Spaces:
Running
Running
File size: 8,166 Bytes
ae039af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
from PIL import Image
import torch
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
)
import gradio as gr
import spaces # ZERO GPU
MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
MODEL_NAME = MODEL_NAMES[0]
model = AutoModelForImageClassification.from_pretrained(
MODEL_NAME,
)
model.to("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
# ref: https://qiita.com/tregu148/items/fccccbbc47d966dd2fc2
def gradio_copy_text(_text: None):
gr.Info("Copied!")
COPY_ACTION_JS = """\
(inputs, _outputs) => {
// inputs is the string value of the input_text
if (inputs.trim() !== "") {
navigator.clipboard.writeText(inputs);
}
}"""
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
return (
[f"1{noun}"]
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
+ [f"{maximum+1}+{noun}s"]
)
PEOPLE_TAGS = (
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
RATING_MAP = {
"general": "safe",
"sensitive": "sensitive",
"questionable": "nsfw",
"explicit": "explicit, nsfw",
}
RATING_MAP_E621 = {
"general": "rating_safe",
"sensitive": "rating_safe",
"questionable": "rating_questionable",
"explicit": "rating_explicit",
}
DESCRIPTION_MD = """
# WD Tagger with 🤗 transformers
Currently supports the following model(s):
- [p1atdev/wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf)
""".strip()
def character_list_to_series_list(character_list):
def get_series_dict():
import re
with open('characterfull.txt', 'r') as f:
lines = f.readlines()
series_dict = {}
for line in lines:
parts = line.strip().split(', ')
if len(parts) >= 3:
name = parts[-2].replace("\\", "")
if name.endswith(")"):
names = name.split("(")
character_name = "(".join(names[:-1])
if character_name.endswith(" "):
name = character_name[:-1]
series = re.sub(r'\\[()]', '', parts[-1])
series_dict[name] = series
return series_dict
output_series_tag = []
series_tag = ""
series_dict = get_series_dict()
for tag in character_list:
series_tag = series_dict.get(tag, "")
if tag.endswith(")"):
tags = tag.split("(")
character_tag = "(".join(tags[:-1])
if character_tag.endswith(" "):
character_tag = character_tag[:-1]
series_tag = tags[-1].replace(")", "")
if series_tag:
output_series_tag.append(series_tag)
return output_series_tag
def get_e621_dict():
with open('danbooru_e621.csv', 'r', encoding="utf-8") as f:
lines = f.readlines()
e621_dict = {}
for line in lines:
parts = line.strip().split(',')
e621_dict[parts[0]] = parts[1]
return e621_dict
def danbooru_to_e621(dtag, e621_dict):
def d_to_e(match, e621_dict):
dtag = match.group(0)
etag = e621_dict.get(dtag.strip().replace("_", " "), "")
if etag:
return etag
else:
return dtag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
return tag
def postprocess_results(
results: dict[str, float], general_threshold: float, character_threshold: float
):
results = {
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
}
rating = {}
character = {}
general = {}
for k, v in results.items():
if k.startswith("rating:"):
rating[k.replace("rating:", "")] = v
continue
elif k.startswith("character:"):
character[k.replace("character:", "")] = v
continue
general[k] = v
character = {k: v for k, v in character.items() if v >= character_threshold}
general = {k: v for k, v in general.items() if v >= general_threshold}
return rating, character, general
def animagine_prompt(rating: list[str], character: list[str], general: list[str], tag_type):
people_tags: list[str] = []
other_tags: list[str] = []
if tag_type == "e621":
rating_tag = RATING_MAP_E621[rating[0]]
else:
rating_tag = RATING_MAP[rating[0]]
e621_dict = get_e621_dict()
for tag in general:
if tag_type == "e621":
tag = danbooru_to_e621(tag, e621_dict)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
else:
other_tags.append(tag)
output_series_tag = character_list_to_series_list(character)
all_tags = people_tags + character + output_series_tag + other_tags + [rating_tag]
return ", ".join(all_tags)
@spaces.GPU(enable_queue=True)
def predict_tags(
image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8, tag_type = "danbooru"
):
inputs = processor.preprocess(image, return_tensors="pt")
outputs = model(**inputs.to(model.device, model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
# get probabilities
results = {
model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
}
# rating, character, general
rating, character, general = postprocess_results(
results, general_threshold, character_threshold
)
prompt = animagine_prompt(
list(rating.keys()), list(character.keys()), list(general.keys()), tag_type
)
return rating, character, general, prompt, gr.update(interactive=True,)
def demo():
with gr.Blocks() as ui:
gr.Markdown(DESCRIPTION_MD)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="pil")
with gr.Group():
general_threshold = gr.Slider(
label="Threshold",
minimum=0.0,
maximum=1.0,
value=0.3,
step=0.01,
interactive=True,
)
character_threshold = gr.Slider(
label="Character threshold",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.01,
interactive=True,
)
tag_type = gr.Radio(
label="Output tag conversion",
info="danbooru for Animagine, e621 for Pony.",
choices=["danbooru", "e621"],
value="danbooru",
)
_model_radio = gr.Dropdown(
choices=MODEL_NAMES,
label="Model",
value=MODEL_NAMES[0],
interactive=True,
)
start_btn = gr.Button(value="Start", variant="primary")
with gr.Column():
with gr.Group():
prompt_text = gr.TextArea(label="Prompt", interactive=False)
copy_btn = gr.Button(value="Copy to clipboard", interactive=False)
rating_tags_label = gr.Label(label="Rating tags")
character_tags_label = gr.Label(label="Character tags")
general_tags_label = gr.Label(label="General tags")
start_btn.click(
predict_tags,
inputs=[input_image, general_threshold, character_threshold, tag_type],
outputs=[
rating_tags_label,
character_tags_label,
general_tags_label,
prompt_text,
copy_btn,
],
)
copy_btn.click(gradio_copy_text, inputs=[prompt_text], js=COPY_ACTION_JS)
return ui
if __name__ == "__main__":
demo().queue().launch()
|