Spaces:
Running
Running
Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import json
|
6 |
+
import shutil
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from scipy.io.wavfile import read
|
11 |
+
import torch
|
12 |
+
import re
|
13 |
+
|
14 |
+
MATPLOTLIB_FLAG = False
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def download_emo_models(mirror, repo_id, model_name):
|
20 |
+
if mirror == "openi":
|
21 |
+
import openi
|
22 |
+
|
23 |
+
openi.model.download_model(
|
24 |
+
"Stardust_minus/Bert-VITS2",
|
25 |
+
repo_id.split("/")[-1],
|
26 |
+
"./emotional",
|
27 |
+
)
|
28 |
+
else:
|
29 |
+
hf_hub_download(
|
30 |
+
repo_id,
|
31 |
+
"pytorch_model.bin",
|
32 |
+
local_dir=model_name,
|
33 |
+
local_dir_use_symlinks=False,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def download_checkpoint(
|
38 |
+
dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi"
|
39 |
+
):
|
40 |
+
repo_id = repo_config["repo_id"]
|
41 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
42 |
+
if f_list:
|
43 |
+
print("Use existed model, skip downloading.")
|
44 |
+
return
|
45 |
+
if mirror.lower() == "openi":
|
46 |
+
import openi
|
47 |
+
|
48 |
+
kwargs = {"token": token} if token else {}
|
49 |
+
openi.login(**kwargs)
|
50 |
+
|
51 |
+
model_image = repo_config["model_image"]
|
52 |
+
openi.model.download_model(repo_id, model_image, dir_path)
|
53 |
+
|
54 |
+
fs = glob.glob(os.path.join(dir_path, model_image, "*.pth"))
|
55 |
+
for file in fs:
|
56 |
+
shutil.move(file, dir_path)
|
57 |
+
shutil.rmtree(os.path.join(dir_path, model_image))
|
58 |
+
else:
|
59 |
+
for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]:
|
60 |
+
hf_hub_download(
|
61 |
+
repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
66 |
+
assert os.path.isfile(checkpoint_path)
|
67 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
68 |
+
iteration = checkpoint_dict["iteration"]
|
69 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
70 |
+
if (
|
71 |
+
optimizer is not None
|
72 |
+
and not skip_optimizer
|
73 |
+
and checkpoint_dict["optimizer"] is not None
|
74 |
+
):
|
75 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
76 |
+
elif optimizer is None and not skip_optimizer:
|
77 |
+
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
78 |
+
new_opt_dict = optimizer.state_dict()
|
79 |
+
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
80 |
+
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
81 |
+
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
82 |
+
optimizer.load_state_dict(new_opt_dict)
|
83 |
+
|
84 |
+
saved_state_dict = checkpoint_dict["model"]
|
85 |
+
if hasattr(model, "module"):
|
86 |
+
state_dict = model.module.state_dict()
|
87 |
+
else:
|
88 |
+
state_dict = model.state_dict()
|
89 |
+
|
90 |
+
new_state_dict = {}
|
91 |
+
for k, v in state_dict.items():
|
92 |
+
try:
|
93 |
+
# assert "emb_g" not in k
|
94 |
+
new_state_dict[k] = saved_state_dict[k]
|
95 |
+
assert saved_state_dict[k].shape == v.shape, (
|
96 |
+
saved_state_dict[k].shape,
|
97 |
+
v.shape,
|
98 |
+
)
|
99 |
+
except:
|
100 |
+
# For upgrading from the old version
|
101 |
+
if "ja_bert_proj" in k:
|
102 |
+
v = torch.zeros_like(v)
|
103 |
+
logger.warn(
|
104 |
+
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
logger.error(f"{k} is not in the checkpoint")
|
108 |
+
|
109 |
+
new_state_dict[k] = v
|
110 |
+
|
111 |
+
if hasattr(model, "module"):
|
112 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
113 |
+
else:
|
114 |
+
model.load_state_dict(new_state_dict, strict=False)
|
115 |
+
|
116 |
+
logger.info(
|
117 |
+
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
118 |
+
)
|
119 |
+
|
120 |
+
return model, optimizer, learning_rate, iteration
|
121 |
+
|
122 |
+
|
123 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
124 |
+
logger.info(
|
125 |
+
"Saving model and optimizer state at iteration {} to {}".format(
|
126 |
+
iteration, checkpoint_path
|
127 |
+
)
|
128 |
+
)
|
129 |
+
if hasattr(model, "module"):
|
130 |
+
state_dict = model.module.state_dict()
|
131 |
+
else:
|
132 |
+
state_dict = model.state_dict()
|
133 |
+
torch.save(
|
134 |
+
{
|
135 |
+
"model": state_dict,
|
136 |
+
"iteration": iteration,
|
137 |
+
"optimizer": optimizer.state_dict(),
|
138 |
+
"learning_rate": learning_rate,
|
139 |
+
},
|
140 |
+
checkpoint_path,
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
def summarize(
|
145 |
+
writer,
|
146 |
+
global_step,
|
147 |
+
scalars={},
|
148 |
+
histograms={},
|
149 |
+
images={},
|
150 |
+
audios={},
|
151 |
+
audio_sampling_rate=22050,
|
152 |
+
):
|
153 |
+
for k, v in scalars.items():
|
154 |
+
writer.add_scalar(k, v, global_step)
|
155 |
+
for k, v in histograms.items():
|
156 |
+
writer.add_histogram(k, v, global_step)
|
157 |
+
for k, v in images.items():
|
158 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
159 |
+
for k, v in audios.items():
|
160 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
161 |
+
|
162 |
+
|
163 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
164 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
165 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
166 |
+
x = f_list[-1]
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
171 |
+
global MATPLOTLIB_FLAG
|
172 |
+
if not MATPLOTLIB_FLAG:
|
173 |
+
import matplotlib
|
174 |
+
|
175 |
+
matplotlib.use("Agg")
|
176 |
+
MATPLOTLIB_FLAG = True
|
177 |
+
mpl_logger = logging.getLogger("matplotlib")
|
178 |
+
mpl_logger.setLevel(logging.WARNING)
|
179 |
+
import matplotlib.pylab as plt
|
180 |
+
import numpy as np
|
181 |
+
|
182 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
183 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
184 |
+
plt.colorbar(im, ax=ax)
|
185 |
+
plt.xlabel("Frames")
|
186 |
+
plt.ylabel("Channels")
|
187 |
+
plt.tight_layout()
|
188 |
+
|
189 |
+
fig.canvas.draw()
|
190 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
191 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
192 |
+
plt.close()
|
193 |
+
return data
|
194 |
+
|
195 |
+
|
196 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
197 |
+
global MATPLOTLIB_FLAG
|
198 |
+
if not MATPLOTLIB_FLAG:
|
199 |
+
import matplotlib
|
200 |
+
|
201 |
+
matplotlib.use("Agg")
|
202 |
+
MATPLOTLIB_FLAG = True
|
203 |
+
mpl_logger = logging.getLogger("matplotlib")
|
204 |
+
mpl_logger.setLevel(logging.WARNING)
|
205 |
+
import matplotlib.pylab as plt
|
206 |
+
import numpy as np
|
207 |
+
|
208 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
209 |
+
im = ax.imshow(
|
210 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
211 |
+
)
|
212 |
+
fig.colorbar(im, ax=ax)
|
213 |
+
xlabel = "Decoder timestep"
|
214 |
+
if info is not None:
|
215 |
+
xlabel += "\n\n" + info
|
216 |
+
plt.xlabel(xlabel)
|
217 |
+
plt.ylabel("Encoder timestep")
|
218 |
+
plt.tight_layout()
|
219 |
+
|
220 |
+
fig.canvas.draw()
|
221 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
222 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
223 |
+
plt.close()
|
224 |
+
return data
|
225 |
+
|
226 |
+
|
227 |
+
def load_wav_to_torch(full_path):
|
228 |
+
sampling_rate, data = read(full_path)
|
229 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
230 |
+
|
231 |
+
|
232 |
+
def load_filepaths_and_text(filename, split="|"):
|
233 |
+
with open(filename, encoding="utf-8") as f:
|
234 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
235 |
+
return filepaths_and_text
|
236 |
+
|
237 |
+
|
238 |
+
def get_hparams(init=True):
|
239 |
+
parser = argparse.ArgumentParser()
|
240 |
+
parser.add_argument(
|
241 |
+
"-c",
|
242 |
+
"--config",
|
243 |
+
type=str,
|
244 |
+
default="./configs/base.json",
|
245 |
+
help="JSON file for configuration",
|
246 |
+
)
|
247 |
+
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
248 |
+
|
249 |
+
args = parser.parse_args()
|
250 |
+
model_dir = os.path.join("./logs", args.model)
|
251 |
+
|
252 |
+
if not os.path.exists(model_dir):
|
253 |
+
os.makedirs(model_dir)
|
254 |
+
|
255 |
+
config_path = args.config
|
256 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
257 |
+
if init:
|
258 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
259 |
+
data = f.read()
|
260 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
261 |
+
f.write(data)
|
262 |
+
else:
|
263 |
+
with open(config_save_path, "r", vencoding="utf-8") as f:
|
264 |
+
data = f.read()
|
265 |
+
config = json.loads(data)
|
266 |
+
hparams = HParams(**config)
|
267 |
+
hparams.model_dir = model_dir
|
268 |
+
return hparams
|
269 |
+
|
270 |
+
|
271 |
+
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
272 |
+
"""Freeing up space by deleting saved ckpts
|
273 |
+
|
274 |
+
Arguments:
|
275 |
+
path_to_models -- Path to the model directory
|
276 |
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
277 |
+
sort_by_time -- True -> chronologically delete ckpts
|
278 |
+
False -> lexicographically delete ckpts
|
279 |
+
"""
|
280 |
+
import re
|
281 |
+
|
282 |
+
ckpts_files = [
|
283 |
+
f
|
284 |
+
for f in os.listdir(path_to_models)
|
285 |
+
if os.path.isfile(os.path.join(path_to_models, f))
|
286 |
+
]
|
287 |
+
|
288 |
+
def name_key(_f):
|
289 |
+
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
290 |
+
|
291 |
+
def time_key(_f):
|
292 |
+
return os.path.getmtime(os.path.join(path_to_models, _f))
|
293 |
+
|
294 |
+
sort_key = time_key if sort_by_time else name_key
|
295 |
+
|
296 |
+
def x_sorted(_x):
|
297 |
+
return sorted(
|
298 |
+
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
299 |
+
key=sort_key,
|
300 |
+
)
|
301 |
+
|
302 |
+
to_del = [
|
303 |
+
os.path.join(path_to_models, fn)
|
304 |
+
for fn in (
|
305 |
+
x_sorted("G")[:-n_ckpts_to_keep]
|
306 |
+
+ x_sorted("D")[:-n_ckpts_to_keep]
|
307 |
+
+ x_sorted("WD")[:-n_ckpts_to_keep]
|
308 |
+
)
|
309 |
+
]
|
310 |
+
|
311 |
+
def del_info(fn):
|
312 |
+
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
313 |
+
|
314 |
+
def del_routine(x):
|
315 |
+
return [os.remove(x), del_info(x)]
|
316 |
+
|
317 |
+
[del_routine(fn) for fn in to_del]
|
318 |
+
|
319 |
+
|
320 |
+
def get_hparams_from_dir(model_dir):
|
321 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
322 |
+
with open(config_save_path, "r", encoding="utf-8") as f:
|
323 |
+
data = f.read()
|
324 |
+
config = json.loads(data)
|
325 |
+
|
326 |
+
hparams = HParams(**config)
|
327 |
+
hparams.model_dir = model_dir
|
328 |
+
return hparams
|
329 |
+
|
330 |
+
|
331 |
+
def get_hparams_from_file(config_path):
|
332 |
+
# print("config_path: ", config_path)
|
333 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
334 |
+
data = f.read()
|
335 |
+
config = json.loads(data)
|
336 |
+
|
337 |
+
hparams = HParams(**config)
|
338 |
+
return hparams
|
339 |
+
|
340 |
+
|
341 |
+
def check_git_hash(model_dir):
|
342 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
343 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
344 |
+
logger.warn(
|
345 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
346 |
+
source_dir
|
347 |
+
)
|
348 |
+
)
|
349 |
+
return
|
350 |
+
|
351 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
352 |
+
|
353 |
+
path = os.path.join(model_dir, "githash")
|
354 |
+
if os.path.exists(path):
|
355 |
+
saved_hash = open(path).read()
|
356 |
+
if saved_hash != cur_hash:
|
357 |
+
logger.warn(
|
358 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
359 |
+
saved_hash[:8], cur_hash[:8]
|
360 |
+
)
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
open(path, "w").write(cur_hash)
|
364 |
+
|
365 |
+
|
366 |
+
def get_logger(model_dir, filename="train.log"):
|
367 |
+
global logger
|
368 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
369 |
+
logger.setLevel(logging.DEBUG)
|
370 |
+
|
371 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
372 |
+
if not os.path.exists(model_dir):
|
373 |
+
os.makedirs(model_dir)
|
374 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
375 |
+
h.setLevel(logging.DEBUG)
|
376 |
+
h.setFormatter(formatter)
|
377 |
+
logger.addHandler(h)
|
378 |
+
return logger
|
379 |
+
|
380 |
+
|
381 |
+
class HParams:
|
382 |
+
def __init__(self, **kwargs):
|
383 |
+
for k, v in kwargs.items():
|
384 |
+
if type(v) == dict:
|
385 |
+
v = HParams(**v)
|
386 |
+
self[k] = v
|
387 |
+
|
388 |
+
def keys(self):
|
389 |
+
return self.__dict__.keys()
|
390 |
+
|
391 |
+
def items(self):
|
392 |
+
return self.__dict__.items()
|
393 |
+
|
394 |
+
def values(self):
|
395 |
+
return self.__dict__.values()
|
396 |
+
|
397 |
+
def __len__(self):
|
398 |
+
return len(self.__dict__)
|
399 |
+
|
400 |
+
def __getitem__(self, key):
|
401 |
+
return getattr(self, key)
|
402 |
+
|
403 |
+
def __setitem__(self, key, value):
|
404 |
+
return setattr(self, key, value)
|
405 |
+
|
406 |
+
def __contains__(self, key):
|
407 |
+
return key in self.__dict__
|
408 |
+
|
409 |
+
def __repr__(self):
|
410 |
+
return self.__dict__.__repr__()
|
411 |
+
|
412 |
+
|
413 |
+
def load_model(model_path, config_path):
|
414 |
+
hps = get_hparams_from_file(config_path)
|
415 |
+
net = SynthesizerTrn(
|
416 |
+
# len(symbols),
|
417 |
+
108,
|
418 |
+
hps.data.filter_length // 2 + 1,
|
419 |
+
hps.train.segment_size // hps.data.hop_length,
|
420 |
+
n_speakers=hps.data.n_speakers,
|
421 |
+
**hps.model,
|
422 |
+
).to("cpu")
|
423 |
+
_ = net.eval()
|
424 |
+
_ = load_checkpoint(model_path, net, None, skip_optimizer=True)
|
425 |
+
return net
|
426 |
+
|
427 |
+
|
428 |
+
def mix_model(
|
429 |
+
network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5)
|
430 |
+
):
|
431 |
+
if hasattr(network1, "module"):
|
432 |
+
state_dict1 = network1.module.state_dict()
|
433 |
+
state_dict2 = network2.module.state_dict()
|
434 |
+
else:
|
435 |
+
state_dict1 = network1.state_dict()
|
436 |
+
state_dict2 = network2.state_dict()
|
437 |
+
for k in state_dict1.keys():
|
438 |
+
if k not in state_dict2.keys():
|
439 |
+
continue
|
440 |
+
if "enc_p" in k:
|
441 |
+
state_dict1[k] = (
|
442 |
+
state_dict1[k].clone() * tone_ratio[0]
|
443 |
+
+ state_dict2[k].clone() * tone_ratio[1]
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
state_dict1[k] = (
|
447 |
+
state_dict1[k].clone() * voice_ratio[0]
|
448 |
+
+ state_dict2[k].clone() * voice_ratio[1]
|
449 |
+
)
|
450 |
+
for k in state_dict2.keys():
|
451 |
+
if k not in state_dict1.keys():
|
452 |
+
state_dict1[k] = state_dict2[k].clone()
|
453 |
+
torch.save(
|
454 |
+
{"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0},
|
455 |
+
output_path,
|
456 |
+
)
|
457 |
+
|
458 |
+
|
459 |
+
def get_steps(model_path):
|
460 |
+
matches = re.findall(r"\d+", model_path)
|
461 |
+
return matches[-1] if matches else None
|