Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- app.py +22 -18
- dc.py +27 -40
- llmdolphin.py +26 -0
- lora_dict.json +7 -0
- modutils.py +122 -52
- null.png +0 -0
app.py
CHANGED
|
@@ -4,11 +4,10 @@ import numpy as np
|
|
| 4 |
|
| 5 |
# DiffuseCraft
|
| 6 |
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
|
| 7 |
-
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail,
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
preset_quality, preset_styles, process_style_prompt)
|
| 12 |
# Translator
|
| 13 |
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
| 14 |
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
|
@@ -41,8 +40,9 @@ css = """
|
|
| 41 |
#col-container { margin: 0 auto; !important; }
|
| 42 |
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
|
| 43 |
.lora { min-width: 480px; !important; }
|
| 44 |
-
|
| 45 |
-
.
|
|
|
|
| 46 |
"""
|
| 47 |
|
| 48 |
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
|
|
@@ -80,7 +80,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
| 80 |
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
|
| 81 |
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
|
| 82 |
allow_custom_value=True, interactive=True, min_width=320)
|
| 83 |
-
model_info = gr.Markdown(
|
| 84 |
with gr.Column(scale=1):
|
| 85 |
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
|
| 86 |
|
|
@@ -141,17 +141,20 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
| 141 |
lora5_md = gr.Markdown(value="", visible=False)
|
| 142 |
with gr.Accordion("From URL", open=True, visible=True):
|
| 143 |
with gr.Row():
|
| 144 |
-
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=
|
| 145 |
-
lora_search_civitai_sort = gr.Radio(label="Sort", choices=
|
| 146 |
-
lora_search_civitai_period = gr.Radio(label="Period", choices=
|
| 147 |
with gr.Row():
|
| 148 |
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
| 149 |
-
lora_search_civitai_tag = gr.
|
| 150 |
-
|
|
|
|
| 151 |
with gr.Row():
|
| 152 |
-
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
| 153 |
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
| 154 |
-
lora_search_civitai_desc = gr.Markdown(value="", visible=False)
|
|
|
|
|
|
|
|
|
|
| 155 |
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
| 156 |
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
| 157 |
|
|
@@ -254,10 +257,10 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
| 254 |
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
|
| 255 |
|
| 256 |
gr.on(
|
| 257 |
-
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit
|
| 258 |
fn=search_civitai_lora,
|
| 259 |
-
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag],
|
| 260 |
-
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
|
| 261 |
scroll_to_output=True,
|
| 262 |
queue=True,
|
| 263 |
show_api=False,
|
|
@@ -273,6 +276,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
| 273 |
queue=True,
|
| 274 |
show_api=False,
|
| 275 |
)
|
|
|
|
| 276 |
|
| 277 |
recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
| 278 |
gr.on(
|
|
|
|
| 4 |
|
| 5 |
# DiffuseCraft
|
| 6 |
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
|
| 7 |
+
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
|
| 8 |
+
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
|
| 9 |
+
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json)
|
| 10 |
+
from modutils import get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL
|
|
|
|
| 11 |
# Translator
|
| 12 |
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
| 13 |
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
|
|
|
| 40 |
#col-container { margin: 0 auto; !important; }
|
| 41 |
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
|
| 42 |
.lora { min-width: 480px; !important; }
|
| 43 |
+
.title { font-size: 3em; align-items: center; text-align: center; }
|
| 44 |
+
.info { align-items: center; text-align: center; }
|
| 45 |
+
.desc [src$='#float'] { float: right; margin: 20px; }
|
| 46 |
"""
|
| 47 |
|
| 48 |
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
|
|
|
|
| 80 |
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
|
| 81 |
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
|
| 82 |
allow_custom_value=True, interactive=True, min_width=320)
|
| 83 |
+
model_info = gr.Markdown(elem_classes="info")
|
| 84 |
with gr.Column(scale=1):
|
| 85 |
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
|
| 86 |
|
|
|
|
| 141 |
lora5_md = gr.Markdown(value="", visible=False)
|
| 142 |
with gr.Accordion("From URL", open=True, visible=True):
|
| 143 |
with gr.Row():
|
| 144 |
+
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "SDXL 1.0"])
|
| 145 |
+
lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
|
| 146 |
+
lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
|
| 147 |
with gr.Row():
|
| 148 |
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
| 149 |
+
lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
|
| 150 |
+
lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
|
| 151 |
+
lora_search_civitai_submit = gr.Button("Search on Civitai")
|
| 152 |
with gr.Row():
|
|
|
|
| 153 |
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
| 154 |
+
lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
|
| 155 |
+
with gr.Accordion("Select from Gallery", open=False):
|
| 156 |
+
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
|
| 157 |
+
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
| 158 |
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
| 159 |
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
| 160 |
|
|
|
|
| 257 |
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
|
| 258 |
|
| 259 |
gr.on(
|
| 260 |
+
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
|
| 261 |
fn=search_civitai_lora,
|
| 262 |
+
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
|
| 263 |
+
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
|
| 264 |
scroll_to_output=True,
|
| 265 |
queue=True,
|
| 266 |
show_api=False,
|
|
|
|
| 276 |
queue=True,
|
| 277 |
show_api=False,
|
| 278 |
)
|
| 279 |
+
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
|
| 280 |
|
| 281 |
recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
| 282 |
gr.on(
|
dc.py
CHANGED
|
@@ -783,7 +783,7 @@ from PIL import Image
|
|
| 783 |
import random, json
|
| 784 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
| 785 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
| 786 |
-
get_valid_lora_path, get_valid_lora_wt, get_lora_info,
|
| 787 |
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en)
|
| 788 |
|
| 789 |
sd_gen = GuiSD()
|
|
@@ -893,35 +893,6 @@ def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = "")
|
|
| 893 |
return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list())
|
| 894 |
|
| 895 |
|
| 896 |
-
def get_t2i_model_info(repo_id: str):
|
| 897 |
-
from huggingface_hub import HfApi
|
| 898 |
-
api = HfApi()
|
| 899 |
-
try:
|
| 900 |
-
if " " in repo_id or not api.repo_exists(repo_id): return ""
|
| 901 |
-
model = api.model_info(repo_id=repo_id)
|
| 902 |
-
except Exception as e:
|
| 903 |
-
print(f"Error: Failed to get {repo_id}'s info. {e}")
|
| 904 |
-
return ""
|
| 905 |
-
if model.private or model.gated: return ""
|
| 906 |
-
tags = model.tags
|
| 907 |
-
info = []
|
| 908 |
-
url = f"https://huggingface.co/{repo_id}/"
|
| 909 |
-
if not 'diffusers' in tags: return ""
|
| 910 |
-
if 'diffusers:FluxPipeline' in tags:
|
| 911 |
-
info.append("FLUX.1")
|
| 912 |
-
elif 'diffusers:StableDiffusionXLPipeline' in tags:
|
| 913 |
-
info.append("SDXL")
|
| 914 |
-
elif 'diffusers:StableDiffusionPipeline' in tags:
|
| 915 |
-
info.append("SD1.5")
|
| 916 |
-
if model.card_data and model.card_data.tags:
|
| 917 |
-
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
| 918 |
-
info.append(f"DLs: {model.downloads}")
|
| 919 |
-
info.append(f"likes: {model.likes}")
|
| 920 |
-
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
|
| 921 |
-
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
|
| 922 |
-
return gr.update(value=md)
|
| 923 |
-
|
| 924 |
-
|
| 925 |
def load_model_prompt_dict():
|
| 926 |
import json
|
| 927 |
dict = {}
|
|
@@ -1209,30 +1180,46 @@ def update_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora
|
|
| 1209 |
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
|
| 1210 |
|
| 1211 |
|
| 1212 |
-
def search_civitai_lora(query, base_model, sort=
|
| 1213 |
-
global
|
| 1214 |
-
|
|
|
|
|
|
|
|
|
|
| 1215 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 1216 |
-
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 1217 |
-
|
| 1218 |
choices = []
|
|
|
|
| 1219 |
for item in items:
|
| 1220 |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
| 1221 |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
| 1222 |
value = item['dl_url']
|
| 1223 |
choices.append((name, value))
|
| 1224 |
-
|
|
|
|
| 1225 |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 1226 |
-
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 1227 |
-
|
|
|
|
|
|
|
| 1228 |
md = result['md'] if result else ""
|
| 1229 |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
| 1230 |
-
gr.update(visible=True), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1231 |
|
| 1232 |
|
| 1233 |
def select_civitai_lora(search_result):
|
| 1234 |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
| 1235 |
-
result =
|
| 1236 |
md = result['md'] if result else ""
|
| 1237 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 1238 |
|
|
|
|
| 783 |
import random, json
|
| 784 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
| 785 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
| 786 |
+
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD,
|
| 787 |
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en)
|
| 788 |
|
| 789 |
sd_gen = GuiSD()
|
|
|
|
| 893 |
return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list())
|
| 894 |
|
| 895 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
def load_model_prompt_dict():
|
| 897 |
import json
|
| 898 |
dict = {}
|
|
|
|
| 1180 |
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
|
| 1181 |
|
| 1182 |
|
| 1183 |
+
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
|
| 1184 |
+
global civitai_last_results, civitai_last_choices, civitai_last_gallery
|
| 1185 |
+
civitai_last_choices = [("", "")]
|
| 1186 |
+
civitai_last_gallery = []
|
| 1187 |
+
civitai_last_results = {}
|
| 1188 |
+
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
|
| 1189 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 1190 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 1191 |
+
civitai_last_results = {}
|
| 1192 |
choices = []
|
| 1193 |
+
gallery = []
|
| 1194 |
for item in items:
|
| 1195 |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
| 1196 |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
| 1197 |
value = item['dl_url']
|
| 1198 |
choices.append((name, value))
|
| 1199 |
+
gallery.append((item['img_url'], name))
|
| 1200 |
+
civitai_last_results[value] = item
|
| 1201 |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 1202 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 1203 |
+
civitai_last_choices = choices
|
| 1204 |
+
civitai_last_gallery = gallery
|
| 1205 |
+
result = civitai_last_results.get(choices[0][1], "None")
|
| 1206 |
md = result['md'] if result else ""
|
| 1207 |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
| 1208 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)
|
| 1209 |
+
|
| 1210 |
+
|
| 1211 |
+
def update_civitai_selection(evt: gr.SelectData):
|
| 1212 |
+
try:
|
| 1213 |
+
selected_index = evt.index
|
| 1214 |
+
selected = civitai_last_choices[selected_index][1]
|
| 1215 |
+
return gr.update(value=selected)
|
| 1216 |
+
except Exception:
|
| 1217 |
+
return gr.update(visible=True)
|
| 1218 |
|
| 1219 |
|
| 1220 |
def select_civitai_lora(search_result):
|
| 1221 |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
| 1222 |
+
result = civitai_last_results.get(search_result, "None")
|
| 1223 |
md = result['md'] if result else ""
|
| 1224 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 1225 |
|
llmdolphin.py
CHANGED
|
@@ -59,11 +59,37 @@ llm_models = {
|
|
| 59 |
"Qwen2.5-14B_Uncensored_Instruct.Q4_K_M.gguf": ["mradermacher/Qwen2.5-14B_Uncensored_Instruct-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 60 |
"EVA-Qwen2.5-14B-v0.0.i1-IQ4_XS.gguf": ["mradermacher/EVA-Qwen2.5-14B-v0.0-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 61 |
"MN-12B-Vespa-x1.i1-Q4_K_M.gguf": ["mradermacher/MN-12B-Vespa-x1-i1-GGUF", MessagesFormatterType.CHATML],
|
|
|
|
| 62 |
"Trinas_Nectar-8B-model_stock.i1-Q4_K_M.gguf": ["mradermacher/Trinas_Nectar-8B-model_stock-i1-GGUF", MessagesFormatterType.MISTRAL],
|
| 63 |
"ChatWaifu_12B_v2.0.Q5_K_M.gguf": ["mradermacher/ChatWaifu_12B_v2.0-GGUF", MessagesFormatterType.MISTRAL],
|
| 64 |
"ChatWaifu_22B_v2.0_preview.Q4_K_S.gguf": ["mradermacher/ChatWaifu_22B_v2.0_preview-GGUF", MessagesFormatterType.MISTRAL],
|
| 65 |
"ChatWaifu_v1.4.Q5_K_M.gguf": ["mradermacher/ChatWaifu_v1.4-GGUF", MessagesFormatterType.MISTRAL],
|
| 66 |
"ChatWaifu_v1.3.1.Q4_K_M.gguf": ["mradermacher/ChatWaifu_v1.3.1-GGUF", MessagesFormatterType.MISTRAL],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"ModeliCo-8B.i1-Q5_K_M.gguf": ["mradermacher/ModeliCo-8B-i1-GGUF", MessagesFormatterType.LLAMA_3],
|
| 68 |
"Llama3-8B-function-calling-dpo-slerp.i1-Q5_K_M.gguf": ["mradermacher/Llama3-8B-function-calling-dpo-slerp-i1-GGUF", MessagesFormatterType.LLAMA_3],
|
| 69 |
"Aspire1.2-8B-TIES.i1-Q5_K_M.gguf": ["mradermacher/Aspire1.2-8B-TIES-i1-GGUF", MessagesFormatterType.LLAMA_3],
|
|
|
|
| 59 |
"Qwen2.5-14B_Uncensored_Instruct.Q4_K_M.gguf": ["mradermacher/Qwen2.5-14B_Uncensored_Instruct-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 60 |
"EVA-Qwen2.5-14B-v0.0.i1-IQ4_XS.gguf": ["mradermacher/EVA-Qwen2.5-14B-v0.0-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 61 |
"MN-12B-Vespa-x1.i1-Q4_K_M.gguf": ["mradermacher/MN-12B-Vespa-x1-i1-GGUF", MessagesFormatterType.CHATML],
|
| 62 |
+
"Mistral-Nemo-12B-ArliAI-RPMax-v1.1.i1-Q4_K_M.gguf": ["mradermacher/Mistral-Nemo-12B-ArliAI-RPMax-v1.1-i1-GGUF", MessagesFormatterType.MISTRAL],
|
| 63 |
"Trinas_Nectar-8B-model_stock.i1-Q4_K_M.gguf": ["mradermacher/Trinas_Nectar-8B-model_stock-i1-GGUF", MessagesFormatterType.MISTRAL],
|
| 64 |
"ChatWaifu_12B_v2.0.Q5_K_M.gguf": ["mradermacher/ChatWaifu_12B_v2.0-GGUF", MessagesFormatterType.MISTRAL],
|
| 65 |
"ChatWaifu_22B_v2.0_preview.Q4_K_S.gguf": ["mradermacher/ChatWaifu_22B_v2.0_preview-GGUF", MessagesFormatterType.MISTRAL],
|
| 66 |
"ChatWaifu_v1.4.Q5_K_M.gguf": ["mradermacher/ChatWaifu_v1.4-GGUF", MessagesFormatterType.MISTRAL],
|
| 67 |
"ChatWaifu_v1.3.1.Q4_K_M.gguf": ["mradermacher/ChatWaifu_v1.3.1-GGUF", MessagesFormatterType.MISTRAL],
|
| 68 |
+
"Aster-G2-9B-v1.Q4_K_S.gguf": ["mradermacher/Aster-G2-9B-v1-GGUF", MessagesFormatterType.ALPACA],
|
| 69 |
+
"nemo-12b-rp-merge.Q4_K_S.gguf": ["mradermacher/nemo-12b-rp-merge-GGUF", MessagesFormatterType.MISTRAL],
|
| 70 |
+
"SthenoMix3.3.Q5_K_M.gguf": ["mradermacher/SthenoMix3.3-GGUF", MessagesFormatterType.LLAMA_3],
|
| 71 |
+
"Celestial-Harmony-14b-v1.0-Experimental-1016-Q4_K_M.gguf": ["bartowski/Celestial-Harmony-14b-v1.0-Experimental-1016-GGUF", MessagesFormatterType.MISTRAL],
|
| 72 |
+
"Gemma-2-Ataraxy-v4c-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4c-9B-GGUF", MessagesFormatterType.ALPACA],
|
| 73 |
+
"Gemma-2-Ataraxy-v4b-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4b-9B-GGUF", MessagesFormatterType.ALPACA],
|
| 74 |
+
"L3.1-EtherealRainbow-v1.0-rc1-8B.Q5_K_M.gguf": ["mradermacher/L3.1-EtherealRainbow-v1.0-rc1-8B-GGUF", MessagesFormatterType.LLAMA_3],
|
| 75 |
+
"MN-Lulanum-12B-FIX.i1-Q4_K_M.gguf": ["mradermacher/MN-Lulanum-12B-FIX-i1-GGUF", MessagesFormatterType.MISTRAL],
|
| 76 |
+
"Ministral-8B-Instruct-2410-HF-Q4_K_M.gguf": ["bartowski/Ministral-8B-Instruct-2410-HF-GGUF-TEST", MessagesFormatterType.MISTRAL],
|
| 77 |
+
"QevaCoT-7B-Stock.Q5_K_M.gguf": ["mradermacher/QevaCoT-7B-Stock-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 78 |
+
"Mixtronix-8B.i1-Q4_K_M.gguf": ["mradermacher/Mixtronix-8B-i1-GGUF", MessagesFormatterType.CHATML],
|
| 79 |
+
"Tsunami-0.5x-7B-Instruct.i1-Q5_K_M.gguf": ["mradermacher/Tsunami-0.5x-7B-Instruct-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 80 |
+
"mt3-gemma-2-9b-q6_k.gguf": ["zelk12/MT3-gemma-2-9B-Q6_K-GGUF", MessagesFormatterType.ALPACA],
|
| 81 |
+
"NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated.Q5_K_M.gguf": ["mradermacher/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated-GGUF", MessagesFormatterType.LLAMA_3],
|
| 82 |
+
"MadMix-Unleashed-12B.Q4_K_M.gguf": ["mradermacher/MadMix-Unleashed-12B-GGUF", MessagesFormatterType.MISTRAL],
|
| 83 |
+
"Gemma-2-Ataraxy-v4a-Advanced-9B.i1-Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4a-Advanced-9B-i1-GGUF", MessagesFormatterType.ALPACA],
|
| 84 |
+
"writing-roleplay-20k-context-nemo-12b-v1.0.i1-Q4_K_M.gguf": ["mradermacher/writing-roleplay-20k-context-nemo-12b-v1.0-i1-GGUF", MessagesFormatterType.MISTRAL],
|
| 85 |
+
"GEMMA2-9b-Pollux-exp.Q4_K_M.gguf": ["mradermacher/GEMMA2-9b-Pollux-exp-GGUF", MessagesFormatterType.ALPACA],
|
| 86 |
+
"Gemma-2-Ataraxy-v4a-Advanced-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4a-Advanced-9B-GGUF", MessagesFormatterType.ALPACA],
|
| 87 |
+
"llama-3.1-8b-titanfusion-mix-2.1-q4_k_m-imat.gguf": ["bunnycore/Llama-3.1-8B-TitanFusion-Mix-2.1-Q4_K_M-GGUF", MessagesFormatterType.LLAMA_3],
|
| 88 |
+
"Gemma-2-Ataraxy-v4-Advanced-9B.Q4_K_M.gguf": ["mradermacher/Gemma-2-Ataraxy-v4-Advanced-9B-GGUF", MessagesFormatterType.ALPACA],
|
| 89 |
+
"Gemma-2-9B-ArliAI-RPMax-v1.1.i1-Q4_K_S.gguf": ["mradermacher/Gemma-2-9B-ArliAI-RPMax-v1.1-i1-GGUF", MessagesFormatterType.ALPACA],
|
| 90 |
+
"SuperNeuralDreadDevil-8b.Q5_K_M.gguf": ["mradermacher/SuperNeuralDreadDevil-8b-GGUF", MessagesFormatterType.LLAMA_3],
|
| 91 |
+
"astral-fusion-neural-happy-l3.1-8b-q4_0.gguf": ["ZeroXClem/Astral-Fusion-Neural-Happy-L3.1-8B-Q4_0-GGUF", MessagesFormatterType.LLAMA_3],
|
| 92 |
+
"LexiMaid-L3-8B.Q5_K_M.gguf": ["mradermacher/LexiMaid-L3-8B-GGUF", MessagesFormatterType.LLAMA_3],
|
| 93 |
"ModeliCo-8B.i1-Q5_K_M.gguf": ["mradermacher/ModeliCo-8B-i1-GGUF", MessagesFormatterType.LLAMA_3],
|
| 94 |
"Llama3-8B-function-calling-dpo-slerp.i1-Q5_K_M.gguf": ["mradermacher/Llama3-8B-function-calling-dpo-slerp-i1-GGUF", MessagesFormatterType.LLAMA_3],
|
| 95 |
"Aspire1.2-8B-TIES.i1-Q5_K_M.gguf": ["mradermacher/Aspire1.2-8B-TIES-i1-GGUF", MessagesFormatterType.LLAMA_3],
|
lora_dict.json
CHANGED
|
@@ -4381,6 +4381,13 @@
|
|
| 4381 |
"https://civitai.com/models/577378",
|
| 4382 |
"https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/459bd20d-a9d6-4a0b-8947-7dcebc061c0f/width=450/19781986.jpeg"
|
| 4383 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4384 |
"genshin_v4": [
|
| 4385 |
"hina_(genshin_impact) / sethos_(genshin_impact) / raiden_shogun_mitake",
|
| 4386 |
"Pony",
|
|
|
|
| 4381 |
"https://civitai.com/models/577378",
|
| 4382 |
"https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/459bd20d-a9d6-4a0b-8947-7dcebc061c0f/width=450/19781986.jpeg"
|
| 4383 |
],
|
| 4384 |
+
"genbaneko_v4_illustrious_uo_1024-000040": [
|
| 4385 |
+
"genbaneko / cat, headwear, hat, grey headwear, baseball cap, / speech bubble, speech text,",
|
| 4386 |
+
"SDXL 1.0",
|
| 4387 |
+
"Shigotoneko(Genbaneko) Style - illustrious | \u4ed5\u4e8b\u732b\uff08\u73fe\u5834\u732b\uff09",
|
| 4388 |
+
"https://civitai.com/models/859355",
|
| 4389 |
+
"https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/0f145509-d867-418c-b545-0c0e49275f48/width=450/34849585.jpeg"
|
| 4390 |
+
],
|
| 4391 |
"genshin_v4": [
|
| 4392 |
"hina_(genshin_impact) / sethos_(genshin_impact) / raiden_shogun_mitake",
|
| 4393 |
"Pony",
|
modutils.py
CHANGED
|
@@ -2,11 +2,16 @@ import spaces
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
from PIL import Image
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
import urllib.parse
|
| 9 |
-
import
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
|
@@ -38,7 +43,6 @@ def list_sub(a, b):
|
|
| 38 |
|
| 39 |
|
| 40 |
def is_repo_name(s):
|
| 41 |
-
import re
|
| 42 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
| 43 |
|
| 44 |
|
|
@@ -99,10 +103,12 @@ def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
|
|
| 99 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 100 |
try:
|
| 101 |
print(f"Downloading {url} to {directory}")
|
| 102 |
-
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 103 |
-
else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
print(f"Failed to download: {e}")
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
|
@@ -224,7 +230,6 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
|
| 224 |
|
| 225 |
|
| 226 |
def download_private_repo(repo_id, dir_path, is_replace):
|
| 227 |
-
from huggingface_hub import snapshot_download
|
| 228 |
if not hf_read_token: return
|
| 229 |
try:
|
| 230 |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
|
@@ -263,7 +268,6 @@ def get_private_model_list(repo_id, dir_path):
|
|
| 263 |
|
| 264 |
|
| 265 |
def download_private_file(repo_id, path, is_replace):
|
| 266 |
-
from huggingface_hub import hf_hub_download
|
| 267 |
file = Path(path)
|
| 268 |
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
|
| 269 |
if not hf_read_token or newpath.exists(): return
|
|
@@ -387,7 +391,9 @@ except Exception as e:
|
|
| 387 |
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
|
| 388 |
civitai_not_exists_list = []
|
| 389 |
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
all_lora_list = []
|
| 392 |
|
| 393 |
|
|
@@ -411,9 +417,6 @@ private_lora_model_list = get_private_lora_model_lists()
|
|
| 411 |
|
| 412 |
def get_civitai_info(path):
|
| 413 |
global civitai_not_exists_list
|
| 414 |
-
import requests
|
| 415 |
-
from urllib3.util import Retry
|
| 416 |
-
from requests.adapters import HTTPAdapter
|
| 417 |
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
|
| 418 |
if not Path(path).exists(): return None
|
| 419 |
user_agent = get_user_agent()
|
|
@@ -448,7 +451,7 @@ def get_civitai_info(path):
|
|
| 448 |
|
| 449 |
|
| 450 |
def get_lora_model_list():
|
| 451 |
-
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras)
|
| 452 |
loras.insert(0, "None")
|
| 453 |
loras.insert(0, "")
|
| 454 |
return loras
|
|
@@ -523,7 +526,6 @@ def download_lora(dl_urls: str):
|
|
| 523 |
|
| 524 |
|
| 525 |
def copy_lora(path: str, new_path: str):
|
| 526 |
-
import shutil
|
| 527 |
if path == new_path: return new_path
|
| 528 |
cpath = Path(path)
|
| 529 |
npath = Path(new_path)
|
|
@@ -587,7 +589,6 @@ def get_valid_lora_path(query: str):
|
|
| 587 |
|
| 588 |
|
| 589 |
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
| 590 |
-
import re
|
| 591 |
wt = lora_wt
|
| 592 |
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
|
| 593 |
if not result: return wt
|
|
@@ -596,7 +597,6 @@ def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
|
| 596 |
|
| 597 |
|
| 598 |
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 599 |
-
import re
|
| 600 |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 601 |
lora1 = get_valid_lora_name(lora1, model_name)
|
| 602 |
lora2 = get_valid_lora_name(lora2, model_name)
|
|
@@ -716,7 +716,6 @@ def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
|
|
| 716 |
|
| 717 |
|
| 718 |
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 719 |
-
import re
|
| 720 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 721 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 722 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
|
@@ -763,7 +762,6 @@ def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3,
|
|
| 763 |
|
| 764 |
|
| 765 |
def get_my_lora(link_url):
|
| 766 |
-
from pathlib import Path
|
| 767 |
before = get_local_model_list(directory_loras)
|
| 768 |
for url in [url.strip() for url in link_url.split(',')]:
|
| 769 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
|
@@ -800,7 +798,6 @@ def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
|
|
| 800 |
|
| 801 |
|
| 802 |
def move_file_lora(filepaths):
|
| 803 |
-
import shutil
|
| 804 |
for file in filepaths:
|
| 805 |
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
|
| 806 |
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
|
@@ -823,11 +820,13 @@ def move_file_lora(filepaths):
|
|
| 823 |
)
|
| 824 |
|
| 825 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 826 |
def get_civitai_info(path):
|
| 827 |
global civitai_not_exists_list, loras_url_to_path_dict
|
| 828 |
-
import requests
|
| 829 |
-
from requests.adapters import HTTPAdapter
|
| 830 |
-
from urllib3.util import Retry
|
| 831 |
default = ["", "", "", "", ""]
|
| 832 |
if path in set(civitai_not_exists_list): return default
|
| 833 |
if not Path(path).exists(): return None
|
|
@@ -865,16 +864,14 @@ def get_civitai_info(path):
|
|
| 865 |
|
| 866 |
|
| 867 |
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
|
| 868 |
-
sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
|
| 869 |
-
import requests
|
| 870 |
-
from requests.adapters import HTTPAdapter
|
| 871 |
-
from urllib3.util import Retry
|
| 872 |
user_agent = get_user_agent()
|
| 873 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
| 874 |
base_url = 'https://civitai.com/api/v1/models'
|
| 875 |
-
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
|
| 876 |
if query: params["query"] = query
|
| 877 |
if tag: params["tag"] = tag
|
|
|
|
| 878 |
session = requests.Session()
|
| 879 |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
| 880 |
session.mount("https://", HTTPAdapter(max_retries=retries))
|
|
@@ -891,46 +888,129 @@ def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1
|
|
| 891 |
for j in json['items']:
|
| 892 |
for model in j['modelVersions']:
|
| 893 |
item = {}
|
| 894 |
-
if model['baseModel'] not in set(allow_model): continue
|
| 895 |
item['name'] = j['name']
|
| 896 |
-
item['creator'] = j['creator']['username']
|
| 897 |
-
item['tags'] = j['tags']
|
| 898 |
-
item['model_name'] = model['name']
|
| 899 |
-
item['base_model'] = model['baseModel']
|
|
|
|
| 900 |
item['dl_url'] = model['downloadUrl']
|
| 901 |
-
item['md'] =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
items.append(item)
|
| 903 |
return items
|
| 904 |
|
| 905 |
|
| 906 |
-
def search_civitai_lora(query, base_model, sort=
|
| 907 |
-
global
|
| 908 |
-
|
|
|
|
|
|
|
|
|
|
| 909 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 910 |
-
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 911 |
-
|
| 912 |
choices = []
|
|
|
|
| 913 |
for item in items:
|
| 914 |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
| 915 |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
| 916 |
value = item['dl_url']
|
| 917 |
choices.append((name, value))
|
| 918 |
-
|
|
|
|
| 919 |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 920 |
-
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 921 |
-
|
|
|
|
|
|
|
| 922 |
md = result['md'] if result else ""
|
| 923 |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
| 924 |
-
gr.update(visible=True), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 925 |
|
| 926 |
|
| 927 |
def select_civitai_lora(search_result):
|
| 928 |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
| 929 |
-
result =
|
| 930 |
md = result['md'] if result else ""
|
| 931 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 932 |
|
| 933 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 934 |
LORA_BASE_MODEL_DICT = {
|
| 935 |
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
|
| 936 |
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
|
|
@@ -1175,15 +1255,6 @@ preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in qualit
|
|
| 1175 |
|
| 1176 |
|
| 1177 |
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
|
| 1178 |
-
def to_list(s):
|
| 1179 |
-
return [x.strip() for x in s.split(",") if not s == ""]
|
| 1180 |
-
|
| 1181 |
-
def list_sub(a, b):
|
| 1182 |
-
return [e for e in a if e not in b]
|
| 1183 |
-
|
| 1184 |
-
def list_uniq(l):
|
| 1185 |
-
return sorted(set(l), key=l.index)
|
| 1186 |
-
|
| 1187 |
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
| 1188 |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
| 1189 |
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
|
@@ -1335,7 +1406,6 @@ def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_g
|
|
| 1335 |
|
| 1336 |
|
| 1337 |
def get_model_pipeline(repo_id: str):
|
| 1338 |
-
from huggingface_hub import HfApi
|
| 1339 |
api = HfApi(token=HF_TOKEN)
|
| 1340 |
default = "StableDiffusionPipeline"
|
| 1341 |
try:
|
|
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
| 5 |
+
import re
|
| 6 |
from pathlib import Path
|
| 7 |
from PIL import Image
|
| 8 |
+
import shutil
|
| 9 |
+
import requests
|
| 10 |
+
from requests.adapters import HTTPAdapter
|
| 11 |
+
from urllib3.util import Retry
|
| 12 |
import urllib.parse
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
|
| 15 |
|
| 16 |
|
| 17 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
def is_repo_name(s):
|
|
|
|
| 46 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
| 47 |
|
| 48 |
|
|
|
|
| 103 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 104 |
try:
|
| 105 |
print(f"Downloading {url} to {directory}")
|
| 106 |
+
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 107 |
+
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 108 |
+
return path
|
| 109 |
except Exception as e:
|
| 110 |
print(f"Failed to download: {e}")
|
| 111 |
+
return None
|
| 112 |
|
| 113 |
|
| 114 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
|
|
|
| 230 |
|
| 231 |
|
| 232 |
def download_private_repo(repo_id, dir_path, is_replace):
|
|
|
|
| 233 |
if not hf_read_token: return
|
| 234 |
try:
|
| 235 |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
|
|
|
| 268 |
|
| 269 |
|
| 270 |
def download_private_file(repo_id, path, is_replace):
|
|
|
|
| 271 |
file = Path(path)
|
| 272 |
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
|
| 273 |
if not hf_read_token or newpath.exists(): return
|
|
|
|
| 391 |
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
|
| 392 |
civitai_not_exists_list = []
|
| 393 |
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
|
| 394 |
+
civitai_last_results = {} # {"URL to download": {search results}, ...}
|
| 395 |
+
civitai_last_choices = [("", "")]
|
| 396 |
+
civitai_last_gallery = []
|
| 397 |
all_lora_list = []
|
| 398 |
|
| 399 |
|
|
|
|
| 417 |
|
| 418 |
def get_civitai_info(path):
|
| 419 |
global civitai_not_exists_list
|
|
|
|
|
|
|
|
|
|
| 420 |
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
|
| 421 |
if not Path(path).exists(): return None
|
| 422 |
user_agent = get_user_agent()
|
|
|
|
| 451 |
|
| 452 |
|
| 453 |
def get_lora_model_list():
|
| 454 |
+
loras = list_uniq(get_private_lora_model_lists() + DIFFUSERS_FORMAT_LORAS + get_local_model_list(directory_loras))
|
| 455 |
loras.insert(0, "None")
|
| 456 |
loras.insert(0, "")
|
| 457 |
return loras
|
|
|
|
| 526 |
|
| 527 |
|
| 528 |
def copy_lora(path: str, new_path: str):
|
|
|
|
| 529 |
if path == new_path: return new_path
|
| 530 |
cpath = Path(path)
|
| 531 |
npath = Path(new_path)
|
|
|
|
| 589 |
|
| 590 |
|
| 591 |
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
|
|
|
| 592 |
wt = lora_wt
|
| 593 |
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
|
| 594 |
if not result: return wt
|
|
|
|
| 597 |
|
| 598 |
|
| 599 |
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
|
|
|
| 600 |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 601 |
lora1 = get_valid_lora_name(lora1, model_name)
|
| 602 |
lora2 = get_valid_lora_name(lora2, model_name)
|
|
|
|
| 716 |
|
| 717 |
|
| 718 |
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
|
|
|
| 719 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 720 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 721 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
|
|
|
| 762 |
|
| 763 |
|
| 764 |
def get_my_lora(link_url):
|
|
|
|
| 765 |
before = get_local_model_list(directory_loras)
|
| 766 |
for url in [url.strip() for url in link_url.split(',')]:
|
| 767 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
|
|
|
| 798 |
|
| 799 |
|
| 800 |
def move_file_lora(filepaths):
|
|
|
|
| 801 |
for file in filepaths:
|
| 802 |
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
|
| 803 |
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
|
|
|
| 820 |
)
|
| 821 |
|
| 822 |
|
| 823 |
+
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
|
| 824 |
+
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
|
| 825 |
+
CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"]
|
| 826 |
+
|
| 827 |
+
|
| 828 |
def get_civitai_info(path):
|
| 829 |
global civitai_not_exists_list, loras_url_to_path_dict
|
|
|
|
|
|
|
|
|
|
| 830 |
default = ["", "", "", "", ""]
|
| 831 |
if path in set(civitai_not_exists_list): return default
|
| 832 |
if not Path(path).exists(): return None
|
|
|
|
| 864 |
|
| 865 |
|
| 866 |
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
|
| 867 |
+
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
|
|
|
|
|
|
|
|
|
|
| 868 |
user_agent = get_user_agent()
|
| 869 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
| 870 |
base_url = 'https://civitai.com/api/v1/models'
|
| 871 |
+
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
|
| 872 |
if query: params["query"] = query
|
| 873 |
if tag: params["tag"] = tag
|
| 874 |
+
if user: params["username"] = user
|
| 875 |
session = requests.Session()
|
| 876 |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
| 877 |
session.mount("https://", HTTPAdapter(max_retries=retries))
|
|
|
|
| 888 |
for j in json['items']:
|
| 889 |
for model in j['modelVersions']:
|
| 890 |
item = {}
|
| 891 |
+
if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue
|
| 892 |
item['name'] = j['name']
|
| 893 |
+
item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else ""
|
| 894 |
+
item['tags'] = j['tags'] if 'tags' in j.keys() else []
|
| 895 |
+
item['model_name'] = model['name'] if 'name' in model.keys() else ""
|
| 896 |
+
item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else ""
|
| 897 |
+
item['description'] = model['description'] if 'description' in model.keys() else ""
|
| 898 |
item['dl_url'] = model['downloadUrl']
|
| 899 |
+
item['md'] = ""
|
| 900 |
+
if 'images' in model.keys() and len(model["images"]) != 0:
|
| 901 |
+
item['img_url'] = model["images"][0]["url"]
|
| 902 |
+
item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>'
|
| 903 |
+
else: item['img_url'] = "/home/user/app/null.png"
|
| 904 |
+
item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br>
|
| 905 |
+
Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}'''
|
| 906 |
items.append(item)
|
| 907 |
return items
|
| 908 |
|
| 909 |
|
| 910 |
+
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
|
| 911 |
+
global civitai_last_results, civitai_last_choices, civitai_last_gallery
|
| 912 |
+
civitai_last_choices = [("", "")]
|
| 913 |
+
civitai_last_gallery = []
|
| 914 |
+
civitai_last_results = {}
|
| 915 |
+
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
|
| 916 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 917 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 918 |
+
civitai_last_results = {}
|
| 919 |
choices = []
|
| 920 |
+
gallery = []
|
| 921 |
for item in items:
|
| 922 |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
| 923 |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
| 924 |
value = item['dl_url']
|
| 925 |
choices.append((name, value))
|
| 926 |
+
gallery.append((item['img_url'], name))
|
| 927 |
+
civitai_last_results[value] = item
|
| 928 |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
| 929 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 930 |
+
civitai_last_choices = choices
|
| 931 |
+
civitai_last_gallery = gallery
|
| 932 |
+
result = civitai_last_results.get(choices[0][1], "None")
|
| 933 |
md = result['md'] if result else ""
|
| 934 |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
| 935 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
def update_civitai_selection(evt: gr.SelectData):
|
| 939 |
+
try:
|
| 940 |
+
selected_index = evt.index
|
| 941 |
+
selected = civitai_last_choices[selected_index][1]
|
| 942 |
+
return gr.update(value=selected)
|
| 943 |
+
except Exception:
|
| 944 |
+
return gr.update(visible=True)
|
| 945 |
|
| 946 |
|
| 947 |
def select_civitai_lora(search_result):
|
| 948 |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
| 949 |
+
result = civitai_last_results.get(search_result, "None")
|
| 950 |
md = result['md'] if result else ""
|
| 951 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 952 |
|
| 953 |
|
| 954 |
+
def download_my_lora_flux(dl_urls: str, lora):
|
| 955 |
+
path = download_lora(dl_urls)
|
| 956 |
+
if path: lora = path
|
| 957 |
+
choices = get_all_lora_tupled_list()
|
| 958 |
+
return gr.update(value=lora, choices=choices)
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
def apply_lora_prompt_flux(lora_info: str):
|
| 962 |
+
if lora_info == "None": return ""
|
| 963 |
+
lora_tag = lora_info.replace("/",",")
|
| 964 |
+
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
|
| 965 |
+
lora_prompts = normalize_prompt_list(lora_tags)
|
| 966 |
+
prompt = ", ".join(list_uniq(lora_prompts))
|
| 967 |
+
return prompt
|
| 968 |
+
|
| 969 |
+
|
| 970 |
+
def update_loras_flux(prompt, lora, lora_wt):
|
| 971 |
+
on, label, tag, md = get_lora_info(lora)
|
| 972 |
+
choices = get_all_lora_tupled_list()
|
| 973 |
+
return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\
|
| 974 |
+
gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on)
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
def search_civitai_lora_json(query, base_model):
|
| 978 |
+
results = {}
|
| 979 |
+
items = search_lora_on_civitai(query, base_model)
|
| 980 |
+
if not items: return gr.update(value=results)
|
| 981 |
+
for item in items:
|
| 982 |
+
results[item['dl_url']] = item
|
| 983 |
+
return gr.update(value=results)
|
| 984 |
+
|
| 985 |
+
|
| 986 |
+
def get_civitai_tag():
|
| 987 |
+
default = [""]
|
| 988 |
+
user_agent = get_user_agent()
|
| 989 |
+
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
| 990 |
+
base_url = 'https://civitai.com/api/v1/tags'
|
| 991 |
+
params = {'limit': 200}
|
| 992 |
+
session = requests.Session()
|
| 993 |
+
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
| 994 |
+
session.mount("https://", HTTPAdapter(max_retries=retries))
|
| 995 |
+
url = base_url
|
| 996 |
+
try:
|
| 997 |
+
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
| 998 |
+
if not r.ok: return default
|
| 999 |
+
j = dict(r.json()).copy()
|
| 1000 |
+
if "items" not in j.keys(): return default
|
| 1001 |
+
items = []
|
| 1002 |
+
for item in j["items"]:
|
| 1003 |
+
items.append([str(item.get("name", "")), int(item.get("modelCount", 0))])
|
| 1004 |
+
df = pd.DataFrame(items)
|
| 1005 |
+
df.sort_values(1, ascending=False)
|
| 1006 |
+
tags = df.values.tolist()
|
| 1007 |
+
tags = [""] + [l[0] for l in tags]
|
| 1008 |
+
return tags
|
| 1009 |
+
except Exception as e:
|
| 1010 |
+
print(e)
|
| 1011 |
+
return default
|
| 1012 |
+
|
| 1013 |
+
|
| 1014 |
LORA_BASE_MODEL_DICT = {
|
| 1015 |
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
|
| 1016 |
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
|
|
|
|
| 1255 |
|
| 1256 |
|
| 1257 |
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1258 |
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
| 1259 |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
| 1260 |
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
|
|
|
| 1406 |
|
| 1407 |
|
| 1408 |
def get_model_pipeline(repo_id: str):
|
|
|
|
| 1409 |
api = HfApi(token=HF_TOKEN)
|
| 1410 |
default = "StableDiffusionPipeline"
|
| 1411 |
try:
|
null.png
ADDED
|