JoshKeesee commited on
Commit
45a9115
·
verified ·
1 Parent(s): 0922826

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -13,15 +13,15 @@ MODEL_ID = "Hyeon2/riffusion-musiccaps"
13
  pipe = StableDiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16)
14
  pipe = pipe.to(device)
15
 
16
- def predict(prompt, negative_prompt, audio_input, duration):
17
- return classic(prompt, negative_prompt, duration)
18
 
19
- def classic(prompt, negative_prompt, duration):
20
  if duration == 5:
21
  width_duration=512
22
  else:
23
  width_duration = 512 + ((int(duration) - 5) * 128)
24
- spec = pipe(prompt, negative_prompt=negative_prompt, height=512, width=width_duration).images[0]
25
  print(spec)
26
  wav = wav_bytes_from_spectrogram_image(spec)
27
  with open("output.wav", "wb") as f:
@@ -114,8 +114,7 @@ with gr.Blocks(css="style.css") as demo:
114
 
115
  gr.HTML(title)
116
 
117
- prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club", label="Musical prompt", elem_id="prompt-in")
118
- audio_input = gr.Audio(sources=["upload"], type="filepath", visible=False)
119
  with gr.Row():
120
  negative_prompt = gr.Textbox(label="Negative prompt")
121
  duration_input = gr.Slider(label="Duration in seconds", minimum=5, maximum=10, step=1, value=8, elem_id="duration-slider")
@@ -124,9 +123,9 @@ with gr.Blocks(css="style.css") as demo:
124
 
125
  with gr.Column(elem_id="col-container-2"):
126
 
127
- spectrogram_output = gr.Image(label="spectrogram image result", elem_id="img-out")
128
- sound_output = gr.Audio(type='filepath', label="spectrogram sound", elem_id="music-out")
129
 
130
- send_btn.click(predict, inputs=[prompt_input, negative_prompt, audio_input, duration_input], outputs=[spectrogram_output, sound_output])
131
 
132
  demo.queue(max_size=250).launch(debug=True, ssr_mode=False)
 
13
  pipe = StableDiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16)
14
  pipe = pipe.to(device)
15
 
16
+ def predict(prompt, duration):
17
+ return classic(prompt, duration)
18
 
19
+ def classic(prompt, duration):
20
  if duration == 5:
21
  width_duration=512
22
  else:
23
  width_duration = 512 + ((int(duration) - 5) * 128)
24
+ spec = pipe(prompt, height=512, width=width_duration).images[0]
25
  print(spec)
26
  wav = wav_bytes_from_spectrogram_image(spec)
27
  with open("output.wav", "wb") as f:
 
114
 
115
  gr.HTML(title)
116
 
117
+ prompt_input = gr.Textbox(placeholder="A LoFi beat", label="Musical prompt", elem_id="prompt-in")
 
118
  with gr.Row():
119
  negative_prompt = gr.Textbox(label="Negative prompt")
120
  duration_input = gr.Slider(label="Duration in seconds", minimum=5, maximum=10, step=1, value=8, elem_id="duration-slider")
 
123
 
124
  with gr.Column(elem_id="col-container-2"):
125
 
126
+ spectrogram_output = gr.Image(label="Spectrogram Image Result", elem_id="img-out")
127
+ sound_output = gr.Audio(type='filepath', label="Generated Audio", elem_id="music-out")
128
 
129
+ send_btn.click(predict, inputs=[prompt_input, duration_input], outputs=[spectrogram_output, sound_output])
130
 
131
  demo.queue(max_size=250).launch(debug=True, ssr_mode=False)