Kantkamal's picture
Update app.py
1b2f3bc verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import os
token = os.getenv("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained("Kantkamal/Gujarati-BERT-NER")
model = AutoModelForTokenClassification.from_pretrained("Kantkamal/Gujarati-BERT-NER")
def get_ner(sentence):
tok_sentence = tokenizer(sentence, return_tensors='pt')
with torch.no_grad():
logits = model(**tok_sentence).logits.argmax(-1)
predicted_tokens_classes = [
model.config.id2label[t.item()] for t in logits[0]]
predicted_labels = []
previous_token_id = 0
word_ids = tok_sentence.word_ids()
for word_index in range(len(word_ids)):
if word_ids[word_index] == None:
previous_token_id = word_ids[word_index]
elif word_ids[word_index] == previous_token_id:
previous_token_id = word_ids[word_index]
else:
predicted_labels.append(predicted_tokens_classes[word_index])
previous_token_id = word_ids[word_index]
ner_output = []
for index in range(len(sentence.split(' '))):
ner_output.append(
(sentence.split(' ')[index], predicted_labels[index]))
return ner_output
iface = gr.Interface(get_ner,
gr.Textbox(placeholder="Enter sentence here..."),
["highlight"], description='The language covered by Gujarati-BERT-NER is: Gujarati .',
examples=['નડિયાદમાં જન્‍મેલા સરદાર વલ્લભભાઈ પટેલ ભારતીય બંધારણસભાના સભ્ય હતા.'], title='Gujarati-BERT-NER',
article='Gujarati-BERT-NER is a fine-tuned Named Entity Recognition (NER) model for the Gujarati language based on the GujaratiBERT model. It has been trained on the Naamapadam dataset.')
iface.launch()