File size: 4,459 Bytes
f3ecad0
47def4a
f3ecad0
47def4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import torch

from PIL import Image
import numpy as np
from spectro import wav_bytes_from_spectrogram_image

from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline

device = "cpu"
MODEL_ID = "Hyeon2/riffusion-musiccaps"
pipe = StableDiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16)
pipe = pipe.to(device)

def predict(prompt, negative_prompt, audio_input, duration):
    return classic(prompt, negative_prompt, duration)

def classic(prompt, negative_prompt, duration):
    if duration == 5:
        width_duration=512
    else:
        width_duration = 512 + ((int(duration) - 5) * 128)
    spec = pipe(prompt, negative_prompt=negative_prompt, height=512, width=width_duration).images[0]
    print(spec)
    wav = wav_bytes_from_spectrogram_image(spec)
    with open("output.wav", "wb") as f:
        f.write(wav[0].getbuffer())
    return spec, 'output.wav'

title = """
    <div style="text-align: center; max-width: 500px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            margin-bottom: 10px;
            line-height: 1em;
        "
        >
        <h1 style="font-weight: 600; margin-bottom: 7px;">
            Riffusion-Musiccaps real-time music generation
        </h1>
        </div>
        <p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;">
        Describe a musical prompt, generate music by getting a spectrogram image & sound.
        </p>
    </div>
"""

css = '''
    #col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;}
    a {text-decoration-line: underline; font-weight: 600;}
    div#record_btn > .mt-6 {
        margin-top: 0!important;
    }
    div#record_btn > .mt-6 button {
        width: 100%;
        height: 40px;
    }
    .footer {
        margin-bottom: 45px;
        margin-top: 10px;
        text-align: center;
        border-bottom: 1px solid #e5e5e5;
    }
    .footer>p {
        font-size: .8rem;
        display: inline-block;
        padding: 0 10px;
        transform: translateY(10px);
        background: white;
    }
    .dark .footer {
        border-color: #303030;
    }
    .dark .footer>p {
        background: #0b0f19;
    }
    .animate-spin {
        animation: spin 1s linear infinite;
    }
    @keyframes spin {
        from {
            transform: rotate(0deg);
        }
        to {
            transform: rotate(360deg);
        }
    }
    #share-btn-container {
        display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
    }
    #share-btn {
        all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
    }
    #share-btn * {
        all: unset;
    }
    #share-btn-container div:nth-child(-n+2){
        width: auto !important;
        min-height: 0px !important;
    }
    #share-btn-container .wrap {
        display: none !important;
    }
'''

with gr.Blocks(css="style.css") as demo:
    
    with gr.Column(elem_id="col-container"):
        
        gr.HTML(title)
        
        prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club", label="Musical prompt", elem_id="prompt-in")
        audio_input = gr.Audio(sources=["upload"], type="filepath", visible=False)
        with gr.Row():
            negative_prompt = gr.Textbox(label="Negative prompt")
            duration_input = gr.Slider(label="Duration in seconds", minimum=5, maximum=10, step=1, value=8, elem_id="duration-slider")
            
        send_btn = gr.Button(value="Get a new spectrogram!", elem_id="submit-btn")
            
    with gr.Column(elem_id="col-container-2"):
        
        spectrogram_output = gr.Image(label="spectrogram image result", elem_id="img-out")
        sound_output = gr.Audio(type='filepath', label="spectrogram sound", elem_id="music-out")
    
    send_btn.click(predict, inputs=[prompt_input, negative_prompt, audio_input, duration_input], outputs=[spectrogram_output, sound_output])

demo.queue(max_size=250).launch(debug=True, ssr_mode=False)