Update app.py
Browse files
app.py
CHANGED
@@ -2,49 +2,72 @@ import gradio as gr
|
|
2 |
from audioseal import AudioSeal
|
3 |
import torch
|
4 |
import torchaudio
|
|
|
5 |
import traceback
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
try:
|
9 |
-
# Load the audio file and resample if necessary
|
10 |
waveform, sample_rate = torchaudio.load(audio_file_path)
|
|
|
|
|
|
|
11 |
if sample_rate != 16000:
|
12 |
-
|
13 |
-
waveform =
|
14 |
sample_rate = 16000
|
15 |
|
16 |
-
# Normalize waveform loudness
|
17 |
-
waveform = torch.clamp(waveform, min=-1.0, max=1.0)
|
18 |
-
|
19 |
-
# Ensure waveform has a batch dimension for processing
|
20 |
if waveform.ndim < 3:
|
21 |
waveform = waveform.unsqueeze(0)
|
22 |
|
23 |
-
# Initialize the AudioSeal detector
|
24 |
detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
25 |
-
|
26 |
-
# Detect watermark (simplified to binary outcome for AI-generated or not)
|
27 |
-
result, _ = detector.detect_watermark(waveform, message_threshold=0.99)
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
detection_result = "The audio is likely AI-generated."
|
32 |
-
else: # Assuming '0' means human-created
|
33 |
-
detection_result = "The audio is likely human-created."
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
except Exception as e:
|
37 |
error_traceback = traceback.format_exc()
|
38 |
-
return f"Error occurred: {e}\n\n{error_traceback}"
|
39 |
|
40 |
-
#
|
41 |
interface = gr.Interface(
|
42 |
fn=detect_watermark,
|
43 |
-
inputs=gr.Audio(label="Upload your audio", type="filepath"),
|
44 |
-
outputs="text",
|
45 |
title="Deep Fake Defender: AI Voice Cloning Detection",
|
46 |
-
description="Upload an audio file to check if it's AI-generated or genuine."
|
47 |
)
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
interface.launch()
|
|
|
|
2 |
from audioseal import AudioSeal
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
+
import torchaudio.transforms as T
|
6 |
import traceback
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import io
|
10 |
+
from PIL import Image
|
11 |
|
12 |
+
def plot_spectrogram(waveform, sample_rate):
|
13 |
+
"""Plot and return a spectrogram."""
|
14 |
+
spectrogram_transform = T.Spectrogram()
|
15 |
+
spectrogram = spectrogram_transform(waveform)
|
16 |
+
spectrogram_db = torchaudio.transforms.AmplitudeToDB()(spectrogram)
|
17 |
+
|
18 |
+
plt.figure(figsize=(10, 4))
|
19 |
+
plt.imshow(spectrogram_db[0].numpy(), cmap='hot', aspect='auto', origin='lower')
|
20 |
+
plt.colorbar(format='%+2.0f dB')
|
21 |
+
plt.title('Spectrogram')
|
22 |
+
plt.xlabel('Time Frame')
|
23 |
+
plt.ylabel('Frequency')
|
24 |
+
|
25 |
+
buf = io.BytesIO()
|
26 |
+
plt.savefig(buf, format='png')
|
27 |
+
plt.close()
|
28 |
+
buf.seek(0)
|
29 |
+
|
30 |
+
return Image.open(buf)
|
31 |
+
|
32 |
+
def detect_watermark(audio_file_path, threshold=0.99):
|
33 |
try:
|
|
|
34 |
waveform, sample_rate = torchaudio.load(audio_file_path)
|
35 |
+
|
36 |
+
# Normalize and resample
|
37 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
38 |
if sample_rate != 16000:
|
39 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
40 |
+
waveform = resampler(waveform)
|
41 |
sample_rate = 16000
|
42 |
|
|
|
|
|
|
|
|
|
43 |
if waveform.ndim < 3:
|
44 |
waveform = waveform.unsqueeze(0)
|
45 |
|
|
|
46 |
detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
47 |
+
result, confidence = detector.detect_watermark(waveform, message_threshold=threshold)
|
|
|
|
|
48 |
|
49 |
+
# Visual feedback
|
50 |
+
waveform_image = plot_spectrogram(waveform.squeeze(), sample_rate)
|
|
|
|
|
|
|
51 |
|
52 |
+
if result:
|
53 |
+
detection_message = f"AI-generated with confidence: {np.mean(confidence.numpy()):.2f}"
|
54 |
+
else:
|
55 |
+
detection_message = "Likely human-generated or the AI watermark is undetectable at the current threshold."
|
56 |
+
|
57 |
+
return detection_message, waveform_image
|
58 |
except Exception as e:
|
59 |
error_traceback = traceback.format_exc()
|
60 |
+
return f"Error occurred: {e}\n\n{error_traceback}", None
|
61 |
|
62 |
+
# Interface with dynamic threshold and visualization
|
63 |
interface = gr.Interface(
|
64 |
fn=detect_watermark,
|
65 |
+
inputs=[gr.Audio(label="Upload your audio", type="filepath"), gr.Slider(label="Detection Threshold", minimum=0, maximum=1, value=0.99)],
|
66 |
+
outputs=["text", "image"],
|
67 |
title="Deep Fake Defender: AI Voice Cloning Detection",
|
68 |
+
description="Upload an audio file to check if it's AI-generated or genuine. Adjust the detection threshold to change sensitivity."
|
69 |
)
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
interface.launch()
|
73 |
+
|