Spaces:
Runtime error
Runtime error
Upload 8 files
Browse files- CXR191_IM-0591-1001.png +0 -0
- CXR192_IM-0598-1001.png +0 -0
- CXR193_IM-0601-1001.png +0 -0
- CXR194_IM-0609-1001.png +0 -0
- CXR195_IM-0618-1001.png +0 -0
- app.py +35 -23
- clipGPT.py +164 -0
- model_train_best_run_clipGPT.pt +3 -0
CXR191_IM-0591-1001.png
ADDED
|
CXR192_IM-0598-1001.png
ADDED
|
CXR193_IM-0601-1001.png
ADDED
|
CXR194_IM-0609-1001.png
ADDED
|
CXR195_IM-0618-1001.png
ADDED
|
app.py
CHANGED
|
@@ -1,37 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from PIL import Image
|
|
|
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
def load_model_1():
|
| 6 |
-
#
|
| 7 |
-
return
|
| 8 |
|
| 9 |
-
|
| 10 |
-
# ... load your second model
|
| 11 |
-
return model_2
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def generate_caption(model, image):
|
| 18 |
-
# ... perform inference with your model
|
| 19 |
return caption
|
| 20 |
|
| 21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
| 23 |
with gr.Blocks() as demo:
|
| 24 |
with gr.Row():
|
| 25 |
-
image = gr.Image(label="Upload Chest X-ray")
|
| 26 |
-
|
| 27 |
-
|
|
|
|
| 28 |
with gr.Row():
|
| 29 |
caption = gr.Textbox(label="Generated Caption")
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import clipGPT
|
| 4 |
|
| 5 |
+
# Define model loading functions (if needed)
|
| 6 |
+
def load_model_1(): # CLIP-GPT2
|
| 7 |
+
# Load model components here if necessary
|
| 8 |
+
return None
|
| 9 |
|
| 10 |
+
# ... load_model_2(), load_model_3() - Define if and when needed
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Caption generation functions
|
| 13 |
+
def generate_caption_clipgpt(image):
|
| 14 |
+
caption = clipGPT.generate_caption_clipgpt(image)
|
|
|
|
|
|
|
|
|
|
| 15 |
return caption
|
| 16 |
|
| 17 |
+
# ... Add more caption generation functions for future models
|
| 18 |
+
|
| 19 |
+
# Sample image paths
|
| 20 |
+
sample_images = [
|
| 21 |
+
"CXR191_IM-0591-1001.jpg",
|
| 22 |
+
"CXR191_IM-0598-1001.jpg",
|
| 23 |
+
"CXR191_IM-0601-1001.jpg",
|
| 24 |
+
"CXR191_IM-0609-1001.jpg",
|
| 25 |
+
"CXR191_IM-0618-1001.jpg"
|
| 26 |
+
]
|
| 27 |
|
| 28 |
+
# Gradio interface
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
with gr.Row():
|
| 31 |
+
image = gr.Image(label="Upload Chest X-ray", source="upload")
|
| 32 |
+
sample_image_gallery = gr.ImageGallery(sample_images, label="Sample Images")
|
| 33 |
+
with gr.Row():
|
| 34 |
+
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
| 35 |
with gr.Row():
|
| 36 |
caption = gr.Textbox(label="Generated Caption")
|
| 37 |
|
| 38 |
+
def predict(img, model_name):
|
| 39 |
+
if model_name == "CLIP-GPT2":
|
| 40 |
+
return generate_caption_clipgpt(img)
|
| 41 |
+
# Add elif blocks for "ViT-GPT2", "ViT-CoAttention" as you implement them
|
| 42 |
+
else:
|
| 43 |
+
return "Caption generation for this model is not yet implemented."
|
| 44 |
+
|
| 45 |
+
# Handle changes for both uploaded and sample images
|
| 46 |
+
gr.Image.change(predict, [image, model_choice], caption)
|
| 47 |
+
sample_image_gallery.change(predict, [sample_image_gallery, model_choice], caption)
|
| 48 |
|
| 49 |
demo.launch()
|
clipGPT.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
+
import clip
|
| 5 |
+
import skimage.io as io
|
| 6 |
+
import PIL.Image
|
| 7 |
+
from IPython.display import Image
|
| 8 |
+
from transformers import AutoTokenizer, AutoModel
|
| 9 |
+
import skimage.io as io
|
| 10 |
+
import PIL.Image
|
| 11 |
+
from IPython.display import Image
|
| 12 |
+
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import numpy as np
|
| 15 |
+
import time
|
| 16 |
+
import json
|
| 17 |
+
import nltk
|
| 18 |
+
nltk.download('punkt')
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ClipGPT2Model(nn.Module):
|
| 22 |
+
def __init__(self, img_feature_length, img_feature_size = 512):
|
| 23 |
+
super(ClipGPT2Model, self).__init__()
|
| 24 |
+
torch.cuda.empty_cache()
|
| 25 |
+
gc.collect()
|
| 26 |
+
self.img_feature_length = img_feature_length
|
| 27 |
+
|
| 28 |
+
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 29 |
+
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
| 30 |
+
self.clip_project = Adapter((img_feature_size,
|
| 31 |
+
(self.gpt_embedding_size * img_feature_length) // 2,
|
| 32 |
+
self.gpt_embedding_size * img_feature_length))
|
| 33 |
+
torch.cuda.empty_cache()
|
| 34 |
+
def get_dummy_token(self,
|
| 35 |
+
batch_size: int,
|
| 36 |
+
device: torch.device) -> torch.Tensor:
|
| 37 |
+
return torch.zeros(batch_size, self.img_feature_length, dtype=torch.int64, device=device)
|
| 38 |
+
|
| 39 |
+
def forward(self,
|
| 40 |
+
tokens: torch.Tensor,
|
| 41 |
+
feature: torch.Tensor,
|
| 42 |
+
mask = None,
|
| 43 |
+
labels = None):
|
| 44 |
+
torch.cuda.empty_cache()
|
| 45 |
+
gc.collect()
|
| 46 |
+
|
| 47 |
+
embedding_text = self.gpt.transformer.wte(tokens)
|
| 48 |
+
feature_projections = self.clip_project(feature).view(-1, self.img_feature_length, self.gpt_embedding_size)
|
| 49 |
+
embedding_cat = torch.cat((feature_projections, embedding_text), dim=1)
|
| 50 |
+
if labels is not None:
|
| 51 |
+
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
| 52 |
+
labels = torch.cat((dummy_token, tokens), dim=1)
|
| 53 |
+
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
| 54 |
+
return out
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def generate_beam(
|
| 60 |
+
model,
|
| 61 |
+
tokenizer,
|
| 62 |
+
beam_size: int = 10,
|
| 63 |
+
prompt=None,
|
| 64 |
+
embed=None,
|
| 65 |
+
entry_length=76,
|
| 66 |
+
temperature=0.9,
|
| 67 |
+
stop_token: str = ".",
|
| 68 |
+
):
|
| 69 |
+
|
| 70 |
+
model.eval()
|
| 71 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
| 72 |
+
tokens = None
|
| 73 |
+
scores = None
|
| 74 |
+
device = next(model.parameters()).device
|
| 75 |
+
seq_lengths = torch.ones(beam_size, device=device)
|
| 76 |
+
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
if embed is not None:
|
| 79 |
+
generated = embed
|
| 80 |
+
else:
|
| 81 |
+
if tokens is None:
|
| 82 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
| 83 |
+
tokens = tokens.unsqueeze(0).to(device)
|
| 84 |
+
generated = model.gpt.transformer.wte(tokens)
|
| 85 |
+
for i in range(entry_length):
|
| 86 |
+
outputs = model.gpt(inputs_embeds=generated)
|
| 87 |
+
logits = outputs.logits
|
| 88 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
| 89 |
+
logits = logits.softmax(-1).log()
|
| 90 |
+
if scores is None:
|
| 91 |
+
scores, next_tokens = logits.topk(beam_size, -1)
|
| 92 |
+
generated = generated.expand(beam_size, *generated.shape[1:])
|
| 93 |
+
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
|
| 94 |
+
if tokens is None:
|
| 95 |
+
tokens = next_tokens
|
| 96 |
+
else:
|
| 97 |
+
tokens = tokens.expand(beam_size, *tokens.shape[1:])
|
| 98 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
| 99 |
+
else:
|
| 100 |
+
logits[is_stopped] = -float(np.inf)
|
| 101 |
+
logits[is_stopped, 0] = 0
|
| 102 |
+
scores_sum = scores[:, None] + logits
|
| 103 |
+
seq_lengths[~is_stopped] += 1
|
| 104 |
+
scores_sum_average = scores_sum / seq_lengths[:, None]
|
| 105 |
+
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
|
| 106 |
+
beam_size, -1
|
| 107 |
+
)
|
| 108 |
+
next_tokens_source = next_tokens // scores_sum.shape[1]
|
| 109 |
+
seq_lengths = seq_lengths[next_tokens_source]
|
| 110 |
+
next_tokens = next_tokens % scores_sum.shape[1]
|
| 111 |
+
next_tokens = next_tokens.unsqueeze(1)
|
| 112 |
+
tokens = tokens[next_tokens_source]
|
| 113 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
| 114 |
+
generated = generated[next_tokens_source]
|
| 115 |
+
scores = scores_sum_average * seq_lengths
|
| 116 |
+
is_stopped = is_stopped[next_tokens_source]
|
| 117 |
+
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
|
| 118 |
+
generated.shape[0], 1, -1
|
| 119 |
+
)
|
| 120 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
| 121 |
+
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
|
| 122 |
+
if is_stopped.all():
|
| 123 |
+
break
|
| 124 |
+
scores = scores / seq_lengths
|
| 125 |
+
output_list = tokens.cpu().numpy()
|
| 126 |
+
output_texts = [
|
| 127 |
+
tokenizer.decode(output[: int(length)])
|
| 128 |
+
for output, length in zip(output_list, seq_lengths)
|
| 129 |
+
]
|
| 130 |
+
order = scores.argsort(descending=True)
|
| 131 |
+
output_texts = [output_texts[i] for i in order]
|
| 132 |
+
return output_texts
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def generate_caption_clipgpt(img):
|
| 137 |
+
|
| 138 |
+
prefix_length = 10
|
| 139 |
+
model = ClipGPT2Model(prefix_length, img_feature_size = feature_dim)
|
| 140 |
+
model.load_state_dict(torch.load('model_train_best_run_clipGPT.pt'))
|
| 141 |
+
model = model.eval()
|
| 142 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 143 |
+
model = model.to(device)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
clip_model, preprocess = clip.load('ViT-B/32', device, jit=False)
|
| 147 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 148 |
+
|
| 149 |
+
start_time = time.time()
|
| 150 |
+
image = io.imread(img)
|
| 151 |
+
pil_image = PIL.Image.fromarray(image)
|
| 152 |
+
image = preprocess(pil_image).unsqueeze(0).to(device)
|
| 153 |
+
|
| 154 |
+
with torch.no_grad():
|
| 155 |
+
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
|
| 156 |
+
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
| 157 |
+
beam_caption = generate_beam(model, tokenizer, embed=prefix_embed)[0]
|
| 158 |
+
|
| 159 |
+
end_time = time.time()
|
| 160 |
+
print("--- Time taken to generate: %s seconds ---" % (end_time - start_time))
|
| 161 |
+
|
| 162 |
+
return beam_caption
|
| 163 |
+
|
| 164 |
+
|
model_train_best_run_clipGPT.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d75b4bf1a982290d2675a78b1f2bc39fa212178f5f609a555a1725150fe5275
|
| 3 |
+
size 561159626
|