Spaces:
Running
Running
Upload models.py
Browse files
models.py
ADDED
@@ -0,0 +1,1105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
import monotonic_align
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
from text import symbols, num_tones, num_languages
|
16 |
+
|
17 |
+
from vector_quantize_pytorch import VectorQuantize
|
18 |
+
|
19 |
+
|
20 |
+
class DurationDiscriminator(nn.Module): # vits2
|
21 |
+
def __init__(
|
22 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
23 |
+
):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.in_channels = in_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.kernel_size = kernel_size
|
29 |
+
self.p_dropout = p_dropout
|
30 |
+
self.gin_channels = gin_channels
|
31 |
+
|
32 |
+
self.drop = nn.Dropout(p_dropout)
|
33 |
+
self.conv_1 = nn.Conv1d(
|
34 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
35 |
+
)
|
36 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
37 |
+
self.conv_2 = nn.Conv1d(
|
38 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
39 |
+
)
|
40 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
41 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
42 |
+
|
43 |
+
self.LSTM = nn.LSTM(
|
44 |
+
2 * filter_channels, filter_channels, batch_first=True, bidirectional=True
|
45 |
+
)
|
46 |
+
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
49 |
+
|
50 |
+
self.output_layer = nn.Sequential(
|
51 |
+
nn.Linear(2 * filter_channels, 1), nn.Sigmoid()
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward_probability(self, x, dur):
|
55 |
+
dur = self.dur_proj(dur)
|
56 |
+
x = torch.cat([x, dur], dim=1)
|
57 |
+
x = x.transpose(1, 2)
|
58 |
+
x, _ = self.LSTM(x)
|
59 |
+
output_prob = self.output_layer(x)
|
60 |
+
return output_prob
|
61 |
+
|
62 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
63 |
+
x = torch.detach(x)
|
64 |
+
if g is not None:
|
65 |
+
g = torch.detach(g)
|
66 |
+
x = x + self.cond(g)
|
67 |
+
x = self.conv_1(x * x_mask)
|
68 |
+
x = torch.relu(x)
|
69 |
+
x = self.norm_1(x)
|
70 |
+
x = self.drop(x)
|
71 |
+
x = self.conv_2(x * x_mask)
|
72 |
+
x = torch.relu(x)
|
73 |
+
x = self.norm_2(x)
|
74 |
+
x = self.drop(x)
|
75 |
+
|
76 |
+
output_probs = []
|
77 |
+
for dur in [dur_r, dur_hat]:
|
78 |
+
output_prob = self.forward_probability(x, dur)
|
79 |
+
output_probs.append(output_prob)
|
80 |
+
|
81 |
+
return output_probs
|
82 |
+
|
83 |
+
|
84 |
+
class TransformerCouplingBlock(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
channels,
|
88 |
+
hidden_channels,
|
89 |
+
filter_channels,
|
90 |
+
n_heads,
|
91 |
+
n_layers,
|
92 |
+
kernel_size,
|
93 |
+
p_dropout,
|
94 |
+
n_flows=4,
|
95 |
+
gin_channels=0,
|
96 |
+
share_parameter=False,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
self.channels = channels
|
100 |
+
self.hidden_channels = hidden_channels
|
101 |
+
self.kernel_size = kernel_size
|
102 |
+
self.n_layers = n_layers
|
103 |
+
self.n_flows = n_flows
|
104 |
+
self.gin_channels = gin_channels
|
105 |
+
|
106 |
+
self.flows = nn.ModuleList()
|
107 |
+
|
108 |
+
self.wn = (
|
109 |
+
attentions.FFT(
|
110 |
+
hidden_channels,
|
111 |
+
filter_channels,
|
112 |
+
n_heads,
|
113 |
+
n_layers,
|
114 |
+
kernel_size,
|
115 |
+
p_dropout,
|
116 |
+
isflow=True,
|
117 |
+
gin_channels=self.gin_channels,
|
118 |
+
)
|
119 |
+
if share_parameter
|
120 |
+
else None
|
121 |
+
)
|
122 |
+
|
123 |
+
for i in range(n_flows):
|
124 |
+
self.flows.append(
|
125 |
+
modules.TransformerCouplingLayer(
|
126 |
+
channels,
|
127 |
+
hidden_channels,
|
128 |
+
kernel_size,
|
129 |
+
n_layers,
|
130 |
+
n_heads,
|
131 |
+
p_dropout,
|
132 |
+
filter_channels,
|
133 |
+
mean_only=True,
|
134 |
+
wn_sharing_parameter=self.wn,
|
135 |
+
gin_channels=self.gin_channels,
|
136 |
+
)
|
137 |
+
)
|
138 |
+
self.flows.append(modules.Flip())
|
139 |
+
|
140 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
141 |
+
if not reverse:
|
142 |
+
for flow in self.flows:
|
143 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
144 |
+
else:
|
145 |
+
for flow in reversed(self.flows):
|
146 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
class StochasticDurationPredictor(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
in_channels,
|
154 |
+
filter_channels,
|
155 |
+
kernel_size,
|
156 |
+
p_dropout,
|
157 |
+
n_flows=4,
|
158 |
+
gin_channels=0,
|
159 |
+
):
|
160 |
+
super().__init__()
|
161 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
162 |
+
self.in_channels = in_channels
|
163 |
+
self.filter_channels = filter_channels
|
164 |
+
self.kernel_size = kernel_size
|
165 |
+
self.p_dropout = p_dropout
|
166 |
+
self.n_flows = n_flows
|
167 |
+
self.gin_channels = gin_channels
|
168 |
+
|
169 |
+
self.log_flow = modules.Log()
|
170 |
+
self.flows = nn.ModuleList()
|
171 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
172 |
+
for i in range(n_flows):
|
173 |
+
self.flows.append(
|
174 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
175 |
+
)
|
176 |
+
self.flows.append(modules.Flip())
|
177 |
+
|
178 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
179 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
180 |
+
self.post_convs = modules.DDSConv(
|
181 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
182 |
+
)
|
183 |
+
self.post_flows = nn.ModuleList()
|
184 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
185 |
+
for i in range(4):
|
186 |
+
self.post_flows.append(
|
187 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
188 |
+
)
|
189 |
+
self.post_flows.append(modules.Flip())
|
190 |
+
|
191 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
192 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
193 |
+
self.convs = modules.DDSConv(
|
194 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
195 |
+
)
|
196 |
+
if gin_channels != 0:
|
197 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
198 |
+
|
199 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
200 |
+
x = torch.detach(x)
|
201 |
+
x = self.pre(x)
|
202 |
+
if g is not None:
|
203 |
+
g = torch.detach(g)
|
204 |
+
x = x + self.cond(g)
|
205 |
+
x = self.convs(x, x_mask)
|
206 |
+
x = self.proj(x) * x_mask
|
207 |
+
|
208 |
+
if not reverse:
|
209 |
+
flows = self.flows
|
210 |
+
assert w is not None
|
211 |
+
|
212 |
+
logdet_tot_q = 0
|
213 |
+
h_w = self.post_pre(w)
|
214 |
+
h_w = self.post_convs(h_w, x_mask)
|
215 |
+
h_w = self.post_proj(h_w) * x_mask
|
216 |
+
e_q = (
|
217 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
218 |
+
* x_mask
|
219 |
+
)
|
220 |
+
z_q = e_q
|
221 |
+
for flow in self.post_flows:
|
222 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
223 |
+
logdet_tot_q += logdet_q
|
224 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
225 |
+
u = torch.sigmoid(z_u) * x_mask
|
226 |
+
z0 = (w - u) * x_mask
|
227 |
+
logdet_tot_q += torch.sum(
|
228 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
229 |
+
)
|
230 |
+
logq = (
|
231 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
232 |
+
- logdet_tot_q
|
233 |
+
)
|
234 |
+
|
235 |
+
logdet_tot = 0
|
236 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
237 |
+
logdet_tot += logdet
|
238 |
+
z = torch.cat([z0, z1], 1)
|
239 |
+
for flow in flows:
|
240 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
241 |
+
logdet_tot = logdet_tot + logdet
|
242 |
+
nll = (
|
243 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
244 |
+
- logdet_tot
|
245 |
+
)
|
246 |
+
return nll + logq # [b]
|
247 |
+
else:
|
248 |
+
flows = list(reversed(self.flows))
|
249 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
250 |
+
z = (
|
251 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
252 |
+
* noise_scale
|
253 |
+
)
|
254 |
+
for flow in flows:
|
255 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
256 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
257 |
+
logw = z0
|
258 |
+
return logw
|
259 |
+
|
260 |
+
|
261 |
+
class DurationPredictor(nn.Module):
|
262 |
+
def __init__(
|
263 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
264 |
+
):
|
265 |
+
super().__init__()
|
266 |
+
|
267 |
+
self.in_channels = in_channels
|
268 |
+
self.filter_channels = filter_channels
|
269 |
+
self.kernel_size = kernel_size
|
270 |
+
self.p_dropout = p_dropout
|
271 |
+
self.gin_channels = gin_channels
|
272 |
+
|
273 |
+
self.drop = nn.Dropout(p_dropout)
|
274 |
+
self.conv_1 = nn.Conv1d(
|
275 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
276 |
+
)
|
277 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
278 |
+
self.conv_2 = nn.Conv1d(
|
279 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
280 |
+
)
|
281 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
282 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
283 |
+
|
284 |
+
if gin_channels != 0:
|
285 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, g=None):
|
288 |
+
x = torch.detach(x)
|
289 |
+
if g is not None:
|
290 |
+
g = torch.detach(g)
|
291 |
+
x = x + self.cond(g)
|
292 |
+
x = self.conv_1(x * x_mask)
|
293 |
+
x = torch.relu(x)
|
294 |
+
x = self.norm_1(x)
|
295 |
+
x = self.drop(x)
|
296 |
+
x = self.conv_2(x * x_mask)
|
297 |
+
x = torch.relu(x)
|
298 |
+
x = self.norm_2(x)
|
299 |
+
x = self.drop(x)
|
300 |
+
x = self.proj(x * x_mask)
|
301 |
+
return x * x_mask
|
302 |
+
|
303 |
+
|
304 |
+
class Bottleneck(nn.Sequential):
|
305 |
+
def __init__(self, in_dim, hidden_dim):
|
306 |
+
c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
307 |
+
c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False)
|
308 |
+
super().__init__(*[c_fc1, c_fc2])
|
309 |
+
|
310 |
+
|
311 |
+
class Block(nn.Module):
|
312 |
+
def __init__(self, in_dim, hidden_dim) -> None:
|
313 |
+
super().__init__()
|
314 |
+
self.norm = nn.LayerNorm(in_dim)
|
315 |
+
self.mlp = MLP(in_dim, hidden_dim)
|
316 |
+
|
317 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
318 |
+
x = x + self.mlp(self.norm(x))
|
319 |
+
return x
|
320 |
+
|
321 |
+
|
322 |
+
class MLP(nn.Module):
|
323 |
+
def __init__(self, in_dim, hidden_dim):
|
324 |
+
super().__init__()
|
325 |
+
self.c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
326 |
+
self.c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False)
|
327 |
+
self.c_proj = nn.Linear(hidden_dim, in_dim, bias=False)
|
328 |
+
|
329 |
+
def forward(self, x: torch.Tensor):
|
330 |
+
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
|
331 |
+
x = self.c_proj(x)
|
332 |
+
return x
|
333 |
+
|
334 |
+
|
335 |
+
class TextEncoder(nn.Module):
|
336 |
+
def __init__(
|
337 |
+
self,
|
338 |
+
n_vocab,
|
339 |
+
out_channels,
|
340 |
+
hidden_channels,
|
341 |
+
filter_channels,
|
342 |
+
n_heads,
|
343 |
+
n_layers,
|
344 |
+
kernel_size,
|
345 |
+
p_dropout,
|
346 |
+
gin_channels=0,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
self.n_vocab = n_vocab
|
350 |
+
self.out_channels = out_channels
|
351 |
+
self.hidden_channels = hidden_channels
|
352 |
+
self.filter_channels = filter_channels
|
353 |
+
self.n_heads = n_heads
|
354 |
+
self.n_layers = n_layers
|
355 |
+
self.kernel_size = kernel_size
|
356 |
+
self.p_dropout = p_dropout
|
357 |
+
self.gin_channels = gin_channels
|
358 |
+
self.emb = nn.Embedding(len(symbols), hidden_channels)
|
359 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
360 |
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
361 |
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
362 |
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
363 |
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
364 |
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
365 |
+
#self.bert_pre_proj = nn.Conv1d(2048, 1024, 1)
|
366 |
+
# self.en_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
367 |
+
self.in_feature_net = nn.Sequential(
|
368 |
+
# input is assumed to an already normalized embedding
|
369 |
+
nn.Linear(512, 1028, bias=False),
|
370 |
+
nn.GELU(),
|
371 |
+
nn.LayerNorm(1028),
|
372 |
+
*[Block(1028, 512) for _ in range(1)],
|
373 |
+
nn.Linear(1028, 512, bias=False),
|
374 |
+
# normalize before passing to VQ?
|
375 |
+
# nn.GELU(),
|
376 |
+
# nn.LayerNorm(512),
|
377 |
+
)
|
378 |
+
self.emo_vq = VectorQuantize(
|
379 |
+
dim=512,
|
380 |
+
# codebook_size=128,
|
381 |
+
codebook_size=256,
|
382 |
+
codebook_dim=16,
|
383 |
+
# codebook_dim=32,
|
384 |
+
commitment_weight=0.1,
|
385 |
+
decay=0.99,
|
386 |
+
heads=32,
|
387 |
+
kmeans_iters=20,
|
388 |
+
separate_codebook_per_head=True,
|
389 |
+
stochastic_sample_codes=True,
|
390 |
+
threshold_ema_dead_code=2,
|
391 |
+
use_cosine_sim = True,
|
392 |
+
)
|
393 |
+
self.out_feature_net = nn.Linear(512, hidden_channels)
|
394 |
+
|
395 |
+
self.encoder = attentions.Encoder(
|
396 |
+
hidden_channels,
|
397 |
+
filter_channels,
|
398 |
+
n_heads,
|
399 |
+
n_layers,
|
400 |
+
kernel_size,
|
401 |
+
p_dropout,
|
402 |
+
gin_channels=self.gin_channels,
|
403 |
+
)
|
404 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
405 |
+
|
406 |
+
def forward(self, x, x_lengths, tone, language, bert, emo, g=None):
|
407 |
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
408 |
+
# en_bert_emb = self.en_bert_proj(en_bert).transpose(1, 2)
|
409 |
+
emo_emb = self.in_feature_net(emo)
|
410 |
+
emo_emb, _, loss_commit = self.emo_vq(emo_emb.unsqueeze(1))
|
411 |
+
loss_commit = loss_commit.mean()
|
412 |
+
emo_emb = self.out_feature_net(emo_emb)
|
413 |
+
x = (
|
414 |
+
self.emb(x)
|
415 |
+
+ self.tone_emb(tone)
|
416 |
+
+ self.language_emb(language)
|
417 |
+
+ bert_emb
|
418 |
+
# + en_bert_emb
|
419 |
+
+ emo_emb
|
420 |
+
) * math.sqrt(
|
421 |
+
self.hidden_channels
|
422 |
+
) # [b, t, h]
|
423 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
424 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
425 |
+
x.dtype
|
426 |
+
)
|
427 |
+
|
428 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
429 |
+
stats = self.proj(x) * x_mask
|
430 |
+
|
431 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
432 |
+
return x, m, logs, x_mask, loss_commit
|
433 |
+
|
434 |
+
|
435 |
+
class ResidualCouplingBlock(nn.Module):
|
436 |
+
def __init__(
|
437 |
+
self,
|
438 |
+
channels,
|
439 |
+
hidden_channels,
|
440 |
+
kernel_size,
|
441 |
+
dilation_rate,
|
442 |
+
n_layers,
|
443 |
+
n_flows=4,
|
444 |
+
gin_channels=0,
|
445 |
+
):
|
446 |
+
super().__init__()
|
447 |
+
self.channels = channels
|
448 |
+
self.hidden_channels = hidden_channels
|
449 |
+
self.kernel_size = kernel_size
|
450 |
+
self.dilation_rate = dilation_rate
|
451 |
+
self.n_layers = n_layers
|
452 |
+
self.n_flows = n_flows
|
453 |
+
self.gin_channels = gin_channels
|
454 |
+
|
455 |
+
self.flows = nn.ModuleList()
|
456 |
+
for i in range(n_flows):
|
457 |
+
self.flows.append(
|
458 |
+
modules.ResidualCouplingLayer(
|
459 |
+
channels,
|
460 |
+
hidden_channels,
|
461 |
+
kernel_size,
|
462 |
+
dilation_rate,
|
463 |
+
n_layers,
|
464 |
+
gin_channels=gin_channels,
|
465 |
+
mean_only=True,
|
466 |
+
)
|
467 |
+
)
|
468 |
+
self.flows.append(modules.Flip())
|
469 |
+
|
470 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
471 |
+
if not reverse:
|
472 |
+
for flow in self.flows:
|
473 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
474 |
+
else:
|
475 |
+
for flow in reversed(self.flows):
|
476 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
477 |
+
return x
|
478 |
+
|
479 |
+
|
480 |
+
class PosteriorEncoder(nn.Module):
|
481 |
+
def __init__(
|
482 |
+
self,
|
483 |
+
in_channels,
|
484 |
+
out_channels,
|
485 |
+
hidden_channels,
|
486 |
+
kernel_size,
|
487 |
+
dilation_rate,
|
488 |
+
n_layers,
|
489 |
+
gin_channels=0,
|
490 |
+
):
|
491 |
+
super().__init__()
|
492 |
+
self.in_channels = in_channels
|
493 |
+
self.out_channels = out_channels
|
494 |
+
self.hidden_channels = hidden_channels
|
495 |
+
self.kernel_size = kernel_size
|
496 |
+
self.dilation_rate = dilation_rate
|
497 |
+
self.n_layers = n_layers
|
498 |
+
self.gin_channels = gin_channels
|
499 |
+
|
500 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
501 |
+
self.enc = modules.WN(
|
502 |
+
hidden_channels,
|
503 |
+
kernel_size,
|
504 |
+
dilation_rate,
|
505 |
+
n_layers,
|
506 |
+
gin_channels=gin_channels,
|
507 |
+
)
|
508 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
509 |
+
|
510 |
+
def forward(self, x, x_lengths, g=None):
|
511 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
512 |
+
x.dtype
|
513 |
+
)
|
514 |
+
x = self.pre(x) * x_mask
|
515 |
+
x = self.enc(x, x_mask, g=g)
|
516 |
+
stats = self.proj(x) * x_mask
|
517 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
518 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
519 |
+
return z, m, logs, x_mask
|
520 |
+
|
521 |
+
|
522 |
+
class Generator(torch.nn.Module):
|
523 |
+
def __init__(
|
524 |
+
self,
|
525 |
+
initial_channel,
|
526 |
+
resblock,
|
527 |
+
resblock_kernel_sizes,
|
528 |
+
resblock_dilation_sizes,
|
529 |
+
upsample_rates,
|
530 |
+
upsample_initial_channel,
|
531 |
+
upsample_kernel_sizes,
|
532 |
+
gin_channels=0,
|
533 |
+
):
|
534 |
+
super(Generator, self).__init__()
|
535 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
536 |
+
self.num_upsamples = len(upsample_rates)
|
537 |
+
self.conv_pre = Conv1d(
|
538 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
539 |
+
)
|
540 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
541 |
+
|
542 |
+
self.ups = nn.ModuleList()
|
543 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
544 |
+
self.ups.append(
|
545 |
+
weight_norm(
|
546 |
+
ConvTranspose1d(
|
547 |
+
upsample_initial_channel // (2**i),
|
548 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
549 |
+
k,
|
550 |
+
u,
|
551 |
+
padding=(k - u) // 2,
|
552 |
+
)
|
553 |
+
)
|
554 |
+
)
|
555 |
+
|
556 |
+
self.resblocks = nn.ModuleList()
|
557 |
+
for i in range(len(self.ups)):
|
558 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
559 |
+
for j, (k, d) in enumerate(
|
560 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
561 |
+
):
|
562 |
+
self.resblocks.append(resblock(ch, k, d))
|
563 |
+
|
564 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
565 |
+
self.ups.apply(init_weights)
|
566 |
+
|
567 |
+
if gin_channels != 0:
|
568 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
569 |
+
|
570 |
+
def forward(self, x, g=None):
|
571 |
+
x = self.conv_pre(x)
|
572 |
+
if g is not None:
|
573 |
+
x = x + self.cond(g)
|
574 |
+
|
575 |
+
for i in range(self.num_upsamples):
|
576 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
577 |
+
x = self.ups[i](x)
|
578 |
+
xs = None
|
579 |
+
for j in range(self.num_kernels):
|
580 |
+
if xs is None:
|
581 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
582 |
+
else:
|
583 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
584 |
+
x = xs / self.num_kernels
|
585 |
+
x = F.leaky_relu(x)
|
586 |
+
x = self.conv_post(x)
|
587 |
+
x = torch.tanh(x)
|
588 |
+
|
589 |
+
return x
|
590 |
+
|
591 |
+
def remove_weight_norm(self):
|
592 |
+
print("Removing weight norm...")
|
593 |
+
for layer in self.ups:
|
594 |
+
remove_weight_norm(layer)
|
595 |
+
for layer in self.resblocks:
|
596 |
+
layer.remove_weight_norm()
|
597 |
+
|
598 |
+
|
599 |
+
class DiscriminatorP(torch.nn.Module):
|
600 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
601 |
+
super(DiscriminatorP, self).__init__()
|
602 |
+
self.period = period
|
603 |
+
self.use_spectral_norm = use_spectral_norm
|
604 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
605 |
+
self.convs = nn.ModuleList(
|
606 |
+
[
|
607 |
+
norm_f(
|
608 |
+
Conv2d(
|
609 |
+
1,
|
610 |
+
32,
|
611 |
+
(kernel_size, 1),
|
612 |
+
(stride, 1),
|
613 |
+
padding=(get_padding(kernel_size, 1), 0),
|
614 |
+
)
|
615 |
+
),
|
616 |
+
norm_f(
|
617 |
+
Conv2d(
|
618 |
+
32,
|
619 |
+
128,
|
620 |
+
(kernel_size, 1),
|
621 |
+
(stride, 1),
|
622 |
+
padding=(get_padding(kernel_size, 1), 0),
|
623 |
+
)
|
624 |
+
),
|
625 |
+
norm_f(
|
626 |
+
Conv2d(
|
627 |
+
128,
|
628 |
+
512,
|
629 |
+
(kernel_size, 1),
|
630 |
+
(stride, 1),
|
631 |
+
padding=(get_padding(kernel_size, 1), 0),
|
632 |
+
)
|
633 |
+
),
|
634 |
+
norm_f(
|
635 |
+
Conv2d(
|
636 |
+
512,
|
637 |
+
1024,
|
638 |
+
(kernel_size, 1),
|
639 |
+
(stride, 1),
|
640 |
+
padding=(get_padding(kernel_size, 1), 0),
|
641 |
+
)
|
642 |
+
),
|
643 |
+
norm_f(
|
644 |
+
Conv2d(
|
645 |
+
1024,
|
646 |
+
1024,
|
647 |
+
(kernel_size, 1),
|
648 |
+
1,
|
649 |
+
padding=(get_padding(kernel_size, 1), 0),
|
650 |
+
)
|
651 |
+
),
|
652 |
+
]
|
653 |
+
)
|
654 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
655 |
+
|
656 |
+
def forward(self, x):
|
657 |
+
fmap = []
|
658 |
+
|
659 |
+
# 1d to 2d
|
660 |
+
b, c, t = x.shape
|
661 |
+
if t % self.period != 0: # pad first
|
662 |
+
n_pad = self.period - (t % self.period)
|
663 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
664 |
+
t = t + n_pad
|
665 |
+
x = x.view(b, c, t // self.period, self.period)
|
666 |
+
|
667 |
+
for layer in self.convs:
|
668 |
+
x = layer(x)
|
669 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
670 |
+
fmap.append(x)
|
671 |
+
x = self.conv_post(x)
|
672 |
+
fmap.append(x)
|
673 |
+
x = torch.flatten(x, 1, -1)
|
674 |
+
|
675 |
+
return x, fmap
|
676 |
+
|
677 |
+
|
678 |
+
class DiscriminatorS(torch.nn.Module):
|
679 |
+
def __init__(self, use_spectral_norm=False):
|
680 |
+
super(DiscriminatorS, self).__init__()
|
681 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
682 |
+
self.convs = nn.ModuleList(
|
683 |
+
[
|
684 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
685 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
686 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
687 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
688 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
689 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
690 |
+
]
|
691 |
+
)
|
692 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
693 |
+
|
694 |
+
def forward(self, x):
|
695 |
+
fmap = []
|
696 |
+
|
697 |
+
for layer in self.convs:
|
698 |
+
x = layer(x)
|
699 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
700 |
+
fmap.append(x)
|
701 |
+
x = self.conv_post(x)
|
702 |
+
fmap.append(x)
|
703 |
+
x = torch.flatten(x, 1, -1)
|
704 |
+
|
705 |
+
return x, fmap
|
706 |
+
|
707 |
+
|
708 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
709 |
+
def __init__(self, use_spectral_norm=False):
|
710 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
711 |
+
periods = [2, 3, 5, 7, 11]
|
712 |
+
|
713 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
714 |
+
discs = discs + [
|
715 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
716 |
+
]
|
717 |
+
self.discriminators = nn.ModuleList(discs)
|
718 |
+
|
719 |
+
def forward(self, y, y_hat):
|
720 |
+
y_d_rs = []
|
721 |
+
y_d_gs = []
|
722 |
+
fmap_rs = []
|
723 |
+
fmap_gs = []
|
724 |
+
for i, d in enumerate(self.discriminators):
|
725 |
+
y_d_r, fmap_r = d(y)
|
726 |
+
y_d_g, fmap_g = d(y_hat)
|
727 |
+
y_d_rs.append(y_d_r)
|
728 |
+
y_d_gs.append(y_d_g)
|
729 |
+
fmap_rs.append(fmap_r)
|
730 |
+
fmap_gs.append(fmap_g)
|
731 |
+
|
732 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
733 |
+
|
734 |
+
|
735 |
+
class WavLMDiscriminator(nn.Module):
|
736 |
+
"""docstring for Discriminator."""
|
737 |
+
|
738 |
+
def __init__(
|
739 |
+
self, slm_hidden=768, slm_layers=13, initial_channel=64, use_spectral_norm=False
|
740 |
+
):
|
741 |
+
super(WavLMDiscriminator, self).__init__()
|
742 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
743 |
+
self.pre = norm_f(
|
744 |
+
Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0)
|
745 |
+
)
|
746 |
+
|
747 |
+
self.convs = nn.ModuleList(
|
748 |
+
[
|
749 |
+
norm_f(
|
750 |
+
nn.Conv1d(
|
751 |
+
initial_channel, initial_channel * 2, kernel_size=5, padding=2
|
752 |
+
)
|
753 |
+
),
|
754 |
+
norm_f(
|
755 |
+
nn.Conv1d(
|
756 |
+
initial_channel * 2,
|
757 |
+
initial_channel * 4,
|
758 |
+
kernel_size=5,
|
759 |
+
padding=2,
|
760 |
+
)
|
761 |
+
),
|
762 |
+
norm_f(
|
763 |
+
nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)
|
764 |
+
),
|
765 |
+
]
|
766 |
+
)
|
767 |
+
|
768 |
+
self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
|
769 |
+
|
770 |
+
def forward(self, x):
|
771 |
+
x = self.pre(x)
|
772 |
+
|
773 |
+
fmap = []
|
774 |
+
for l in self.convs:
|
775 |
+
x = l(x)
|
776 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
777 |
+
fmap.append(x)
|
778 |
+
x = self.conv_post(x)
|
779 |
+
x = torch.flatten(x, 1, -1)
|
780 |
+
|
781 |
+
return x
|
782 |
+
|
783 |
+
|
784 |
+
class ReferenceEncoder(nn.Module):
|
785 |
+
"""
|
786 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
787 |
+
outputs --- [N, ref_enc_gru_size]
|
788 |
+
"""
|
789 |
+
|
790 |
+
def __init__(self, spec_channels, gin_channels=0):
|
791 |
+
super().__init__()
|
792 |
+
self.spec_channels = spec_channels
|
793 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
794 |
+
K = len(ref_enc_filters)
|
795 |
+
filters = [1] + ref_enc_filters
|
796 |
+
convs = [
|
797 |
+
weight_norm(
|
798 |
+
nn.Conv2d(
|
799 |
+
in_channels=filters[i],
|
800 |
+
out_channels=filters[i + 1],
|
801 |
+
kernel_size=(3, 3),
|
802 |
+
stride=(2, 2),
|
803 |
+
padding=(1, 1),
|
804 |
+
)
|
805 |
+
)
|
806 |
+
for i in range(K)
|
807 |
+
]
|
808 |
+
self.convs = nn.ModuleList(convs)
|
809 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
810 |
+
|
811 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
812 |
+
self.gru = nn.GRU(
|
813 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
814 |
+
hidden_size=256 // 2,
|
815 |
+
batch_first=True,
|
816 |
+
)
|
817 |
+
self.proj = nn.Linear(128, gin_channels)
|
818 |
+
|
819 |
+
def forward(self, inputs, mask=None):
|
820 |
+
N = inputs.size(0)
|
821 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
822 |
+
for conv in self.convs:
|
823 |
+
out = conv(out)
|
824 |
+
# out = wn(out)
|
825 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
826 |
+
|
827 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
828 |
+
T = out.size(1)
|
829 |
+
N = out.size(0)
|
830 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
831 |
+
|
832 |
+
self.gru.flatten_parameters()
|
833 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
834 |
+
|
835 |
+
return self.proj(out.squeeze(0))
|
836 |
+
|
837 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
838 |
+
for i in range(n_convs):
|
839 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
840 |
+
return L
|
841 |
+
|
842 |
+
|
843 |
+
class SynthesizerTrn(nn.Module):
|
844 |
+
"""
|
845 |
+
Synthesizer for Training
|
846 |
+
"""
|
847 |
+
|
848 |
+
def __init__(
|
849 |
+
self,
|
850 |
+
n_vocab,
|
851 |
+
spec_channels,
|
852 |
+
segment_size,
|
853 |
+
inter_channels,
|
854 |
+
hidden_channels,
|
855 |
+
filter_channels,
|
856 |
+
n_heads,
|
857 |
+
n_layers,
|
858 |
+
kernel_size,
|
859 |
+
p_dropout,
|
860 |
+
resblock,
|
861 |
+
resblock_kernel_sizes,
|
862 |
+
resblock_dilation_sizes,
|
863 |
+
upsample_rates,
|
864 |
+
upsample_initial_channel,
|
865 |
+
upsample_kernel_sizes,
|
866 |
+
n_speakers=256,
|
867 |
+
gin_channels=256,
|
868 |
+
use_sdp=True,
|
869 |
+
n_flow_layer=4,
|
870 |
+
n_layers_trans_flow=6,
|
871 |
+
flow_share_parameter=False,
|
872 |
+
use_transformer_flow=True,
|
873 |
+
**kwargs
|
874 |
+
):
|
875 |
+
super().__init__()
|
876 |
+
self.n_vocab = n_vocab
|
877 |
+
self.spec_channels = spec_channels
|
878 |
+
self.inter_channels = inter_channels
|
879 |
+
self.hidden_channels = hidden_channels
|
880 |
+
self.filter_channels = filter_channels
|
881 |
+
self.n_heads = n_heads
|
882 |
+
self.n_layers = n_layers
|
883 |
+
self.kernel_size = kernel_size
|
884 |
+
self.p_dropout = p_dropout
|
885 |
+
self.resblock = resblock
|
886 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
887 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
888 |
+
self.upsample_rates = upsample_rates
|
889 |
+
self.upsample_initial_channel = upsample_initial_channel
|
890 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
891 |
+
self.segment_size = segment_size
|
892 |
+
self.n_speakers = n_speakers
|
893 |
+
self.gin_channels = gin_channels
|
894 |
+
self.n_layers_trans_flow = n_layers_trans_flow
|
895 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
896 |
+
"use_spk_conditioned_encoder", True
|
897 |
+
)
|
898 |
+
self.use_sdp = use_sdp
|
899 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
900 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
901 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
902 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
903 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
904 |
+
self.enc_gin_channels = gin_channels
|
905 |
+
self.enc_p = TextEncoder(
|
906 |
+
n_vocab,
|
907 |
+
inter_channels,
|
908 |
+
hidden_channels,
|
909 |
+
filter_channels,
|
910 |
+
n_heads,
|
911 |
+
n_layers,
|
912 |
+
kernel_size,
|
913 |
+
p_dropout,
|
914 |
+
gin_channels=self.enc_gin_channels,
|
915 |
+
)
|
916 |
+
self.dec = Generator(
|
917 |
+
inter_channels,
|
918 |
+
resblock,
|
919 |
+
resblock_kernel_sizes,
|
920 |
+
resblock_dilation_sizes,
|
921 |
+
upsample_rates,
|
922 |
+
upsample_initial_channel,
|
923 |
+
upsample_kernel_sizes,
|
924 |
+
gin_channels=gin_channels,
|
925 |
+
)
|
926 |
+
self.enc_q = PosteriorEncoder(
|
927 |
+
spec_channels,
|
928 |
+
inter_channels,
|
929 |
+
hidden_channels,
|
930 |
+
5,
|
931 |
+
1,
|
932 |
+
16,
|
933 |
+
gin_channels=gin_channels,
|
934 |
+
)
|
935 |
+
if use_transformer_flow:
|
936 |
+
self.flow = TransformerCouplingBlock(
|
937 |
+
inter_channels,
|
938 |
+
hidden_channels,
|
939 |
+
filter_channels,
|
940 |
+
n_heads,
|
941 |
+
n_layers_trans_flow,
|
942 |
+
5,
|
943 |
+
p_dropout,
|
944 |
+
n_flow_layer,
|
945 |
+
gin_channels=gin_channels,
|
946 |
+
share_parameter=flow_share_parameter,
|
947 |
+
)
|
948 |
+
else:
|
949 |
+
self.flow = ResidualCouplingBlock(
|
950 |
+
inter_channels,
|
951 |
+
hidden_channels,
|
952 |
+
5,
|
953 |
+
1,
|
954 |
+
n_flow_layer,
|
955 |
+
gin_channels=gin_channels,
|
956 |
+
)
|
957 |
+
self.sdp = StochasticDurationPredictor(
|
958 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
959 |
+
)
|
960 |
+
self.dp = DurationPredictor(
|
961 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
962 |
+
)
|
963 |
+
|
964 |
+
if n_speakers >= 1:
|
965 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
966 |
+
else:
|
967 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
|
968 |
+
|
969 |
+
def forward(
|
970 |
+
self,
|
971 |
+
x,
|
972 |
+
x_lengths,
|
973 |
+
y,
|
974 |
+
y_lengths,
|
975 |
+
sid,
|
976 |
+
tone,
|
977 |
+
language,
|
978 |
+
bert,
|
979 |
+
emo,
|
980 |
+
):
|
981 |
+
if self.n_speakers > 0:
|
982 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
983 |
+
else:
|
984 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
985 |
+
x, m_p, logs_p, x_mask, loss_commit = self.enc_p(
|
986 |
+
x, x_lengths, tone, language, bert, emo, g=g
|
987 |
+
)
|
988 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
989 |
+
z_p = self.flow(z, y_mask, g=g)
|
990 |
+
|
991 |
+
with torch.no_grad():
|
992 |
+
# negative cross-entropy
|
993 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
994 |
+
neg_cent1 = torch.sum(
|
995 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
996 |
+
) # [b, 1, t_s]
|
997 |
+
neg_cent2 = torch.matmul(
|
998 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
999 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
1000 |
+
neg_cent3 = torch.matmul(
|
1001 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
1002 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
1003 |
+
neg_cent4 = torch.sum(
|
1004 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
1005 |
+
) # [b, 1, t_s]
|
1006 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
1007 |
+
if self.use_noise_scaled_mas:
|
1008 |
+
epsilon = (
|
1009 |
+
torch.std(neg_cent)
|
1010 |
+
* torch.randn_like(neg_cent)
|
1011 |
+
* self.current_mas_noise_scale
|
1012 |
+
)
|
1013 |
+
neg_cent = neg_cent + epsilon
|
1014 |
+
|
1015 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1016 |
+
attn = (
|
1017 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
1018 |
+
.unsqueeze(1)
|
1019 |
+
.detach()
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
w = attn.sum(2)
|
1023 |
+
|
1024 |
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
1025 |
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
1026 |
+
|
1027 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
1028 |
+
logw = self.dp(x, x_mask, g=g)
|
1029 |
+
# logw_sdp = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=1.0)
|
1030 |
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
1031 |
+
x_mask
|
1032 |
+
) # for averaging
|
1033 |
+
# l_length_sdp += torch.sum((logw_sdp - logw_) ** 2, [1, 2]) / torch.sum(x_mask)
|
1034 |
+
|
1035 |
+
l_length = l_length_dp + l_length_sdp
|
1036 |
+
|
1037 |
+
# expand prior
|
1038 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
1039 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
1040 |
+
|
1041 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
1042 |
+
z, y_lengths, self.segment_size
|
1043 |
+
)
|
1044 |
+
o = self.dec(z_slice, g=g)
|
1045 |
+
return (
|
1046 |
+
o,
|
1047 |
+
l_length,
|
1048 |
+
attn,
|
1049 |
+
ids_slice,
|
1050 |
+
x_mask,
|
1051 |
+
y_mask,
|
1052 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
1053 |
+
(x, logw, logw_), # , logw_sdp),
|
1054 |
+
g,
|
1055 |
+
loss_commit,
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
def infer(
|
1059 |
+
self,
|
1060 |
+
x,
|
1061 |
+
x_lengths,
|
1062 |
+
sid,
|
1063 |
+
tone,
|
1064 |
+
language,
|
1065 |
+
bert,
|
1066 |
+
emo,
|
1067 |
+
noise_scale=0.667,
|
1068 |
+
length_scale=1,
|
1069 |
+
noise_scale_w=0.8,
|
1070 |
+
max_len=None,
|
1071 |
+
sdp_ratio=0,
|
1072 |
+
y=None,
|
1073 |
+
):
|
1074 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
1075 |
+
# g = self.gst(y)
|
1076 |
+
if self.n_speakers > 0:
|
1077 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
1078 |
+
else:
|
1079 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
1080 |
+
x, m_p, logs_p, x_mask, _ = self.enc_p(
|
1081 |
+
x, x_lengths, tone, language, bert, emo, g=g
|
1082 |
+
)
|
1083 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
1084 |
+
sdp_ratio
|
1085 |
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
1086 |
+
w = torch.exp(logw) * x_mask * length_scale
|
1087 |
+
w_ceil = torch.ceil(w)
|
1088 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
1089 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
1090 |
+
x_mask.dtype
|
1091 |
+
)
|
1092 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1093 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
1094 |
+
|
1095 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
1096 |
+
1, 2
|
1097 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1098 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
1099 |
+
1, 2
|
1100 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1101 |
+
|
1102 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
1103 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
1104 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
1105 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|