|
import requests |
|
import torch |
|
from PIL import Image |
|
from torchvision import transforms |
|
|
|
import gradio as gr |
|
|
|
model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval() |
|
|
|
|
|
response = requests.get("https://git.io/JJkYN") |
|
labels = response.text.split("\n") |
|
|
|
|
|
def predict(inp): |
|
inp = Image.fromarray(inp.astype("uint8"), "RGB") |
|
inp = transforms.ToTensor()(inp).unsqueeze(0) |
|
with torch.no_grad(): |
|
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) |
|
return {labels[i]: float(prediction[i]) for i in range(1000)} |
|
|
|
|
|
inputs = gr.Image() |
|
outputs = gr.Label(num_top_classes=3) |
|
|
|
demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|