Spaces:
Paused
Paused
| # # Unity ML-Agents Toolkit | |
| # ## ML-Agents Learning (POCA) | |
| # Contains an implementation of MA-POCA. | |
| from collections import defaultdict | |
| from typing import cast, Dict, Union, Any, Type | |
| import numpy as np | |
| from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod | |
| from mlagents_envs.logging_util import get_logger | |
| from mlagents_envs.base_env import BehaviorSpec | |
| from mlagents.trainers.buffer import BufferKey, RewardSignalUtil | |
| from mlagents.trainers.trainer.on_policy_trainer import OnPolicyTrainer | |
| from mlagents.trainers.trainer.trainer_utils import lambda_return | |
| from mlagents.trainers.policy import Policy | |
| from mlagents.trainers.policy.torch_policy import TorchPolicy | |
| from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer, POCASettings | |
| from mlagents.trainers.trajectory import Trajectory | |
| from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers | |
| from mlagents.trainers.settings import TrainerSettings | |
| from mlagents.trainers.torch_entities.networks import SimpleActor, SharedActorCritic | |
| logger = get_logger(__name__) | |
| TRAINER_NAME = "poca" | |
| class POCATrainer(OnPolicyTrainer): | |
| """The POCATrainer is an implementation of the MA-POCA algorithm.""" | |
| def __init__( | |
| self, | |
| behavior_name: str, | |
| reward_buff_cap: int, | |
| trainer_settings: TrainerSettings, | |
| training: bool, | |
| load: bool, | |
| seed: int, | |
| artifact_path: str, | |
| ): | |
| """ | |
| Responsible for collecting experiences and training POCA model. | |
| :param behavior_name: The name of the behavior associated with trainer config | |
| :param reward_buff_cap: Max reward history to track in the reward buffer | |
| :param trainer_settings: The parameters for the trainer. | |
| :param training: Whether the trainer is set for training. | |
| :param load: Whether the model should be loaded. | |
| :param seed: The seed the model will be initialized with | |
| :param artifact_path: The directory within which to store artifacts from this trainer. | |
| """ | |
| super().__init__( | |
| behavior_name, | |
| reward_buff_cap, | |
| trainer_settings, | |
| training, | |
| load, | |
| seed, | |
| artifact_path, | |
| ) | |
| self.hyperparameters: POCASettings = cast( | |
| POCASettings, self.trainer_settings.hyperparameters | |
| ) | |
| self.seed = seed | |
| self.policy: TorchPolicy = None # type: ignore | |
| self.optimizer: TorchPOCAOptimizer = None # type: ignore | |
| self.collected_group_rewards: Dict[str, int] = defaultdict(lambda: 0) | |
| def _process_trajectory(self, trajectory: Trajectory) -> None: | |
| """ | |
| Takes a trajectory and processes it, putting it into the update buffer. | |
| Processing involves calculating value and advantage targets for model updating step. | |
| :param trajectory: The Trajectory tuple containing the steps to be processed. | |
| """ | |
| super()._process_trajectory(trajectory) | |
| agent_id = trajectory.agent_id # All the agents should have the same ID | |
| agent_buffer_trajectory = trajectory.to_agentbuffer() | |
| # Update the normalization | |
| if self.is_training: | |
| self.policy.actor.update_normalization(agent_buffer_trajectory) | |
| self.optimizer.critic.update_normalization(agent_buffer_trajectory) | |
| # Get all value estimates | |
| ( | |
| value_estimates, | |
| baseline_estimates, | |
| value_next, | |
| value_memories, | |
| baseline_memories, | |
| ) = self.optimizer.get_trajectory_and_baseline_value_estimates( | |
| agent_buffer_trajectory, | |
| trajectory.next_obs, | |
| trajectory.next_group_obs, | |
| trajectory.all_group_dones_reached | |
| and trajectory.done_reached | |
| and not trajectory.interrupted, | |
| ) | |
| if value_memories is not None and baseline_memories is not None: | |
| agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) | |
| agent_buffer_trajectory[BufferKey.BASELINE_MEMORY].set(baseline_memories) | |
| for name, v in value_estimates.items(): | |
| agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend( | |
| v | |
| ) | |
| agent_buffer_trajectory[ | |
| RewardSignalUtil.baseline_estimates_key(name) | |
| ].extend(baseline_estimates[name]) | |
| self._stats_reporter.add_stat( | |
| f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Baseline Estimate", | |
| np.mean(baseline_estimates[name]), | |
| ) | |
| self._stats_reporter.add_stat( | |
| f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate", | |
| np.mean(value_estimates[name]), | |
| ) | |
| self.collected_rewards["environment"][agent_id] += np.sum( | |
| agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] | |
| ) | |
| self.collected_group_rewards[agent_id] += np.sum( | |
| agent_buffer_trajectory[BufferKey.GROUP_REWARD] | |
| ) | |
| for name, reward_signal in self.optimizer.reward_signals.items(): | |
| evaluate_result = ( | |
| reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength | |
| ) | |
| agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend( | |
| evaluate_result | |
| ) | |
| # Report the reward signals | |
| self.collected_rewards[name][agent_id] += np.sum(evaluate_result) | |
| # Compute lambda returns and advantage | |
| tmp_advantages = [] | |
| for name in self.optimizer.reward_signals: | |
| local_rewards = np.array( | |
| agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].get_batch(), | |
| dtype=np.float32, | |
| ) | |
| baseline_estimate = agent_buffer_trajectory[ | |
| RewardSignalUtil.baseline_estimates_key(name) | |
| ].get_batch() | |
| v_estimates = agent_buffer_trajectory[ | |
| RewardSignalUtil.value_estimates_key(name) | |
| ].get_batch() | |
| lambd_returns = lambda_return( | |
| r=local_rewards, | |
| value_estimates=v_estimates, | |
| gamma=self.optimizer.reward_signals[name].gamma, | |
| lambd=self.hyperparameters.lambd, | |
| value_next=value_next[name], | |
| ) | |
| local_advantage = np.array(lambd_returns) - np.array(baseline_estimate) | |
| agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set( | |
| lambd_returns | |
| ) | |
| agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set( | |
| local_advantage | |
| ) | |
| tmp_advantages.append(local_advantage) | |
| # Get global advantages | |
| global_advantages = list( | |
| np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0) | |
| ) | |
| agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages) | |
| self._append_to_update_buffer(agent_buffer_trajectory) | |
| # If this was a terminal trajectory, append stats and reset reward collection | |
| if trajectory.done_reached: | |
| self._update_end_episode_stats(agent_id, self.optimizer) | |
| # Remove dead agents from group reward recording | |
| if not trajectory.all_group_dones_reached: | |
| self.collected_group_rewards.pop(agent_id) | |
| # If the whole team is done, average the remaining group rewards. | |
| if trajectory.all_group_dones_reached and trajectory.done_reached: | |
| self.stats_reporter.add_stat( | |
| "Environment/Group Cumulative Reward", | |
| self.collected_group_rewards.get(agent_id, 0), | |
| aggregation=StatsAggregationMethod.HISTOGRAM, | |
| ) | |
| self.collected_group_rewards.pop(agent_id) | |
| def _is_ready_update(self): | |
| """ | |
| Returns whether or not the trainer has enough elements to run update model | |
| :return: A boolean corresponding to whether or not update_model() can be run | |
| """ | |
| size_of_buffer = self.update_buffer.num_experiences | |
| return size_of_buffer > self.hyperparameters.buffer_size | |
| def end_episode(self) -> None: | |
| """ | |
| A signal that the Episode has ended. The buffer must be reset. | |
| Get only called when the academy resets. For POCA, we should | |
| also zero out the group rewards. | |
| """ | |
| super().end_episode() | |
| self.collected_group_rewards.clear() | |
| def create_policy( | |
| self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec | |
| ) -> TorchPolicy: | |
| """ | |
| Creates a policy with a PyTorch backend and POCA hyperparameters | |
| :param parsed_behavior_id: | |
| :param behavior_spec: specifications for policy construction | |
| :return policy | |
| """ | |
| actor_cls: Union[Type[SimpleActor], Type[SharedActorCritic]] = SimpleActor | |
| actor_kwargs: Dict[str, Any] = { | |
| "conditional_sigma": False, | |
| "tanh_squash": False, | |
| } | |
| policy = TorchPolicy( | |
| self.seed, | |
| behavior_spec, | |
| self.trainer_settings.network_settings, | |
| actor_cls, | |
| actor_kwargs, | |
| ) | |
| return policy | |
| def create_optimizer(self) -> TorchPOCAOptimizer: | |
| return TorchPOCAOptimizer(self.policy, self.trainer_settings) | |
| def get_policy(self, name_behavior_id: str) -> Policy: | |
| """ | |
| Gets policy from trainer associated with name_behavior_id | |
| :param name_behavior_id: full identifier of policy | |
| """ | |
| return self.policy | |
| def get_trainer_name() -> str: | |
| return TRAINER_NAME | |