Spaces:
Running
Running
import gradio as gr | |
import os | |
import pdfplumber | |
import tempfile | |
from huggingface_hub import InferenceClient | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import os | |
from huggingface_hub import InferenceClient | |
hf_tokens = os.environ.get("hf_token") | |
# client = InferenceClient( | |
# provider="novita", | |
# api_key=hf_tokens | |
# ) | |
# Initialize Hugging Face InferenceClient | |
client = InferenceClient( | |
provider="novita", | |
api_key=hf_tokens #"hf_xxxxxxxxxxxxxxxxxxxxxxxxx" # Replace with your HF token | |
) | |
# Global vectorstore | |
vectorstore = None | |
# Load and process the uploaded PDF | |
def load_pdf(file): | |
global vectorstore | |
try: | |
# Save uploaded file to temp path (file is already bytes in Kaggle!) | |
temp_pdf_path = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf").name | |
with open(temp_pdf_path, "wb") as f: | |
f.write(file) # <--- FIXED LINE | |
# Extract text using pdfplumber | |
import pdfplumber | |
raw_text = "" | |
with pdfplumber.open(temp_pdf_path) as pdf: | |
for page in pdf.pages: | |
text = page.extract_text() | |
if text: | |
raw_text += text + "\n" | |
if not raw_text.strip(): | |
return "β No extractable text found in the PDF." | |
# Chunk the text | |
splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100) | |
texts = splitter.split_text(raw_text) | |
# Create FAISS vectorstore | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vectorstore = FAISS.from_texts(texts, embeddings) | |
return "β PDF successfully processed. You can now ask questions!" | |
except Exception as e: | |
return f"β Error: {str(e)}" | |
def ask_question(query): | |
global vectorstore | |
if vectorstore is None: | |
return "β Please upload a PDF first." | |
try: | |
docs = vectorstore.similarity_search(query, k=3) | |
context = "\n\n".join([doc.page_content for doc in docs]) | |
# Prepare chat message format | |
messages = [ | |
{ | |
"role": "system", | |
"content": "You are a helpful assistant that answers questions based on a document." | |
}, | |
{ | |
"role": "user", | |
"content": f"Answer this question using the context below:\n\nContext:\n{context}\n\nQuestion:\n{query}" | |
} | |
] | |
# Use chat.completions.create | |
completion = client.chat.completions.create( | |
model="meta-llama/Llama-4-Scout-17B-16E-Instruct", | |
messages=messages, | |
max_tokens=500 | |
) | |
return completion.choices[0].message.content.strip() | |
except Exception as e: | |
return f"β Failed to generate answer: {str(e)}" | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π RAG PDF Chatbot using Hugging Face Inference API") | |
with gr.Row(): | |
file_input = gr.File(label="Upload PDF", type="binary") | |
upload_btn = gr.Button("Process") | |
status_box = gr.Textbox(label="Status", interactive=False) | |
with gr.Row(): | |
question = gr.Textbox(label="Ask a Question") | |
ask_btn = gr.Button("Ask") | |
answer = gr.Textbox(label="Answer", lines=6) | |
upload_btn.click(load_pdf, inputs=file_input, outputs=status_box) | |
ask_btn.click(ask_question, inputs=question, outputs=answer) | |
demo.launch() | |