " \n", " if return_classes:\n", " return dataloader, classes\n", " return dataloader" ] }, { "cell_type": "markdown", "metadata": { "id": "LJYDTXg4QQXq" }, "source": [ "## 4. Creating Models" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "xsKmaBhnQQXr", "outputId": "33d890cc-99ef-42be-a1f8-b72331a79a9b" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'cuda'" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Setting up Device Agnostic code\n", "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", "device" ] }, { "cell_type": "markdown", "metadata": { "id": "cQGuib5AQQXr" }, "source": [ "### 4.1. Creating a Train Function" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "id": "n5hB3LCeQQXr" }, "outputs": [], "source": [ "from torchmetrics import Accuracy\n", "\n", "def accuracy_fn(y_pred, y):\n", " \"\"\"\n", " Calculates the accuracy score for the given actual and predicted values\n", " \"\"\"\n", " acc_fn = Accuracy(task=\"multiclass\", num_classes=len(class_names), top_k=1).to(device)\n", " return acc_fn(y_pred.argmax(dim=1), y)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "id": "-L2dDYnVQQXs" }, "outputs": [], "source": [ "def train_step(model: torch.nn.Module,\n", " dataloader: torch.utils.data.DataLoader,\n", " loss_fn: torch.nn.Module,\n", " optimizer: torch.optim.Optimizer,\n", " acc_fn = accuracy_fn,\n", " device=device):\n", " \"\"\"\n", " Trains the model with given Dataloader\n", " \"\"\" \n", " # setting up total train loss and accuracy\n", " train_loss = 0\n", " train_acc = 0\n", "\n", " # putting the model to train mode\n", " model.train()\n", "\n", " # training the model\n", " for batch, (X, y) in enumerate(dataloader):\n", " X, y = X.to(device), y.to(device)\n", "\n", " # forward pass\n", " pred_logits = model(X)\n", "\n", " # calculate loss\n", " loss = loss_fn(pred_logits, y)\n", " train_loss += loss.item()\n", "\n", " optimizer.zero_grad()\n", "\n", " loss.backward()\n", "\n", " optimizer.step()\n", "\n", " acc = acc_fn(pred_logits, y)\n", " train_acc += acc.item()\n", "\n", " train_loss = train_loss / len(dataloader)\n", " train_acc = train_acc / len(dataloader)\n", "\n", " return train_loss, train_acc" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "id": "a_kcf64BQQXs" }, "outputs": [], "source": [ "def test_step(model: torch.nn.Module,\n", " dataloader: torch.utils.data.DataLoader,\n", " loss_fn: torch.nn.Module,\n", " acc_fn = accuracy_fn,\n", " device=device):\n", " \"\"\"\n", " Evaluates the model on the given dataloader\n", " \"\"\"\n", "\n", " valid_loss, valid_acc = 0, 0\n", "\n", " model.eval()\n", "\n", " with torch.inference_mode():\n", " for batch, (X, y) in enumerate(dataloader):\n", " X, y = X.to(device), y.to(device)\n", "\n", " pred_logits = model(X)\n", "\n", " loss = loss_fn(pred_logits, y)\n", " valid_loss += loss.item()\n", "\n", " acc = acc_fn(pred_logits, y)\n", " valid_acc += acc.item()\n", " valid_loss = valid_loss / len(dataloader)\n", " valid_acc = valid_acc / len(dataloader)\n", "\n", " return valid_loss, valid_acc" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "id": "xaS4R9nwQQXt" }, "outputs": [], "source": [ "from tqdm.notebook import tqdm\n", "\n", "def train(model: torch.nn.Module,\n", " train_dataloader: torch.utils.data.DataLoader,\n", " valid_dataloader: torch.utils.data.DataLoader,\n", " loss_fn: torch.nn.Module,\n", " optimizer: torch.optim.Optimizer,\n", " epochs: int = 5,\n", " device=device):\n", " \"\"\"\n", " Training Loop for training and evaluating a model\n", " \"\"\"\n", "\n", " # create a results dictionary\n", " results = {\n", " \"train_loss\": [],\n", " \"train_acc\": [],\n", " \"valid_loss\": [],\n", " \"valid_acc\": []\n", " }\n", "\n", " for epoch in tqdm(range(epochs)):\n", "\n", " train_loss, train_acc = train_step(model=model,\n", " dataloader=train_dataloader,\n", " loss_fn=loss_fn,\n", " optimizer=optimizer,\n", " device=device)\n", " \n", " valid_loss, valid_acc = test_step(model=model,\n", " dataloader=valid_dataloader,\n", " loss_fn=loss_fn,\n", " device=device)\n", " \n", " print(f\"Epoch: {epoch+1} | Train Loss: {train_loss} | Train Accuracy: {train_acc} | Validation Loss: {valid_loss} | Validation Accuracy: {valid_acc}\")\n", "\n", " # updating results\n", " results[\"train_loss\"].append(train_loss)\n", " results[\"train_acc\"].append(train_acc)\n", " results[\"valid_loss\"].append(valid_loss)\n", " results[\"valid_acc\"].append(valid_acc)\n", "\n", " return results" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "id": "E-5n7KkbXocf" }, "outputs": [], "source": [ "def plot_loss_curves(model_results):\n", " \"\"\"\n", " Plots the model's loss and accuracy curves\n", " \"\"\"\n", " train_loss = model_results[\"train_loss\"]\n", " train_acc = model_results[\"train_acc\"]\n", "\n", " valid_loss = model_results[\"valid_loss\"]\n", " valid_acc = model_results[\"valid_acc\"]\n", "\n", " epochs = range(len(train_loss))\n", "\n", " plt.figure(figsize=(15, 7))\n", " plt.subplot(1, 2, 1)\n", " plt.plot(epochs, train_loss, label=\"Train Loss\")\n", " plt.plot(epochs, valid_loss, label=\"Validation Loss\")\n", " plt.title(\"Loss\")\n", " plt.legend()\n", " \n", " plt.subplot(1, 2, 2)\n", " plt.plot(epochs, train_acc, label=\"Train Accuracy\")\n", " plt.plot(epochs, valid_acc, label=\"Validation Accuracy\")\n", " plt.title(\"Accuracy\")\n", "\n", " plt.legend()\n", " plt.suptitle(\"Loss and Accuracy Curves\", fontsize=26);" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "id": "ynP-xnki7a-3" }, "outputs": [], "source": [ "def make_predictions_on_test_data(model: torch.nn.Module,\n", " test_dataloader: torch.utils.data.DataLoader):\n", " \"\"\"\n", " Makes prediction on test dataset\n", " \"\"\"\n", " test_score = 0\n", " \n", " model.eval()\n", " with torch.inference_mode():\n", " test_acc = 0\n", " for batch, (X, y) in enumerate(test_dataloader):\n", " X, y = X.to(device), y.to(device)\n", "\n", " pred_logits = model(X)\n", " preds = torch.softmax(pred_logits, dim=1)\n", " acc = accuracy_fn(y_pred=preds, y=y) \n", " test_acc += acc\n", "\n", " test_acc = test_acc / len(test_dataloader)\n", " return test_acc.item()" ] }, { "cell_type": "markdown", "metadata": { "id": "wCdR1nVHQQXt" }, "source": [ "### 4.2. Model 1: EfficientNetB2" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "id": "YPMNp4LgQQXu" }, "outputs": [], "source": [ "from torch import nn" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Tfs_ec7tQQXu", "outputId": "59f63d83-634e-4e9a-a5a0-420d149e2a9a" }, "outputs": [ { "data": { "text/plain": [ "510" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(class_names)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "e315d68c4104450da512e11b3d29dcc9", "ceb775b636e04c6cbfaf12b46f0b032f", "4b71be14985e4595b13c5bfde1806353", "08266d9d1c3549e4aa23472fd0574c0b", "19e9aa650d324b53b600e915399be966", "d47dbb0cfe7b4a948d1e24d00cef9d4f", "43a0e39c43e540a1af738953ce9109f5", "fd84c80116464d27950b87af4fe4885d", "7c37a8b0cc814bb1bdbc786a16ac8e55", "ad4439f7a7f74505b64d49007eb8d852", "11462a953f20473f95138e077e409d7b" ] }, "id": "ag2ppxFn5YDy", "outputId": "200669e0-5da4-4dc2-e9ba-449b8bffd1a9" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading: \"https://download.pytorch.org/models/efficientnet_b2_rwightman-bcdf34b7.pth\" to /root/.cache/torch/hub/checkpoints/efficientnet_b2_rwightman-bcdf34b7.pth\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e315d68c4104450da512e11b3d29dcc9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0.00/35.2M [00:00,\n", " ,\n", " )" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# creating train and validation dataloaders with effnet transforms\n", "effnetb2_train_dataloader, class_names = create_dataloader(\n", " path=train_dir,\n", " split=True,\n", " transform=eff_net_transforms_with_data_augmentation,\n", " shuffle=True,\n", " return_classes=True\n", ")\n", "\n", "effnetb2_valid_dataloader = create_dataloader(\n", " path=valid_dir,\n", " split=True,\n", " transform=effnet_weights.transforms(),\n", " shuffle=False\n", ")\n", "\n", "effnetb2_test_dataloader = create_dataloader(\n", " path=test_dir,\n", " transform=effnet_weights.transforms(),\n", " shuffle=False\n", ")\n", "\n", "effnetb2_train_dataloader, effnetb2_valid_dataloader, effnetb2_test_dataloader" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "k6nwgx3XPEKJ", "outputId": "82e8e332-79c0-44d2-9131-34984d0b0043" }, "outputs": [ { "data": { "text/plain": [ "(513, 16, 80)" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(effnetb2_train_dataloader), len(effnetb2_valid_dataloader), len(effnetb2_test_dataloader)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "I_oKw7yM6Hrw", "outputId": "61170735-efaf-4b27-fa13-eb20c8f6eb82" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Param: 0 -> Trainable: False\n", "Param: 1 -> Trainable: False\n", "Param: 2 -> Trainable: False\n", "Param: 3 -> Trainable: False\n", "Param: 4 -> Trainable: False\n", "Param: 5 -> Trainable: False\n", "Param: 6 -> Trainable: False\n", "Param: 7 -> Trainable: False\n", "Param: 8 -> Trainable: False\n", "Param: 9 -> Trainable: False\n", "Param: 10 -> Trainable: False\n", "Param: 11 -> Trainable: False\n", "Param: 12 -> Trainable: False\n", "Param: 13 -> Trainable: False\n", "Param: 14 -> Trainable: False\n", "Param: 15 -> Trainable: False\n", "Param: 16 -> Trainable: False\n", "Param: 17 -> Trainable: False\n", "Param: 18 -> Trainable: False\n", "Param: 19 -> Trainable: False\n", "Param: 20 -> Trainable: False\n", "Param: 21 -> Trainable: False\n", "Param: 22 -> Trainable: False\n", "Param: 23 -> Trainable: False\n", "Param: 24 -> Trainable: False\n", "Param: 25 -> Trainable: False\n", "Param: 26 -> Trainable: False\n", "Param: 27 -> Trainable: False\n", "Param: 28 -> Trainable: False\n", "Param: 29 -> Trainable: False\n", "Param: 30 -> Trainable: False\n", "Param: 31 -> Trainable: False\n", "Param: 32 -> Trainable: False\n", "Param: 33 -> Trainable: False\n", "Param: 34 -> Trainable: False\n", "Param: 35 -> Trainable: False\n", "Param: 36 -> Trainable: False\n", "Param: 37 -> Trainable: False\n", "Param: 38 -> Trainable: False\n", "Param: 39 -> Trainable: False\n", "Param: 40 -> Trainable: False\n", "Param: 41 -> Trainable: False\n", "Param: 42 -> Trainable: False\n", "Param: 43 -> Trainable: False\n", "Param: 44 -> Trainable: False\n", "Param: 45 -> Trainable: False\n", "Param: 46 -> Trainable: False\n", "Param: 47 -> Trainable: False\n", "Param: 48 -> Trainable: False\n", "Param: 49 -> Trainable: False\n", "Param: 50 -> Trainable: False\n", "Param: 51 -> Trainable: False\n", "Param: 52 -> Trainable: False\n", "Param: 53 -> Trainable: False\n", "Param: 54 -> Trainable: False\n", "Param: 55 -> Trainable: False\n", "Param: 56 -> Trainable: False\n", "Param: 57 -> Trainable: False\n", "Param: 58 -> Trainable: False\n", "Param: 59 -> Trainable: False\n", "Param: 60 -> Trainable: False\n", "Param: 61 -> Trainable: False\n", "Param: 62 -> Trainable: False\n", "Param: 63 -> Trainable: False\n", "Param: 64 -> Trainable: False\n", "Param: 65 -> Trainable: False\n", "Param: 66 -> Trainable: False\n", "Param: 67 -> Trainable: False\n", "Param: 68 -> Trainable: False\n", "Param: 69 -> Trainable: False\n", "Param: 70 -> Trainable: False\n", "Param: 71 -> Trainable: False\n", "Param: 72 -> Trainable: False\n", "Param: 73 -> Trainable: False\n", "Param: 74 -> Trainable: False\n", "Param: 75 -> Trainable: False\n", "Param: 76 -> Trainable: False\n", "Param: 77 -> Trainable: False\n", "Param: 78 -> Trainable: False\n", "Param: 79 -> Trainable: False\n", "Param: 80 -> Trainable: False\n", "Param: 81 -> Trainable: False\n", "Param: 82 -> Trainable: False\n", "Param: 83 -> Trainable: False\n", "Param: 84 -> Trainable: False\n", "Param: 85 -> Trainable: False\n", "Param: 86 -> Trainable: False\n", "Param: 87 -> Trainable: False\n", "Param: 88 -> Trainable: False\n", "Param: 89 -> Trainable: False\n", "Param: 90 -> Trainable: False\n", "Param: 91 -> Trainable: False\n", "Param: 92 -> Trainable: False\n", "Param: 93 -> Trainable: False\n", "Param: 94 -> Trainable: False\n", "Param: 95 -> Trainable: False\n", "Param: 96 -> Trainable: False\n", "Param: 97 -> Trainable: False\n", "Param: 98 -> Trainable: False\n", "Param: 99 -> Trainable: False\n", "Param: 100 -> Trainable: False\n", "Param: 101 -> Trainable: False\n", "Param: 102 -> Trainable: False\n", "Param: 103 -> Trainable: False\n", "Param: 104 -> Trainable: False\n", "Param: 105 -> Trainable: False\n", "Param: 106 -> Trainable: False\n", "Param: 107 -> Trainable: False\n", "Param: 108 -> Trainable: False\n", "Param: 109 -> Trainable: False\n", "Param: 110 -> Trainable: False\n", "Param: 111 -> Trainable: False\n", "Param: 112 -> Trainable: False\n", "Param: 113 -> Trainable: False\n", "Param: 114 -> Trainable: False\n", "Param: 115 -> Trainable: False\n", "Param: 116 -> Trainable: False\n", "Param: 117 -> Trainable: False\n", "Param: 118 -> Trainable: False\n", "Param: 119 -> Trainable: False\n", "Param: 120 -> Trainable: False\n", "Param: 121 -> Trainable: False\n", "Param: 122 -> Trainable: False\n", "Param: 123 -> Trainable: False\n", "Param: 124 -> Trainable: False\n", "Param: 125 -> Trainable: False\n", "Param: 126 -> Trainable: False\n", "Param: 127 -> Trainable: False\n", "Param: 128 -> Trainable: False\n", "Param: 129 -> Trainable: False\n", "Param: 130 -> Trainable: False\n", "Param: 131 -> Trainable: False\n", "Param: 132 -> Trainable: False\n", "Param: 133 -> Trainable: False\n", "Param: 134 -> Trainable: False\n", "Param: 135 -> Trainable: False\n", "Param: 136 -> Trainable: False\n", "Param: 137 -> Trainable: False\n", "Param: 138 -> Trainable: False\n", "Param: 139 -> Trainable: False\n", "Param: 140 -> Trainable: False\n", "Param: 141 -> Trainable: False\n", "Param: 142 -> Trainable: False\n", "Param: 143 -> Trainable: False\n", "Param: 144 -> Trainable: False\n", "Param: 145 -> Trainable: False\n", "Param: 146 -> Trainable: False\n", "Param: 147 -> Trainable: False\n", "Param: 148 -> Trainable: False\n", "Param: 149 -> Trainable: False\n", "Param: 150 -> Trainable: False\n", "Param: 151 -> Trainable: False\n", "Param: 152 -> Trainable: False\n", "Param: 153 -> Trainable: False\n", "Param: 154 -> Trainable: False\n", "Param: 155 -> Trainable: False\n", "Param: 156 -> Trainable: False\n", "Param: 157 -> Trainable: False\n", "Param: 158 -> Trainable: False\n", "Param: 159 -> Trainable: False\n", "Param: 160 -> Trainable: False\n", "Param: 161 -> Trainable: False\n", "Param: 162 -> Trainable: False\n", "Param: 163 -> Trainable: False\n", "Param: 164 -> Trainable: False\n", "Param: 165 -> Trainable: False\n", "Param: 166 -> Trainable: False\n", "Param: 167 -> Trainable: False\n", "Param: 168 -> Trainable: False\n", "Param: 169 -> Trainable: False\n", "Param: 170 -> Trainable: False\n", "Param: 171 -> Trainable: False\n", "Param: 172 -> Trainable: False\n", "Param: 173 -> Trainable: False\n", "Param: 174 -> Trainable: False\n", "Param: 175 -> Trainable: False\n", "Param: 176 -> Trainable: False\n", "Param: 177 -> Trainable: False\n", "Param: 178 -> Trainable: False\n", "Param: 179 -> Trainable: False\n", "Param: 180 -> Trainable: False\n", "Param: 181 -> Trainable: False\n", "Param: 182 -> Trainable: False\n", "Param: 183 -> Trainable: False\n", "Param: 184 -> Trainable: False\n", "Param: 185 -> Trainable: False\n", "Param: 186 -> Trainable: False\n", "Param: 187 -> Trainable: False\n", "Param: 188 -> Trainable: False\n", "Param: 189 -> Trainable: False\n", "Param: 190 -> Trainable: False\n", "Param: 191 -> Trainable: False\n", "Param: 192 -> Trainable: False\n", "Param: 193 -> Trainable: False\n", "Param: 194 -> Trainable: False\n", "Param: 195 -> Trainable: False\n", "Param: 196 -> Trainable: False\n", "Param: 197 -> Trainable: False\n", "Param: 198 -> Trainable: False\n", "Param: 199 -> Trainable: False\n", "Param: 200 -> Trainable: False\n", "Param: 201 -> Trainable: False\n", "Param: 202 -> Trainable: False\n", "Param: 203 -> Trainable: False\n", "Param: 204 -> Trainable: False\n", "Param: 205 -> Trainable: False\n", "Param: 206 -> Trainable: False\n", "Param: 207 -> Trainable: False\n", "Param: 208 -> Trainable: False\n", "Param: 209 -> Trainable: False\n", "Param: 210 -> Trainable: False\n", "Param: 211 -> Trainable: False\n", "Param: 212 -> Trainable: False\n", "Param: 213 -> Trainable: False\n", "Param: 214 -> Trainable: False\n", "Param: 215 -> Trainable: False\n", "Param: 216 -> Trainable: False\n", "Param: 217 -> Trainable: False\n", "Param: 218 -> Trainable: False\n", "Param: 219 -> Trainable: False\n", "Param: 220 -> Trainable: False\n", "Param: 221 -> Trainable: False\n", "Param: 222 -> Trainable: False\n", "Param: 223 -> Trainable: False\n", "Param: 224 -> Trainable: False\n", "Param: 225 -> Trainable: False\n", "Param: 226 -> Trainable: False\n", "Param: 227 -> Trainable: False\n", "Param: 228 -> Trainable: False\n", "Param: 229 -> Trainable: False\n", "Param: 230 -> Trainable: False\n", "Param: 231 -> Trainable: False\n", "Param: 232 -> Trainable: False\n", "Param: 233 -> Trainable: False\n", "Param: 234 -> Trainable: False\n", "Param: 235 -> Trainable: False\n", "Param: 236 -> Trainable: False\n", "Param: 237 -> Trainable: False\n", "Param: 238 -> Trainable: False\n", "Param: 239 -> Trainable: False\n", "Param: 240 -> Trainable: False\n", "Param: 241 -> Trainable: False\n", "Param: 242 -> Trainable: False\n", "Param: 243 -> Trainable: False\n", "Param: 244 -> Trainable: False\n", "Param: 245 -> Trainable: False\n", "Param: 246 -> Trainable: False\n", "Param: 247 -> Trainable: False\n", "Param: 248 -> Trainable: False\n", "Param: 249 -> Trainable: False\n", "Param: 250 -> Trainable: False\n", "Param: 251 -> Trainable: False\n", "Param: 252 -> Trainable: False\n", "Param: 253 -> Trainable: False\n", "Param: 254 -> Trainable: False\n", "Param: 255 -> Trainable: False\n", "Param: 256 -> Trainable: False\n", "Param: 257 -> Trainable: False\n", "Param: 258 -> Trainable: False\n", "Param: 259 -> Trainable: False\n", "Param: 260 -> Trainable: False\n", "Param: 261 -> Trainable: False\n", "Param: 262 -> Trainable: False\n", "Param: 263 -> Trainable: False\n", "Param: 264 -> Trainable: False\n", "Param: 265 -> Trainable: False\n", "Param: 266 -> Trainable: False\n", "Param: 267 -> Trainable: False\n", "Param: 268 -> Trainable: False\n", "Param: 269 -> Trainable: False\n", "Param: 270 -> Trainable: False\n", "Param: 271 -> Trainable: False\n", "Param: 272 -> Trainable: False\n", "Param: 273 -> Trainable: False\n", "Param: 274 -> Trainable: False\n", "Param: 275 -> Trainable: False\n", "Param: 276 -> Trainable: False\n", "Param: 277 -> Trainable: False\n", "Param: 278 -> Trainable: False\n", "Param: 279 -> Trainable: False\n", "Param: 280 -> Trainable: False\n", "Param: 281 -> Trainable: False\n", "Param: 282 -> Trainable: False\n", "Param: 283 -> Trainable: False\n", "Param: 284 -> Trainable: False\n", "Param: 285 -> Trainable: False\n", "Param: 286 -> Trainable: False\n", "Param: 287 -> Trainable: False\n", "Param: 288 -> Trainable: False\n", "Param: 289 -> Trainable: False\n", "Param: 290 -> Trainable: False\n", "Param: 291 -> Trainable: False\n", "Param: 292 -> Trainable: False\n", "Param: 293 -> Trainable: False\n", "Param: 294 -> Trainable: False\n", "Param: 295 -> Trainable: False\n", "Param: 296 -> Trainable: False\n", "Param: 297 -> Trainable: False\n", "Param: 298 -> Trainable: False\n" ] } ], "source": [ "# freezing the layers\n", "for i, param in enumerate(effnetb2_model.features.parameters()):\n", " param.requires_grad = False\n", " print(f\"Param: {i} -> Trainable: {param.requires_grad}\")" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ATSYXIiW6oLg", "outputId": "6c0804a3-0267-4c41-a777-6375cb376ae6" }, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): Dropout(p=0.3, inplace=True)\n", " (1): Linear(in_features=1408, out_features=1000, bias=True)\n", ")" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "effnetb2_model.classifier" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9KxskMcx6tfL", "outputId": "85c14065-146c-42aa-a85e-4070e601144e" }, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): Dropout(p=0.2, inplace=True)\n", " (1): Linear(in_features=1408, out_features=510, bias=True)\n", ")" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "effnetb2_model.classifier = nn.Sequential(\n", " nn.Dropout(p=0.2, inplace=True),\n", " nn.Linear(in_features=1408, out_features=len(class_names))\n", ").to(device)\n", "effnetb2_model.classifier" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8z_TqJb43bSl", "outputId": "cbe497cf-1353-4eb1-8fbf-979ff067ad23" }, "outputs": [ { "data": { "text/plain": [ "torch.Size([32, 3, 288, 288])" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_shape = next(iter(effnetb2_train_dataloader))[0].shape\n", "input_shape" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "YN-y_atq3Msb", "outputId": "86527afe-f5ee-45e3-dc5a-1f328faccfd3" }, "outputs": [ { "data": { "text/plain": [ "============================================================================================================================================\n", "Layer (type (var_name)) Input Shape Output Shape Param # Trainable\n", "============================================================================================================================================\n", "EfficientNet (EfficientNet) [32, 3, 288, 288] [32, 510] -- Partial\n", "├─Sequential (features) [32, 3, 288, 288] [32, 1408, 9, 9] -- False\n", "│ └─Conv2dNormActivation (0) [32, 3, 288, 288] [32, 32, 144, 144] -- False\n", "│ │ └─Conv2d (0) [32, 3, 288, 288] [32, 32, 144, 144] (864) False\n", "│ │ └─BatchNorm2d (1) [32, 32, 144, 144] [32, 32, 144, 144] (64) False\n", "│ │ └─SiLU (2) [32, 32, 144, 144] [32, 32, 144, 144] -- --\n", "│ └─Sequential (1) [32, 32, 144, 144] [32, 16, 144, 144] -- False\n", "│ │ └─MBConv (0) [32, 32, 144, 144] [32, 16, 144, 144] (1,448) False\n", "│ │ └─MBConv (1) [32, 16, 144, 144] [32, 16, 144, 144] (612) False\n", "│ └─Sequential (2) [32, 16, 144, 144] [32, 24, 72, 72] -- False\n", "│ │ └─MBConv (0) [32, 16, 144, 144] [32, 24, 72, 72] (6,004) False\n", "│ │ └─MBConv (1) [32, 24, 72, 72] [32, 24, 72, 72] (10,710) False\n", "│ │ └─MBConv (2) [32, 24, 72, 72] [32, 24, 72, 72] (10,710) False\n", "│ └─Sequential (3) [32, 24, 72, 72] [32, 48, 36, 36] -- False\n", "│ │ └─MBConv (0) [32, 24, 72, 72] [32, 48, 36, 36] (16,518) False\n", "│ │ └─MBConv (1) [32, 48, 36, 36] [32, 48, 36, 36] (43,308) False\n", "│ │ └─MBConv (2) [32, 48, 36, 36] [32, 48, 36, 36] (43,308) False\n", "│ └─Sequential (4) [32, 48, 36, 36] [32, 88, 18, 18] -- False\n", "│ │ └─MBConv (0) [32, 48, 36, 36] [32, 88, 18, 18] (50,300) False\n", "│ │ └─MBConv (1) [32, 88, 18, 18] [32, 88, 18, 18] (123,750) False\n", "│ │ └─MBConv (2) [32, 88, 18, 18] [32, 88, 18, 18] (123,750) False\n", "│ │ └─MBConv (3) [32, 88, 18, 18] [32, 88, 18, 18] (123,750) False\n", "│ └─Sequential (5) [32, 88, 18, 18] [32, 120, 18, 18] -- False\n", "│ │ └─MBConv (0) [32, 88, 18, 18] [32, 120, 18, 18] (149,158) False\n", "│ │ └─MBConv (1) [32, 120, 18, 18] [32, 120, 18, 18] (237,870) False\n", "│ │ └─MBConv (2) [32, 120, 18, 18] [32, 120, 18, 18] (237,870) False\n", "│ │ └─MBConv (3) [32, 120, 18, 18] [32, 120, 18, 18] (237,870) False\n", "│ └─Sequential (6) [32, 120, 18, 18] [32, 208, 9, 9] -- False\n", "│ │ └─MBConv (0) [32, 120, 18, 18] [32, 208, 9, 9] (301,406) False\n", "│ │ └─MBConv (1) [32, 208, 9, 9] [32, 208, 9, 9] (686,868) False\n", "│ │ └─MBConv (2) [32, 208, 9, 9] [32, 208, 9, 9] (686,868) False\n", "│ │ └─MBConv (3) [32, 208, 9, 9] [32, 208, 9, 9] (686,868) False\n", "│ │ └─MBConv (4) [32, 208, 9, 9] [32, 208, 9, 9] (686,868) False\n", "│ └─Sequential (7) [32, 208, 9, 9] [32, 352, 9, 9] -- False\n", "│ │ └─MBConv (0) [32, 208, 9, 9] [32, 352, 9, 9] (846,900) False\n", "│ │ └─MBConv (1) [32, 352, 9, 9] [32, 352, 9, 9] (1,888,920) False\n", "│ └─Conv2dNormActivation (8) [32, 352, 9, 9] [32, 1408, 9, 9] -- False\n", "│ │ └─Conv2d (0) [32, 352, 9, 9] [32, 1408, 9, 9] (495,616) False\n", "│ │ └─BatchNorm2d (1) [32, 1408, 9, 9] [32, 1408, 9, 9] (2,816) False\n", "│ │ └─SiLU (2) [32, 1408, 9, 9] [32, 1408, 9, 9] -- --\n", "├─AdaptiveAvgPool2d (avgpool) [32, 1408, 9, 9] [32, 1408, 1, 1] -- --\n", "├─Sequential (classifier) [32, 1408] [32, 510] -- True\n", "│ └─Dropout (0) [32, 1408] [32, 1408] -- --\n", "│ └─Linear (1) [32, 1408] [32, 510] 718,590 True\n", "============================================================================================================================================\n", "Total params: 8,419,584\n", "Trainable params: 718,590\n", "Non-trainable params: 7,700,994\n", "Total mult-adds (G): 34.78\n", "============================================================================================================================================\n", "Input size (MB): 31.85\n", "Forward/backward pass size (MB): 8291.84\n", "Params size (MB): 33.68\n", "Estimated Total Size (MB): 8357.37\n", "============================================================================================================================================" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "summary(model=effnetb2_model,\n", " input_size=(32, 3, 288, 288),\n", " col_names=[\"input_size\", \"output_size\", \"num_params\", \"trainable\"],\n", " col_width=20,\n", " row_settings=[\"var_names\"])" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "id": "t99S2zTQb11B" }, "outputs": [], "source": [ "# creating loss function and optimizer for effnet model\n", "loss_fn = nn.CrossEntropyLoss()\n", "optimizer = torch.optim.Adam(params=effnetb2_model.parameters(), lr=0.001)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 136, "referenced_widgets": [ "e2ca06e986b141138fd87ac31e22ecd3", "19314c6c22344c108f5f59eecaa0fb7e", "7a2d0f7bc30044b28d4ba3e1b5024957", "f38eb29377dc4c56b3d115f4c1ffd5a1", "bf4c427aac7e421c8ff15cc77c7db021", "ebb233dd62274dc49983c36d14c2d6d2", "1c76184d464848d587146bf5b26ee5ae", "d2ec048541f0417f90665c289e43dbd6", "37ef5306917b42489a9d2138c5f292ce", "d308e51337c749c3849b3b5bd5357a28", "c9ce898b84ce40378f4169407383fa7c" ] }, "id": "TcBT1kKT7FWl", "outputId": "5b61d7b9-0890-42a5-c572-2ab54b108b5b" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e2ca06e986b141138fd87ac31e22ecd3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/5 [00:00" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_loss_curves(effnetb2_results)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Mj21oF1g0BUb", "outputId": "09858883-09af-4579-d83a-24f6c61066a8" }, "outputs": [ { "data": { "text/plain": [ "0.9059304594993591" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# making prediction on test data\n", "effnetb2_test_results = make_predictions_on_test_data(model=effnetb2_model, \n", " test_dataloader=effnetb2_test_dataloader)\n", "effnetb2_test_results" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "KcP6TE9p9TVW", "outputId": "8121b1dc-63d1-4c81-8b8c-4f938d653ac3" }, "outputs": [ { "data": { "text/plain": [ "{'train_loss': 0.7954635221591005,\n", " 'train_acc': 0.8486029889151366,\n", " 'valid_loss': 0.5827932376414537,\n", " 'valid_acc': 0.874739583581686,\n", " 'test_acc': 0.9059304594993591}" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Overall effnetb2_results\n", "effnetb2_scores = {\n", " \"train_loss\": effnetb2_results[\"train_loss\"][-1],\n", " \"train_acc\": effnetb2_results[\"train_acc\"][-1],\n", "\n", " \"valid_loss\": effnetb2_results[\"valid_loss\"][-1],\n", " \"valid_acc\": effnetb2_results[\"valid_acc\"][-1],\n", "\n", " \"test_acc\": effnetb2_test_results\n", "}\n", "effnetb2_scores" ] }, { "cell_type": "markdown", "metadata": { "id": "IqSzA1CUabYh" }, "source": [ "### 4.3. Model 2: Vision Transformer" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "8cebbf4586a34db4b78ef5f0874626b0", "6de699d1f36a4903835bf416c2bc5d16", "6bd9771b1b254f80a107c862f99b0671", "4f16b89244ed457da219482da0dc93d6", "19289af1b117419cb49123867c31ac9d", "03aac842e3a64dd6aa2bcaecc74ff3ae", "71a89bcf46d04041ae0c903b46c09bd3", "931a61134f1d4a21804d736146fe0ad0", "8c310216b5d94b76b20e681f0a0a32fb", "b8f1555bf3ad40e7a432058077409fbe", "891dff3d7aa94319831b6bf43409eb06" ] }, "id": "j3zC6U8ppScn", "outputId": "33b98cbc-97ab-456a-b364-11f0247a1844" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading: \"https://download.pytorch.org/models/vit_b_16-c867db91.pth\" to /root/.cache/torch/hub/checkpoints/vit_b_16-c867db91.pth\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8cebbf4586a34db4b78ef5f0874626b0", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0.00/330M [00:00,\n", " ,\n", " )" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# creating train and test dataloaders with vit transforms\n", "vit_b16_train_dataloader, class_names = create_dataloader(\n", " path=train_dir,\n", " split=True,\n", " transform=vit_transforms_with_data_augmentation,\n", " shuffle=True,\n", " return_classes=True\n", ")\n", "\n", "vit_b16_valid_dataloader = create_dataloader(\n", " path=valid_dir,\n", " split=True,\n", " transform=vit_weights.transforms(),\n", " shuffle=False\n", ")\n", "\n", "vit_b16_test_dataloader = create_dataloader(\n", " path=test_dir,\n", " transform=vit_weights.transforms(),\n", " shuffle=False\n", ")\n", "\n", "vit_b16_train_dataloader, vit_b16_valid_dataloader, vit_b16_test_dataloader" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SqOR4Vair9sd", "outputId": "0fb91ce0-13ae-4db2-b304-ea3612aa1f94" }, "outputs": [ { "data": { "text/plain": [ "(513, 16, 80)" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(vit_b16_train_dataloader), len(vit_b16_valid_dataloader), len(vit_b16_test_dataloader)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "nsZYi1x9_I0u", "outputId": "c9fa0466-7bab-4fce-fd03-08556eb082f4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Layer: 0 -> Trainable: False\n", "Layer: 1 -> Trainable: False\n", "Layer: 2 -> Trainable: False\n", "Layer: 3 -> Trainable: False\n", "Layer: 4 -> Trainable: False\n", "Layer: 5 -> Trainable: False\n", "Layer: 6 -> Trainable: False\n", "Layer: 7 -> Trainable: False\n", "Layer: 8 -> Trainable: False\n", "Layer: 9 -> Trainable: False\n", "Layer: 10 -> Trainable: False\n", "Layer: 11 -> Trainable: False\n", "Layer: 12 -> Trainable: False\n", "Layer: 13 -> Trainable: False\n", "Layer: 14 -> Trainable: False\n", "Layer: 15 -> Trainable: False\n", "Layer: 16 -> Trainable: False\n", "Layer: 17 -> Trainable: False\n", "Layer: 18 -> Trainable: False\n", "Layer: 19 -> Trainable: False\n", "Layer: 20 -> Trainable: False\n", "Layer: 21 -> Trainable: False\n", "Layer: 22 -> Trainable: False\n", "Layer: 23 -> Trainable: False\n", "Layer: 24 -> Trainable: False\n", "Layer: 25 -> Trainable: False\n", "Layer: 26 -> Trainable: False\n", "Layer: 27 -> Trainable: False\n", "Layer: 28 -> Trainable: False\n", "Layer: 29 -> Trainable: False\n", "Layer: 30 -> Trainable: False\n", "Layer: 31 -> Trainable: False\n", "Layer: 32 -> Trainable: False\n", "Layer: 33 -> Trainable: False\n", "Layer: 34 -> Trainable: False\n", "Layer: 35 -> Trainable: False\n", "Layer: 36 -> Trainable: False\n", "Layer: 37 -> Trainable: False\n", "Layer: 38 -> Trainable: False\n", "Layer: 39 -> Trainable: False\n", "Layer: 40 -> Trainable: False\n", "Layer: 41 -> Trainable: False\n", "Layer: 42 -> Trainable: False\n", "Layer: 43 -> Trainable: False\n", "Layer: 44 -> Trainable: False\n", "Layer: 45 -> Trainable: False\n", "Layer: 46 -> Trainable: False\n", "Layer: 47 -> Trainable: False\n", "Layer: 48 -> Trainable: False\n", "Layer: 49 -> Trainable: False\n", "Layer: 50 -> Trainable: False\n", "Layer: 51 -> Trainable: False\n", "Layer: 52 -> Trainable: False\n", "Layer: 53 -> Trainable: False\n", "Layer: 54 -> Trainable: False\n", "Layer: 55 -> Trainable: False\n", "Layer: 56 -> Trainable: False\n", "Layer: 57 -> Trainable: False\n", "Layer: 58 -> Trainable: False\n", "Layer: 59 -> Trainable: False\n", "Layer: 60 -> Trainable: False\n", "Layer: 61 -> Trainable: False\n", "Layer: 62 -> Trainable: False\n", "Layer: 63 -> Trainable: False\n", "Layer: 64 -> Trainable: False\n", "Layer: 65 -> Trainable: False\n", "Layer: 66 -> Trainable: False\n", "Layer: 67 -> Trainable: False\n", "Layer: 68 -> Trainable: False\n", "Layer: 69 -> Trainable: False\n", "Layer: 70 -> Trainable: False\n", "Layer: 71 -> Trainable: False\n", "Layer: 72 -> Trainable: False\n", "Layer: 73 -> Trainable: False\n", "Layer: 74 -> Trainable: False\n", "Layer: 75 -> Trainable: False\n", "Layer: 76 -> Trainable: False\n", "Layer: 77 -> Trainable: False\n", "Layer: 78 -> Trainable: False\n", "Layer: 79 -> Trainable: False\n", "Layer: 80 -> Trainable: False\n", "Layer: 81 -> Trainable: False\n", "Layer: 82 -> Trainable: False\n", "Layer: 83 -> Trainable: False\n", "Layer: 84 -> Trainable: False\n", "Layer: 85 -> Trainable: False\n", "Layer: 86 -> Trainable: False\n", "Layer: 87 -> Trainable: False\n", "Layer: 88 -> Trainable: False\n", "Layer: 89 -> Trainable: False\n", "Layer: 90 -> Trainable: False\n", "Layer: 91 -> Trainable: False\n", "Layer: 92 -> Trainable: False\n", "Layer: 93 -> Trainable: False\n", "Layer: 94 -> Trainable: False\n", "Layer: 95 -> Trainable: False\n", "Layer: 96 -> Trainable: False\n", "Layer: 97 -> Trainable: False\n", "Layer: 98 -> Trainable: False\n", "Layer: 99 -> Trainable: False\n", "Layer: 100 -> Trainable: False\n", "Layer: 101 -> Trainable: False\n", "Layer: 102 -> Trainable: False\n", "Layer: 103 -> Trainable: False\n", "Layer: 104 -> Trainable: False\n", "Layer: 105 -> Trainable: False\n", "Layer: 106 -> Trainable: False\n", "Layer: 107 -> Trainable: False\n", "Layer: 108 -> Trainable: False\n", "Layer: 109 -> Trainable: False\n", "Layer: 110 -> Trainable: False\n", "Layer: 111 -> Trainable: False\n", "Layer: 112 -> Trainable: False\n", "Layer: 113 -> Trainable: False\n", "Layer: 114 -> Trainable: False\n", "Layer: 115 -> Trainable: False\n", "Layer: 116 -> Trainable: False\n", "Layer: 117 -> Trainable: False\n", "Layer: 118 -> Trainable: False\n", "Layer: 119 -> Trainable: False\n", "Layer: 120 -> Trainable: False\n", "Layer: 121 -> Trainable: False\n", "Layer: 122 -> Trainable: False\n", "Layer: 123 -> Trainable: False\n", "Layer: 124 -> Trainable: False\n", "Layer: 125 -> Trainable: False\n", "Layer: 126 -> Trainable: False\n", "Layer: 127 -> Trainable: False\n", "Layer: 128 -> Trainable: False\n", "Layer: 129 -> Trainable: False\n", "Layer: 130 -> Trainable: False\n", "Layer: 131 -> Trainable: False\n", "Layer: 132 -> Trainable: False\n", "Layer: 133 -> Trainable: False\n", "Layer: 134 -> Trainable: False\n", "Layer: 135 -> Trainable: False\n", "Layer: 136 -> Trainable: False\n", "Layer: 137 -> Trainable: False\n", "Layer: 138 -> Trainable: False\n", "Layer: 139 -> Trainable: False\n", "Layer: 140 -> Trainable: False\n", "Layer: 141 -> Trainable: False\n", "Layer: 142 -> Trainable: False\n", "Layer: 143 -> Trainable: False\n", "Layer: 144 -> Trainable: False\n", "Layer: 145 -> Trainable: False\n", "Layer: 146 -> Trainable: False\n", "Layer: 147 -> Trainable: False\n", "Layer: 148 -> Trainable: False\n", "Layer: 149 -> Trainable: False\n", "Layer: 150 -> Trainable: False\n", "Layer: 151 -> Trainable: False\n" ] } ], "source": [ "# freezing the layers\n", "for i, param in enumerate(vit_b16_model.parameters()):\n", " param.requires_grad = False\n", " print(f\"Layer: {i} -> Trainable: {param.requires_grad}\")" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AOe1OMcusV3Q", "outputId": "e99af0cb-27b5-42ff-95b9-aec59e644984" }, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (head): Linear(in_features=768, out_features=1000, bias=True)\n", ")" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vit_b16_model.heads" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-lxBMOhT-NZl", "outputId": "96b23940-1ca3-4fb3-ec15-2a7d8dee7c24" }, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): Linear(in_features=768, out_features=510, bias=True)\n", ")" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vit_b16_model.heads = nn.Sequential(\n", " nn.Linear(in_features=768, out_features=len(class_names))\n", ")\n", "vit_b16_model.heads" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3dbawFog-_yc", "outputId": "4b2d0f0c-b8a1-4ce0-8a15-73fe7c8e0972" }, "outputs": [ { "data": { "text/plain": [ "torch.Size([32, 3, 224, 224])" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "next(iter(vit_b16_train_dataloader))[0].shape" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dj1BZu-z-uog", "outputId": "4b798adb-c9a6-4f71-cdfb-514a53379b2e" }, "outputs": [ { "data": { "text/plain": [ "============================================================================================================================================\n", "Layer (type (var_name)) Input Shape Output Shape Param # Trainable\n", "============================================================================================================================================\n", "VisionTransformer (VisionTransformer) [32, 3, 224, 224] [32, 510] 768 Partial\n", "├─Conv2d (conv_proj) [32, 3, 224, 224] [32, 768, 14, 14] (590,592) False\n", "├─Encoder (encoder) [32, 197, 768] [32, 197, 768] 151,296 False\n", "│ └─Dropout (dropout) [32, 197, 768] [32, 197, 768] -- --\n", "│ └─Sequential (layers) [32, 197, 768] [32, 197, 768] -- False\n", "│ │ └─EncoderBlock (encoder_layer_0) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_1) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_2) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_3) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_4) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_5) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_6) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_7) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_8) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_9) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_10) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ │ └─EncoderBlock (encoder_layer_11) [32, 197, 768] [32, 197, 768] (7,087,872) False\n", "│ └─LayerNorm (ln) [32, 197, 768] [32, 197, 768] (1,536) False\n", "├─Sequential (heads) [32, 768] [32, 510] -- True\n", "│ └─Linear (0) [32, 768] [32, 510] 392,190 True\n", "============================================================================================================================================\n", "Total params: 86,190,846\n", "Trainable params: 392,190\n", "Non-trainable params: 85,798,656\n", "Total mult-adds (G): 5.53\n", "============================================================================================================================================\n", "Input size (MB): 19.27\n", "Forward/backward pass size (MB): 3330.87\n", "Params size (MB): 230.76\n", "Estimated Total Size (MB): 3580.90\n", "============================================================================================================================================" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "summary(model=vit_b16_model,\n", " input_size=(32, 3, 224, 224),\n", " col_names=[\"input_size\", \"output_size\", \"num_params\", \"trainable\"],\n", " col_width=20,\n", " row_settings=[\"var_names\"])" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "id": "wgTKz1KV_HKy" }, "outputs": [], "source": [ "# creating loss function and optimizer for ViT model\n", "loss_fn = nn.CrossEntropyLoss()\n", "optimizer = torch.optim.Adam(params=vit_b16_model.parameters(), lr=0.001)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 136, "referenced_widgets": [ "3d82e76000b74f39b95f755c01dd9200", "60202a105d434ca485932e576be8b8c6", "22b60cc64d0c4e97a078a8a207d4ed63", "6f29c9522d5d485fbab850c981bd5050", "0b868475482847a0a722f726bf554583", "8aa0bd1a8bff4e4a8ffd599a048cabae", "177192b9d8a443e09080d3bdfef5acad", "dac45dfedff648c693e0f2cc5873a358", "61f03b3c8e1d4342aeb6b162b3d74ed8", "ac4dd35695d14533909fc3afe899ac66", "73bdebb5710147138d94e1001d1f864e" ] }, "id": "_oMaMgp5AIBQ", "outputId": "423c2f06-3f27-49f5-dffd-3cb1ef787297" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3d82e76000b74f39b95f755c01dd9200", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/5 [00:00" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_loss_curves(vit_b16_results)" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6hp3_ipvAdPd", "outputId": "a5ef024f-2f64-430b-dd4d-a88a0cb1d4c7" }, "outputs": [ { "data": { "text/plain": [ "0.9201704859733582" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# making prediction on test data\n", "vit_b16_test_results = make_predictions_on_test_data(model=vit_b16_model, \n", " test_dataloader=vit_b16_test_dataloader)\n", "vit_b16_test_results" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "1fI8FeucAs-3", "outputId": "196a84c0-53c5-40de-b0a3-4770f0816395" }, "outputs": [ { "data": { "text/plain": [ "{'train_loss': 0.6020409409501399,\n", " 'train_acc': 0.8826754385964912,\n", " 'valid_loss': 0.44780644960701466,\n", " 'valid_acc': 0.8980468735098839,\n", " 'test_acc': 0.9201704859733582}" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Overall vit_b16_results\n", "vit_b16_scores = {\n", " \"train_loss\": vit_b16_results[\"train_loss\"][-1],\n", " \"train_acc\": vit_b16_results[\"train_acc\"][-1],\n", "\n", " \"valid_loss\": vit_b16_results[\"valid_loss\"][-1],\n", " \"valid_acc\": vit_b16_results[\"valid_acc\"][-1],\n", "\n", " \"test_acc\": vit_b16_test_results\n", "}\n", "vit_b16_scores" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "PgFSoTewBghJ", "outputId": "63904e70-7a48-49cb-9b1c-f6efbe8294e7" }, "outputs": [ { "data": { "text/plain": [ "{'train_loss': 0.7954635221591005,\n", " 'train_acc': 0.8486029889151366,\n", " 'valid_loss': 0.5827932376414537,\n", " 'valid_acc': 0.874739583581686,\n", " 'test_acc': 0.9059304594993591}" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "effnetb2_scores" ] }, { "cell_type": "markdown", "metadata": { "id": "5oK96tR3A_Dg" }, "source": [ "## 5. Comparing the Results" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 112 }, "id": "Do6he0WSBJCv", "outputId": "2addd3a3-b2e7-4fea-edc3-4b3839b65d81" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
train_losstrain_accvalid_lossvalid_acctest_acc
EfficientNet_B20.7954640.8486030.5827930.8747400.90593
ViT_B160.6020410.8826750.4478060.8980470.92017
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " train_loss train_acc valid_loss valid_acc test_acc\n", "EfficientNet_B2 0.795464 0.848603 0.582793 0.874740 0.90593\n", "ViT_B16 0.602041 0.882675 0.447806 0.898047 0.92017" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# creating a dataframe to store the overall results\n", "results_df = pd.DataFrame(data=[effnetb2_scores, vit_b16_scores], index=[\"EfficientNet_B2\", \"ViT_B16\"])\n", "results_df" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 267 }, "id": "D2uVinpRCju2", "outputId": "d44c651d-00f8-46bf-87fa-85c5c08da468" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAD6CAYAAACF+78WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhQ0lEQVR4nO3de3wV5b3v8c8vCYkgiCAx3A1FkASQKijF2lqvB04Fq91acAvWraC2WI+gVi3bWmytbm/VfRQBtRWsWhFbKFDdrZdWsaWGU7Fcgo1IvQJBudlASLJ+549nliyWuWlWyEC+79drvbLWzLNmnnmyZr4zz8yaZe6OiIiIxE9WS1dAREREaqeQFhERiSmFtIiISEwppEVERGJKIS0iIhJTCmkREZGYymmpGXfp0sULCwtbavYiIvul5cuXb3b3/Jauh+wbLRbShYWFlJSUtNTsRUT2S2b2z5aug+w76u4WERGJKYW0iIhITCmkRUREYqrFzkmLiEhmLF++/PCcnJwHgUHo4Gt/kwBWVldXXzJ06NBN6SMV0iIi+7mcnJwHu3btWpSfn78lKytLv5q0H0kkElZeXl68YcOGB4Ex6eO1xyUisv8blJ+fv10Bvf/Jysry/Pz8bYRekE+P38f1ERGRzMtSQO+/ov9drXmskBYREYkpnZMWEWmMmzpmYBrbmj6NRii8bvHQTE5v/a1fX95Qmezs7KH9+vXbmXx9zjnnfHTLLbdseOaZZ9pPnjz5iJycHC8pKVkzderUHs8991zHU089dVvfvn0r27Vrl5g8efKHtc53/fo2l112Wa9nnnlm3eep9/Tp0w+/6qqrNnfo0CEB0KNHj8GDBg2qePbZZ98E+PnPf95p0aJFHefPn7++rmm88sorbd95553cb33rW3X+8+69997DfvjDH/YsKCioqq6utiOPPHLnvHnz1nfo0CFx0003FcydO7dLdna2H3bYYdWPPPLI+v79++9u7DLoSFpERJosLy8vUVpaujr5uOWWWzYAzJkzp/OUKVM+KC0tXd2+fXt/7LHHupSWlq6aOXPmu9dee215XQENUFhYWPV5Axpg5syZBR9//PFeObdy5cp2y5cvP6ix0ygpKWm3ePHiBvfQRo8evaW0tHR1WVnZqjZt2vjDDz/cCWDo0KEVr7322po33nhj9Te+8Y0tV111Vc/PsgwKaRERaRZ33XVXl8WLF3f+yU9+0mPMmDF9TjnllCMrKiqyBw0aVDx79uxOU6ZM6X7jjTcWAKxcuTLvhBNO6H/UUUcVFxcXF61atSpv7dq1uf369RsIUF1dzaWXXtpz0KBBRf379y++/fbbuwAsWrSow/HHH3/UyJEjv9CnT5+BY8aM6ZNIJPjxj398+KZNm9qcdNJJ/YcPH94/WafvfOc7G3/0ox91S6/r9u3bs84999zCwYMHFxUVFRU/+uijh+7atct++tOfdv/tb3/bacCAAcWzZ8/u1NAyV1VVUVFRkdW5c+cagNGjR+9IHsmfeOKJH3/wwQe5n6UN1d0tIq1C4XWLm/T+9Y0+9mqdKisrswYMGFCcfD116tQPpkyZsnnp0qXtzzzzzG0XXXTRFoB27dodU1pauhpgypQpbZPlzz///D5XX331hgkTJmytqKiwmpoae//99z/JqJ/97GddOnbsWLNy5co1O3futOOOO27A6NGjtwOsWbOm7WuvvbausLCwaujQoQN+//vft582bdqmGTNmFPzxj398o1u3btXJ6UyYMOGjhx56KH/lypV5qfW/4YYbup188snb582bt37z5s3Zw4YNKxozZsz266+//v2SkpKD58yZ83Z9yx8Fefvy8vI2hYWFu8aNG7c1vczMmTPzTzvttM90zkMhLSIiTZbs7v48792yZUvWxo0bcydMmLAVoF27dg7sdbX6H/7wh0NKS0vbLVy4sBPAjh07slevXn1Qbm6uDx48+F99+/atAhg4cGDFm2++WefRak5ODt/73vc2TJ8+veuoUaO2J4e/+OKLhzz77LOH3nvvvV0BKisrraysrNFHvaNHj94yZ86ctxOJBBMmTOh94403dk12+QPcf//9nVesWNFu5syZaxs7TVBIi0h99qOLpeTA5u525513vv3Nb35ze+rwRYsWdcjLy/sk0LOzs6murrb6pnX55Zd/dPfdd3cbOHDgJxe6uTtPPfVU2ZAhQypTy7788ssHf5Z6ZmVlMWbMmK333Xff4clhv/nNbzrccccd3V566aW1bdu2/UxfldM5aRERaVGdOnVKdO3adffcuXMPBdi5c6ft2LFjr3w6/fTTt82YMSO/srLSAF5//fW87du315thBx98cM22bds+VSYvL88vv/zyjQ888EBBctjJJ5+8/c477yxIJBIALF26tC3AIYccUpN+8VlDXnrppQ6FhYWVyelcccUVRyxYsKCsR48e1Q29N52OpEVEDjCN+cpUpqWfkz7llFO23X///e819v2PPvroWxMnTjzi5ptv7t6mTRufN2/em9nZ2Z+Mv+qqqzavX78+b/DgwUXubp07d65asmTJm/VN88ILL9w8cuTI/gUFBbuXLVv2Ruq4K6+8cvNdd931yQVkt9566/uTJk3qPWDAgOJEImG9evWqfOGFF8pGjRq144477ug2YMCA4qlTp34wceLELbXNK3lOOpFI0K1bt92PPfbYeoBrrrmmV0VFRfa5557bF6B79+67n3/++bLGtou5t8xNaoYNG+YlJSUtMm+pQ1O7NtWteeA5gLq7m37h2PlNr0QG2sLMlrv7sNRhK1asWD9kyJDNTZ64tJgVK1Z0GTJkSGH6cHV3i4iIxJS6u0UOYPrakUjm3HPPPYfNmDGjIHXYcccd9/HcuXPr/XpWUyikRUREGuHKK6/88Morr6zzDmnNQd3dIiIiMaWQFhERiSmFtIiISEwppEVERGJKF44dIJp6FS/oSl6RA8ZNHTP6e9LctK3em6MMHz68/7XXXrsh9Zad06dPP3zmzJkFF154YXlNTQ0LFizoDPCPf/yjbfJ3py+44ILN06ZN25Q+vSlTpnR/9NFHu3Tu3Lm6srLSTjjhhB1z5sx5Ozs7m4cffrjTLbfc0n3dunUHvfjii2u++tWvViTft2zZsraXXnrpER9//HF2VlaWv/baa2ui+4DvtxTSIiLSJOeee+5Hjz/+eOfUkJ4/f37nBx988K1Ro0Z9DHDbbbdtgL1/Bas+l1122cbp06dvrKmp4fjjjz9qyZIlHUaPHr3ji1/84s758+eXTZw4sTC1fFVVFePHj+/zyCOPvDVixIidGzZsyM7Nzd2vAxrU3S0iIk00fvz4Lc8//3zHXbt2GcDatWtzN23a1OaNN97ImzBhQu+mTLuystIqKyuzDjvssGqAY489dlf6j2AAPP300x2Liop2jhgxYidA165da3Jy9v/jUIW0iIg0SUFBQc2QIUP+9dRTT3UEeOSRRzqPHj16i1m9P0ZVrwceeKBgwIABxV27dh3Sp0+fXSeccMLO+sqvXbs2z8w48cQT+xUXFxdNmzatoL7y+wuFtIiINNl555330a9+9atOAE8//XTn8ePHf9SU6V122WUbS0tLV5eXl6+oqKjImjVrVqf6yldXV9urr77aft68eW8tW7Zs7aJFizotWLCgQ1PqEAcKaRERabLzzz9/69KlSw95+eWX2+3atSvrK1/5SkXD72pYXl6en3HGGdv/9Kc/1Ru4PXv23D18+PAd3bp1q+7QoUPi9NNP31ZSUtIuE3VoSQppERFpso4dOyZGjBix45JLLik8++yzm3QUnSqRSPDKK6+079u376fOQ6c6++yzt5eWlrbdsWNHVlVVFUuXLu0wcODAXZmqR0vZ/8+qi4jI3hr4ylRzGTt27EcTJkzo+/jjj69r6rQeeOCBgieffPKw6upqKyoqqrjmmms2AcyZM+fQa665pveWLVtyzj777H5FRUUVL7/88j/y8/NrJk+evPGYY44pMjNOPfXUbWPHjo3H76Q2QaN+T9rMRgL3ANnAg+5+a9r43sAjwKFRmevcfUl909TvSWdWZr4n3cTfy43J7wbLHgfKbyhnwoHSFvo96QPT5/49aTPLBu4DRgHFwDgzK04rNg140t2PAcYC9ze5xiIiIq1cY7q7jwfK3H0dgJk9AZwFpH4Z3YFDoucdgfczWUkRETnwfP/73++avBNZ0llnnfVR8sYn0riQ7gG8k/L6XWB4WpmbgP8xsyuAg4HTapuQmU0CJgH07t2k77eLiMgeiUQiYVlZWfvVHbZuu+22DQpkSCQSBiRqG5epC8fGAb9w9zvNbAQw18wGufteM3X3WcAsCOekmzrTjJyHvfXrTZ6GiEgLW1leXl6cn5+/bX8L6tYukUhYeXl5R2BlbeMbE9LvAb1SXveMhqW6GBgJ4O5/NrODgC7Ap26cLiIimVVdXX3Jhg0bHtywYcMg9NXa/U0CWFldXX1JbSMbE9KvAv3MrA8hnMcC6Zc5vg2cCvzCzIqAg4Dyz11lERFptKFDh24CxrR0PSTzGtzjcvdqYDLwLLCGcBX3KjObbmbJD8VUYKKZrQAeB77tjflul4iIiNSpUeeko+88L0kbdmPK89XAlzNbNRERkdZN5y5ERERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxFSjQtrMRprZWjMrM7Pr6ihznpmtNrNVZvZYZqspIiLS+uQ0VMDMsoH7gNOBd4FXzWyhu69OKdMPuB74srtvMbPDm6vCIiIirUVjjqSPB8rcfZ277waeAM5KKzMRuM/dtwC4+6bMVlNERKT1afBIGugBvJPy+l1geFqZ/gBmthTIBm5y92fSJ2Rmk4BJAL179/489c28mzo28f3bMlMPERGRNJm6cCwH6Ad8DRgHzDazQ9MLufssdx/m7sPy8/MzNGsREZEDU2NC+j2gV8rrntGwVO8CC929yt3fAt4ghLaIiIh8To0J6VeBfmbWx8xygbHAwrQyvyEcRWNmXQjd3+syV00REZHWp8Fz0u5ebWaTgWcJ55sfdvdVZjYdKHH3hdG4M8xsNVADXOPuHzZnxUXqUnjd4ia9f/2tX89QTUREmqYxF47h7kuAJWnDbkx57sCU6CEiIiIZoDuOiYiIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYmpnJaugEjs3NQxA9PY1vRpiEirpyNpERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiqlEhbWYjzWytmZWZ2XX1lPummbmZDctcFUVERFqnBkPazLKB+4BRQDEwzsyKaynXAbgSWJbpSoqIiLRGjTmSPh4oc/d17r4beAI4q5ZyNwO3AbsyWD8REZFWqzEh3QN4J+X1u9GwT5jZsUAvd19c34TMbJKZlZhZSXl5+WeurIiISGvS5AvHzCwLuAuY2lBZd5/l7sPcfVh+fn5TZy0iInJAa0xIvwf0SnndMxqW1AEYBLxoZuuBLwELdfGYiIhI0zQmpF8F+plZHzPLBcYCC5Mj3X2bu3dx90J3LwT+Aoxx95JmqbGIiEgr0WBIu3s1MBl4FlgDPOnuq8xsupmNae4KioiItFaN+j1pd18CLEkbdmMdZb/W9GqJiIiI7jgmIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYU0iIiIjGlkBYREYkphbSIiEhMKaRFRERiSiEtIiISUwppERGRmFJIi4iIxJRCWkREJKYaFdJmNtLM1ppZmZldV8v4KWa22sxeN7PnzOyIzFdVRESkdWkwpM0sG7gPGAUUA+PMrDit2N+AYe5+NPAU8F+ZrqiIiEhr05gj6eOBMndf5+67gSeAs1ILuPsL7l4RvfwL0DOz1RQREWl9GhPSPYB3Ul6/Gw2ry8XA72obYWaTzKzEzErKy8sbX0sREZFWKKMXjpnZBcAw4Pbaxrv7LHcf5u7D8vPzMzlrERGRA05OI8q8B/RKed0zGrYXMzsN+AFwkrtXZqZ6IiIirVdjjqRfBfqZWR8zywXGAgtTC5jZMcBMYIy7b8p8NUVERFqfBkPa3auBycCzwBrgSXdfZWbTzWxMVOx2oD0wz8xeM7OFdUxOREREGqkx3d24+xJgSdqwG1Oen5bheomIiLR6uuOYiIhITCmkRUREYkohLSIiElMKaRERkZhSSIuIiMSUQlpERCSmFNIiIiIxpZAWERGJKYW0iIhITCmkRUREYkohLSIiElMKaRERkZhSSIuIiMSUQlpERCSmFNIiIiIxpZAWERGJKYW0iIhITCmkRUREYkohLSIiElMKaRERkZhSSIuIiMSUQlpERCSmFNIiIiIxpZAWERGJKYW0iIhITCmkRUREYkohLSIiElMKaRERkZhSSIuIiMSUQlpERCSmFNIiIiIxpZAWERGJKYW0iIhITCmkRUREYkohLSIiElMKaRERkZhqVEib2UgzW2tmZWZ2XS3j88zsV9H4ZWZWmPGaioiItDINhrSZZQP3AaOAYmCcmRWnFbsY2OLuRwJ3A7dluqIiIiKtTWOOpI8Hytx9nbvvBp4AzkorcxbwSPT8KeBUM7PMVVNERKT1MXevv4DZvwEj3f2S6PV4YLi7T04pszIq8270+s2ozOa0aU0CJkUvjwLWZmpBmqALsLnBUq2D2iJQO+yhttgjLm1xhLvnt3QlZN/I2Zczc/dZwKx9Oc+GmFmJuw9r6XrEgdoiUDvsobbYQ20hLaEx3d3vAb1SXveMhtVaxsxygI7Ah5mooIiISGvVmJB+FehnZn3MLBcYCyxMK7MQuDB6/m/A895QP7qIiIjUq8HubnevNrPJwLNANvCwu68ys+lAibsvBB4C5ppZGfARIcj3F7Hqfm9haotA7bCH2mIPtYXscw1eOCYiIiItQ3ccExERial9enW3iEjcRfd4yHH3qkaUAyD9Ghwzy0oZ5SnlLRqYyGil5YB1QB5Jm1lbM/tiyuukrPpusmJm7c3sHDPrnfK+7OhhKeWy0oenlK13Hi3h87ZHStlPtUE0Ljk8q5bysWmH6La1RdHzTmltkRX9PcTMTjGztnVMI9/Mrkh9X3L508rV1SZZqcNaUibaI1n2M342stKHNSczO9LM/uNzvPVw4OaGCnmKWsYlooenlU8ooOWziMVGoz5m9gUzu/gzvq0TMC75ImVdStS2QqXoCFwE9Et5X0308OSGKJrOJ8PTyjY0jybZx+1RZxtE45LDE7WUb9Z2+IyKgeXR80LCLW6BvY5o2gF3ETbQtTkcuCH1fcnlhz1HVfW0SZw2zploj1rXg5RxtbVDIn1YM+tLWJ8xs4OinZMuZna4mR0UDTcL31w5Onq0BY4Gvm1mXzOzL9U24Wh655nZ1WZ2VXKnJxrX3cx+amb3mtn10bBsM7vczOab2cNmdkqzL70cEPaH7u5Cwr3BHzKz9kANcBCQ5+4bzKwXkEfY4finu1cCG4F7IBwRAIOAaqA38Ja7L//UXIIqwve7q6L3Hgn8n+j1C+6+0MLX0C4EvgHsAJa4+xwz+zphI74bKHX3y83MmiGoCtlH7WHhO++nAScRuumWu/u8aFwH4GrgSGArcIu7vxe1w5VRO7zk7rc1Uzuk1zUXaEMIl7xo8AdRiFYAm6JhbwDl0XsMGEG4k1Qe8M96ZrErZRqY2RnAt4AtwM89fOOhIzAd+ALwMXA7sAK4lvB52Q487e4zmri4DWru9jCzdsAEQhDWAE+5e0k0rhD4AdAeeM/dr44+S1OBkcA2YLa7L87U8tZSv2zgOuBYM/sj8CLhM3wGUAksIvx/jgbuB/5F+J/NAI4FOgDfA0qBv9TyGW4D9CB8LjpFZS83s86E3y54K3rv9qjn4Jxo2WdG79/QLAsuB5xYh3T04f4BcLSZLSN8BayGEAo1ZjYaeCAaDrAY+G/CRvKvhJXnOOB3hBVnCHCQmY1z99putlJDaJNEFGZ3AEsJIX2Jma0nrMzjCStlPrDRzLoAU4BLCOGYB58+T9VULdAeWdG0VgK5wNfMbC2whrDzcjgwD0gAVWZ2NDANuJ6wIdwFzdYOdxO+AjjXzDoBPyR8/e/LhJ2WSsJXZp6K6pcMqhMJPxhzJHAC8F+E29PmEnaA6lIdlcHMBhOWcQ5QANxmZmMJOzQHA/8JHEoIv37AmcD/JrRXTRMX/1NaqD0AdgJ/Bg4DJkc9PIcCPwOeB94BdkcBPRYYTgjqLMLOTbNx9xoz+0/gp+5+kpldAHzJ3b9kZv2AB8zsFWAAsMrdk7crxsz+Bvy7u58Tvf7UTqa77zCzBYR1KBu4wMwGAW2BY919fMr0OgNjgLnuvqQ5l1sOQO4e6wdhxX4lej6WcDSQOr4j4WjhOKCMsLfcg7DiQdgIbUop/xBwYR3z6gQ8SjhyHAqsTBn3fcIGrDthA3MOUBCN6wK8ROgeHHqgtEc0voDQc3Ad8CfCRrYT4QisU0q5PGAy8N/76HNxOvBM9LwX4Yg1CziEcJTzZUIvAUCf5DJHw1+Mns8Gvhs9H0y4L3PvOubXg7Bzkhst54Mpy/0UIYjHEALuVELPBoQjzXLgO0C/A6U9ojKDorb4MfBmtM4MA1bUsl49BozeF5+NlPmOAJZGz+dGn9m/Av8PeC5qs4HR6zuAC6L/Z0/27Kjk1jHt7sB8Qg/VPcAfov//acD8qMzB0d8uhCP3QsJBQK3T1EOP2h6xPpKOOHuODGuAZfBJ19whhL324pSyye7X3GhYFVG3XdQd+SZhz782New5ysghdFcRnad6FbjM3d83s28TusTOMbOV7n6rmV1EWOkvM7MCdx/T1AWvwz5rj6hLczqhG/BDwkaugNBGh7r7FjM7mHBEBdCZcNSNmeV6+NW05rIC6BZ1+RcDbxP+b78ghJQBOVG35272XH+RANpEw3ux52dV3wZWEwKtNlXRNPMIPSh/jobnAiWEUwezCW1wOuHIcpa7/87MziTsHP3EzN5x96lNX/xPaa72SH5u9mJmPYFbgb8Qus/XEtpgK6GrFzNr6+47CZ/DQ4DSaD5Z3sCV0xlSw57l/Aj4obs/Xku5Y81sFGGHoz8hsHMa+PwWA0Xu/k0AM3uJ8Bl5H/gigLv/Kyq7i9Am/+7uP4nKZ3l8rlGQGNsfQrqaPStaJWEDA2GjMxLo7u7DAczsz4SNSjXgUTdgFWEjQfTe+q44ToZ0DWFlOxbA3Xea2WmEkMLdFwALzGw44U5stxKOUmZEXd8vmVmhu69v4rLXZl+2R3vg2+6eF03v/6bM9wMzO8bd/xaNc+B1wvnXmc0c0BCuB1hI+FW1roSjmklAubufE+1YrSEEVeoyVxFu4lNjZtuBIkKPQ1vCEVRdXfPVRN36hA3uWcBDHro9v07o/k64+y8ALFwJfjHwO3dfBiyz8DvsS4GpzXCefl+3x1HAF9z9zGh5/0r4PL1NynoTld1N2OH9D3e/nnBqJsfdqzO18HXYSthpgrAz8R0z+z2h+78r4TcH2hOW9R+E00N9CaH6vpmdRzinvrSWaX9AON/8PcKOax/Ceey1wGIze5hwDUIloRdqNnCLmT1B+Cz9mvA/EqnX/hDSWwnnuSBsYFKPdKqBXdFe/VcIG4ccQsh2ZM8RZ3JFTRBWyLqOlhKEo8r2hJX292b2EGFD1hW4Iroo5m7CRjEXuCcKvyei89gQuoXruwipKbay79pjB/CCmd1N2NAOBt52911mdjPhyLA8mv7thC6/06IN4W7g7+5+XZOWtg7RjtOvCeeFdxO6XC8hnAM9nHA6ohdh+asJyw8hdJI9BwsI1xokCN2ePQgb8NokouklgP8BzjazGYRTC6WEHo2RZjaRcGR5MDDbzI6I6riLsHM1Pap/Rs/TN2N75FG7t4BtZnYrYVm7EHpX3rRw9fKvCe2wk7CzcD9wR8pn4zHgl5la/jr8E/h7dI75N9H8nmPPEe9EwjUD0whhupFwWqKKcOpqEmHHfGnUA5D8JkfCw4WC9xPWsbeB7wJl0c7ODcD5hP/31uh//Xo0/EhCu6xu5mWXA0TsbwtqZm0I54mLCN2ua909+bWKPMJGqTfhQ7+LcBHMuug94wgbmmvc/bvRinYm4YjntykrnhE2vsnxf482Np2A8wgr7evuXhJ1J54cVW8X4fzwv6KLpnKjsu+4+0cxa49fEs5hp7fHaKAmrT2SnNCtdx5hA/Ya0Mbd/xjN73TC+cadwJ/cfVvUZoMJG70P3b2sOdohmv9BhNMQq939W1EY/YoQLCXAEYQrkKsJ52u/YmZfAH7g7hdHpwhuIJxbXR3V+VH2vvI2+dnIIYTerGhDPAD4KmGD+5y7f2BmPYBjCCG0g3D0lktoQ4+m/2Zz9TI0U3v8knDUuFd7uLtHPQiDCYH3T8Lnfl30ORwZld3h7s9F9SsknMvdGZWNw28zi8Ra7ENaRCRToh0RYE9vhqXcXCV5njgqZ4Sj4f9F6G1KPrIJXeNbozKe+t5GTNMz3ZMiB679obu7XqkffMJOR3KFyPY9N5pIfZ4sfyrhyCKHsOLlAC8TvsbiKdOv6/Z+nwxMrUtLr3xNaI9T2HP16Sft4e6vphxhf3LjlvR5pbdDarl9KfV/Q+OWP4uUDW309yJCGyS/a5xN6KHYXEu7pW+cawuBFvtcNHN7lKeWrSOkYvPZqGu+tV3AFZXzqLrjCL0p1YRTO5WE+ybU2VtW3zQ/d+WlVdrvQzrtg+8pw2vqeJ5c+WoIF3ZUpTw2pq/E9axsddWlRWWgPXYTNka7CV3ce5WvZ17pw1tE2rwbs/yf+v+a2Tb2XCSWfFTU1m4NzL/OYftKM7dHnVcn1zUuDuvIZxEtxwUtXQ9pvdTdLSIiElOxv3e3iIhIa6WQFhERiSmFtIiISEwppEVERGJKIS0iIhJT/x/a70USzStniwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plotting the results\n", "results_df.T.plot.bar()\n", "plt.xticks(rotation=1)\n", "plt.legend(bbox_to_anchor=(1.0, 1.0));" ] }, { "cell_type": "markdown", "metadata": { "id": "sxAb44Y-Dpwc" }, "source": [ "- Vision Transformer Performed better than EfficientNet_B2 Model" ] }, { "cell_type": "markdown", "metadata": { "id": "AjAf6AA6Cq0g" }, "source": [ "## 6. Saving the model" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "id": "m6Ye0ijNCtyi" }, "outputs": [], "source": [ "model_save_path = \"/content/ViT_B16_510_classes.pth\"\n", "\n", "torch.save(obj=vit_b16_model.state_dict(),\n", " f=model_save_path)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "8IUeaALMDLkz", "outputId": "2001f7dc-f60d-45ac-c5d5-ebabd9cfda65" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'/content/drive/MyDrive/Colab Notebooks/ViT_B16_510_classes.pth'" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# copying to drive\n", "shutil.copy2(model_save_path, \"/content/drive/MyDrive/Colab Notebooks/\")" ] }, { "cell_type": "markdown", "metadata": { "id": "Gb3ey1zcEaPo" }, "source": [ "## 7. Creating a Gradio Web app" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "CWDBlC6kPhWG", "outputId": "fdf59d89-ab0c-4726-ec98-dfc87adf84cc" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting gradio\n", " Downloading gradio-3.23.0-py3-none-any.whl (15.8 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.8/15.8 MB\u001b[0m \u001b[31m81.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting python-multipart\n", " Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 KB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from gradio) (1.4.4)\n", "Collecting ffmpy\n", " Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.9/dist-packages (from gradio) (2023.3.0)\n", "Collecting huggingface-hub\n", " Downloading huggingface_hub-0.13.3-py3-none-any.whl (199 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.8/199.8 KB\u001b[0m \u001b[31m25.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting markdown-it-py[linkify]>=2.0.0\n", " Downloading markdown_it_py-2.2.0-py3-none-any.whl (84 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 KB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting fastapi\n", " Downloading fastapi-0.95.0-py3-none-any.whl (57 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.1/57.1 KB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.9/dist-packages (from gradio) (4.2.2)\n", "Collecting aiofiles\n", " Downloading aiofiles-23.1.0-py3-none-any.whl (14 kB)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.9/dist-packages (from gradio) (3.1.2)\n", "Collecting httpx\n", " Downloading httpx-0.23.3-py3-none-any.whl (71 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.5/71.5 KB\u001b[0m \u001b[31m10.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from gradio) (2.27.1)\n", "Collecting semantic-version\n", " Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n", "Collecting aiohttp\n", " Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m75.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pillow in /usr/local/lib/python3.9/dist-packages (from gradio) (8.4.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from gradio) (1.22.4)\n", "Collecting pydub\n", " Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n", "Collecting mdit-py-plugins<=0.3.3\n", " Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 KB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.9/dist-packages (from gradio) (6.0)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from gradio) (4.5.0)\n", "Requirement already satisfied: pydantic in /usr/local/lib/python3.9/dist-packages (from gradio) (1.10.6)\n", "Collecting uvicorn\n", " Downloading uvicorn-0.21.1-py3-none-any.whl (57 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.8/57.8 KB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.9/dist-packages (from gradio) (3.7.1)\n", "Collecting websockets>=10.0\n", " Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.5/106.5 KB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting orjson\n", " Downloading orjson-3.8.8-cp39-cp39-manylinux_2_28_x86_64.whl (143 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.5/143.5 KB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: markupsafe in /usr/local/lib/python3.9/dist-packages (from gradio) (2.1.2)\n", "Requirement already satisfied: toolz in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n", "Requirement already satisfied: entrypoints in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (0.4)\n", "Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n", "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub->gradio) (23.0)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from huggingface-hub->gradio) (3.10.0)\n", "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub->gradio) (4.65.0)\n", "Collecting mdurl~=0.1\n", " Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n", "Collecting linkify-it-py<3,>=1\n", " Downloading linkify_it_py-2.0.0-py3-none-any.whl (19 kB)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->gradio) (2022.7.1)\n", "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->gradio) (2.8.2)\n", "Collecting frozenlist>=1.1.1\n", " Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m158.8/158.8 KB\u001b[0m \u001b[31m23.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting yarl<2.0,>=1.0\n", " Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m264.6/264.6 KB\u001b[0m \u001b[31m32.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->gradio) (2.0.12)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->gradio) (22.2.0)\n", "Collecting aiosignal>=1.1.2\n", " Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n", "Collecting multidict<7.0,>=4.5\n", " Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.2/114.2 KB\u001b[0m \u001b[31m14.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting async-timeout<5.0,>=4.0.0a3\n", " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", "Collecting starlette<0.27.0,>=0.26.1\n", " Downloading starlette-0.26.1-py3-none-any.whl (66 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.9/66.9 KB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: certifi in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (2022.12.7)\n", "Collecting httpcore<0.17.0,>=0.15.0\n", " Downloading httpcore-0.16.3-py3-none-any.whl (69 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.6/69.6 KB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting sniffio\n", " Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)\n", "Collecting rfc3986[idna2008]<2,>=1.3\n", " Downloading rfc3986-1.5.0-py2.py3-none-any.whl (31 kB)\n", "Requirement already satisfied: importlib-resources>=3.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (5.12.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (3.0.9)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (0.11.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (4.39.2)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (1.4.4)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (1.0.7)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->gradio) (3.4)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->gradio) (1.26.15)\n", "Collecting h11>=0.8\n", " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 KB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.9/dist-packages (from uvicorn->gradio) (8.1.3)\n", "Collecting anyio<5.0,>=3.0\n", " Downloading anyio-3.6.2-py3-none-any.whl (80 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m80.6/80.6 KB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.9/dist-packages (from importlib-resources>=3.2.0->matplotlib->gradio) (3.15.0)\n", "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.9/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n", "Collecting uc-micro-py\n", " Downloading uc_micro_py-1.0.1-py3-none-any.whl (6.2 kB)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n", "Building wheels for collected packages: ffmpy\n", " Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4707 sha256=ac500285e1c309a2a0132a7e34d03bee2825e71fe1fd9cf0b236f1fdaacec41c\n", " Stored in directory: /root/.cache/pip/wheels/91/e2/96/f676aa08bfd789328c6576cd0f1fde4a3d686703bb0c247697\n", "Successfully built ffmpy\n", "Installing collected packages: rfc3986, pydub, ffmpy, websockets, uc-micro-py, sniffio, semantic-version, python-multipart, orjson, multidict, mdurl, h11, frozenlist, async-timeout, aiofiles, yarl, uvicorn, markdown-it-py, linkify-it-py, huggingface-hub, anyio, aiosignal, starlette, mdit-py-plugins, httpcore, aiohttp, httpx, fastapi, gradio\n", "Successfully installed aiofiles-23.1.0 aiohttp-3.8.4 aiosignal-1.3.1 anyio-3.6.2 async-timeout-4.0.2 fastapi-0.95.0 ffmpy-0.3.0 frozenlist-1.3.3 gradio-3.23.0 h11-0.14.0 httpcore-0.16.3 httpx-0.23.3 huggingface-hub-0.13.3 linkify-it-py-2.0.0 markdown-it-py-2.2.0 mdit-py-plugins-0.3.3 mdurl-0.1.2 multidict-6.0.4 orjson-3.8.8 pydub-0.25.1 python-multipart-0.0.6 rfc3986-1.5.0 semantic-version-2.10.0 sniffio-1.3.0 starlette-0.26.1 uc-micro-py-1.0.1 uvicorn-0.21.1 websockets-10.4 yarl-1.8.2\n" ] } ], "source": [ "!pip install gradio" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "id": "Tbyam0pYPr-F" }, "outputs": [], "source": [ "# making a directory for gradio web app\n", "gradio_dir = \"/content/Birds_Classification\"\n", "os.mkdir(gradio_dir)" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "id": "PA_D7ljaUlXz" }, "outputs": [], "source": [ "# saving the class names to a txt file\n", "with open(\"/content/Birds_Classification/class_names.txt\", \"w\") as f:\n", " for class_name in class_names:\n", " f.write(class_name + \"\\n\")" ] }, { "cell_type": "code", "execution_count": 109, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lEUn2-ZVYrdz", "outputId": "0d35aef8-71e1-4188-f94c-f90f84a592f9" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "copied\n" ] } ], "source": [ "# copying the model to the app folder\n", "shutil.copy2(\"/content/ViT_B16_510_classes.pth\", \"/content/Birds_Classification/\")\n", "print(\"copied\")" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "GKK2HNogbi_H", "outputId": "c0858b1e-4385-4fef-c262-776c7ddc1c1f" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'/content/Dataset/test'" ] }, "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_dir" ] }, { "cell_type": "code", "execution_count": 129, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8WIUnPkfbPFE", "outputId": "87e092ea-31e5-4b49-f294-cb1b1bca8879" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "copied\n" ] } ], "source": [ "# choosing 5 random images for examples\n", "rand_imgs = []\n", "int unique = 0\n", "for dir in os.listdir(test_dir)[:5]:\n", " img = random.sample([img_list for img_list in os.listdir(test_dir + \"/\" + dir)], k=1)[0]\n", " rand_imgs.append(test_dir + \"/\" + dir + \"/\" + img + unique)\n", " unique+=1\n", "\n", "# create a folder in web app\n", "os.mkdir(\"/content/Birds_Classification/examples\")\n", "\n", "# copying the images to web app folder\n", "for img in rand_imgs:\n", " shutil.copy2(img, \"/content/Birds_Classification/examples\")\n", "\n", "print(\"copied\")" ] }, { "cell_type": "markdown", "metadata": { "id": "xf7z-ziGgGZ5" }, "source": [ "### 7.1. Creating files that helps in loading and predicting an image" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-djgludkPlIs", "outputId": "aeecac88-11c8-4667-b1e8-45ea245b4efe" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Writing /content/Birds_Classification/model.py\n" ] } ], "source": [ "%%writefile /content/Birds_Classification/model.py\n", "\n", "import torch\n", "import torchvision\n", "\n", "from torch import nn\n", "\n", "def create_vit_b16(num_classes: int):\n", " \"\"\"\n", " Creates a ViT model and return the model with its transforms\n", " \"\"\"\n", "\n", " vit_weights = torchvision.models.ViT_B_16_Weights.DEFAULT\n", "\n", " vit_b16_model = torchvision.models.vit_b_16(weights=vit_weights)\n", "\n", " vit_transforms = vit_weights.transforms()\n", "\n", " # freeze all the layers\n", " for param in vit_b16_model.parameters():\n", " param.requires_grad = False\n", " \n", " # changing the head\n", " vit_b16_model.heads = nn.Sequential(\n", " nn.Linear(in_features=768, out_features=num_classes)\n", " )\n", "\n", " return vit_b16_model, vit_transforms" ] }, { "cell_type": "code", "execution_count": 167, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ZgxiUqseTno-", "outputId": "0b3806f1-3772-456a-b2db-2d8afbdda901" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting /content/Birds_Classification/app.py\n" ] } ], "source": [ "%%writefile /content/Birds_Classification/app.py\n", "\n", "import torch\n", "import torchvision\n", "\n", "import gradio as gr\n", "from model import create_vit_b16\n", "\n", "# loading the classnames\n", "class_names = []\n", "with open(\"class_names.txt\", \"r\") as f:\n", " for cls in f.readlines():\n", " class_names.append(cls[:-1])\n", "\n", "# creating a ViT model\n", "vit_b16_model, vit_transforms = create_vit_b16(num_classes=len(class_names))\n", "\n", "vit_b16_model.load_state_dict(\n", " torch.load(\n", " f=\"ViT_B16_510_classes.pth\",\n", " map_location=torch.device(\"cpu\")\n", " )\n", ")\n", "\n", "# creating a predict function\n", "def predict(img):\n", " \"\"\"\n", " Makes prediction on the given image\n", " \"\"\"\n", "\n", " img = vit_transforms(img).unsqueeze(dim=0)\n", "\n", " vit_b16_model.eval()\n", " with torch.inference_mode():\n", " pred_logits = vit_b16_model(img)\n", " preds = torch.softmax(pred_logits, dim=1)\n", " \n", " # Create a prediction label and prediction probability dictionary for each prediction class\n", " pred_and_prob_labels = {class_names[i]: preds[i].item() for i in range(len(class_names))}\n", "\n", " return pred_and_prob_labels\n", "\n", "# creating title, description for the webpage\n", "title = \"Birds Classifier ðŸŠķ\"\n", "description = \"Classifies an Image of a Bird to any one of the 510 species.\"\n", "\n", "# creating examples list\n", "examples_list = [[\"examples/\" + img] for img in os.listdir(\"examples\")]\n", "\n", "# Building a gradio app\n", "bird_classification = gr.Interface(\n", " fn=predict,\n", " inputs=gr.Image(type=\"pil\"),\n", " outputs=gr.Label(num_top_classes=3, label=\"Prediction\"),\n", " examples = examples_list,\n", " title=title,\n", " description=description\n", ")\n", "\n", "# launching the web app\n", "bird_classification.launch()" ] }, { "cell_type": "markdown", "metadata": { "id": "LU935ShUf4ez" }, "source": [ "### 7.2. Creating Requirements file" ] }, { "cell_type": "code", "execution_count": 133, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "gy7glEG0ggqA", "outputId": "2377c043-4ec4-4462-b992-8151beed29c1" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'1.13.1+cu116'" ] }, "execution_count": 133, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.__version__" ] }, { "cell_type": "code", "execution_count": 134, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "jwPZwVGbgjX4", "outputId": "14fbf5bb-07f0-452d-a697-840240c7f0b4" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'0.14.1+cu116'" ] }, "execution_count": 134, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torchvision.__version__" ] }, { "cell_type": "code", "execution_count": 136, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "Y9bngxWmgjKj", "outputId": "34b1e916-7842-4776-b7a5-83c3661d9f7a" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'3.23.0'" ] }, "execution_count": 136, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gr.__version__" ] }, { "cell_type": "code", "execution_count": 137, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "H1MieGcwgaRe", "outputId": "63d92b59-20ae-4eb7-b15f-6f3fa479eb52" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Writing /content/Birds_Classification/requirements.txt\n" ] } ], "source": [ "%%writefile /content/Birds_Classification/requirements.txt\n", "torch==1.13.1\n", "torchvision==0.14.1\n", "gradio==3.23.0" ] }, { "cell_type": "code", "execution_count": 168, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "I_alNAsphHyb", "outputId": "d5cae755-2983-47b6-8b2d-df778e301dca" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " adding: Birds_Classification/ (stored 0%)\n", " adding: Birds_Classification/requirements.txt (deflated 4%)\n", " adding: Birds_Classification/examples/ (stored 0%)\n", " adding: Birds_Classification/examples/2.jpg (deflated 1%)\n", " adding: Birds_Classification/examples/1.jpg (deflated 1%)\n", " adding: Birds_Classification/examples/5.jpg (deflated 1%)\n", " adding: Birds_Classification/examples/3.jpg (deflated 1%)\n", " adding: Birds_Classification/class_names.txt (deflated 58%)\n", " adding: Birds_Classification/ViT_B16_510_classes.pth (deflated 7%)\n", " adding: Birds_Classification/model.py (deflated 49%)\n", " adding: Birds_Classification/app.py (deflated 53%)\n" ] } ], "source": [ "# zipping the web app folder for deployment\n", "!zip -r Birds_Classification.zip Birds_Classification/ -x \"*.pyc\" \"*.ipynb\" \"*__pycache__*\" \"*ipynb_checkpoints*\"" ] }, { "cell_type": "code", "execution_count": 169, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 36 }, "id": "zKv9MFtriSzA", "outputId": "1e8a970f-a9af-457c-f96b-95253eeca06c" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" }, "text/plain": [ "'/content/drive/MyDrive/Colab Notebooks/Birds_Classification.zip'" ] }, "execution_count": 169, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# copying the zip to drive\n", "shutil.copy2(\"/content/Birds_Classification.zip\", \"/content/drive/MyDrive/Colab Notebooks\")" ] }, { "cell_type": "markdown", "metadata": { "id": "LqeyO-dmg3z4" }, "source": [ "- The model is deployed in Hugging Face Spaces\n", "- Here's the [Link to the Website](https://huggingface.co/spaces/Kathir0011/Birds_Classification)" ] }, { "cell_type": "code", "execution_count": 177, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 622 }, "id": "xLe6LVqPxYYt", "outputId": "e17c1fd7-4881-492b-c6db-8705cfb90497" }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 177, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Embedding the webpage to colab\n", "from IPython.display import IFrame\n", "\n", "IFrame(src=\"https://kathir0011-birds-classification.hf.space\", width=800, height=600)" ] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Pytorch", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "03aac842e3a64dd6aa2bcaecc74ff3ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "08266d9d1c3549e4aa23472fd0574c0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ad4439f7a7f74505b64d49007eb8d852", "placeholder": "​", "style": "IPY_MODEL_11462a953f20473f95138e077e409d7b", "value": " 35.2M/35.2M [00:00<00:00, 163MB/s]" } }, "0b868475482847a0a722f726bf554583": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "11462a953f20473f95138e077e409d7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "177192b9d8a443e09080d3bdfef5acad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "19289af1b117419cb49123867c31ac9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "19314c6c22344c108f5f59eecaa0fb7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ebb233dd62274dc49983c36d14c2d6d2", "placeholder": "​", "style": "IPY_MODEL_1c76184d464848d587146bf5b26ee5ae", "value": "100%" } }, "19e9aa650d324b53b600e915399be966": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1c76184d464848d587146bf5b26ee5ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "22b60cc64d0c4e97a078a8a207d4ed63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dac45dfedff648c693e0f2cc5873a358", "max": 5, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_61f03b3c8e1d4342aeb6b162b3d74ed8", "value": 5 } }, "37ef5306917b42489a9d2138c5f292ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "3d82e76000b74f39b95f755c01dd9200": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_60202a105d434ca485932e576be8b8c6", "IPY_MODEL_22b60cc64d0c4e97a078a8a207d4ed63", "IPY_MODEL_6f29c9522d5d485fbab850c981bd5050" ], "layout": "IPY_MODEL_0b868475482847a0a722f726bf554583" } }, "43a0e39c43e540a1af738953ce9109f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4b71be14985e4595b13c5bfde1806353": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fd84c80116464d27950b87af4fe4885d", "max": 36882185, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_7c37a8b0cc814bb1bdbc786a16ac8e55", "value": 36882185 } }, "4f16b89244ed457da219482da0dc93d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b8f1555bf3ad40e7a432058077409fbe", "placeholder": "​", "style": "IPY_MODEL_891dff3d7aa94319831b6bf43409eb06", "value": " 330M/330M [00:05<00:00, 24.6MB/s]" } }, "60202a105d434ca485932e576be8b8c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8aa0bd1a8bff4e4a8ffd599a048cabae", "placeholder": "​", "style": "IPY_MODEL_177192b9d8a443e09080d3bdfef5acad", "value": "100%" } }, "61f03b3c8e1d4342aeb6b162b3d74ed8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6bd9771b1b254f80a107c862f99b0671": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_931a61134f1d4a21804d736146fe0ad0", "max": 346328529, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_8c310216b5d94b76b20e681f0a0a32fb", "value": 346328529 } }, "6de699d1f36a4903835bf416c2bc5d16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_03aac842e3a64dd6aa2bcaecc74ff3ae", "placeholder": "​", "style": "IPY_MODEL_71a89bcf46d04041ae0c903b46c09bd3", "value": "100%" } }, "6f29c9522d5d485fbab850c981bd5050": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ac4dd35695d14533909fc3afe899ac66", "placeholder": "​", "style": "IPY_MODEL_73bdebb5710147138d94e1001d1f864e", "value": " 5/5 [18:29<00:00, 220.22s/it]" } }, "71a89bcf46d04041ae0c903b46c09bd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "73bdebb5710147138d94e1001d1f864e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7a2d0f7bc30044b28d4ba3e1b5024957": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d2ec048541f0417f90665c289e43dbd6", "max": 5, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_37ef5306917b42489a9d2138c5f292ce", "value": 5 } }, "7c37a8b0cc814bb1bdbc786a16ac8e55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "891dff3d7aa94319831b6bf43409eb06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8aa0bd1a8bff4e4a8ffd599a048cabae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8c310216b5d94b76b20e681f0a0a32fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8cebbf4586a34db4b78ef5f0874626b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_6de699d1f36a4903835bf416c2bc5d16", "IPY_MODEL_6bd9771b1b254f80a107c862f99b0671", "IPY_MODEL_4f16b89244ed457da219482da0dc93d6" ], "layout": "IPY_MODEL_19289af1b117419cb49123867c31ac9d" } }, "931a61134f1d4a21804d736146fe0ad0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac4dd35695d14533909fc3afe899ac66": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ad4439f7a7f74505b64d49007eb8d852": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b8f1555bf3ad40e7a432058077409fbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bf4c427aac7e421c8ff15cc77c7db021": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c9ce898b84ce40378f4169407383fa7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ceb775b636e04c6cbfaf12b46f0b032f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d47dbb0cfe7b4a948d1e24d00cef9d4f", "placeholder": "​", "style": "IPY_MODEL_43a0e39c43e540a1af738953ce9109f5", "value": "100%" } }, "d2ec048541f0417f90665c289e43dbd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d308e51337c749c3849b3b5bd5357a28": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d47dbb0cfe7b4a948d1e24d00cef9d4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dac45dfedff648c693e0f2cc5873a358": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e2ca06e986b141138fd87ac31e22ecd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_19314c6c22344c108f5f59eecaa0fb7e", "IPY_MODEL_7a2d0f7bc30044b28d4ba3e1b5024957", "IPY_MODEL_f38eb29377dc4c56b3d115f4c1ffd5a1" ], "layout": "IPY_MODEL_bf4c427aac7e421c8ff15cc77c7db021" } }, "e315d68c4104450da512e11b3d29dcc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ceb775b636e04c6cbfaf12b46f0b032f", "IPY_MODEL_4b71be14985e4595b13c5bfde1806353", "IPY_MODEL_08266d9d1c3549e4aa23472fd0574c0b" ], "layout": "IPY_MODEL_19e9aa650d324b53b600e915399be966" } }, "ebb233dd62274dc49983c36d14c2d6d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f38eb29377dc4c56b3d115f4c1ffd5a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d308e51337c749c3849b3b5bd5357a28", "placeholder": "​", "style": "IPY_MODEL_c9ce898b84ce40378f4169407383fa7c", "value": " 5/5 [12:58<00:00, 153.64s/it]" } }, "fd84c80116464d27950b87af4fe4885d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } } } }, "nbformat": 4, "nbformat_minor": 0 }