Spaces:
Paused
Paused
| from operator import gt, lt | |
| from .libmp.backend import xrange | |
| from .functions.functions import SpecialFunctions | |
| from .functions.rszeta import RSCache | |
| from .calculus.quadrature import QuadratureMethods | |
| from .calculus.inverselaplace import LaplaceTransformInversionMethods | |
| from .calculus.calculus import CalculusMethods | |
| from .calculus.optimization import OptimizationMethods | |
| from .calculus.odes import ODEMethods | |
| from .matrices.matrices import MatrixMethods | |
| from .matrices.calculus import MatrixCalculusMethods | |
| from .matrices.linalg import LinearAlgebraMethods | |
| from .matrices.eigen import Eigen | |
| from .identification import IdentificationMethods | |
| from .visualization import VisualizationMethods | |
| from . import libmp | |
| class Context(object): | |
| pass | |
| class StandardBaseContext(Context, | |
| SpecialFunctions, | |
| RSCache, | |
| QuadratureMethods, | |
| LaplaceTransformInversionMethods, | |
| CalculusMethods, | |
| MatrixMethods, | |
| MatrixCalculusMethods, | |
| LinearAlgebraMethods, | |
| Eigen, | |
| IdentificationMethods, | |
| OptimizationMethods, | |
| ODEMethods, | |
| VisualizationMethods): | |
| NoConvergence = libmp.NoConvergence | |
| ComplexResult = libmp.ComplexResult | |
| def __init__(ctx): | |
| ctx._aliases = {} | |
| # Call those that need preinitialization (e.g. for wrappers) | |
| SpecialFunctions.__init__(ctx) | |
| RSCache.__init__(ctx) | |
| QuadratureMethods.__init__(ctx) | |
| LaplaceTransformInversionMethods.__init__(ctx) | |
| CalculusMethods.__init__(ctx) | |
| MatrixMethods.__init__(ctx) | |
| def _init_aliases(ctx): | |
| for alias, value in ctx._aliases.items(): | |
| try: | |
| setattr(ctx, alias, getattr(ctx, value)) | |
| except AttributeError: | |
| pass | |
| _fixed_precision = False | |
| # XXX | |
| verbose = False | |
| def warn(ctx, msg): | |
| print("Warning:", msg) | |
| def bad_domain(ctx, msg): | |
| raise ValueError(msg) | |
| def _re(ctx, x): | |
| if hasattr(x, "real"): | |
| return x.real | |
| return x | |
| def _im(ctx, x): | |
| if hasattr(x, "imag"): | |
| return x.imag | |
| return ctx.zero | |
| def _as_points(ctx, x): | |
| return x | |
| def fneg(ctx, x, **kwargs): | |
| return -ctx.convert(x) | |
| def fadd(ctx, x, y, **kwargs): | |
| return ctx.convert(x)+ctx.convert(y) | |
| def fsub(ctx, x, y, **kwargs): | |
| return ctx.convert(x)-ctx.convert(y) | |
| def fmul(ctx, x, y, **kwargs): | |
| return ctx.convert(x)*ctx.convert(y) | |
| def fdiv(ctx, x, y, **kwargs): | |
| return ctx.convert(x)/ctx.convert(y) | |
| def fsum(ctx, args, absolute=False, squared=False): | |
| if absolute: | |
| if squared: | |
| return sum((abs(x)**2 for x in args), ctx.zero) | |
| return sum((abs(x) for x in args), ctx.zero) | |
| if squared: | |
| return sum((x**2 for x in args), ctx.zero) | |
| return sum(args, ctx.zero) | |
| def fdot(ctx, xs, ys=None, conjugate=False): | |
| if ys is not None: | |
| xs = zip(xs, ys) | |
| if conjugate: | |
| cf = ctx.conj | |
| return sum((x*cf(y) for (x,y) in xs), ctx.zero) | |
| else: | |
| return sum((x*y for (x,y) in xs), ctx.zero) | |
| def fprod(ctx, args): | |
| prod = ctx.one | |
| for arg in args: | |
| prod *= arg | |
| return prod | |
| def nprint(ctx, x, n=6, **kwargs): | |
| """ | |
| Equivalent to ``print(nstr(x, n))``. | |
| """ | |
| print(ctx.nstr(x, n, **kwargs)) | |
| def chop(ctx, x, tol=None): | |
| """ | |
| Chops off small real or imaginary parts, or converts | |
| numbers close to zero to exact zeros. The input can be a | |
| single number or an iterable:: | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = False | |
| >>> chop(5+1e-10j, tol=1e-9) | |
| mpf('5.0') | |
| >>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2])) | |
| [1.0, 0.0, 3.0, -4.0, 2.0] | |
| The tolerance defaults to ``100*eps``. | |
| """ | |
| if tol is None: | |
| tol = 100*ctx.eps | |
| try: | |
| x = ctx.convert(x) | |
| absx = abs(x) | |
| if abs(x) < tol: | |
| return ctx.zero | |
| if ctx._is_complex_type(x): | |
| #part_tol = min(tol, absx*tol) | |
| part_tol = max(tol, absx*tol) | |
| if abs(x.imag) < part_tol: | |
| return x.real | |
| if abs(x.real) < part_tol: | |
| return ctx.mpc(0, x.imag) | |
| except TypeError: | |
| if isinstance(x, ctx.matrix): | |
| return x.apply(lambda a: ctx.chop(a, tol)) | |
| if hasattr(x, "__iter__"): | |
| return [ctx.chop(a, tol) for a in x] | |
| return x | |
| def almosteq(ctx, s, t, rel_eps=None, abs_eps=None): | |
| r""" | |
| Determine whether the difference between `s` and `t` is smaller | |
| than a given epsilon, either relatively or absolutely. | |
| Both a maximum relative difference and a maximum difference | |
| ('epsilons') may be specified. The absolute difference is | |
| defined as `|s-t|` and the relative difference is defined | |
| as `|s-t|/\max(|s|, |t|)`. | |
| If only one epsilon is given, both are set to the same value. | |
| If none is given, both epsilons are set to `2^{-p+m}` where | |
| `p` is the current working precision and `m` is a small | |
| integer. The default setting typically allows :func:`~mpmath.almosteq` | |
| to be used to check for mathematical equality | |
| in the presence of small rounding errors. | |
| **Examples** | |
| >>> from mpmath import * | |
| >>> mp.dps = 15 | |
| >>> almosteq(3.141592653589793, 3.141592653589790) | |
| True | |
| >>> almosteq(3.141592653589793, 3.141592653589700) | |
| False | |
| >>> almosteq(3.141592653589793, 3.141592653589700, 1e-10) | |
| True | |
| >>> almosteq(1e-20, 2e-20) | |
| True | |
| >>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0) | |
| False | |
| """ | |
| t = ctx.convert(t) | |
| if abs_eps is None and rel_eps is None: | |
| rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4) | |
| if abs_eps is None: | |
| abs_eps = rel_eps | |
| elif rel_eps is None: | |
| rel_eps = abs_eps | |
| diff = abs(s-t) | |
| if diff <= abs_eps: | |
| return True | |
| abss = abs(s) | |
| abst = abs(t) | |
| if abss < abst: | |
| err = diff/abst | |
| else: | |
| err = diff/abss | |
| return err <= rel_eps | |
| def arange(ctx, *args): | |
| r""" | |
| This is a generalized version of Python's :func:`~mpmath.range` function | |
| that accepts fractional endpoints and step sizes and | |
| returns a list of ``mpf`` instances. Like :func:`~mpmath.range`, | |
| :func:`~mpmath.arange` can be called with 1, 2 or 3 arguments: | |
| ``arange(b)`` | |
| `[0, 1, 2, \ldots, x]` | |
| ``arange(a, b)`` | |
| `[a, a+1, a+2, \ldots, x]` | |
| ``arange(a, b, h)`` | |
| `[a, a+h, a+h, \ldots, x]` | |
| where `b-1 \le x < b` (in the third case, `b-h \le x < b`). | |
| Like Python's :func:`~mpmath.range`, the endpoint is not included. To | |
| produce ranges where the endpoint is included, :func:`~mpmath.linspace` | |
| is more convenient. | |
| **Examples** | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = False | |
| >>> arange(4) | |
| [mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')] | |
| >>> arange(1, 2, 0.25) | |
| [mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')] | |
| >>> arange(1, -1, -0.75) | |
| [mpf('1.0'), mpf('0.25'), mpf('-0.5')] | |
| """ | |
| if not len(args) <= 3: | |
| raise TypeError('arange expected at most 3 arguments, got %i' | |
| % len(args)) | |
| if not len(args) >= 1: | |
| raise TypeError('arange expected at least 1 argument, got %i' | |
| % len(args)) | |
| # set default | |
| a = 0 | |
| dt = 1 | |
| # interpret arguments | |
| if len(args) == 1: | |
| b = args[0] | |
| elif len(args) >= 2: | |
| a = args[0] | |
| b = args[1] | |
| if len(args) == 3: | |
| dt = args[2] | |
| a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt) | |
| assert a + dt != a, 'dt is too small and would cause an infinite loop' | |
| # adapt code for sign of dt | |
| if a > b: | |
| if dt > 0: | |
| return [] | |
| op = gt | |
| else: | |
| if dt < 0: | |
| return [] | |
| op = lt | |
| # create list | |
| result = [] | |
| i = 0 | |
| t = a | |
| while 1: | |
| t = a + dt*i | |
| i += 1 | |
| if op(t, b): | |
| result.append(t) | |
| else: | |
| break | |
| return result | |
| def linspace(ctx, *args, **kwargs): | |
| """ | |
| ``linspace(a, b, n)`` returns a list of `n` evenly spaced | |
| samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)`` | |
| is also valid. | |
| This function is often more convenient than :func:`~mpmath.arange` | |
| for partitioning an interval into subintervals, since | |
| the endpoint is included:: | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = False | |
| >>> linspace(1, 4, 4) | |
| [mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')] | |
| You may also provide the keyword argument ``endpoint=False``:: | |
| >>> linspace(1, 4, 4, endpoint=False) | |
| [mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')] | |
| """ | |
| if len(args) == 3: | |
| a = ctx.mpf(args[0]) | |
| b = ctx.mpf(args[1]) | |
| n = int(args[2]) | |
| elif len(args) == 2: | |
| assert hasattr(args[0], '_mpi_') | |
| a = args[0].a | |
| b = args[0].b | |
| n = int(args[1]) | |
| else: | |
| raise TypeError('linspace expected 2 or 3 arguments, got %i' \ | |
| % len(args)) | |
| if n < 1: | |
| raise ValueError('n must be greater than 0') | |
| if not 'endpoint' in kwargs or kwargs['endpoint']: | |
| if n == 1: | |
| return [ctx.mpf(a)] | |
| step = (b - a) / ctx.mpf(n - 1) | |
| y = [i*step + a for i in xrange(n)] | |
| y[-1] = b | |
| else: | |
| step = (b - a) / ctx.mpf(n) | |
| y = [i*step + a for i in xrange(n)] | |
| return y | |
| def cos_sin(ctx, z, **kwargs): | |
| return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs) | |
| def cospi_sinpi(ctx, z, **kwargs): | |
| return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs) | |
| def _default_hyper_maxprec(ctx, p): | |
| return int(1000 * p**0.25 + 4*p) | |
| _gcd = staticmethod(libmp.gcd) | |
| list_primes = staticmethod(libmp.list_primes) | |
| isprime = staticmethod(libmp.isprime) | |
| bernfrac = staticmethod(libmp.bernfrac) | |
| moebius = staticmethod(libmp.moebius) | |
| _ifac = staticmethod(libmp.ifac) | |
| _eulernum = staticmethod(libmp.eulernum) | |
| _stirling1 = staticmethod(libmp.stirling1) | |
| _stirling2 = staticmethod(libmp.stirling2) | |
| def sum_accurately(ctx, terms, check_step=1): | |
| prec = ctx.prec | |
| try: | |
| extraprec = 10 | |
| while 1: | |
| ctx.prec = prec + extraprec + 5 | |
| max_mag = ctx.ninf | |
| s = ctx.zero | |
| k = 0 | |
| for term in terms(): | |
| s += term | |
| if (not k % check_step) and term: | |
| term_mag = ctx.mag(term) | |
| max_mag = max(max_mag, term_mag) | |
| sum_mag = ctx.mag(s) | |
| if sum_mag - term_mag > ctx.prec: | |
| break | |
| k += 1 | |
| cancellation = max_mag - sum_mag | |
| if cancellation != cancellation: | |
| break | |
| if cancellation < extraprec or ctx._fixed_precision: | |
| break | |
| extraprec += min(ctx.prec, cancellation) | |
| return s | |
| finally: | |
| ctx.prec = prec | |
| def mul_accurately(ctx, factors, check_step=1): | |
| prec = ctx.prec | |
| try: | |
| extraprec = 10 | |
| while 1: | |
| ctx.prec = prec + extraprec + 5 | |
| max_mag = ctx.ninf | |
| one = ctx.one | |
| s = one | |
| k = 0 | |
| for factor in factors(): | |
| s *= factor | |
| term = factor - one | |
| if (not k % check_step): | |
| term_mag = ctx.mag(term) | |
| max_mag = max(max_mag, term_mag) | |
| sum_mag = ctx.mag(s-one) | |
| #if sum_mag - term_mag > ctx.prec: | |
| # break | |
| if -term_mag > ctx.prec: | |
| break | |
| k += 1 | |
| cancellation = max_mag - sum_mag | |
| if cancellation != cancellation: | |
| break | |
| if cancellation < extraprec or ctx._fixed_precision: | |
| break | |
| extraprec += min(ctx.prec, cancellation) | |
| return s | |
| finally: | |
| ctx.prec = prec | |
| def power(ctx, x, y): | |
| r"""Converts `x` and `y` to mpmath numbers and evaluates | |
| `x^y = \exp(y \log(x))`:: | |
| >>> from mpmath import * | |
| >>> mp.dps = 30; mp.pretty = True | |
| >>> power(2, 0.5) | |
| 1.41421356237309504880168872421 | |
| This shows the leading few digits of a large Mersenne prime | |
| (performing the exact calculation ``2**43112609-1`` and | |
| displaying the result in Python would be very slow):: | |
| >>> power(2, 43112609)-1 | |
| 3.16470269330255923143453723949e+12978188 | |
| """ | |
| return ctx.convert(x) ** ctx.convert(y) | |
| def _zeta_int(ctx, n): | |
| return ctx.zeta(n) | |
| def maxcalls(ctx, f, N): | |
| """ | |
| Return a wrapped copy of *f* that raises ``NoConvergence`` when *f* | |
| has been called more than *N* times:: | |
| >>> from mpmath import * | |
| >>> mp.dps = 15 | |
| >>> f = maxcalls(sin, 10) | |
| >>> print(sum(f(n) for n in range(10))) | |
| 1.95520948210738 | |
| >>> f(10) # doctest: +IGNORE_EXCEPTION_DETAIL | |
| Traceback (most recent call last): | |
| ... | |
| NoConvergence: maxcalls: function evaluated 10 times | |
| """ | |
| counter = [0] | |
| def f_maxcalls_wrapped(*args, **kwargs): | |
| counter[0] += 1 | |
| if counter[0] > N: | |
| raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N) | |
| return f(*args, **kwargs) | |
| return f_maxcalls_wrapped | |
| def memoize(ctx, f): | |
| """ | |
| Return a wrapped copy of *f* that caches computed values, i.e. | |
| a memoized copy of *f*. Values are only reused if the cached precision | |
| is equal to or higher than the working precision:: | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = True | |
| >>> f = memoize(maxcalls(sin, 1)) | |
| >>> f(2) | |
| 0.909297426825682 | |
| >>> f(2) | |
| 0.909297426825682 | |
| >>> mp.dps = 25 | |
| >>> f(2) # doctest: +IGNORE_EXCEPTION_DETAIL | |
| Traceback (most recent call last): | |
| ... | |
| NoConvergence: maxcalls: function evaluated 1 times | |
| """ | |
| f_cache = {} | |
| def f_cached(*args, **kwargs): | |
| if kwargs: | |
| key = args, tuple(kwargs.items()) | |
| else: | |
| key = args | |
| prec = ctx.prec | |
| if key in f_cache: | |
| cprec, cvalue = f_cache[key] | |
| if cprec >= prec: | |
| return +cvalue | |
| value = f(*args, **kwargs) | |
| f_cache[key] = (prec, value) | |
| return value | |
| f_cached.__name__ = f.__name__ | |
| f_cached.__doc__ = f.__doc__ | |
| return f_cached | |