Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- text/japanese.py +704 -704
- text/japanese_bert.py +87 -68
text/japanese.py
CHANGED
@@ -1,704 +1,704 @@
|
|
1 |
-
# Convert Japanese text to phonemes which is
|
2 |
-
# compatible with Julius https://github.com/julius-speech/segmentation-kit
|
3 |
-
import re
|
4 |
-
import unicodedata
|
5 |
-
|
6 |
-
from transformers import AutoTokenizer
|
7 |
-
|
8 |
-
from text import punctuation, symbols
|
9 |
-
|
10 |
-
try:
|
11 |
-
import MeCab
|
12 |
-
except ImportError as e:
|
13 |
-
raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
|
14 |
-
from num2words import num2words
|
15 |
-
|
16 |
-
_CONVRULES = [
|
17 |
-
# Conversion of 2 letters
|
18 |
-
"アァ/ a a",
|
19 |
-
"イィ/ i i",
|
20 |
-
"イェ/ i e",
|
21 |
-
"イャ/ y a",
|
22 |
-
"ウゥ/ u:",
|
23 |
-
"エェ/ e e",
|
24 |
-
"オォ/ o:",
|
25 |
-
"カァ/ k a:",
|
26 |
-
"キィ/ k i:",
|
27 |
-
"クゥ/ k u:",
|
28 |
-
"クャ/ ky a",
|
29 |
-
"クュ/ ky u",
|
30 |
-
"クョ/ ky o",
|
31 |
-
"ケェ/ k e:",
|
32 |
-
"コォ/ k o:",
|
33 |
-
"ガァ/ g a:",
|
34 |
-
"ギィ/ g i:",
|
35 |
-
"グゥ/ g u:",
|
36 |
-
"グャ/ gy a",
|
37 |
-
"グュ/ gy u",
|
38 |
-
"グョ/ gy o",
|
39 |
-
"ゲェ/ g e:",
|
40 |
-
"ゴォ/ g o:",
|
41 |
-
"サァ/ s a:",
|
42 |
-
"シィ/ sh i:",
|
43 |
-
"スゥ/ s u:",
|
44 |
-
"スャ/ sh a",
|
45 |
-
"スュ/ sh u",
|
46 |
-
"スョ/ sh o",
|
47 |
-
"セェ/ s e:",
|
48 |
-
"ソォ/ s o:",
|
49 |
-
"ザァ/ z a:",
|
50 |
-
"ジィ/ j i:",
|
51 |
-
"ズゥ/ z u:",
|
52 |
-
"ズャ/ zy a",
|
53 |
-
"ズュ/ zy u",
|
54 |
-
"ズョ/ zy o",
|
55 |
-
"ゼェ/ z e:",
|
56 |
-
"ゾォ/ z o:",
|
57 |
-
"タァ/ t a:",
|
58 |
-
"チィ/ ch i:",
|
59 |
-
"ツァ/ ts a",
|
60 |
-
"ツィ/ ts i",
|
61 |
-
"ツゥ/ ts u:",
|
62 |
-
"ツャ/ ch a",
|
63 |
-
"ツュ/ ch u",
|
64 |
-
"ツョ/ ch o",
|
65 |
-
"ツェ/ ts e",
|
66 |
-
"ツォ/ ts o",
|
67 |
-
"テェ/ t e:",
|
68 |
-
"トォ/ t o:",
|
69 |
-
"ダァ/ d a:",
|
70 |
-
"ヂィ/ j i:",
|
71 |
-
"ヅゥ/ d u:",
|
72 |
-
"ヅャ/ zy a",
|
73 |
-
"ヅュ/ zy u",
|
74 |
-
"ヅョ/ zy o",
|
75 |
-
"デェ/ d e:",
|
76 |
-
"ドォ/ d o:",
|
77 |
-
"ナァ/ n a:",
|
78 |
-
"ニィ/ n i:",
|
79 |
-
"ヌゥ/ n u:",
|
80 |
-
"ヌャ/ ny a",
|
81 |
-
"ヌュ/ ny u",
|
82 |
-
"ヌョ/ ny o",
|
83 |
-
"ネェ/ n e:",
|
84 |
-
"ノォ/ n o:",
|
85 |
-
"ハァ/ h a:",
|
86 |
-
"ヒィ/ h i:",
|
87 |
-
"フゥ/ f u:",
|
88 |
-
"フャ/ hy a",
|
89 |
-
"フュ/ hy u",
|
90 |
-
"フョ/ hy o",
|
91 |
-
"ヘェ/ h e:",
|
92 |
-
"ホォ/ h o:",
|
93 |
-
"バァ/ b a:",
|
94 |
-
"ビィ/ b i:",
|
95 |
-
"ブゥ/ b u:",
|
96 |
-
"フャ/ hy a",
|
97 |
-
"ブュ/ by u",
|
98 |
-
"フョ/ hy o",
|
99 |
-
"ベェ/ b e:",
|
100 |
-
"ボォ/ b o:",
|
101 |
-
"パァ/ p a:",
|
102 |
-
"ピィ/ p i:",
|
103 |
-
"プゥ/ p u:",
|
104 |
-
"プャ/ py a",
|
105 |
-
"プュ/ py u",
|
106 |
-
"プョ/ py o",
|
107 |
-
"ペェ/ p e:",
|
108 |
-
"ポォ/ p o:",
|
109 |
-
"マァ/ m a:",
|
110 |
-
"ミィ/ m i:",
|
111 |
-
"ムゥ/ m u:",
|
112 |
-
"ムャ/ my a",
|
113 |
-
"ムュ/ my u",
|
114 |
-
"ムョ/ my o",
|
115 |
-
"メェ/ m e:",
|
116 |
-
"モォ/ m o:",
|
117 |
-
"ヤァ/ y a:",
|
118 |
-
"ユゥ/ y u:",
|
119 |
-
"ユャ/ y a:",
|
120 |
-
"ユュ/ y u:",
|
121 |
-
"ユョ/ y o:",
|
122 |
-
"ヨォ/ y o:",
|
123 |
-
"ラァ/ r a:",
|
124 |
-
"リィ/ r i:",
|
125 |
-
"ルゥ/ r u:",
|
126 |
-
"ルャ/ ry a",
|
127 |
-
"
|
128 |
-
"ルョ/ ry o",
|
129 |
-
"レェ/ r e:",
|
130 |
-
"ロォ/ r o:",
|
131 |
-
"ワァ/ w a:",
|
132 |
-
"ヲォ/ o:",
|
133 |
-
"ディ/ d i",
|
134 |
-
"デェ/ d e:",
|
135 |
-
"デャ/ dy a",
|
136 |
-
"デュ/ dy u",
|
137 |
-
"デョ/ dy o",
|
138 |
-
"ティ/ t i",
|
139 |
-
"テェ/ t e:",
|
140 |
-
"テャ/ ty a",
|
141 |
-
"テュ/ ty u",
|
142 |
-
"テョ/ ty o",
|
143 |
-
"スィ/ s i",
|
144 |
-
"ズァ/ z u a",
|
145 |
-
"ズィ/ z i",
|
146 |
-
"ズゥ/ z u",
|
147 |
-
"ズャ/ zy a",
|
148 |
-
"ズュ/ zy u",
|
149 |
-
"ズョ/ zy o",
|
150 |
-
"ズェ/ z e",
|
151 |
-
"ズォ/ z o",
|
152 |
-
"キャ/ ky a",
|
153 |
-
"キュ/ ky u",
|
154 |
-
"キョ/ ky o",
|
155 |
-
"シャ/ sh a",
|
156 |
-
"シュ/ sh u",
|
157 |
-
"シェ/ sh e",
|
158 |
-
"ショ/ sh o",
|
159 |
-
"チャ/ ch a",
|
160 |
-
"チュ/ ch u",
|
161 |
-
"チェ/ ch e",
|
162 |
-
"チョ/ ch o",
|
163 |
-
"トゥ/ t u",
|
164 |
-
"トャ/ ty a",
|
165 |
-
"トュ/ ty u",
|
166 |
-
"トョ/ ty o",
|
167 |
-
"ドァ/ d o a",
|
168 |
-
"ドゥ/ d u",
|
169 |
-
"ドャ/ dy a",
|
170 |
-
"ドュ/ dy u",
|
171 |
-
"ドョ/ dy o",
|
172 |
-
"ドォ/ d o:",
|
173 |
-
"ニャ/ ny a",
|
174 |
-
"ニュ/ ny u",
|
175 |
-
"ニョ/ ny o",
|
176 |
-
"ヒャ/ hy a",
|
177 |
-
"ヒュ/ hy u",
|
178 |
-
"ヒョ/ hy o",
|
179 |
-
"ミャ/ my a",
|
180 |
-
"ミュ/ my u",
|
181 |
-
"ミョ/ my o",
|
182 |
-
"リャ/ ry a",
|
183 |
-
"リュ/ ry u",
|
184 |
-
"リョ/ ry o",
|
185 |
-
"ギャ/ gy a",
|
186 |
-
"ギュ/ gy u",
|
187 |
-
"ギョ/ gy o",
|
188 |
-
"ヂェ/ j e",
|
189 |
-
"ヂャ/ j a",
|
190 |
-
"ヂュ/ j u",
|
191 |
-
"ヂョ/ j o",
|
192 |
-
"ジェ/ j e",
|
193 |
-
"ジャ/ j a",
|
194 |
-
"ジュ/ j u",
|
195 |
-
"ジョ/ j o",
|
196 |
-
"ビャ/ by a",
|
197 |
-
"ビュ/ by u",
|
198 |
-
"ビョ/ by o",
|
199 |
-
"ピャ/ py a",
|
200 |
-
"ピュ/ py u",
|
201 |
-
"ピョ/ py o",
|
202 |
-
"ウァ/ u a",
|
203 |
-
"ウィ/ w i",
|
204 |
-
"ウェ/ w e",
|
205 |
-
"ウォ/ w o",
|
206 |
-
"ファ/ f a",
|
207 |
-
"フィ/ f i",
|
208 |
-
"フゥ/ f u",
|
209 |
-
"フャ/ hy a",
|
210 |
-
"フュ/ hy u",
|
211 |
-
"フョ/ hy o",
|
212 |
-
"フェ/ f e",
|
213 |
-
"フォ/ f o",
|
214 |
-
"ヴァ/ b a",
|
215 |
-
"ヴィ/ b i",
|
216 |
-
"ヴェ/ b e",
|
217 |
-
"ヴォ/ b o",
|
218 |
-
"ヴュ/ by u",
|
219 |
-
"アー/ a:",
|
220 |
-
"イー/ i:",
|
221 |
-
"ウー/ u:",
|
222 |
-
"エー/ e:",
|
223 |
-
"オー/ o:",
|
224 |
-
"カー/ k a:",
|
225 |
-
"キー/ k i:",
|
226 |
-
"クー/ k u:",
|
227 |
-
"ケー/ k e:",
|
228 |
-
"コー/ k o:",
|
229 |
-
"サー/ s a:",
|
230 |
-
"シー/ sh i:",
|
231 |
-
"スー/ s u:",
|
232 |
-
"セー/ s e:",
|
233 |
-
"ソー/ s o:",
|
234 |
-
"ター/ t a:",
|
235 |
-
"チー/ ch i:",
|
236 |
-
"ツー/ ts u:",
|
237 |
-
"テー/ t e:",
|
238 |
-
"トー/ t o:",
|
239 |
-
"ナー/ n a:",
|
240 |
-
"ニー/ n i:",
|
241 |
-
"
|
242 |
-
"ネー/ n e:",
|
243 |
-
"ノー/ n o:",
|
244 |
-
"ハー/ h a:",
|
245 |
-
"ヒー/ h i:",
|
246 |
-
"フー/ f u:",
|
247 |
-
"ヘー/ h e:",
|
248 |
-
"ホー/ h o:",
|
249 |
-
"マー/ m a:",
|
250 |
-
"ミー/ m i:",
|
251 |
-
"ムー/ m u:",
|
252 |
-
"メー/ m e:",
|
253 |
-
"モー/ m o:",
|
254 |
-
"ラー/ r a:",
|
255 |
-
"リー/ r i:",
|
256 |
-
"ルー/ r u:",
|
257 |
-
"レー/ r e:",
|
258 |
-
"ロー/ r o:",
|
259 |
-
"ガー/ g a:",
|
260 |
-
"ギー/ g i:",
|
261 |
-
"グー/ g u:",
|
262 |
-
"ゲー/ g e:",
|
263 |
-
"ゴー/ g o:",
|
264 |
-
"ザー/ z a:",
|
265 |
-
"ジー/ j i:",
|
266 |
-
"ズー/ z u:",
|
267 |
-
"ゼー/ z e:",
|
268 |
-
"ゾー/ z o:",
|
269 |
-
"ダー/ d a:",
|
270 |
-
"ヂー/ j i:",
|
271 |
-
"ヅー/ z u:",
|
272 |
-
"デー/ d e:",
|
273 |
-
"ドー/ d o:",
|
274 |
-
"バー/ b a:",
|
275 |
-
"ビー/ b i:",
|
276 |
-
"ブー/ b u:",
|
277 |
-
"ベー/ b e:",
|
278 |
-
"ボー/ b o:",
|
279 |
-
"パー/ p a:",
|
280 |
-
"ピー/ p i:",
|
281 |
-
"プー/ p u:",
|
282 |
-
"ペー/ p e:",
|
283 |
-
"ポー/ p o:",
|
284 |
-
"ヤー/ y a:",
|
285 |
-
"ユー/ y u:",
|
286 |
-
"ヨー/ y o:",
|
287 |
-
"ワー/ w a:",
|
288 |
-
"ヰー/ i:",
|
289 |
-
"ヱー/ e:",
|
290 |
-
"ヲー/ o:",
|
291 |
-
"ヴー/ b u:",
|
292 |
-
# Conversion of 1 letter
|
293 |
-
"ア/ a",
|
294 |
-
"イ/ i",
|
295 |
-
"ウ/ u",
|
296 |
-
"エ/ e",
|
297 |
-
"オ/ o",
|
298 |
-
"カ/ k a",
|
299 |
-
"キ/ k i",
|
300 |
-
"ク/ k u",
|
301 |
-
"ケ/ k e",
|
302 |
-
"コ/ k o",
|
303 |
-
"サ/ s a",
|
304 |
-
"シ/ sh i",
|
305 |
-
"ス/ s u",
|
306 |
-
"セ/ s e",
|
307 |
-
"ソ/ s o",
|
308 |
-
"タ/ t a",
|
309 |
-
"チ/ ch i",
|
310 |
-
"ツ/ ts u",
|
311 |
-
"テ/ t e",
|
312 |
-
"ト/ t o",
|
313 |
-
"ナ/ n a",
|
314 |
-
"ニ/ n i",
|
315 |
-
"ヌ/ n u",
|
316 |
-
"ネ/ n e",
|
317 |
-
"ノ/ n o",
|
318 |
-
"ハ/ h a",
|
319 |
-
"ヒ/ h i",
|
320 |
-
"フ/ f u",
|
321 |
-
"ヘ/ h e",
|
322 |
-
"ホ/ h o",
|
323 |
-
"マ/ m a",
|
324 |
-
"ミ/ m i",
|
325 |
-
"ム/ m u",
|
326 |
-
"メ/ m e",
|
327 |
-
"モ/ m o",
|
328 |
-
"ラ/ r a",
|
329 |
-
"リ/ r i",
|
330 |
-
"ル/ r u",
|
331 |
-
"レ/ r e",
|
332 |
-
"ロ/ r o",
|
333 |
-
"ガ/ g a",
|
334 |
-
"ギ/ g i",
|
335 |
-
"グ/ g u",
|
336 |
-
"ゲ/ g e",
|
337 |
-
"ゴ/ g o",
|
338 |
-
"ザ/ z a",
|
339 |
-
"ジ/ j i",
|
340 |
-
"ズ/ z u",
|
341 |
-
"ゼ/ z e",
|
342 |
-
"ゾ/ z o",
|
343 |
-
"ダ/ d a",
|
344 |
-
"ヂ/ j i",
|
345 |
-
"ヅ/ z u",
|
346 |
-
"デ/ d e",
|
347 |
-
"ド/ d o",
|
348 |
-
"バ/ b a",
|
349 |
-
"ビ/ b i",
|
350 |
-
"ブ/ b u",
|
351 |
-
"ベ/ b e",
|
352 |
-
"ボ/ b o",
|
353 |
-
"パ/ p a",
|
354 |
-
"ピ/ p i",
|
355 |
-
"プ/ p u",
|
356 |
-
"ペ/ p e",
|
357 |
-
"ポ/ p o",
|
358 |
-
"ヤ/ y a",
|
359 |
-
"ユ/ y u",
|
360 |
-
"ヨ/ y o",
|
361 |
-
"ワ/ w a",
|
362 |
-
"ヰ/ i",
|
363 |
-
"ヱ/ e",
|
364 |
-
"ヲ/ o",
|
365 |
-
"ン/ N",
|
366 |
-
"ッ/ q",
|
367 |
-
"ヴ/ b u",
|
368 |
-
"ー/:", #这个不起作用
|
369 |
-
# Try converting broken text
|
370 |
-
"ァ/ a",
|
371 |
-
"ィ/ i",
|
372 |
-
"ゥ/ u",
|
373 |
-
"ェ/ e",
|
374 |
-
"ォ/ o",
|
375 |
-
"ヮ/ w a",
|
376 |
-
"ォ/ o",
|
377 |
-
# Symbols
|
378 |
-
"、/ ,",
|
379 |
-
"。/ .",
|
380 |
-
"!/ !",
|
381 |
-
"?/ ?",
|
382 |
-
"・/ ,",
|
383 |
-
]
|
384 |
-
|
385 |
-
_COLON_RX = re.compile(":+")
|
386 |
-
_REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
|
387 |
-
|
388 |
-
|
389 |
-
def _makerulemap():
|
390 |
-
l = [tuple(x.split("/")) for x in _CONVRULES]
|
391 |
-
return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
|
392 |
-
|
393 |
-
|
394 |
-
_RULEMAP1, _RULEMAP2 = _makerulemap()
|
395 |
-
|
396 |
-
|
397 |
-
def kata2phoneme(text: str) -> str:
|
398 |
-
"""Convert katakana text to phonemes."""
|
399 |
-
text = text.strip()
|
400 |
-
res = []
|
401 |
-
while text:
|
402 |
-
if len(text) >= 2:
|
403 |
-
x = _RULEMAP2.get(text[:2])
|
404 |
-
if x is not None:
|
405 |
-
text = text[2:]
|
406 |
-
res += x.split(" ")[1:]
|
407 |
-
continue
|
408 |
-
x = _RULEMAP1.get(text[0])
|
409 |
-
if x is not None:
|
410 |
-
text = text[1:]
|
411 |
-
res += x.split(" ")[1:]
|
412 |
-
continue
|
413 |
-
res.append(text[0])
|
414 |
-
text = text[1:]
|
415 |
-
# res = _COLON_RX.sub(":", res)
|
416 |
-
return res
|
417 |
-
|
418 |
-
|
419 |
-
_KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
|
420 |
-
_HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
|
421 |
-
_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
|
422 |
-
|
423 |
-
|
424 |
-
def hira2kata(text: str) -> str:
|
425 |
-
text = text.translate(_HIRA2KATATRANS)
|
426 |
-
return text.replace("う゛", "ヴ")
|
427 |
-
|
428 |
-
|
429 |
-
_SYMBOL_TOKENS = set(list("・、。?!"))
|
430 |
-
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
|
431 |
-
_TAGGER = MeCab.Tagger()
|
432 |
-
|
433 |
-
|
434 |
-
def text2kata(text: str) -> str:
|
435 |
-
parsed = _TAGGER.parse(text)
|
436 |
-
res = []
|
437 |
-
for line in parsed.split("\n"):
|
438 |
-
if line == "EOS":
|
439 |
-
break
|
440 |
-
parts = line.split("\t")
|
441 |
-
|
442 |
-
word, yomi = parts[0], parts[1]
|
443 |
-
if yomi:
|
444 |
-
res.append(yomi)
|
445 |
-
else:
|
446 |
-
if word in _SYMBOL_TOKENS:
|
447 |
-
res.append(word)
|
448 |
-
elif word in ("っ", "ッ"):
|
449 |
-
res.append("ッ")
|
450 |
-
elif word in _NO_YOMI_TOKENS:
|
451 |
-
pass
|
452 |
-
else:
|
453 |
-
res.append(word)
|
454 |
-
return hira2kata("".join(res))
|
455 |
-
|
456 |
-
|
457 |
-
def text2sep_kata(text: str) -> (list, list):
|
458 |
-
parsed = _TAGGER.parse(text)
|
459 |
-
res = []
|
460 |
-
sep = []
|
461 |
-
for line in parsed.split("\n"):
|
462 |
-
if line == "EOS":
|
463 |
-
break
|
464 |
-
parts = line.split("\t")
|
465 |
-
|
466 |
-
word, yomi = parts[0], parts[1]
|
467 |
-
if yomi:
|
468 |
-
res.append(yomi)
|
469 |
-
else:
|
470 |
-
if word in _SYMBOL_TOKENS:
|
471 |
-
res.append(word)
|
472 |
-
elif word in ("っ", "ッ"):
|
473 |
-
res.append("ッ")
|
474 |
-
elif word in _NO_YOMI_TOKENS:
|
475 |
-
pass
|
476 |
-
else:
|
477 |
-
res.append(word)
|
478 |
-
sep.append(word)
|
479 |
-
return sep, [hira2kata(i) for i in res]
|
480 |
-
|
481 |
-
|
482 |
-
_ALPHASYMBOL_YOMI = {
|
483 |
-
"#": "シャープ",
|
484 |
-
"%": "パーセント",
|
485 |
-
"&": "アンド",
|
486 |
-
"+": "プラス",
|
487 |
-
"-": "マイナス",
|
488 |
-
":": "コロン",
|
489 |
-
";": "セミコロン",
|
490 |
-
"<": "小なり",
|
491 |
-
"=": "イコール",
|
492 |
-
">": "大なり",
|
493 |
-
"@": "アット",
|
494 |
-
"a": "エー",
|
495 |
-
"b": "ビー",
|
496 |
-
"c": "シー",
|
497 |
-
"d": "ディー",
|
498 |
-
"e": "イー",
|
499 |
-
"f": "エフ",
|
500 |
-
"g": "ジー",
|
501 |
-
"h": "エイチ",
|
502 |
-
"i": "アイ",
|
503 |
-
"j": "ジェー",
|
504 |
-
"k": "ケー",
|
505 |
-
"l": "エル",
|
506 |
-
"m": "エム",
|
507 |
-
"n": "エヌ",
|
508 |
-
"o": "オー",
|
509 |
-
"p": "ピー",
|
510 |
-
"q": "キュー",
|
511 |
-
"r": "アール",
|
512 |
-
"s": "エス",
|
513 |
-
"t": "ティー",
|
514 |
-
"u": "ユー",
|
515 |
-
"v": "ブイ",
|
516 |
-
"w": "ダブリュー",
|
517 |
-
"x": "エックス",
|
518 |
-
"y": "ワイ",
|
519 |
-
"z": "ゼット",
|
520 |
-
"α": "アルファ",
|
521 |
-
"β": "ベータ",
|
522 |
-
"γ": "ガンマ",
|
523 |
-
"δ": "デルタ",
|
524 |
-
"ε": "イプシロン",
|
525 |
-
"ζ": "ゼータ",
|
526 |
-
"η": "イータ",
|
527 |
-
"θ": "シータ",
|
528 |
-
"ι": "イオタ",
|
529 |
-
"κ": "カッパ",
|
530 |
-
"λ": "ラムダ",
|
531 |
-
"μ": "ミュー",
|
532 |
-
"ν": "ニュー",
|
533 |
-
"ξ": "クサイ",
|
534 |
-
"ο": "オミクロン",
|
535 |
-
"π": "パイ",
|
536 |
-
"ρ": "ロー",
|
537 |
-
"σ": "シグマ",
|
538 |
-
"τ": "タウ",
|
539 |
-
"υ": "ウプシロン",
|
540 |
-
"φ": "ファイ",
|
541 |
-
"χ": "カイ",
|
542 |
-
"ψ": "プサイ",
|
543 |
-
"ω": "オメガ",
|
544 |
-
}
|
545 |
-
|
546 |
-
|
547 |
-
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
|
548 |
-
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
|
549 |
-
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
|
550 |
-
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
|
551 |
-
|
552 |
-
|
553 |
-
def japanese_convert_numbers_to_words(text: str) -> str:
|
554 |
-
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
|
555 |
-
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
|
556 |
-
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
|
557 |
-
return res
|
558 |
-
|
559 |
-
|
560 |
-
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
|
561 |
-
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
|
562 |
-
|
563 |
-
|
564 |
-
def japanese_text_to_phonemes(text: str) -> str:
|
565 |
-
"""Convert Japanese text to phonemes."""
|
566 |
-
res = unicodedata.normalize("NFKC", text)
|
567 |
-
res = japanese_convert_numbers_to_words(res)
|
568 |
-
# res = japanese_convert_alpha_symbols_to_words(res)
|
569 |
-
res = text2kata(res)
|
570 |
-
res = kata2phoneme(res)
|
571 |
-
return res
|
572 |
-
|
573 |
-
|
574 |
-
def is_japanese_character(char):
|
575 |
-
# 定义日语文字系统的 Unicode 范围
|
576 |
-
japanese_ranges = [
|
577 |
-
(0x3040, 0x309F), # 平假名
|
578 |
-
(0x30A0, 0x30FF), # 片假名
|
579 |
-
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
|
580 |
-
(0x3400, 0x4DBF), # 汉字扩展 A
|
581 |
-
(0x20000, 0x2A6DF), # 汉字扩展 B
|
582 |
-
# 可以根据需要添加其他汉字扩展范围
|
583 |
-
]
|
584 |
-
|
585 |
-
# 将字符的 Unicode 编码转换为整数
|
586 |
-
char_code = ord(char)
|
587 |
-
|
588 |
-
# 检查字符是否在任何一个日语范围内
|
589 |
-
for start, end in japanese_ranges:
|
590 |
-
if start <= char_code <= end:
|
591 |
-
return True
|
592 |
-
|
593 |
-
return False
|
594 |
-
|
595 |
-
|
596 |
-
rep_map = {
|
597 |
-
":": ",",
|
598 |
-
";": ",",
|
599 |
-
",": ",",
|
600 |
-
"。": ".",
|
601 |
-
"!": "!",
|
602 |
-
"?": "?",
|
603 |
-
"\n": ".",
|
604 |
-
"·": ",",
|
605 |
-
"、": ",",
|
606 |
-
"…": "...",
|
607 |
-
}
|
608 |
-
|
609 |
-
|
610 |
-
def replace_punctuation(text):
|
611 |
-
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
612 |
-
|
613 |
-
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
614 |
-
|
615 |
-
replaced_text = re.sub(
|
616 |
-
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
|
617 |
-
+ "".join(punctuation)
|
618 |
-
+ r"]+",
|
619 |
-
"",
|
620 |
-
replaced_text,
|
621 |
-
)
|
622 |
-
|
623 |
-
return replaced_text
|
624 |
-
|
625 |
-
|
626 |
-
def text_normalize(text):
|
627 |
-
res = unicodedata.normalize("NFKC", text)
|
628 |
-
res = japanese_convert_numbers_to_words(res)
|
629 |
-
# res = "".join([i for i in res if is_japanese_character(i)])
|
630 |
-
res = replace_punctuation(res)
|
631 |
-
return res
|
632 |
-
|
633 |
-
|
634 |
-
def distribute_phone(n_phone, n_word):
|
635 |
-
phones_per_word = [0] * n_word
|
636 |
-
for task in range(n_phone):
|
637 |
-
min_tasks = min(phones_per_word)
|
638 |
-
min_index = phones_per_word.index(min_tasks)
|
639 |
-
phones_per_word[min_index] += 1
|
640 |
-
return phones_per_word
|
641 |
-
|
642 |
-
|
643 |
-
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
644 |
-
|
645 |
-
|
646 |
-
def g2p(norm_text):
|
647 |
-
sep_text, sep_kata = text2sep_kata(norm_text)
|
648 |
-
sep_tokenized = [tokenizer.tokenize(i) for i in sep_text]
|
649 |
-
sep_phonemes = [kata2phoneme(i) for i in sep_kata]
|
650 |
-
# 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
|
651 |
-
for i in sep_phonemes:
|
652 |
-
for j in i:
|
653 |
-
assert j in symbols, (sep_text, sep_kata, sep_phonemes)
|
654 |
-
|
655 |
-
word2ph = []
|
656 |
-
for token, phoneme in zip(sep_tokenized, sep_phonemes):
|
657 |
-
phone_len = len(phoneme)
|
658 |
-
word_len = len(token)
|
659 |
-
|
660 |
-
aaa = distribute_phone(phone_len, word_len)
|
661 |
-
word2ph += aaa
|
662 |
-
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
|
663 |
-
tones = [0 for i in phones]
|
664 |
-
word2ph = [1] + word2ph + [1]
|
665 |
-
return phones, tones, word2ph
|
666 |
-
|
667 |
-
if __name__ == "__main__":
|
668 |
-
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
669 |
-
text = "だったら私、スズカさんと同じチームに入りたいです! スズカさんの走りを毎日近くで、なんなら真横から見ていたいので!"
|
670 |
-
#print(_TAGGER.parse(text))
|
671 |
-
# nodes = [{"surface": "こんにちは", "pos": "感動詞:*:*:*", "pron": "コンニチワ", "c_type": "*", "c_form": "*", "accent_type": 0, "accent_con_type": "-1", "chain_flag": -1}]
|
672 |
-
nodes = [{"surface":"こんにちは","pron": "コンニチワ","pos": "感動詞:*:*:*",}]
|
673 |
-
from text.japanese_bert import get_bert_feature
|
674 |
-
import pyopenjtalk
|
675 |
-
from marine.predict import Predictor
|
676 |
-
from marine.utils.openjtalk_util import convert_njd_feature_to_marine_feature
|
677 |
-
text = text_normalize(text)
|
678 |
-
NJD_NODES = pyopenjtalk.run_frontend(text)
|
679 |
-
predictor = Predictor()
|
680 |
-
# important_info = [{"string":i["string"],"pron":i["pron"],"acc":i["acc"]}for i in pyopenjtalk.estimate_accent(NJD_NODES)]
|
681 |
-
print(text)
|
682 |
-
|
683 |
-
marine_feature = convert_njd_feature_to_marine_feature(NJD_NODES)
|
684 |
-
results = predictor.predict([marine_feature])
|
685 |
-
for mora,acc in zip(results["mora"][0],results["accent_status"][0]):
|
686 |
-
print(f"{mora}:{acc}")
|
687 |
-
# for i in pyopenjtalk.estimate_accent(NJD_NODES):
|
688 |
-
# print(f"{i['string']}:{i['pron']}:{i['acc']}")
|
689 |
-
# info = pyopenjtalk.extract_fullcontext(text,run_marine=True)
|
690 |
-
# info_nomarine = pyopenjtalk.extract_fullcontext(text,run_marine=False)
|
691 |
-
# # nodes = pyopenjtalk
|
692 |
-
# # print(info)
|
693 |
-
# for i,j in zip(info,info_nomarine):
|
694 |
-
# print(i)
|
695 |
-
# print(j)
|
696 |
-
# print("\n")
|
697 |
-
# predictor = Predictor()
|
698 |
-
#print(pyopenjtalk.estimate_accent(text))
|
699 |
-
# output = predictor.predict([nodes],accent_represent_mode="high_low")
|
700 |
-
#print(output)
|
701 |
-
# phones, tones, word2ph = g2p(text)
|
702 |
-
# bert = get_bert_feature(text, word2ph)
|
703 |
-
|
704 |
-
# print(phones, tones, word2ph, bert.shape)
|
|
|
1 |
+
# Convert Japanese text to phonemes which is
|
2 |
+
# compatible with Julius https://github.com/julius-speech/segmentation-kit
|
3 |
+
import re
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
from text import punctuation, symbols
|
9 |
+
|
10 |
+
try:
|
11 |
+
import MeCab
|
12 |
+
except ImportError as e:
|
13 |
+
raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
|
14 |
+
from num2words import num2words
|
15 |
+
|
16 |
+
_CONVRULES = [
|
17 |
+
# Conversion of 2 letters
|
18 |
+
"アァ/ a a",
|
19 |
+
"イィ/ i i",
|
20 |
+
"イェ/ i e",
|
21 |
+
"イャ/ y a",
|
22 |
+
"ウゥ/ u:",
|
23 |
+
"エェ/ e e",
|
24 |
+
"オォ/ o:",
|
25 |
+
"カァ/ k a:",
|
26 |
+
"キィ/ k i:",
|
27 |
+
"クゥ/ k u:",
|
28 |
+
"クャ/ ky a",
|
29 |
+
"クュ/ ky u",
|
30 |
+
"クョ/ ky o",
|
31 |
+
"ケェ/ k e:",
|
32 |
+
"コォ/ k o:",
|
33 |
+
"ガァ/ g a:",
|
34 |
+
"ギィ/ g i:",
|
35 |
+
"グゥ/ g u:",
|
36 |
+
"グャ/ gy a",
|
37 |
+
"グュ/ gy u",
|
38 |
+
"グョ/ gy o",
|
39 |
+
"ゲェ/ g e:",
|
40 |
+
"ゴォ/ g o:",
|
41 |
+
"サァ/ s a:",
|
42 |
+
"シィ/ sh i:",
|
43 |
+
"スゥ/ s u:",
|
44 |
+
"スャ/ sh a",
|
45 |
+
"スュ/ sh u",
|
46 |
+
"スョ/ sh o",
|
47 |
+
"セェ/ s e:",
|
48 |
+
"ソォ/ s o:",
|
49 |
+
"ザァ/ z a:",
|
50 |
+
"ジィ/ j i:",
|
51 |
+
"ズゥ/ z u:",
|
52 |
+
"ズャ/ zy a",
|
53 |
+
"ズュ/ zy u",
|
54 |
+
"ズョ/ zy o",
|
55 |
+
"ゼェ/ z e:",
|
56 |
+
"ゾォ/ z o:",
|
57 |
+
"タァ/ t a:",
|
58 |
+
"チィ/ ch i:",
|
59 |
+
"ツァ/ ts a",
|
60 |
+
"ツィ/ ts i",
|
61 |
+
"ツゥ/ ts u:",
|
62 |
+
"ツャ/ ch a",
|
63 |
+
"ツュ/ ch u",
|
64 |
+
"ツョ/ ch o",
|
65 |
+
"ツェ/ ts e",
|
66 |
+
"ツォ/ ts o",
|
67 |
+
"テェ/ t e:",
|
68 |
+
"トォ/ t o:",
|
69 |
+
"ダァ/ d a:",
|
70 |
+
"ヂィ/ j i:",
|
71 |
+
"ヅゥ/ d u:",
|
72 |
+
"ヅャ/ zy a",
|
73 |
+
"ヅュ/ zy u",
|
74 |
+
"ヅョ/ zy o",
|
75 |
+
"デェ/ d e:",
|
76 |
+
"ドォ/ d o:",
|
77 |
+
"ナァ/ n a:",
|
78 |
+
"ニィ/ n i:",
|
79 |
+
"ヌゥ/ n u:",
|
80 |
+
"ヌャ/ ny a",
|
81 |
+
"ヌュ/ ny u",
|
82 |
+
"ヌョ/ ny o",
|
83 |
+
"ネェ/ n e:",
|
84 |
+
"ノォ/ n o:",
|
85 |
+
"ハァ/ h a:",
|
86 |
+
"ヒィ/ h i:",
|
87 |
+
"フゥ/ f u:",
|
88 |
+
"フャ/ hy a",
|
89 |
+
"フュ/ hy u",
|
90 |
+
"フョ/ hy o",
|
91 |
+
"ヘェ/ h e:",
|
92 |
+
"ホォ/ h o:",
|
93 |
+
"バァ/ b a:",
|
94 |
+
"ビィ/ b i:",
|
95 |
+
"ブゥ/ b u:",
|
96 |
+
"フャ/ hy a",
|
97 |
+
"ブュ/ by u",
|
98 |
+
"フョ/ hy o",
|
99 |
+
"ベェ/ b e:",
|
100 |
+
"ボォ/ b o:",
|
101 |
+
"パァ/ p a:",
|
102 |
+
"ピィ/ p i:",
|
103 |
+
"プゥ/ p u:",
|
104 |
+
"プャ/ py a",
|
105 |
+
"プュ/ py u",
|
106 |
+
"プョ/ py o",
|
107 |
+
"ペェ/ p e:",
|
108 |
+
"ポォ/ p o:",
|
109 |
+
"マァ/ m a:",
|
110 |
+
"ミィ/ m i:",
|
111 |
+
"ムゥ/ m u:",
|
112 |
+
"ムャ/ my a",
|
113 |
+
"ムュ/ my u",
|
114 |
+
"ムョ/ my o",
|
115 |
+
"メェ/ m e:",
|
116 |
+
"モォ/ m o:",
|
117 |
+
"ヤァ/ y a:",
|
118 |
+
"ユゥ/ y u:",
|
119 |
+
"ユャ/ y a:",
|
120 |
+
"ユュ/ y u:",
|
121 |
+
"ユョ/ y o:",
|
122 |
+
"ヨォ/ y o:",
|
123 |
+
"ラァ/ r a:",
|
124 |
+
"リィ/ r i:",
|
125 |
+
"ルゥ/ r u:",
|
126 |
+
"ルャ/ ry a",
|
127 |
+
"��ュ/ ry u",
|
128 |
+
"ルョ/ ry o",
|
129 |
+
"レェ/ r e:",
|
130 |
+
"ロォ/ r o:",
|
131 |
+
"ワァ/ w a:",
|
132 |
+
"ヲォ/ o:",
|
133 |
+
"ディ/ d i",
|
134 |
+
"デェ/ d e:",
|
135 |
+
"デャ/ dy a",
|
136 |
+
"デュ/ dy u",
|
137 |
+
"デョ/ dy o",
|
138 |
+
"ティ/ t i",
|
139 |
+
"テェ/ t e:",
|
140 |
+
"テャ/ ty a",
|
141 |
+
"テュ/ ty u",
|
142 |
+
"テョ/ ty o",
|
143 |
+
"スィ/ s i",
|
144 |
+
"ズァ/ z u a",
|
145 |
+
"ズィ/ z i",
|
146 |
+
"ズゥ/ z u",
|
147 |
+
"ズャ/ zy a",
|
148 |
+
"ズュ/ zy u",
|
149 |
+
"ズョ/ zy o",
|
150 |
+
"ズェ/ z e",
|
151 |
+
"ズォ/ z o",
|
152 |
+
"キャ/ ky a",
|
153 |
+
"キュ/ ky u",
|
154 |
+
"キョ/ ky o",
|
155 |
+
"シャ/ sh a",
|
156 |
+
"シュ/ sh u",
|
157 |
+
"シェ/ sh e",
|
158 |
+
"ショ/ sh o",
|
159 |
+
"チャ/ ch a",
|
160 |
+
"チュ/ ch u",
|
161 |
+
"チェ/ ch e",
|
162 |
+
"チョ/ ch o",
|
163 |
+
"トゥ/ t u",
|
164 |
+
"トャ/ ty a",
|
165 |
+
"トュ/ ty u",
|
166 |
+
"トョ/ ty o",
|
167 |
+
"ドァ/ d o a",
|
168 |
+
"ドゥ/ d u",
|
169 |
+
"ドャ/ dy a",
|
170 |
+
"ドュ/ dy u",
|
171 |
+
"ドョ/ dy o",
|
172 |
+
"ドォ/ d o:",
|
173 |
+
"ニャ/ ny a",
|
174 |
+
"ニュ/ ny u",
|
175 |
+
"ニョ/ ny o",
|
176 |
+
"ヒャ/ hy a",
|
177 |
+
"ヒュ/ hy u",
|
178 |
+
"ヒョ/ hy o",
|
179 |
+
"ミャ/ my a",
|
180 |
+
"ミュ/ my u",
|
181 |
+
"ミョ/ my o",
|
182 |
+
"リャ/ ry a",
|
183 |
+
"リュ/ ry u",
|
184 |
+
"リョ/ ry o",
|
185 |
+
"ギャ/ gy a",
|
186 |
+
"ギュ/ gy u",
|
187 |
+
"ギョ/ gy o",
|
188 |
+
"ヂェ/ j e",
|
189 |
+
"ヂャ/ j a",
|
190 |
+
"ヂュ/ j u",
|
191 |
+
"ヂョ/ j o",
|
192 |
+
"ジェ/ j e",
|
193 |
+
"ジャ/ j a",
|
194 |
+
"ジュ/ j u",
|
195 |
+
"ジョ/ j o",
|
196 |
+
"ビャ/ by a",
|
197 |
+
"ビュ/ by u",
|
198 |
+
"ビョ/ by o",
|
199 |
+
"ピャ/ py a",
|
200 |
+
"ピュ/ py u",
|
201 |
+
"ピョ/ py o",
|
202 |
+
"ウァ/ u a",
|
203 |
+
"ウィ/ w i",
|
204 |
+
"ウェ/ w e",
|
205 |
+
"ウォ/ w o",
|
206 |
+
"ファ/ f a",
|
207 |
+
"フィ/ f i",
|
208 |
+
"フゥ/ f u",
|
209 |
+
"フャ/ hy a",
|
210 |
+
"フュ/ hy u",
|
211 |
+
"フョ/ hy o",
|
212 |
+
"フェ/ f e",
|
213 |
+
"フォ/ f o",
|
214 |
+
"ヴァ/ b a",
|
215 |
+
"ヴィ/ b i",
|
216 |
+
"ヴェ/ b e",
|
217 |
+
"ヴォ/ b o",
|
218 |
+
"ヴュ/ by u",
|
219 |
+
"アー/ a:",
|
220 |
+
"イー/ i:",
|
221 |
+
"ウー/ u:",
|
222 |
+
"エー/ e:",
|
223 |
+
"オー/ o:",
|
224 |
+
"カー/ k a:",
|
225 |
+
"キー/ k i:",
|
226 |
+
"クー/ k u:",
|
227 |
+
"ケー/ k e:",
|
228 |
+
"コー/ k o:",
|
229 |
+
"サー/ s a:",
|
230 |
+
"シー/ sh i:",
|
231 |
+
"スー/ s u:",
|
232 |
+
"セー/ s e:",
|
233 |
+
"ソー/ s o:",
|
234 |
+
"ター/ t a:",
|
235 |
+
"チー/ ch i:",
|
236 |
+
"ツー/ ts u:",
|
237 |
+
"テー/ t e:",
|
238 |
+
"トー/ t o:",
|
239 |
+
"ナー/ n a:",
|
240 |
+
"ニー/ n i:",
|
241 |
+
"ヌー/ n u:",
|
242 |
+
"ネー/ n e:",
|
243 |
+
"ノー/ n o:",
|
244 |
+
"ハー/ h a:",
|
245 |
+
"ヒー/ h i:",
|
246 |
+
"フー/ f u:",
|
247 |
+
"ヘー/ h e:",
|
248 |
+
"ホー/ h o:",
|
249 |
+
"マー/ m a:",
|
250 |
+
"ミー/ m i:",
|
251 |
+
"ムー/ m u:",
|
252 |
+
"メー/ m e:",
|
253 |
+
"モー/ m o:",
|
254 |
+
"ラー/ r a:",
|
255 |
+
"リー/ r i:",
|
256 |
+
"ルー/ r u:",
|
257 |
+
"レー/ r e:",
|
258 |
+
"ロー/ r o:",
|
259 |
+
"ガー/ g a:",
|
260 |
+
"ギー/ g i:",
|
261 |
+
"グー/ g u:",
|
262 |
+
"ゲー/ g e:",
|
263 |
+
"ゴー/ g o:",
|
264 |
+
"ザー/ z a:",
|
265 |
+
"ジー/ j i:",
|
266 |
+
"ズー/ z u:",
|
267 |
+
"ゼー/ z e:",
|
268 |
+
"ゾー/ z o:",
|
269 |
+
"ダー/ d a:",
|
270 |
+
"ヂー/ j i:",
|
271 |
+
"ヅー/ z u:",
|
272 |
+
"デー/ d e:",
|
273 |
+
"ドー/ d o:",
|
274 |
+
"バー/ b a:",
|
275 |
+
"ビー/ b i:",
|
276 |
+
"ブー/ b u:",
|
277 |
+
"ベー/ b e:",
|
278 |
+
"ボー/ b o:",
|
279 |
+
"パー/ p a:",
|
280 |
+
"ピー/ p i:",
|
281 |
+
"プー/ p u:",
|
282 |
+
"ペー/ p e:",
|
283 |
+
"ポー/ p o:",
|
284 |
+
"ヤー/ y a:",
|
285 |
+
"ユー/ y u:",
|
286 |
+
"ヨー/ y o:",
|
287 |
+
"ワー/ w a:",
|
288 |
+
"ヰー/ i:",
|
289 |
+
"ヱー/ e:",
|
290 |
+
"ヲー/ o:",
|
291 |
+
"ヴー/ b u:",
|
292 |
+
# Conversion of 1 letter
|
293 |
+
"ア/ a",
|
294 |
+
"イ/ i",
|
295 |
+
"ウ/ u",
|
296 |
+
"エ/ e",
|
297 |
+
"オ/ o",
|
298 |
+
"カ/ k a",
|
299 |
+
"キ/ k i",
|
300 |
+
"ク/ k u",
|
301 |
+
"ケ/ k e",
|
302 |
+
"コ/ k o",
|
303 |
+
"サ/ s a",
|
304 |
+
"シ/ sh i",
|
305 |
+
"ス/ s u",
|
306 |
+
"セ/ s e",
|
307 |
+
"ソ/ s o",
|
308 |
+
"タ/ t a",
|
309 |
+
"チ/ ch i",
|
310 |
+
"ツ/ ts u",
|
311 |
+
"テ/ t e",
|
312 |
+
"ト/ t o",
|
313 |
+
"ナ/ n a",
|
314 |
+
"ニ/ n i",
|
315 |
+
"ヌ/ n u",
|
316 |
+
"ネ/ n e",
|
317 |
+
"ノ/ n o",
|
318 |
+
"ハ/ h a",
|
319 |
+
"ヒ/ h i",
|
320 |
+
"フ/ f u",
|
321 |
+
"ヘ/ h e",
|
322 |
+
"ホ/ h o",
|
323 |
+
"マ/ m a",
|
324 |
+
"ミ/ m i",
|
325 |
+
"ム/ m u",
|
326 |
+
"メ/ m e",
|
327 |
+
"モ/ m o",
|
328 |
+
"ラ/ r a",
|
329 |
+
"リ/ r i",
|
330 |
+
"ル/ r u",
|
331 |
+
"レ/ r e",
|
332 |
+
"ロ/ r o",
|
333 |
+
"ガ/ g a",
|
334 |
+
"ギ/ g i",
|
335 |
+
"グ/ g u",
|
336 |
+
"ゲ/ g e",
|
337 |
+
"ゴ/ g o",
|
338 |
+
"ザ/ z a",
|
339 |
+
"ジ/ j i",
|
340 |
+
"ズ/ z u",
|
341 |
+
"ゼ/ z e",
|
342 |
+
"ゾ/ z o",
|
343 |
+
"ダ/ d a",
|
344 |
+
"ヂ/ j i",
|
345 |
+
"ヅ/ z u",
|
346 |
+
"デ/ d e",
|
347 |
+
"ド/ d o",
|
348 |
+
"バ/ b a",
|
349 |
+
"ビ/ b i",
|
350 |
+
"ブ/ b u",
|
351 |
+
"ベ/ b e",
|
352 |
+
"ボ/ b o",
|
353 |
+
"パ/ p a",
|
354 |
+
"ピ/ p i",
|
355 |
+
"プ/ p u",
|
356 |
+
"ペ/ p e",
|
357 |
+
"ポ/ p o",
|
358 |
+
"ヤ/ y a",
|
359 |
+
"ユ/ y u",
|
360 |
+
"ヨ/ y o",
|
361 |
+
"ワ/ w a",
|
362 |
+
"ヰ/ i",
|
363 |
+
"ヱ/ e",
|
364 |
+
"ヲ/ o",
|
365 |
+
"ン/ N",
|
366 |
+
"ッ/ q",
|
367 |
+
"ヴ/ b u",
|
368 |
+
"ー/:", #这个不起作用
|
369 |
+
# Try converting broken text
|
370 |
+
"ァ/ a",
|
371 |
+
"ィ/ i",
|
372 |
+
"ゥ/ u",
|
373 |
+
"ェ/ e",
|
374 |
+
"ォ/ o",
|
375 |
+
"ヮ/ w a",
|
376 |
+
"ォ/ o",
|
377 |
+
# Symbols
|
378 |
+
"、/ ,",
|
379 |
+
"。/ .",
|
380 |
+
"!/ !",
|
381 |
+
"?/ ?",
|
382 |
+
"・/ ,",
|
383 |
+
]
|
384 |
+
|
385 |
+
_COLON_RX = re.compile(":+")
|
386 |
+
_REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
|
387 |
+
|
388 |
+
|
389 |
+
def _makerulemap():
|
390 |
+
l = [tuple(x.split("/")) for x in _CONVRULES]
|
391 |
+
return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
|
392 |
+
|
393 |
+
|
394 |
+
_RULEMAP1, _RULEMAP2 = _makerulemap()
|
395 |
+
|
396 |
+
|
397 |
+
def kata2phoneme(text: str) -> str:
|
398 |
+
"""Convert katakana text to phonemes."""
|
399 |
+
text = text.strip()
|
400 |
+
res = []
|
401 |
+
while text:
|
402 |
+
if len(text) >= 2:
|
403 |
+
x = _RULEMAP2.get(text[:2])
|
404 |
+
if x is not None:
|
405 |
+
text = text[2:]
|
406 |
+
res += x.split(" ")[1:]
|
407 |
+
continue
|
408 |
+
x = _RULEMAP1.get(text[0])
|
409 |
+
if x is not None:
|
410 |
+
text = text[1:]
|
411 |
+
res += x.split(" ")[1:]
|
412 |
+
continue
|
413 |
+
res.append(text[0])
|
414 |
+
text = text[1:]
|
415 |
+
# res = _COLON_RX.sub(":", res)
|
416 |
+
return res
|
417 |
+
|
418 |
+
|
419 |
+
_KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
|
420 |
+
_HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
|
421 |
+
_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
|
422 |
+
|
423 |
+
|
424 |
+
def hira2kata(text: str) -> str:
|
425 |
+
text = text.translate(_HIRA2KATATRANS)
|
426 |
+
return text.replace("う゛", "ヴ")
|
427 |
+
|
428 |
+
|
429 |
+
_SYMBOL_TOKENS = set(list("・、。?!"))
|
430 |
+
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
|
431 |
+
_TAGGER = MeCab.Tagger()
|
432 |
+
|
433 |
+
|
434 |
+
def text2kata(text: str) -> str:
|
435 |
+
parsed = _TAGGER.parse(text)
|
436 |
+
res = []
|
437 |
+
for line in parsed.split("\n"):
|
438 |
+
if line == "EOS":
|
439 |
+
break
|
440 |
+
parts = line.split("\t")
|
441 |
+
|
442 |
+
word, yomi = parts[0], parts[1]
|
443 |
+
if yomi:
|
444 |
+
res.append(yomi)
|
445 |
+
else:
|
446 |
+
if word in _SYMBOL_TOKENS:
|
447 |
+
res.append(word)
|
448 |
+
elif word in ("っ", "ッ"):
|
449 |
+
res.append("ッ")
|
450 |
+
elif word in _NO_YOMI_TOKENS:
|
451 |
+
pass
|
452 |
+
else:
|
453 |
+
res.append(word)
|
454 |
+
return hira2kata("".join(res))
|
455 |
+
|
456 |
+
|
457 |
+
def text2sep_kata(text: str) -> (list, list):
|
458 |
+
parsed = _TAGGER.parse(text)
|
459 |
+
res = []
|
460 |
+
sep = []
|
461 |
+
for line in parsed.split("\n"):
|
462 |
+
if line == "EOS":
|
463 |
+
break
|
464 |
+
parts = line.split("\t")
|
465 |
+
|
466 |
+
word, yomi = parts[0], parts[1]
|
467 |
+
if yomi:
|
468 |
+
res.append(yomi)
|
469 |
+
else:
|
470 |
+
if word in _SYMBOL_TOKENS:
|
471 |
+
res.append(word)
|
472 |
+
elif word in ("っ", "ッ"):
|
473 |
+
res.append("ッ")
|
474 |
+
elif word in _NO_YOMI_TOKENS:
|
475 |
+
pass
|
476 |
+
else:
|
477 |
+
res.append(word)
|
478 |
+
sep.append(word)
|
479 |
+
return sep, [hira2kata(i) for i in res]
|
480 |
+
|
481 |
+
|
482 |
+
_ALPHASYMBOL_YOMI = {
|
483 |
+
"#": "シャープ",
|
484 |
+
"%": "パーセント",
|
485 |
+
"&": "アンド",
|
486 |
+
"+": "プラス",
|
487 |
+
"-": "マイナス",
|
488 |
+
":": "コロン",
|
489 |
+
";": "セミコロン",
|
490 |
+
"<": "小なり",
|
491 |
+
"=": "イコール",
|
492 |
+
">": "大なり",
|
493 |
+
"@": "アット",
|
494 |
+
"a": "エー",
|
495 |
+
"b": "ビー",
|
496 |
+
"c": "シー",
|
497 |
+
"d": "ディー",
|
498 |
+
"e": "イー",
|
499 |
+
"f": "エフ",
|
500 |
+
"g": "ジー",
|
501 |
+
"h": "エイチ",
|
502 |
+
"i": "アイ",
|
503 |
+
"j": "ジェー",
|
504 |
+
"k": "ケー",
|
505 |
+
"l": "エル",
|
506 |
+
"m": "エム",
|
507 |
+
"n": "エヌ",
|
508 |
+
"o": "オー",
|
509 |
+
"p": "ピー",
|
510 |
+
"q": "キュー",
|
511 |
+
"r": "アール",
|
512 |
+
"s": "エス",
|
513 |
+
"t": "ティー",
|
514 |
+
"u": "ユー",
|
515 |
+
"v": "ブイ",
|
516 |
+
"w": "ダブリュー",
|
517 |
+
"x": "エックス",
|
518 |
+
"y": "ワイ",
|
519 |
+
"z": "ゼット",
|
520 |
+
"α": "アルファ",
|
521 |
+
"β": "ベータ",
|
522 |
+
"γ": "ガンマ",
|
523 |
+
"δ": "デルタ",
|
524 |
+
"ε": "イプシロン",
|
525 |
+
"ζ": "ゼータ",
|
526 |
+
"η": "イータ",
|
527 |
+
"θ": "シータ",
|
528 |
+
"ι": "イオタ",
|
529 |
+
"κ": "カッパ",
|
530 |
+
"λ": "ラムダ",
|
531 |
+
"μ": "ミュー",
|
532 |
+
"ν": "ニュー",
|
533 |
+
"ξ": "クサイ",
|
534 |
+
"ο": "オミクロン",
|
535 |
+
"π": "パイ",
|
536 |
+
"ρ": "ロー",
|
537 |
+
"σ": "シグマ",
|
538 |
+
"τ": "タウ",
|
539 |
+
"υ": "ウプシロン",
|
540 |
+
"φ": "ファイ",
|
541 |
+
"χ": "カイ",
|
542 |
+
"ψ": "プサイ",
|
543 |
+
"ω": "オメガ",
|
544 |
+
}
|
545 |
+
|
546 |
+
|
547 |
+
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
|
548 |
+
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
|
549 |
+
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
|
550 |
+
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
|
551 |
+
|
552 |
+
|
553 |
+
def japanese_convert_numbers_to_words(text: str) -> str:
|
554 |
+
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
|
555 |
+
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
|
556 |
+
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
|
557 |
+
return res
|
558 |
+
|
559 |
+
|
560 |
+
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
|
561 |
+
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
|
562 |
+
|
563 |
+
|
564 |
+
def japanese_text_to_phonemes(text: str) -> str:
|
565 |
+
"""Convert Japanese text to phonemes."""
|
566 |
+
res = unicodedata.normalize("NFKC", text)
|
567 |
+
res = japanese_convert_numbers_to_words(res)
|
568 |
+
# res = japanese_convert_alpha_symbols_to_words(res)
|
569 |
+
res = text2kata(res)
|
570 |
+
res = kata2phoneme(res)
|
571 |
+
return res
|
572 |
+
|
573 |
+
|
574 |
+
def is_japanese_character(char):
|
575 |
+
# 定义日语文字系统的 Unicode 范围
|
576 |
+
japanese_ranges = [
|
577 |
+
(0x3040, 0x309F), # 平假名
|
578 |
+
(0x30A0, 0x30FF), # 片假名
|
579 |
+
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
|
580 |
+
(0x3400, 0x4DBF), # 汉字扩展 A
|
581 |
+
(0x20000, 0x2A6DF), # 汉字扩展 B
|
582 |
+
# 可以根据需要添加其他汉字扩展范围
|
583 |
+
]
|
584 |
+
|
585 |
+
# 将字符的 Unicode 编码转换为整数
|
586 |
+
char_code = ord(char)
|
587 |
+
|
588 |
+
# 检查字符是否在任何一个日语范围内
|
589 |
+
for start, end in japanese_ranges:
|
590 |
+
if start <= char_code <= end:
|
591 |
+
return True
|
592 |
+
|
593 |
+
return False
|
594 |
+
|
595 |
+
|
596 |
+
rep_map = {
|
597 |
+
":": ",",
|
598 |
+
";": ",",
|
599 |
+
",": ",",
|
600 |
+
"。": ".",
|
601 |
+
"!": "!",
|
602 |
+
"?": "?",
|
603 |
+
"\n": ".",
|
604 |
+
"·": ",",
|
605 |
+
"、": ",",
|
606 |
+
"…": "...",
|
607 |
+
}
|
608 |
+
|
609 |
+
|
610 |
+
def replace_punctuation(text):
|
611 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
612 |
+
|
613 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
614 |
+
|
615 |
+
replaced_text = re.sub(
|
616 |
+
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
|
617 |
+
+ "".join(punctuation)
|
618 |
+
+ r"]+",
|
619 |
+
"",
|
620 |
+
replaced_text,
|
621 |
+
)
|
622 |
+
|
623 |
+
return replaced_text
|
624 |
+
|
625 |
+
|
626 |
+
def text_normalize(text):
|
627 |
+
res = unicodedata.normalize("NFKC", text)
|
628 |
+
res = japanese_convert_numbers_to_words(res)
|
629 |
+
# res = "".join([i for i in res if is_japanese_character(i)])
|
630 |
+
res = replace_punctuation(res)
|
631 |
+
return res
|
632 |
+
|
633 |
+
|
634 |
+
def distribute_phone(n_phone, n_word):
|
635 |
+
phones_per_word = [0] * n_word
|
636 |
+
for task in range(n_phone):
|
637 |
+
min_tasks = min(phones_per_word)
|
638 |
+
min_index = phones_per_word.index(min_tasks)
|
639 |
+
phones_per_word[min_index] += 1
|
640 |
+
return phones_per_word
|
641 |
+
|
642 |
+
|
643 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
644 |
+
|
645 |
+
|
646 |
+
def g2p(norm_text):
|
647 |
+
sep_text, sep_kata = text2sep_kata(norm_text)
|
648 |
+
sep_tokenized = [tokenizer.tokenize(i) for i in sep_text]
|
649 |
+
sep_phonemes = [kata2phoneme(i) for i in sep_kata]
|
650 |
+
# 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
|
651 |
+
for i in sep_phonemes:
|
652 |
+
for j in i:
|
653 |
+
assert j in symbols, (sep_text, sep_kata, sep_phonemes)
|
654 |
+
|
655 |
+
word2ph = []
|
656 |
+
for token, phoneme in zip(sep_tokenized, sep_phonemes):
|
657 |
+
phone_len = len(phoneme)
|
658 |
+
word_len = len(token)
|
659 |
+
|
660 |
+
aaa = distribute_phone(phone_len, word_len)
|
661 |
+
word2ph += aaa
|
662 |
+
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
|
663 |
+
tones = [0 for i in phones]
|
664 |
+
word2ph = [1] + word2ph + [1]
|
665 |
+
return phones, tones, word2ph
|
666 |
+
|
667 |
+
if __name__ == "__main__":
|
668 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
669 |
+
text = "だったら私、スズカさんと同じチームに入りたいです! スズカさんの走りを毎日近くで、なんなら真横から見ていたいので!"
|
670 |
+
#print(_TAGGER.parse(text))
|
671 |
+
# nodes = [{"surface": "こんにちは", "pos": "感動詞:*:*:*", "pron": "コンニチワ", "c_type": "*", "c_form": "*", "accent_type": 0, "accent_con_type": "-1", "chain_flag": -1}]
|
672 |
+
nodes = [{"surface":"こんにちは","pron": "コンニチワ","pos": "感動詞:*:*:*",}]
|
673 |
+
from text.japanese_bert import get_bert_feature
|
674 |
+
import pyopenjtalk
|
675 |
+
from marine.predict import Predictor
|
676 |
+
from marine.utils.openjtalk_util import convert_njd_feature_to_marine_feature
|
677 |
+
text = text_normalize(text)
|
678 |
+
NJD_NODES = pyopenjtalk.run_frontend(text)
|
679 |
+
predictor = Predictor()
|
680 |
+
# important_info = [{"string":i["string"],"pron":i["pron"],"acc":i["acc"]}for i in pyopenjtalk.estimate_accent(NJD_NODES)]
|
681 |
+
print(text)
|
682 |
+
|
683 |
+
marine_feature = convert_njd_feature_to_marine_feature(NJD_NODES)
|
684 |
+
results = predictor.predict([marine_feature])
|
685 |
+
for mora,acc in zip(results["mora"][0],results["accent_status"][0]):
|
686 |
+
print(f"{mora}:{acc}")
|
687 |
+
# for i in pyopenjtalk.estimate_accent(NJD_NODES):
|
688 |
+
# print(f"{i['string']}:{i['pron']}:{i['acc']}")
|
689 |
+
# info = pyopenjtalk.extract_fullcontext(text,run_marine=True)
|
690 |
+
# info_nomarine = pyopenjtalk.extract_fullcontext(text,run_marine=False)
|
691 |
+
# # nodes = pyopenjtalk
|
692 |
+
# # print(info)
|
693 |
+
# for i,j in zip(info,info_nomarine):
|
694 |
+
# print(i)
|
695 |
+
# print(j)
|
696 |
+
# print("\n")
|
697 |
+
# predictor = Predictor()
|
698 |
+
#print(pyopenjtalk.estimate_accent(text))
|
699 |
+
# output = predictor.predict([nodes],accent_represent_mode="high_low")
|
700 |
+
#print(output)
|
701 |
+
# phones, tones, word2ph = g2p(text)
|
702 |
+
# bert = get_bert_feature(text, word2ph)
|
703 |
+
|
704 |
+
# print(phones, tones, word2ph, bert.shape)
|
text/japanese_bert.py
CHANGED
@@ -1,68 +1,87 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
from text.japanese import text2sep_kata
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
7 |
+
|
8 |
+
models = dict()
|
9 |
+
|
10 |
+
|
11 |
+
def get_bert_feature(text, word2ph, device=None):
|
12 |
+
sep_text,_ = text2sep_kata(text)
|
13 |
+
sep_tokens = [tokenizer.tokenize(t) for t in sep_text]
|
14 |
+
sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens]
|
15 |
+
sep_ids = [2]+[item for sublist in sep_ids for item in sublist]+[3]
|
16 |
+
return get_bert_feature_with_token(sep_ids, word2ph, device)
|
17 |
+
|
18 |
+
|
19 |
+
# def get_bert_feature(text, word2ph, device=None):
|
20 |
+
# if (
|
21 |
+
# sys.platform == "darwin"
|
22 |
+
# and torch.backends.mps.is_available()
|
23 |
+
# and device == "cpu"
|
24 |
+
# ):
|
25 |
+
# device = "mps"
|
26 |
+
# if not device:
|
27 |
+
# device = "cuda"
|
28 |
+
# if device not in models.keys():
|
29 |
+
# models[device] = AutoModelForMaskedLM.from_pretrained(
|
30 |
+
# "cl-tohoku/bert-base-japanese-v3"
|
31 |
+
# ).to(device)
|
32 |
+
# with torch.no_grad():
|
33 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
34 |
+
# for i in inputs:
|
35 |
+
# inputs[i] = inputs[i].to(device)
|
36 |
+
# res = models[device](**inputs, output_hidden_states=True)
|
37 |
+
# res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
38 |
+
# assert inputs["input_ids"].shape[-1] == len(word2ph)
|
39 |
+
# word2phone = word2ph
|
40 |
+
# phone_level_feature = []
|
41 |
+
# for i in range(len(word2phone)):
|
42 |
+
# repeat_feature = res[i].repeat(word2phone[i], 1)
|
43 |
+
# phone_level_feature.append(repeat_feature)
|
44 |
+
|
45 |
+
# phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
46 |
+
|
47 |
+
# return phone_level_feature.T
|
48 |
+
|
49 |
+
def get_bert_feature_with_token(tokens, word2ph, device=None):
|
50 |
+
if (
|
51 |
+
sys.platform == "darwin"
|
52 |
+
and torch.backends.mps.is_available()
|
53 |
+
and device == "cpu"
|
54 |
+
):
|
55 |
+
device = "mps"
|
56 |
+
if not device:
|
57 |
+
device = "cuda"
|
58 |
+
if device not in models.keys():
|
59 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(
|
60 |
+
"./bert/bert-base-japanese-v3"
|
61 |
+
).to(device)
|
62 |
+
with torch.no_grad():
|
63 |
+
inputs = torch.tensor(tokens).to(device).unsqueeze(0)
|
64 |
+
token_type_ids = torch.zeros_like(inputs).to(device)
|
65 |
+
attention_mask = torch.ones_like(inputs).to(device)
|
66 |
+
inputs = {"input_ids": inputs, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
67 |
+
|
68 |
+
|
69 |
+
# for i in inputs:
|
70 |
+
# inputs[i] = inputs[i].to(device)
|
71 |
+
res = models[device](**inputs, output_hidden_states=True)
|
72 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
73 |
+
assert inputs["input_ids"].shape[-1] == len(word2ph)
|
74 |
+
word2phone = word2ph
|
75 |
+
phone_level_feature = []
|
76 |
+
for i in range(len(word2phone)):
|
77 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
78 |
+
phone_level_feature.append(repeat_feature)
|
79 |
+
|
80 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
81 |
+
|
82 |
+
return phone_level_feature.T
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
print(get_bert_feature("観覧車",[4,2]))
|
87 |
+
pass
|