import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_squared_error import gradio as gr import plotly.express as px import plotly.graph_objects as go # Load the dataset df = pd.read_csv('california_housing_train.csv') # Select features and target features = df[['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income']] target = df['median_house_value'] # Split the data X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42) # Standardize the data scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # Initialize lists to store loss metrics training_losses = [] validation_losses = [] # Custom MLPRegressor class to capture loss metrics class CustomMLPRegressor(MLPRegressor): def _fit(self, X, y, incremental): result = super()._fit(X, y, incremental) training_loss = self.loss_ predictions = self.predict(X_test_scaled) validation_loss = mean_squared_error(y_test, predictions) training_losses.append(training_loss) validation_losses.append(validation_loss) return result # Train the model model = CustomMLPRegressor(hidden_layer_sizes=(100,), activation='relu', solver='adam', max_iter=1000) model.fit(X_train_scaled, y_train) # Create prediction function def predict_house_price(longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income): input_data = scaler.transform([[longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income]]) prediction = model.predict(input_data)[0] return f"${prediction:,.2f}" # Create dashboard function def create_dashboard(): fig1 = px.scatter(df, x='longitude', y='latitude', color='median_house_value', title="House Prices by Location", labels={'longitude': 'Longitude', 'latitude': 'Latitude', 'median_house_value': 'House Value'}) fig2 = px.histogram(df, x='median_income', nbins=30, title="Distribution of Median Income", labels={'median_income': 'Median Income'}) fig3 = px.histogram(df, x='housing_median_age', nbins=30, title="Distribution of Housing Median Age", labels={'housing_median_age': 'Housing Median Age'}) fig4 = go.Figure() fig4.add_trace(go.Scatter(y=training_losses, mode='lines', name='Training Loss')) fig4.add_trace(go.Scatter(y=validation_losses, mode='lines', name='Validation Loss')) fig4.update_layout(title="Model Loss Over Time", xaxis_title="Epoch", yaxis_title="Loss") return fig1, fig2, fig3, fig4 # Gradio interface for prediction iface_predict = gr.Interface( fn=predict_house_price, inputs=[ gr.Number(label="Longitude", info="Enter the longitude of the house."), gr.Number(label="Latitude", info="Enter the latitude of the house."), gr.Number(label="Housing Median Age", info="Enter the median age of the house."), gr.Number(label="Total Rooms", info="Enter the total number of rooms."), gr.Number(label="Total Bedrooms", info="Enter the total number of bedrooms."), gr.Number(label="Population", info="Enter the population in the area."), gr.Number(label="Households", info="Enter the number of households in the area."), gr.Number(label="Median Income", info="Enter the median income of the households.") ], outputs="text", title="House Price Prediction", description="Enter the features to get the predicted house price." ) # Gradio interface for dashboard iface_dashboard = gr.Interface( fn=create_dashboard, inputs=[], outputs=[gr.Plot(), gr.Plot(), gr.Plot(), gr.Plot()], title="House Price Dashboard", description="Visualizations of the housing dataset and model performance." ) # Launch both interfaces iface = gr.TabbedInterface([iface_predict, iface_dashboard], ["Prediction", "Dashboard"]) iface.launch()