Spaces:
Configuration error
Configuration error
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import Parameter | |
| import torch.onnx.operators | |
| import torch.nn.functional as F | |
| import utils | |
| class Reshape(nn.Module): | |
| def __init__(self, *args): | |
| super(Reshape, self).__init__() | |
| self.shape = args | |
| def forward(self, x): | |
| return x.view(self.shape) | |
| class Permute(nn.Module): | |
| def __init__(self, *args): | |
| super(Permute, self).__init__() | |
| self.args = args | |
| def forward(self, x): | |
| return x.permute(self.args) | |
| class LinearNorm(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
| super(LinearNorm, self).__init__() | |
| self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
| torch.nn.init.xavier_uniform_( | |
| self.linear_layer.weight, | |
| gain=torch.nn.init.calculate_gain(w_init_gain)) | |
| def forward(self, x): | |
| return self.linear_layer(x) | |
| class ConvNorm(torch.nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, | |
| padding=None, dilation=1, bias=True, w_init_gain='linear'): | |
| super(ConvNorm, self).__init__() | |
| if padding is None: | |
| assert (kernel_size % 2 == 1) | |
| padding = int(dilation * (kernel_size - 1) / 2) | |
| self.conv = torch.nn.Conv1d(in_channels, out_channels, | |
| kernel_size=kernel_size, stride=stride, | |
| padding=padding, dilation=dilation, | |
| bias=bias) | |
| torch.nn.init.xavier_uniform_( | |
| self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
| def forward(self, signal): | |
| conv_signal = self.conv(signal) | |
| return conv_signal | |
| def Embedding(num_embeddings, embedding_dim, padding_idx=None): | |
| m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
| nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
| if padding_idx is not None: | |
| nn.init.constant_(m.weight[padding_idx], 0) | |
| return m | |
| def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): | |
| if not export and torch.cuda.is_available(): | |
| try: | |
| from apex.normalization import FusedLayerNorm | |
| return FusedLayerNorm(normalized_shape, eps, elementwise_affine) | |
| except ImportError: | |
| pass | |
| return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) | |
| def Linear(in_features, out_features, bias=True): | |
| m = nn.Linear(in_features, out_features, bias) | |
| nn.init.xavier_uniform_(m.weight) | |
| if bias: | |
| nn.init.constant_(m.bias, 0.) | |
| return m | |
| class SinusoidalPositionalEmbedding(nn.Module): | |
| """This module produces sinusoidal positional embeddings of any length. | |
| Padding symbols are ignored. | |
| """ | |
| def __init__(self, embedding_dim, padding_idx, init_size=1024): | |
| super().__init__() | |
| self.embedding_dim = embedding_dim | |
| self.padding_idx = padding_idx | |
| self.weights = SinusoidalPositionalEmbedding.get_embedding( | |
| init_size, | |
| embedding_dim, | |
| padding_idx, | |
| ) | |
| self.register_buffer('_float_tensor', torch.FloatTensor(1)) | |
| def get_embedding(num_embeddings, embedding_dim, padding_idx=None): | |
| """Build sinusoidal embeddings. | |
| This matches the implementation in tensor2tensor, but differs slightly | |
| from the description in Section 3.5 of "Attention Is All You Need". | |
| """ | |
| half_dim = embedding_dim // 2 | |
| emb = math.log(10000) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) | |
| emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) | |
| if embedding_dim % 2 == 1: | |
| # zero pad | |
| emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
| if padding_idx is not None: | |
| emb[padding_idx, :] = 0 | |
| return emb | |
| def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): | |
| """Input is expected to be of size [bsz x seqlen].""" | |
| bsz, seq_len = input.shape[:2] | |
| max_pos = self.padding_idx + 1 + seq_len | |
| if self.weights is None or max_pos > self.weights.size(0): | |
| # recompute/expand embeddings if needed | |
| self.weights = SinusoidalPositionalEmbedding.get_embedding( | |
| max_pos, | |
| self.embedding_dim, | |
| self.padding_idx, | |
| ) | |
| self.weights = self.weights.to(self._float_tensor) | |
| if incremental_state is not None: | |
| # positions is the same for every token when decoding a single step | |
| pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len | |
| return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) | |
| positions = utils.make_positions(input, self.padding_idx) if positions is None else positions | |
| return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() | |
| def max_positions(self): | |
| """Maximum number of supported positions.""" | |
| return int(1e5) # an arbitrary large number | |
| class ConvTBC(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, padding=0): | |
| super(ConvTBC, self).__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.kernel_size = kernel_size | |
| self.padding = padding | |
| self.weight = torch.nn.Parameter(torch.Tensor( | |
| self.kernel_size, in_channels, out_channels)) | |
| self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) | |
| def forward(self, input): | |
| return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding) | |
| class MultiheadAttention(nn.Module): | |
| def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, | |
| add_bias_kv=False, add_zero_attn=False, self_attention=False, | |
| encoder_decoder_attention=False): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.kdim = kdim if kdim is not None else embed_dim | |
| self.vdim = vdim if vdim is not None else embed_dim | |
| self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
| self.scaling = self.head_dim ** -0.5 | |
| self.self_attention = self_attention | |
| self.encoder_decoder_attention = encoder_decoder_attention | |
| assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ | |
| 'value to be of the same size' | |
| if self.qkv_same_dim: | |
| self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) | |
| else: | |
| self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) | |
| self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) | |
| self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) | |
| if bias: | |
| self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) | |
| else: | |
| self.register_parameter('in_proj_bias', None) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| if add_bias_kv: | |
| self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) | |
| self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) | |
| else: | |
| self.bias_k = self.bias_v = None | |
| self.add_zero_attn = add_zero_attn | |
| self.reset_parameters() | |
| self.enable_torch_version = False | |
| if hasattr(F, "multi_head_attention_forward"): | |
| self.enable_torch_version = True | |
| else: | |
| self.enable_torch_version = False | |
| self.last_attn_probs = None | |
| def reset_parameters(self): | |
| if self.qkv_same_dim: | |
| nn.init.xavier_uniform_(self.in_proj_weight) | |
| else: | |
| nn.init.xavier_uniform_(self.k_proj_weight) | |
| nn.init.xavier_uniform_(self.v_proj_weight) | |
| nn.init.xavier_uniform_(self.q_proj_weight) | |
| nn.init.xavier_uniform_(self.out_proj.weight) | |
| if self.in_proj_bias is not None: | |
| nn.init.constant_(self.in_proj_bias, 0.) | |
| nn.init.constant_(self.out_proj.bias, 0.) | |
| if self.bias_k is not None: | |
| nn.init.xavier_normal_(self.bias_k) | |
| if self.bias_v is not None: | |
| nn.init.xavier_normal_(self.bias_v) | |
| def forward( | |
| self, | |
| query, key, value, | |
| key_padding_mask=None, | |
| incremental_state=None, | |
| need_weights=True, | |
| static_kv=False, | |
| attn_mask=None, | |
| before_softmax=False, | |
| need_head_weights=False, | |
| enc_dec_attn_constraint_mask=None, | |
| reset_attn_weight=None | |
| ): | |
| """Input shape: Time x Batch x Channel | |
| Args: | |
| key_padding_mask (ByteTensor, optional): mask to exclude | |
| keys that are pads, of shape `(batch, src_len)`, where | |
| padding elements are indicated by 1s. | |
| need_weights (bool, optional): return the attention weights, | |
| averaged over heads (default: False). | |
| attn_mask (ByteTensor, optional): typically used to | |
| implement causal attention, where the mask prevents the | |
| attention from looking forward in time (default: None). | |
| before_softmax (bool, optional): return the raw attention | |
| weights and values before the attention softmax. | |
| need_head_weights (bool, optional): return the attention | |
| weights for each head. Implies *need_weights*. Default: | |
| return the average attention weights over all heads. | |
| """ | |
| if need_head_weights: | |
| need_weights = True | |
| tgt_len, bsz, embed_dim = query.size() | |
| assert embed_dim == self.embed_dim | |
| assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
| if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None: | |
| if self.qkv_same_dim: | |
| return F.multi_head_attention_forward(query, key, value, | |
| self.embed_dim, self.num_heads, | |
| self.in_proj_weight, | |
| self.in_proj_bias, self.bias_k, self.bias_v, | |
| self.add_zero_attn, self.dropout, | |
| self.out_proj.weight, self.out_proj.bias, | |
| self.training, key_padding_mask, need_weights, | |
| attn_mask) | |
| else: | |
| return F.multi_head_attention_forward(query, key, value, | |
| self.embed_dim, self.num_heads, | |
| torch.empty([0]), | |
| self.in_proj_bias, self.bias_k, self.bias_v, | |
| self.add_zero_attn, self.dropout, | |
| self.out_proj.weight, self.out_proj.bias, | |
| self.training, key_padding_mask, need_weights, | |
| attn_mask, use_separate_proj_weight=True, | |
| q_proj_weight=self.q_proj_weight, | |
| k_proj_weight=self.k_proj_weight, | |
| v_proj_weight=self.v_proj_weight) | |
| if incremental_state is not None: | |
| print('Not implemented error.') | |
| exit() | |
| else: | |
| saved_state = None | |
| if self.self_attention: | |
| # self-attention | |
| q, k, v = self.in_proj_qkv(query) | |
| elif self.encoder_decoder_attention: | |
| # encoder-decoder attention | |
| q = self.in_proj_q(query) | |
| if key is None: | |
| assert value is None | |
| k = v = None | |
| else: | |
| k = self.in_proj_k(key) | |
| v = self.in_proj_v(key) | |
| else: | |
| q = self.in_proj_q(query) | |
| k = self.in_proj_k(key) | |
| v = self.in_proj_v(value) | |
| q *= self.scaling | |
| if self.bias_k is not None: | |
| assert self.bias_v is not None | |
| k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) | |
| v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) | |
| if attn_mask is not None: | |
| attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) | |
| if key_padding_mask is not None: | |
| key_padding_mask = torch.cat( | |
| [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) | |
| q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
| if k is not None: | |
| k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
| if v is not None: | |
| v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) | |
| if saved_state is not None: | |
| print('Not implemented error.') | |
| exit() | |
| src_len = k.size(1) | |
| # This is part of a workaround to get around fork/join parallelism | |
| # not supporting Optional types. | |
| if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): | |
| key_padding_mask = None | |
| if key_padding_mask is not None: | |
| assert key_padding_mask.size(0) == bsz | |
| assert key_padding_mask.size(1) == src_len | |
| if self.add_zero_attn: | |
| src_len += 1 | |
| k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) | |
| v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) | |
| if attn_mask is not None: | |
| attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) | |
| if key_padding_mask is not None: | |
| key_padding_mask = torch.cat( | |
| [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) | |
| attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
| attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) | |
| assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] | |
| if attn_mask is not None: | |
| if len(attn_mask.shape) == 2: | |
| attn_mask = attn_mask.unsqueeze(0) | |
| elif len(attn_mask.shape) == 3: | |
| attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( | |
| bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights + attn_mask | |
| if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.masked_fill( | |
| enc_dec_attn_constraint_mask.unsqueeze(2).bool(), | |
| -1e9, | |
| ) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if key_padding_mask is not None: | |
| # don't attend to padding symbols | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.masked_fill( | |
| key_padding_mask.unsqueeze(1).unsqueeze(2), | |
| -1e9, | |
| ) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| if before_softmax: | |
| return attn_weights, v | |
| attn_weights_float = utils.softmax(attn_weights, dim=-1) | |
| attn_weights = attn_weights_float.type_as(attn_weights) | |
| attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) | |
| if reset_attn_weight is not None: | |
| if reset_attn_weight: | |
| self.last_attn_probs = attn_probs.detach() | |
| else: | |
| assert self.last_attn_probs is not None | |
| attn_probs = self.last_attn_probs | |
| attn = torch.bmm(attn_probs, v) | |
| assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
| attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
| attn = self.out_proj(attn) | |
| if need_weights: | |
| attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) | |
| if not need_head_weights: | |
| # average attention weights over heads | |
| attn_weights = attn_weights.mean(dim=0) | |
| else: | |
| attn_weights = None | |
| return attn, (attn_weights, attn_logits) | |
| def in_proj_qkv(self, query): | |
| return self._in_proj(query).chunk(3, dim=-1) | |
| def in_proj_q(self, query): | |
| if self.qkv_same_dim: | |
| return self._in_proj(query, end=self.embed_dim) | |
| else: | |
| bias = self.in_proj_bias | |
| if bias is not None: | |
| bias = bias[:self.embed_dim] | |
| return F.linear(query, self.q_proj_weight, bias) | |
| def in_proj_k(self, key): | |
| if self.qkv_same_dim: | |
| return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) | |
| else: | |
| weight = self.k_proj_weight | |
| bias = self.in_proj_bias | |
| if bias is not None: | |
| bias = bias[self.embed_dim:2 * self.embed_dim] | |
| return F.linear(key, weight, bias) | |
| def in_proj_v(self, value): | |
| if self.qkv_same_dim: | |
| return self._in_proj(value, start=2 * self.embed_dim) | |
| else: | |
| weight = self.v_proj_weight | |
| bias = self.in_proj_bias | |
| if bias is not None: | |
| bias = bias[2 * self.embed_dim:] | |
| return F.linear(value, weight, bias) | |
| def _in_proj(self, input, start=0, end=None): | |
| weight = self.in_proj_weight | |
| bias = self.in_proj_bias | |
| weight = weight[start:end, :] | |
| if bias is not None: | |
| bias = bias[start:end] | |
| return F.linear(input, weight, bias) | |
| def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): | |
| return attn_weights | |
| class Swish(torch.autograd.Function): | |
| def forward(ctx, i): | |
| result = i * torch.sigmoid(i) | |
| ctx.save_for_backward(i) | |
| return result | |
| def backward(ctx, grad_output): | |
| i = ctx.saved_variables[0] | |
| sigmoid_i = torch.sigmoid(i) | |
| return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) | |
| class CustomSwish(nn.Module): | |
| def forward(self, input_tensor): | |
| return Swish.apply(input_tensor) | |
| class Mish(nn.Module): | |
| def forward(self, x): | |
| return x * torch.tanh(F.softplus(x)) | |
| class TransformerFFNLayer(nn.Module): | |
| def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): | |
| super().__init__() | |
| self.kernel_size = kernel_size | |
| self.dropout = dropout | |
| self.act = act | |
| if padding == 'SAME': | |
| self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2) | |
| elif padding == 'LEFT': | |
| self.ffn_1 = nn.Sequential( | |
| nn.ConstantPad1d((kernel_size - 1, 0), 0.0), | |
| nn.Conv1d(hidden_size, filter_size, kernel_size) | |
| ) | |
| self.ffn_2 = Linear(filter_size, hidden_size) | |
| if self.act == 'swish': | |
| self.swish_fn = CustomSwish() | |
| def forward(self, x, incremental_state=None): | |
| # x: T x B x C | |
| if incremental_state is not None: | |
| assert incremental_state is None, 'Nar-generation does not allow this.' | |
| exit(1) | |
| x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) | |
| x = x * self.kernel_size ** -0.5 | |
| if incremental_state is not None: | |
| x = x[-1:] | |
| if self.act == 'gelu': | |
| x = F.gelu(x) | |
| if self.act == 'relu': | |
| x = F.relu(x) | |
| if self.act == 'swish': | |
| x = self.swish_fn(x) | |
| x = F.dropout(x, self.dropout, training=self.training) | |
| x = self.ffn_2(x) | |
| return x | |
| class BatchNorm1dTBC(nn.Module): | |
| def __init__(self, c): | |
| super(BatchNorm1dTBC, self).__init__() | |
| self.bn = nn.BatchNorm1d(c) | |
| def forward(self, x): | |
| """ | |
| :param x: [T, B, C] | |
| :return: [T, B, C] | |
| """ | |
| x = x.permute(1, 2, 0) # [B, C, T] | |
| x = self.bn(x) # [B, C, T] | |
| x = x.permute(2, 0, 1) # [T, B, C] | |
| return x | |
| class EncSALayer(nn.Module): | |
| def __init__(self, c, num_heads, dropout, attention_dropout=0.1, | |
| relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'): | |
| super().__init__() | |
| self.c = c | |
| self.dropout = dropout | |
| self.num_heads = num_heads | |
| if num_heads > 0: | |
| if norm == 'ln': | |
| self.layer_norm1 = LayerNorm(c) | |
| elif norm == 'bn': | |
| self.layer_norm1 = BatchNorm1dTBC(c) | |
| self.self_attn = MultiheadAttention( | |
| self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False, | |
| ) | |
| if norm == 'ln': | |
| self.layer_norm2 = LayerNorm(c) | |
| elif norm == 'bn': | |
| self.layer_norm2 = BatchNorm1dTBC(c) | |
| self.ffn = TransformerFFNLayer( | |
| c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act) | |
| def forward(self, x, encoder_padding_mask=None, **kwargs): | |
| layer_norm_training = kwargs.get('layer_norm_training', None) | |
| if layer_norm_training is not None: | |
| self.layer_norm1.training = layer_norm_training | |
| self.layer_norm2.training = layer_norm_training | |
| if self.num_heads > 0: | |
| residual = x | |
| x = self.layer_norm1(x) | |
| x, _, = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=encoder_padding_mask | |
| ) | |
| x = F.dropout(x, self.dropout, training=self.training) | |
| x = residual + x | |
| x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] | |
| residual = x | |
| x = self.layer_norm2(x) | |
| x = self.ffn(x) | |
| x = F.dropout(x, self.dropout, training=self.training) | |
| x = residual + x | |
| x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] | |
| return x | |
| class DecSALayer(nn.Module): | |
| def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, act='gelu'): | |
| super().__init__() | |
| self.c = c | |
| self.dropout = dropout | |
| self.layer_norm1 = LayerNorm(c) | |
| self.self_attn = MultiheadAttention( | |
| c, num_heads, self_attention=True, dropout=attention_dropout, bias=False | |
| ) | |
| self.layer_norm2 = LayerNorm(c) | |
| self.encoder_attn = MultiheadAttention( | |
| c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False, | |
| ) | |
| self.layer_norm3 = LayerNorm(c) | |
| self.ffn = TransformerFFNLayer( | |
| c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) | |
| def forward( | |
| self, | |
| x, | |
| encoder_out=None, | |
| encoder_padding_mask=None, | |
| incremental_state=None, | |
| self_attn_mask=None, | |
| self_attn_padding_mask=None, | |
| attn_out=None, | |
| reset_attn_weight=None, | |
| **kwargs, | |
| ): | |
| layer_norm_training = kwargs.get('layer_norm_training', None) | |
| if layer_norm_training is not None: | |
| self.layer_norm1.training = layer_norm_training | |
| self.layer_norm2.training = layer_norm_training | |
| self.layer_norm3.training = layer_norm_training | |
| residual = x | |
| x = self.layer_norm1(x) | |
| x, _ = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| incremental_state=incremental_state, | |
| attn_mask=self_attn_mask | |
| ) | |
| x = F.dropout(x, self.dropout, training=self.training) | |
| x = residual + x | |
| residual = x | |
| x = self.layer_norm2(x) | |
| if encoder_out is not None: | |
| x, attn = self.encoder_attn( | |
| query=x, | |
| key=encoder_out, | |
| value=encoder_out, | |
| key_padding_mask=encoder_padding_mask, | |
| incremental_state=incremental_state, | |
| static_kv=True, | |
| enc_dec_attn_constraint_mask=None, #utils.get_incremental_state(self, incremental_state, 'enc_dec_attn_constraint_mask'), | |
| reset_attn_weight=reset_attn_weight | |
| ) | |
| attn_logits = attn[1] | |
| else: | |
| assert attn_out is not None | |
| x = self.encoder_attn.in_proj_v(attn_out.transpose(0, 1)) | |
| attn_logits = None | |
| x = F.dropout(x, self.dropout, training=self.training) | |
| x = residual + x | |
| residual = x | |
| x = self.layer_norm3(x) | |
| x = self.ffn(x, incremental_state=incremental_state) | |
| x = F.dropout(x, self.dropout, training=self.training) | |
| x = residual + x | |
| # if len(attn_logits.size()) > 3: | |
| # indices = attn_logits.softmax(-1).max(-1).values.sum(-1).argmax(-1) | |
| # attn_logits = attn_logits.gather(1, | |
| # indices[:, None, None, None].repeat(1, 1, attn_logits.size(-2), attn_logits.size(-1))).squeeze(1) | |
| return x, attn_logits | |