import requests import torch from PIL import Image from torchvision import transforms import gradio as gr model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval() # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def predict(inp): inp = Image.fromarray(inp.astype("uint8"), "RGB") inp = transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) return {labels[i]: float(prediction[i]) for i in range(1000)} inputs = gr.Image() outputs = gr.Label(num_top_classes=3) demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs) if __name__ == "__main__": demo.launch()