File size: 8,166 Bytes
ae039af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from PIL import Image

import torch

from transformers import (
    AutoImageProcessor,
    AutoModelForImageClassification,
)

import gradio as gr
import spaces  # ZERO GPU

MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
MODEL_NAME = MODEL_NAMES[0]

model = AutoModelForImageClassification.from_pretrained(
    MODEL_NAME,
)
model.to("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)

# ref: https://qiita.com/tregu148/items/fccccbbc47d966dd2fc2
def gradio_copy_text(_text: None):
    gr.Info("Copied!")

COPY_ACTION_JS = """\
(inputs, _outputs) => {
  // inputs is the string value of the input_text
  if (inputs.trim() !== "") {
    navigator.clipboard.writeText(inputs);
  }
}"""

def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
    return (
        [f"1{noun}"]
        + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
        + [f"{maximum+1}+{noun}s"]
    )


PEOPLE_TAGS = (
    _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
RATING_MAP = {
    "general": "safe",
    "sensitive": "sensitive",
    "questionable": "nsfw",
    "explicit": "explicit, nsfw",
}
RATING_MAP_E621 = {
    "general": "rating_safe",
    "sensitive": "rating_safe",
    "questionable": "rating_questionable",
    "explicit": "rating_explicit",
}

DESCRIPTION_MD = """
# WD Tagger with 🤗 transformers
Currently supports the following model(s):
- [p1atdev/wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf)

""".strip()


def character_list_to_series_list(character_list):
    def get_series_dict():
        import re

        with open('characterfull.txt', 'r') as f:
            lines = f.readlines()

        series_dict = {}
        for line in lines:
            parts = line.strip().split(', ')
            if len(parts) >= 3:
                name = parts[-2].replace("\\", "")
            if name.endswith(")"):
                names = name.split("(")
                character_name = "(".join(names[:-1])
                if character_name.endswith(" "):
                    name = character_name[:-1]
            series = re.sub(r'\\[()]', '', parts[-1])
            series_dict[name] = series

        return series_dict
    
    output_series_tag = []
    series_tag = ""
    series_dict = get_series_dict()
    for tag in character_list:
        series_tag = series_dict.get(tag, "")
        if tag.endswith(")"):
            tags = tag.split("(")
            character_tag = "(".join(tags[:-1])
            if character_tag.endswith(" "):
                character_tag = character_tag[:-1]
            series_tag = tags[-1].replace(")", "")

    if series_tag:
        output_series_tag.append(series_tag)

    return output_series_tag


def get_e621_dict():
    with open('danbooru_e621.csv', 'r', encoding="utf-8") as f:
        lines = f.readlines()

    e621_dict = {}
    for line in lines:
        parts = line.strip().split(',')
        e621_dict[parts[0]] = parts[1]

    return e621_dict


def danbooru_to_e621(dtag, e621_dict):
    def d_to_e(match, e621_dict):
        dtag = match.group(0)
        etag = e621_dict.get(dtag.strip().replace("_", " "), "")
        if etag:
            return etag
        else:
            return dtag
    
    import re
    tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)

    return tag

def postprocess_results(
    results: dict[str, float], general_threshold: float, character_threshold: float
):
    results = {
        k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
    }

    rating = {}
    character = {}
    general = {}

    for k, v in results.items():
        if k.startswith("rating:"):
            rating[k.replace("rating:", "")] = v
            continue
        elif k.startswith("character:"):
            character[k.replace("character:", "")] = v
            continue

        general[k] = v

    character = {k: v for k, v in character.items() if v >= character_threshold}
    general = {k: v for k, v in general.items() if v >= general_threshold}

    return rating, character, general


def animagine_prompt(rating: list[str], character: list[str], general: list[str], tag_type):
    people_tags: list[str] = []
    other_tags: list[str] = []
    if tag_type == "e621":
        rating_tag = RATING_MAP_E621[rating[0]]
    else:
        rating_tag = RATING_MAP[rating[0]]

    e621_dict = get_e621_dict()
    for tag in general:
        if tag_type == "e621":
            tag = danbooru_to_e621(tag, e621_dict)
        if tag in PEOPLE_TAGS:
            people_tags.append(tag)
        else:
            other_tags.append(tag)

    output_series_tag = character_list_to_series_list(character)

    all_tags = people_tags + character + output_series_tag + other_tags + [rating_tag]

    return ", ".join(all_tags)


@spaces.GPU(enable_queue=True)
def predict_tags(
    image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8, tag_type = "danbooru"
):
    inputs = processor.preprocess(image, return_tensors="pt")

    outputs = model(**inputs.to(model.device, model.dtype))
    logits = torch.sigmoid(outputs.logits[0])  # take the first logits

    # get probabilities
    results = {
        model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
    }

    # rating, character, general
    rating, character, general = postprocess_results(
        results, general_threshold, character_threshold
    )

    prompt = animagine_prompt(
        list(rating.keys()), list(character.keys()), list(general.keys()), tag_type
    )
    
    return rating, character, general, prompt, gr.update(interactive=True,)


def demo():
    with gr.Blocks() as ui:
        gr.Markdown(DESCRIPTION_MD)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input image", type="pil")

                with gr.Group():
                    general_threshold = gr.Slider(
                        label="Threshold",
                        minimum=0.0,
                        maximum=1.0,
                        value=0.3,
                        step=0.01,
                        interactive=True,
                    )
                    character_threshold = gr.Slider(
                        label="Character threshold",
                        minimum=0.0,
                        maximum=1.0,
                        value=0.8,
                        step=0.01,
                        interactive=True,
                    )
                    tag_type = gr.Radio(
                        label="Output tag conversion",
                        info="danbooru for Animagine, e621 for Pony.",
                        choices=["danbooru", "e621"],
                        value="danbooru",
                    )
                
                _model_radio = gr.Dropdown(
                    choices=MODEL_NAMES,
                    label="Model",
                    value=MODEL_NAMES[0],
                    interactive=True,
                )

                start_btn = gr.Button(value="Start", variant="primary")

            with gr.Column():
                
                with gr.Group():
                    prompt_text = gr.TextArea(label="Prompt", interactive=False)
                    copy_btn = gr.Button(value="Copy to clipboard", interactive=False)

                rating_tags_label = gr.Label(label="Rating tags")
                character_tags_label = gr.Label(label="Character tags")
                general_tags_label = gr.Label(label="General tags")

        start_btn.click(
            predict_tags,
            inputs=[input_image, general_threshold, character_threshold, tag_type],
            outputs=[
                rating_tags_label,
                character_tags_label,
                general_tags_label,
                prompt_text,
                copy_btn,
            ],
        )
        copy_btn.click(gradio_copy_text, inputs=[prompt_text], js=COPY_ACTION_JS)

    return ui

if __name__ == "__main__":
    demo().queue().launch()