Spaces:
Sleeping
Sleeping
import sys | |
import logging | |
import os | |
import json | |
import torch | |
import argparse | |
import commons | |
import utils | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import numpy as np | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s") | |
logger = logging.getLogger(__name__) | |
limitation = os.getenv("SYSTEM") == "spaces" | |
def get_net_g(model_path: str, version: str, device: str, hps): | |
# 当前版本模型 net_g | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
return net_g | |
def get_text(text, hps): | |
language_str = "JP" | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str, device) | |
del word2ph | |
assert bert.shape[-1] == len(phone), phone | |
ja_bert = bert | |
bert = torch.zeros(1024, len(phone)) | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, phone, tone, language | |
def infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
language, | |
hps, | |
net_g, | |
device, | |
emotion, | |
reference_audio=None, | |
skip_start=False, | |
skip_end=False, | |
style_text=None, | |
style_weight=0.7, | |
text_mode="Text", | |
): | |
# 2.2版本参数位置变了 | |
# 2.1 参数新增 emotion reference_audio skip_start skip_end | |
version = hps.version if hasattr(hps, "version") else latest_version | |
language = "JP" | |
if isinstance(reference_audio, np.ndarray): | |
emo = get_clap_audio_feature(reference_audio, device) | |
else: | |
emo = get_clap_text_feature(emotion, device) | |
emo = torch.squeeze(emo, dim=1) | |
bert, phones, tones, lang_ids = get_text( | |
text, | |
language, | |
hps, | |
device, | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
if skip_start: | |
phones = phones[3:] | |
tones = tones[3:] | |
lang_ids = lang_ids[3:] | |
bert = bert[:, 3:] | |
if skip_end: | |
phones = phones[:-2] | |
tones = tones[:-2] | |
lang_ids = lang_ids[:-2] | |
bert = bert[:, :-2] | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
emo = emo.to(device).unsqueeze(0) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
print(text) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
emo, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del ( | |
x_tst, | |
tones, | |
lang_ids, | |
bert, | |
x_tst_lengths, | |
speakers, | |
emo, | |
) # , emo | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return audio | |
def create_tts_fn(net_g_ms, hps): | |
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): | |
print(f"{text} | {speaker}") | |
sid = hps.data.spk2id[speaker] | |
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "") | |
if limitation: | |
max_len = 100 | |
if len(text) > max_len: | |
return "Error: Text is too long", None | |
audio = infer( | |
text=text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=sid, | |
language="JP", # หรือตามที่ user เลือก | |
hps=hps, | |
net_g=net_g_ms, | |
device=device, | |
emotion="neutral", # หรือตาม dropdown ที่ผู้ใช้เลือก | |
reference_audio=None, | |
skip_start=False, | |
skip_end=False, | |
style_text=None, | |
style_weight=0.7, | |
text_mode="Text" | |
) | |
return "Success", (hps.data.sampling_rate, audio) | |
return tts_fn | |
if __name__ == "__main__": | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", default=False, help="make link public", action="store_true") | |
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log") | |
args = parser.parse_args() | |
if args.debug: | |
logger.info("Enable DEBUG-LEVEL log") | |
logging.basicConfig(level=logging.DEBUG) | |
models = [] | |
with open("pretrained_models/info.json", "r", encoding="utf-8") as f: | |
models_info = json.load(f) | |
# ✅ โหลดโมเดลทั้งหมดล่วงหน้า | |
for i, info in models_info.items(): | |
if not info['enable']: | |
continue | |
name = info['name'] | |
title = info['title'] | |
link = info['link'] | |
example = info['example'] | |
print(f"🔄 Loading model: {name} from {link}") | |
config_path = hf_hub_download(repo_id=link, filename="config.json") | |
model_path = hf_hub_download(repo_id=link, filename=f"{name}.pth") | |
hps = utils.get_hparams_from_file(config_path) | |
version = hps.version if hasattr(hps, "version") else latest_version | |
net_g_ms = get_net_g(model_path, version, device, hps) | |
models.append((name, title, example, list(hps.data.spk2id.keys()), net_g_ms, create_tts_fn(net_g_ms, hps))) | |
# ✅ Gradio UI แบบพร้อมใช้กับ Spaces | |
with gr.Blocks(theme='NoCrypt/miku') as app: | |
gr.Markdown("## ✅ All models loaded successfully. Ready to use.") | |
with gr.Tabs(): | |
for (name, title, example, speakers, net_g_ms, tts_fn) in models: | |
with gr.TabItem(name): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<a><strong>{title}</strong></a>' | |
f'</div>' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example) | |
btn = gr.Button(value="Generate", variant="primary") | |
with gr.Row(): | |
sp = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker") | |
with gr.Row(): | |
sdpr = gr.Slider(label="SDP Ratio", minimum=0, maximum=1, step=0.1, value=0.2) | |
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6) | |
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.8) | |
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1) | |
with gr.Column(): | |
o1 = gr.Textbox(label="Output Message") | |
o2 = gr.Audio(label="Output Audio") | |
btn.click(tts_fn, inputs=[input_text, sp, sdpr, ns, nsw, ls], outputs=[o1, o2]) | |
app.queue().launch(share=args.share) | |