Spaces:
Sleeping
Sleeping
Upload clap_wrapper.py
Browse files- clap_wrapper.py +56 -0
clap_wrapper.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import ClapModel, ClapProcessor
|
5 |
+
|
6 |
+
from config import config
|
7 |
+
|
8 |
+
models = dict()
|
9 |
+
LOCAL_PATH = "./emotional/clap-htsat-fused"
|
10 |
+
processor = ClapProcessor.from_pretrained(LOCAL_PATH)
|
11 |
+
|
12 |
+
|
13 |
+
def get_clap_audio_feature(audio_data, device=config.bert_gen_config.device):
|
14 |
+
if (
|
15 |
+
sys.platform == "darwin"
|
16 |
+
and torch.backends.mps.is_available()
|
17 |
+
and device == "cpu"
|
18 |
+
):
|
19 |
+
device = "mps"
|
20 |
+
if not device:
|
21 |
+
device = "cuda"
|
22 |
+
if device not in models.keys():
|
23 |
+
if config.webui_config.fp16_run:
|
24 |
+
models[device] = ClapModel.from_pretrained(
|
25 |
+
LOCAL_PATH, torch_dtype=torch.float16
|
26 |
+
).to(device)
|
27 |
+
else:
|
28 |
+
models[device] = ClapModel.from_pretrained(LOCAL_PATH).to(device)
|
29 |
+
with torch.no_grad():
|
30 |
+
inputs = processor(
|
31 |
+
audios=audio_data, return_tensors="pt", sampling_rate=48000
|
32 |
+
).to(device)
|
33 |
+
emb = models[device].get_audio_features(**inputs).float()
|
34 |
+
return emb.T
|
35 |
+
|
36 |
+
|
37 |
+
def get_clap_text_feature(text, device=config.bert_gen_config.device):
|
38 |
+
if (
|
39 |
+
sys.platform == "darwin"
|
40 |
+
and torch.backends.mps.is_available()
|
41 |
+
and device == "cpu"
|
42 |
+
):
|
43 |
+
device = "mps"
|
44 |
+
if not device:
|
45 |
+
device = "cuda"
|
46 |
+
if device not in models.keys():
|
47 |
+
if config.webui_config.fp16_run:
|
48 |
+
models[device] = ClapModel.from_pretrained(
|
49 |
+
LOCAL_PATH, torch_dtype=torch.float16
|
50 |
+
).to(device)
|
51 |
+
else:
|
52 |
+
models[device] = ClapModel.from_pretrained(LOCAL_PATH).to(device)
|
53 |
+
with torch.no_grad():
|
54 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
55 |
+
emb = models[device].get_text_features(**inputs).float()
|
56 |
+
return emb.T
|