Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
'''import os
|
| 2 |
import re
|
| 3 |
from typing import List, Optional, Union
|
|
|
|
| 1 |
+
from auto_round import AutoRoundConfig ## must import for auto-round format
|
| 2 |
+
import requests
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
quantized_model_path="OPEA/llama-joycaption-alpha-two-hf-llava-int4-sym-inc"
|
| 9 |
+
|
| 10 |
+
# Load JoyCaption INT4 Model
|
| 11 |
+
processor = AutoProcessor.from_pretrained(quantized_model_path)
|
| 12 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
| 13 |
+
quantized_model_path,
|
| 14 |
+
device_map="auto",
|
| 15 |
+
revision="bc917a8" ## ##AutoGPTQ format
|
| 16 |
+
)
|
| 17 |
+
model.eval()
|
| 18 |
+
|
| 19 |
+
image_url = "http://images.cocodataset.org/train2017/000000116003.jpg"
|
| 20 |
+
content = "Write a descriptive caption for this image in a formal tone."
|
| 21 |
+
|
| 22 |
+
# Preparation for inference
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 25 |
+
messages = [
|
| 26 |
+
{
|
| 27 |
+
"role": "system",
|
| 28 |
+
"content": "You are a helpful image captioner.",
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"role": "user",
|
| 32 |
+
"content": content,
|
| 33 |
+
},
|
| 34 |
+
]
|
| 35 |
+
prompt = processor.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
|
| 36 |
+
assert isinstance(prompt, str)
|
| 37 |
+
inputs = processor(text=[prompt], images=[image], return_tensors="pt").to(model.device)
|
| 38 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(model.dtype)
|
| 39 |
+
|
| 40 |
+
# Generate the captions
|
| 41 |
+
generate_ids = model.generate(
|
| 42 |
+
**inputs,
|
| 43 |
+
max_new_tokens=50,
|
| 44 |
+
do_sample=False,
|
| 45 |
+
suppress_tokens=None,
|
| 46 |
+
use_cache=True,
|
| 47 |
+
temperature=0.6,
|
| 48 |
+
top_k=None,
|
| 49 |
+
top_p=0.9,
|
| 50 |
+
)[0]
|
| 51 |
+
|
| 52 |
+
# Trim off the prompt
|
| 53 |
+
generate_ids = generate_ids[inputs['input_ids'].shape[1]:]
|
| 54 |
+
|
| 55 |
+
# Decode the caption
|
| 56 |
+
caption = processor.tokenizer.decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 57 |
+
caption = caption.strip()
|
| 58 |
+
print(caption)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
'''import os
|
| 62 |
import re
|
| 63 |
from typing import List, Optional, Union
|