import sys import torch from transformers import AutoTokenizer, AutoModelForMaskedLM from config import config from text.japanese import text2sep_kata MODEL_ID = "ku-nlp/deberta-v2-large-japanese-char-wwm" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) models = dict() def get_bert_feature( text, word2ph, device=config.bert_gen_config.device, style_text=None, style_weight=0.7, ): text = "".join(text2sep_kata(text)[0]) if style_text: style_text = "".join(text2sep_kata(style_text)[0]) if sys.platform == "darwin" and torch.backends.mps.is_available() and device == "cpu": device = "mps" if not device: device = "cuda" if device not in models: if config.webui_config.fp16_run: models[device] = AutoModelForMaskedLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16 ).to(device) else: models[device] = AutoModelForMaskedLM.from_pretrained(MODEL_ID).to(device) with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True) for k in inputs: inputs[k] = inputs[k].to(device) res = models[device](**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].float().cpu() if style_text: style_inputs = tokenizer(style_text, return_tensors="pt", add_special_tokens=True) for k in style_inputs: style_inputs[k] = style_inputs[k].to(device) style_res = models[device](**style_inputs, output_hidden_states=True) style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].float().cpu() style_res_mean = style_res.mean(0) # ✅ Force truncate ให้ความยาวตรงกับ word2ph min_len = min(len(word2ph), res.shape[0]) word2phone = word2ph[:min_len] res = res[:min_len] phone_level_feature = [] for i in range(len(word2phone)): if style_text: repeat_feature = ( res[i].repeat(word2phone[i], 1) * (1 - style_weight) + style_res_mean.repeat(word2phone[i], 1) * style_weight ) else: repeat_feature = res[i].repeat(word2phone[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T