Spaces:
Runtime error
Runtime error
import data | |
import torch | |
import gradio as gr | |
from models import imagebind_model | |
from models.imagebind_model import ModalityType | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model = imagebind_model.imagebind_huge(pretrained=True) | |
model.eval() | |
model.to(device) | |
def image_text_zeroshot(image, text_list): | |
image_paths = [image] | |
labels = [label.strip(" ") for label in text_list.strip(" ").split("|")] | |
inputs = { | |
ModalityType.TEXT: data.load_and_transform_text(labels, device), | |
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device), | |
} | |
with torch.no_grad(): | |
embeddings = model(inputs) | |
scores = ( | |
torch.softmax( | |
embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1 | |
) | |
.squeeze(0) | |
.tolist() | |
) | |
score_dict = {label: score for label, score in zip(labels, scores)} | |
return score_dict | |
def audio_text_zeroshot(audio, text_list): | |
audio_paths = [audio] | |
labels = [label.strip(" ") for label in text_list.strip(" ").split("|")] | |
inputs = { | |
ModalityType.TEXT: data.load_and_transform_text(labels, device), | |
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device), | |
} | |
with torch.no_grad(): | |
embeddings = model(inputs) | |
scores = ( | |
torch.softmax( | |
embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1 | |
) | |
.squeeze(0) | |
.tolist() | |
) | |
score_dict = {label: score for label, score in zip(labels, scores)} | |
return score_dict | |
def inference( | |
task, | |
image=None, | |
audio=None, | |
text_list=None, | |
): | |
if task == "image-text": | |
result = image_text_zeroshot(image, text_list) | |
elif task == "audio-text": | |
result = audio_text_zeroshot(audio, text_list) | |
else: | |
raise NotImplementedError | |
return result | |
def main(): | |
inputs = [ | |
gr.inputs.Radio( | |
choices=[ | |
"image-text", | |
"audio-text", | |
], | |
type="value", | |
default="image-text", | |
label="Task", | |
), | |
gr.inputs.Image(type="filepath", label="Input image"), | |
gr.inputs.Audio(type="filepath", label="Input audio"), | |
gr.inputs.Textbox(lines=1, label="Candidate texts"), | |
] | |
iface = gr.Interface( | |
inference, | |
inputs, | |
"label", | |
examples=[ | |
["image-text", "assets/dog_image.jpg", None, "A dog|A car|A bird"], | |
["image-text", "assets/car_image.jpg", None, "A dog|A car|A bird"], | |
["audio-text", None, "assets/bird_audio.wav", "A dog|A car|A bird"], | |
["audio-text", None, "assets/dog_audio.wav", "A dog|A car|A bird"], | |
], | |
description="""<p>This is a simple demo of ImageBind for zero-shot cross-modal understanding (now including image classification and audio classification). Please refer to the original <a href='https://arxiv.org/abs/2305.05665' target='_blank'>paper</a> and <a href='https://github.com/facebookresearch/ImageBind' target='_blank'>repo</a> for more details.<br> | |
To test your own cases, you can upload an image or an audio, and provide the candidate texts separated by "|".<br> | |
You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""", | |
title="ImageBind: Zero-shot Cross-modal Understanding", | |
) | |
iface.launch() | |
if __name__ == "__main__": | |
main() | |