wuwa-bert-vits2 / clap_wrapper.py
JotunnBurton's picture
Update clap_wrapper.py
8a53174 verified
raw
history blame contribute delete
1.8 kB
import sys
import torch
from transformers import ClapModel, ClapProcessor
from config import config
# ใช้โมเดลจาก Hugging Face Hub
REPO_NAME = "laion/clap-htsat-fused"
models = dict()
processor = ClapProcessor.from_pretrained(REPO_NAME)
def get_clap_audio_feature(audio_data, device=config.bert_gen_config.device):
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if device not in models.keys():
if config.webui_config.fp16_run:
models[device] = ClapModel.from_pretrained(
REPO_NAME, torch_dtype=torch.float16
).to(device)
else:
models[device] = ClapModel.from_pretrained(REPO_NAME).to(device)
with torch.no_grad():
inputs = processor(
audios=audio_data, return_tensors="pt", sampling_rate=48000
).to(device)
emb = models[device].get_audio_features(**inputs).float()
return emb.T
def get_clap_text_feature(text, device=config.bert_gen_config.device):
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if device not in models.keys():
if config.webui_config.fp16_run:
models[device] = ClapModel.from_pretrained(
REPO_NAME, torch_dtype=torch.float16
).to(device)
else:
models[device] = ClapModel.from_pretrained(REPO_NAME).to(device)
with torch.no_grad():
inputs = processor(text=text, return_tensors="pt").to(device)
emb = models[device].get_text_features(**inputs).float()
return emb.T