Spaces:
Build error
Build error
| import spaces | |
| import torch | |
| import gradio as gr | |
| import yt_dlp as youtube_dl | |
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| from threading import Thread | |
| import tempfile | |
| import os | |
| MODEL_NAME = "openai/whisper-large-v3-turbo" | |
| BATCH_SIZE = 8 | |
| FILE_LIMIT_MB = 1000 | |
| YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| # Initialize the transcription pipeline | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| # Hugging Face Token for the LLM model | |
| HF_TOKEN = os.getenv("HF_TOKEN") # Make sure to set this in the environment variables | |
| # Load tokenizer and model for SOAP note generation | |
| tokenizer = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B") | |
| model = AutoModelForCausalLM.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B", device_map="auto") | |
| # Prompt for SOAP note generation | |
| sys_prompt = "You are a world class clinical assistant." | |
| task_prompt = """ | |
| Convert the following transcribed conversation into a clinical SOAP note. | |
| The text includes dialogue between a physician and a patient. Please clearly distinguish between the physician's and the patient's statements. | |
| Extract and organize the information into the relevant sections of a SOAP note: | |
| - Subjective (symptoms and patient statements), | |
| - Objective (clinical findings and observations, these might be missing if the physician has not conducted a physical exam or has not verbally stated findings), | |
| - Assessment (diagnosis or potential diagnoses, objectively provide a top 5 most likely diagnosis based on just the subjective findings, and use the objective findings if available), | |
| - Plan (treatment and follow-up). | |
| Ensure the note is concise, clear, and accurately reflects the conversation. | |
| """ | |
| # Function to transcribe audio inputs | |
| def transcribe(inputs, task): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return text | |
| # Function to download audio from YouTube | |
| def download_yt_audio(yt_url, filename): | |
| info_loader = youtube_dl.YoutubeDL() | |
| try: | |
| info = info_loader.extract_info(yt_url, download=False) | |
| except youtube_dl.utils.DownloadError as err: | |
| raise gr.Error(str(err)) | |
| file_length_s = sum(x * int(t) for x, t in zip([3600, 60, 1], info["duration_string"].split(":")) if t.isdigit()) | |
| if file_length_s > YT_LENGTH_LIMIT_S: | |
| raise gr.Error(f"Video too long. Maximum allowed duration is {YT_LENGTH_LIMIT_S / 60} minutes.") | |
| ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
| with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
| ydl.download([yt_url]) | |
| # Function to transcribe YouTube audio | |
| def yt_transcribe(yt_url, task): | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| filepath = os.path.join(tmpdirname, "video.mp4") | |
| download_yt_audio(yt_url, filepath) | |
| with open(filepath, "rb") as f: | |
| inputs = f.read() | |
| inputs = pipe.feature_extractor.ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return f'<iframe width="500" height="320" src="https://www.youtube.com/embed/{yt_url.split("?v=")[-1]}"> </iframe>', text | |
| # Function to generate SOAP notes using LLM | |
| def generate_soap(transcribed_text): | |
| prompt = f"{sys_prompt}\n\n{task_prompt}\n{transcribed_text}" | |
| inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
| outputs = model.generate(inputs, max_new_tokens=512) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Gradio Interfaces for different inputs | |
| demo = gr.Blocks(theme=gr.themes.Ocean()) | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], | |
| outputs="text", | |
| title="Whisper Large V3 Turbo: Transcribe Audio", | |
| description="Transcribe long-form microphone or audio inputs." | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], | |
| outputs="text", | |
| title="Whisper Large V3: Transcribe Audio" | |
| ) | |
| yt_transcribe = gr.Interface( | |
| fn=yt_transcribe, | |
| inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], | |
| outputs=["html", "text"], | |
| title="Whisper Large V3: Transcribe YouTube" | |
| ) | |
| soap_note = gr.Interface( | |
| fn=generate_soap, | |
| inputs="text", | |
| outputs="text", | |
| title="Generate Clinical SOAP Note", | |
| description="Convert transcribed conversation to a clinical SOAP note with structured sections (Subjective, Objective, Assessment, Plan)." | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe, soap_note], ["Microphone", "Audio file", "YouTube", "SOAP Note"]) | |
| demo.queue().launch(ssr_mode=False) | |