Upload app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -4,7 +4,7 @@ import numpy as np | |
| 4 |  | 
| 5 | 
             
            # DiffuseCraft
         | 
| 6 | 
             
            from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
         | 
| 7 | 
            -
                get_vaes,  | 
| 8 | 
             
                preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
         | 
| 9 | 
             
                download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
         | 
| 10 | 
             
                get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
         | 
| @@ -204,7 +204,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, | |
| 204 | 
             
                    inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
         | 
| 205 | 
             
                            guidance_scale, num_inference_steps, model_name,
         | 
| 206 | 
             
                            lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
         | 
| 207 | 
            -
                            sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
         | 
| 208 | 
             
                    outputs=[result],
         | 
| 209 | 
             
                    queue=True,
         | 
| 210 | 
             
                    show_progress="full",
         | 
| @@ -217,7 +217,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, | |
| 217 | 
             
                    inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
         | 
| 218 | 
             
                            guidance_scale, num_inference_steps, model_name,
         | 
| 219 | 
             
                            lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
         | 
| 220 | 
            -
                            sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
         | 
| 221 | 
             
                    outputs=[result],
         | 
| 222 | 
             
                    queue=False,
         | 
| 223 | 
             
                    show_api=True,
         | 
| @@ -240,7 +240,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, | |
| 240 | 
             
                    inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
         | 
| 241 | 
             
                            guidance_scale, num_inference_steps, model_name,
         | 
| 242 | 
             
                            lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
         | 
| 243 | 
            -
                            sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
         | 
| 244 | 
             
                    outputs=[result],
         | 
| 245 | 
             
                    queue=True,
         | 
| 246 | 
             
                    show_progress="full",
         | 
| @@ -290,7 +290,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, | |
| 290 | 
             
                )
         | 
| 291 | 
             
                lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
         | 
| 292 |  | 
| 293 | 
            -
                recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
         | 
| 294 | 
             
                gr.on(
         | 
| 295 | 
             
                    triggers=[quality_selector.change, style_selector.change],
         | 
| 296 | 
             
                    fn=process_style_prompt,
         | 
| @@ -301,7 +301,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, | |
| 301 | 
             
                    show_api=False,
         | 
| 302 | 
             
                )
         | 
| 303 |  | 
| 304 | 
            -
                model_detail.change(enable_diffusers_model_detail, [model_detail, model_name], [model_detail, model_name], queue=False, show_api=False)
         | 
| 305 | 
             
                model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
         | 
| 306 |  | 
| 307 | 
             
                chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
         | 
|  | |
| 4 |  | 
| 5 | 
             
            # DiffuseCraft
         | 
| 6 | 
             
            from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
         | 
| 7 | 
            +
                get_vaes, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
         | 
| 8 | 
             
                preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
         | 
| 9 | 
             
                download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
         | 
| 10 | 
             
                get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
         | 
|  | |
| 204 | 
             
                    inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
         | 
| 205 | 
             
                            guidance_scale, num_inference_steps, model_name,
         | 
| 206 | 
             
                            lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
         | 
| 207 | 
            +
                            sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
         | 
| 208 | 
             
                    outputs=[result],
         | 
| 209 | 
             
                    queue=True,
         | 
| 210 | 
             
                    show_progress="full",
         | 
|  | |
| 217 | 
             
                    inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
         | 
| 218 | 
             
                            guidance_scale, num_inference_steps, model_name,
         | 
| 219 | 
             
                            lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
         | 
| 220 | 
            +
                            sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
         | 
| 221 | 
             
                    outputs=[result],
         | 
| 222 | 
             
                    queue=False,
         | 
| 223 | 
             
                    show_api=True,
         | 
|  | |
| 240 | 
             
                    inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
         | 
| 241 | 
             
                            guidance_scale, num_inference_steps, model_name,
         | 
| 242 | 
             
                            lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
         | 
| 243 | 
            +
                            sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
         | 
| 244 | 
             
                    outputs=[result],
         | 
| 245 | 
             
                    queue=True,
         | 
| 246 | 
             
                    show_progress="full",
         | 
|  | |
| 290 | 
             
                )
         | 
| 291 | 
             
                lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
         | 
| 292 |  | 
| 293 | 
            +
                #recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
         | 
| 294 | 
             
                gr.on(
         | 
| 295 | 
             
                    triggers=[quality_selector.change, style_selector.change],
         | 
| 296 | 
             
                    fn=process_style_prompt,
         | 
|  | |
| 301 | 
             
                    show_api=False,
         | 
| 302 | 
             
                )
         | 
| 303 |  | 
| 304 | 
            +
                model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False)
         | 
| 305 | 
             
                model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
         | 
| 306 |  | 
| 307 | 
             
                chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
         | 
