Upload 3 files
Browse files- dc.py +145 -138
- env.py +10 -3
- modutils.py +30 -8
dc.py
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
from stablepy import Model_Diffusers
|
| 4 |
-
from stablepy.diffusers_vanilla.model import scheduler_names
|
| 5 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
|
| 6 |
import torch
|
| 7 |
import re
|
| 8 |
-
import
|
| 9 |
-
import random
|
| 10 |
from stablepy import (
|
| 11 |
CONTROLNET_MODEL_IDS,
|
| 12 |
VALID_TASKS,
|
|
@@ -22,7 +21,7 @@ from stablepy import (
|
|
| 22 |
SD15_TASKS,
|
| 23 |
SDXL_TASKS,
|
| 24 |
)
|
| 25 |
-
import urllib.parse
|
| 26 |
import gradio as gr
|
| 27 |
from PIL import Image
|
| 28 |
import IPython.display
|
|
@@ -40,7 +39,7 @@ from stablepy import logger
|
|
| 40 |
logger.setLevel(logging.CRITICAL)
|
| 41 |
|
| 42 |
from env import (
|
| 43 |
-
|
| 44 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 45 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
| 46 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
|
@@ -49,7 +48,7 @@ from env import (
|
|
| 49 |
load_diffusers_format_model, download_model_list, download_lora_list,
|
| 50 |
download_vae_list, download_embeds)
|
| 51 |
|
| 52 |
-
|
| 53 |
"openpose": [
|
| 54 |
"Openpose",
|
| 55 |
"None",
|
|
@@ -86,6 +85,13 @@ preprocessor_controlnet = {
|
|
| 86 |
"None",
|
| 87 |
"None (anime)",
|
| 88 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
"shuffle": [
|
| 90 |
"ContentShuffle",
|
| 91 |
"None",
|
|
@@ -114,7 +120,7 @@ preprocessor_controlnet = {
|
|
| 114 |
],
|
| 115 |
}
|
| 116 |
|
| 117 |
-
|
| 118 |
'txt2img': 'txt2img',
|
| 119 |
'img2img': 'img2img',
|
| 120 |
'inpaint': 'inpaint',
|
|
@@ -140,7 +146,35 @@ task_stablepy = {
|
|
| 140 |
'tile ControlNet': 'tile',
|
| 141 |
}
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
| 146 |
url = url.strip()
|
|
@@ -171,21 +205,19 @@ def download_things(directory, url, hf_token="", civitai_api_key=""):
|
|
| 171 |
else:
|
| 172 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 173 |
|
| 174 |
-
|
| 175 |
def get_model_list(directory_path):
|
| 176 |
model_list = []
|
| 177 |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
| 178 |
|
| 179 |
for filename in os.listdir(directory_path):
|
| 180 |
if os.path.splitext(filename)[1] in valid_extensions:
|
| 181 |
-
name_without_extension = os.path.splitext(filename)[0]
|
| 182 |
file_path = os.path.join(directory_path, filename)
|
| 183 |
# model_list.append((name_without_extension, file_path))
|
| 184 |
model_list.append(file_path)
|
| 185 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
| 186 |
return model_list
|
| 187 |
|
| 188 |
-
|
| 189 |
## BEGIN MOD
|
| 190 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
| 191 |
get_tupled_model_list, get_lora_model_list, download_private_repo)
|
|
@@ -203,24 +235,21 @@ download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
|
|
| 203 |
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
| 204 |
## END MOD
|
| 205 |
|
| 206 |
-
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
| 207 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 208 |
-
|
| 209 |
# Download stuffs
|
| 210 |
for url in [url.strip() for url in download_model.split(',')]:
|
| 211 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
| 212 |
-
download_things(directory_models, url,
|
| 213 |
for url in [url.strip() for url in download_vae.split(',')]:
|
| 214 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
| 215 |
-
download_things(directory_vaes, url,
|
| 216 |
for url in [url.strip() for url in download_lora.split(',')]:
|
| 217 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
| 218 |
-
download_things(directory_loras, url,
|
| 219 |
|
| 220 |
# Download Embeddings
|
| 221 |
for url_embed in download_embeds:
|
| 222 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
| 223 |
-
download_things(directory_embeds, url_embed,
|
| 224 |
|
| 225 |
# Build list models
|
| 226 |
embed_list = get_model_list(directory_embeds)
|
|
@@ -237,53 +266,45 @@ embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directo
|
|
| 237 |
|
| 238 |
def get_embed_list(pipeline_name):
|
| 239 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
| 240 |
-
|
| 241 |
-
|
| 242 |
## END MOD
|
| 243 |
|
| 244 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
"
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
"
|
| 257 |
-
"
|
| 258 |
-
"
|
| 259 |
-
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
| 260 |
-
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
| 261 |
-
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
| 262 |
-
"realesr-general-wdn-x4v3" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
| 263 |
-
"4x-UltraSharp" : "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
| 264 |
-
"4x_foolhardy_Remacri" : "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
| 265 |
-
"Remacri4xExtraSmoother" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
| 266 |
-
"AnimeSharp4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
| 267 |
-
"lollypop" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
| 268 |
-
"RealisticRescaler4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
| 269 |
-
"NickelbackFS4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
| 270 |
}
|
| 271 |
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
|
|
|
| 274 |
|
| 275 |
def extract_parameters(input_string):
|
| 276 |
parameters = {}
|
| 277 |
input_string = input_string.replace("\n", "")
|
| 278 |
|
| 279 |
-
if
|
| 280 |
print("Negative prompt not detected")
|
| 281 |
parameters["prompt"] = input_string
|
| 282 |
return parameters
|
| 283 |
|
| 284 |
parm = input_string.split("Negative prompt:")
|
| 285 |
parameters["prompt"] = parm[0]
|
| 286 |
-
if
|
| 287 |
print("Steps not detected")
|
| 288 |
parameters["neg_prompt"] = parm[1]
|
| 289 |
return parameters
|
|
@@ -311,6 +332,17 @@ def extract_parameters(input_string):
|
|
| 311 |
|
| 312 |
return parameters
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
## BEGIN MOD
|
| 316 |
class GuiSD:
|
|
@@ -319,12 +351,12 @@ class GuiSD:
|
|
| 319 |
|
| 320 |
print("Loading model...")
|
| 321 |
self.model = Model_Diffusers(
|
| 322 |
-
base_model_id="
|
| 323 |
task_name="txt2img",
|
| 324 |
vae_model=None,
|
| 325 |
type_model_precision=torch.float16,
|
| 326 |
retain_task_model_in_cache=False,
|
| 327 |
-
|
| 328 |
)
|
| 329 |
self.model.device = torch.device("cpu") #
|
| 330 |
|
|
@@ -344,28 +376,27 @@ class GuiSD:
|
|
| 344 |
yield f"Loading model: {model_name}"
|
| 345 |
|
| 346 |
vae_model = vae_model if vae_model != "None" else None
|
|
|
|
| 347 |
|
| 348 |
-
if
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
| 353 |
-
|
| 354 |
-
if incompatible_vae:
|
| 355 |
-
vae_model = None
|
| 356 |
|
| 357 |
self.model.device = torch.device("cpu")
|
|
|
|
| 358 |
|
| 359 |
self.model.load_pipe(
|
| 360 |
model_name,
|
| 361 |
-
task_name=
|
| 362 |
vae_model=vae_model if vae_model != "None" else None,
|
| 363 |
-
type_model_precision=
|
| 364 |
retain_task_model_in_cache=False,
|
| 365 |
)
|
| 366 |
yield f"Model loaded: {model_name}"
|
| 367 |
|
| 368 |
@spaces.GPU
|
|
|
|
| 369 |
def generate_pipeline(
|
| 370 |
self,
|
| 371 |
prompt,
|
|
@@ -479,38 +510,15 @@ class GuiSD:
|
|
| 479 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 480 |
msg_lora = []
|
| 481 |
|
|
|
|
|
|
|
| 482 |
## BEGIN MOD
|
| 483 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
| 484 |
global lora_model_list
|
| 485 |
lora_model_list = get_lora_model_list()
|
| 486 |
## END MOD
|
| 487 |
|
| 488 |
-
|
| 489 |
-
model_is_xl = "xl" in model_name.lower()
|
| 490 |
-
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
| 491 |
-
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
| 492 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
| 493 |
-
|
| 494 |
-
if incompatible_vae:
|
| 495 |
-
msg_inc_vae = (
|
| 496 |
-
f"The selected VAE is for a { 'SD 1.5' if model_is_xl else 'SDXL' } model, but you"
|
| 497 |
-
f" are using a { model_type } model. The default VAE "
|
| 498 |
-
"will be used."
|
| 499 |
-
)
|
| 500 |
-
gr.Info(msg_inc_vae)
|
| 501 |
-
vae_msg = msg_inc_vae
|
| 502 |
-
vae_model = None
|
| 503 |
-
|
| 504 |
-
for la in loras_list:
|
| 505 |
-
if la is not None and la != "None" and la in lora_model_list:
|
| 506 |
-
print(la)
|
| 507 |
-
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
| 508 |
-
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
| 509 |
-
msg_inc_lora = f"The LoRA {la} is for { 'SD 1.5' if model_is_xl else 'SDXL' }, but you are using { model_type }."
|
| 510 |
-
gr.Info(msg_inc_lora)
|
| 511 |
-
msg_lora.append(msg_inc_lora)
|
| 512 |
-
|
| 513 |
-
task = task_stablepy[task]
|
| 514 |
|
| 515 |
params_ip_img = []
|
| 516 |
params_ip_msk = []
|
|
@@ -532,83 +540,53 @@ class GuiSD:
|
|
| 532 |
params_ip_mode.append(modeip)
|
| 533 |
params_ip_scale.append(scaleip)
|
| 534 |
|
| 535 |
-
# First load
|
| 536 |
-
self.model.device = torch.device("cuda:0")
|
| 537 |
-
model_precision = torch.float16
|
| 538 |
-
if not self.model:
|
| 539 |
-
from stablepy import Model_Diffusers
|
| 540 |
-
|
| 541 |
-
print("Loading model...")
|
| 542 |
-
self.model = Model_Diffusers(
|
| 543 |
-
base_model_id=model_name,
|
| 544 |
-
task_name=task,
|
| 545 |
-
vae_model=vae_model if vae_model != "None" else None,
|
| 546 |
-
type_model_precision=model_precision,
|
| 547 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
| 548 |
-
)
|
| 549 |
-
|
| 550 |
if task != "txt2img" and not image_control:
|
| 551 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
| 552 |
|
| 553 |
if task == "inpaint" and not image_mask:
|
| 554 |
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
| 555 |
|
| 556 |
-
if upscaler_model_path in
|
| 557 |
upscaler_model = upscaler_model_path
|
| 558 |
else:
|
| 559 |
directory_upscalers = 'upscalers'
|
| 560 |
os.makedirs(directory_upscalers, exist_ok=True)
|
| 561 |
|
| 562 |
-
url_upscaler =
|
| 563 |
|
| 564 |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
| 565 |
-
download_things(directory_upscalers, url_upscaler,
|
| 566 |
|
| 567 |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
| 568 |
|
| 569 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
| 570 |
|
| 571 |
-
print("Config model:", model_name, vae_model, loras_list)
|
| 572 |
-
|
| 573 |
-
self.model.load_pipe(
|
| 574 |
-
model_name,
|
| 575 |
-
task_name=task,
|
| 576 |
-
vae_model=vae_model if vae_model != "None" else None,
|
| 577 |
-
type_model_precision=model_precision,
|
| 578 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
| 579 |
-
)
|
| 580 |
-
|
| 581 |
-
## BEGIN MOD
|
| 582 |
-
# if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
|
| 583 |
-
# print("No Textual inversion for SDXL")
|
| 584 |
-
## END MOD
|
| 585 |
-
|
| 586 |
adetailer_params_A = {
|
| 587 |
-
"face_detector_ad"
|
| 588 |
-
"person_detector_ad"
|
| 589 |
-
"hand_detector_ad"
|
| 590 |
"prompt": prompt_ad_a,
|
| 591 |
-
"negative_prompt"
|
| 592 |
-
"strength"
|
| 593 |
# "image_list_task" : None,
|
| 594 |
-
"mask_dilation"
|
| 595 |
-
"mask_blur"
|
| 596 |
-
"mask_padding"
|
| 597 |
-
"inpaint_only"
|
| 598 |
-
"sampler"
|
| 599 |
}
|
| 600 |
|
| 601 |
adetailer_params_B = {
|
| 602 |
-
"face_detector_ad"
|
| 603 |
-
"person_detector_ad"
|
| 604 |
-
"hand_detector_ad"
|
| 605 |
"prompt": prompt_ad_b,
|
| 606 |
-
"negative_prompt"
|
| 607 |
-
"strength"
|
| 608 |
# "image_list_task" : None,
|
| 609 |
-
"mask_dilation"
|
| 610 |
-
"mask_blur"
|
| 611 |
-
"mask_padding"
|
| 612 |
}
|
| 613 |
pipe_params = {
|
| 614 |
"prompt": prompt,
|
|
@@ -690,8 +668,10 @@ class GuiSD:
|
|
| 690 |
"ip_adapter_scale": params_ip_scale,
|
| 691 |
}
|
| 692 |
|
| 693 |
-
|
| 694 |
-
|
|
|
|
|
|
|
| 695 |
|
| 696 |
progress(1, desc="Inference preparation completed. Starting inference...")
|
| 697 |
|
|
@@ -699,8 +679,35 @@ class GuiSD:
|
|
| 699 |
return self.infer_short(self.model, pipe_params, progress), info_state
|
| 700 |
## END MOD
|
| 701 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 702 |
|
| 703 |
from pathlib import Path
|
|
|
|
| 704 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
| 705 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
| 706 |
get_valid_lora_path, get_valid_lora_wt, get_lora_info,
|
|
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
from stablepy import Model_Diffusers
|
|
|
|
| 4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
| 5 |
+
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
| 6 |
import torch
|
| 7 |
import re
|
| 8 |
+
from huggingface_hub import HfApi
|
|
|
|
| 9 |
from stablepy import (
|
| 10 |
CONTROLNET_MODEL_IDS,
|
| 11 |
VALID_TASKS,
|
|
|
|
| 21 |
SD15_TASKS,
|
| 22 |
SDXL_TASKS,
|
| 23 |
)
|
| 24 |
+
#import urllib.parse
|
| 25 |
import gradio as gr
|
| 26 |
from PIL import Image
|
| 27 |
import IPython.display
|
|
|
|
| 39 |
logger.setLevel(logging.CRITICAL)
|
| 40 |
|
| 41 |
from env import (
|
| 42 |
+
HF_TOKEN, hf_read_token, # to use only for private repos
|
| 43 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 44 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
| 45 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
|
|
|
| 48 |
load_diffusers_format_model, download_model_list, download_lora_list,
|
| 49 |
download_vae_list, download_embeds)
|
| 50 |
|
| 51 |
+
PREPROCESSOR_CONTROLNET = {
|
| 52 |
"openpose": [
|
| 53 |
"Openpose",
|
| 54 |
"None",
|
|
|
|
| 85 |
"None",
|
| 86 |
"None (anime)",
|
| 87 |
],
|
| 88 |
+
"lineart_anime": [
|
| 89 |
+
"Lineart",
|
| 90 |
+
"Lineart coarse",
|
| 91 |
+
"Lineart (anime)",
|
| 92 |
+
"None",
|
| 93 |
+
"None (anime)",
|
| 94 |
+
],
|
| 95 |
"shuffle": [
|
| 96 |
"ContentShuffle",
|
| 97 |
"None",
|
|
|
|
| 120 |
],
|
| 121 |
}
|
| 122 |
|
| 123 |
+
TASK_STABLEPY = {
|
| 124 |
'txt2img': 'txt2img',
|
| 125 |
'img2img': 'img2img',
|
| 126 |
'inpaint': 'inpaint',
|
|
|
|
| 146 |
'tile ControlNet': 'tile',
|
| 147 |
}
|
| 148 |
|
| 149 |
+
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
| 150 |
+
|
| 151 |
+
UPSCALER_DICT_GUI = {
|
| 152 |
+
None: None,
|
| 153 |
+
"Lanczos": "Lanczos",
|
| 154 |
+
"Nearest": "Nearest",
|
| 155 |
+
'Latent': 'Latent',
|
| 156 |
+
'Latent (antialiased)': 'Latent (antialiased)',
|
| 157 |
+
'Latent (bicubic)': 'Latent (bicubic)',
|
| 158 |
+
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
|
| 159 |
+
'Latent (nearest)': 'Latent (nearest)',
|
| 160 |
+
'Latent (nearest-exact)': 'Latent (nearest-exact)',
|
| 161 |
+
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
| 162 |
+
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
| 163 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
| 164 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
| 165 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
| 166 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
| 167 |
+
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
| 168 |
+
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
| 169 |
+
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
| 170 |
+
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
| 171 |
+
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
| 172 |
+
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
| 173 |
+
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
| 174 |
+
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
| 178 |
|
| 179 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
| 180 |
url = url.strip()
|
|
|
|
| 205 |
else:
|
| 206 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 207 |
|
|
|
|
| 208 |
def get_model_list(directory_path):
|
| 209 |
model_list = []
|
| 210 |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
| 211 |
|
| 212 |
for filename in os.listdir(directory_path):
|
| 213 |
if os.path.splitext(filename)[1] in valid_extensions:
|
| 214 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
| 215 |
file_path = os.path.join(directory_path, filename)
|
| 216 |
# model_list.append((name_without_extension, file_path))
|
| 217 |
model_list.append(file_path)
|
| 218 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
| 219 |
return model_list
|
| 220 |
|
|
|
|
| 221 |
## BEGIN MOD
|
| 222 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
| 223 |
get_tupled_model_list, get_lora_model_list, download_private_repo)
|
|
|
|
| 235 |
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
| 236 |
## END MOD
|
| 237 |
|
|
|
|
|
|
|
|
|
|
| 238 |
# Download stuffs
|
| 239 |
for url in [url.strip() for url in download_model.split(',')]:
|
| 240 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
| 241 |
+
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 242 |
for url in [url.strip() for url in download_vae.split(',')]:
|
| 243 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
| 244 |
+
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 245 |
for url in [url.strip() for url in download_lora.split(',')]:
|
| 246 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
| 247 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 248 |
|
| 249 |
# Download Embeddings
|
| 250 |
for url_embed in download_embeds:
|
| 251 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
| 252 |
+
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
| 253 |
|
| 254 |
# Build list models
|
| 255 |
embed_list = get_model_list(directory_embeds)
|
|
|
|
| 266 |
|
| 267 |
def get_embed_list(pipeline_name):
|
| 268 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
|
|
|
|
|
|
| 269 |
## END MOD
|
| 270 |
|
| 271 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 272 |
|
| 273 |
+
msg_inc_vae = (
|
| 274 |
+
"Use the right VAE for your model to maintain image quality. The wrong"
|
| 275 |
+
" VAE can lead to poor results, like blurriness in the generated images."
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
| 279 |
+
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
| 280 |
+
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
| 281 |
+
|
| 282 |
+
MODEL_TYPE_TASK = {
|
| 283 |
+
"SD 1.5": SD_TASK,
|
| 284 |
+
"SDXL": SDXL_TASK,
|
| 285 |
+
"FLUX": FLUX_TASK,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
}
|
| 287 |
|
| 288 |
+
MODEL_TYPE_CLASS = {
|
| 289 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
| 290 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
| 291 |
+
"diffusers:FluxPipeline": "FLUX",
|
| 292 |
+
}
|
| 293 |
|
| 294 |
+
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
| 295 |
|
| 296 |
def extract_parameters(input_string):
|
| 297 |
parameters = {}
|
| 298 |
input_string = input_string.replace("\n", "")
|
| 299 |
|
| 300 |
+
if "Negative prompt:" not in input_string:
|
| 301 |
print("Negative prompt not detected")
|
| 302 |
parameters["prompt"] = input_string
|
| 303 |
return parameters
|
| 304 |
|
| 305 |
parm = input_string.split("Negative prompt:")
|
| 306 |
parameters["prompt"] = parm[0]
|
| 307 |
+
if "Steps:" not in parm[1]:
|
| 308 |
print("Steps not detected")
|
| 309 |
parameters["neg_prompt"] = parm[1]
|
| 310 |
return parameters
|
|
|
|
| 332 |
|
| 333 |
return parameters
|
| 334 |
|
| 335 |
+
def get_model_type(repo_id: str):
|
| 336 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
| 337 |
+
default = "SD 1.5"
|
| 338 |
+
try:
|
| 339 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 340 |
+
tags = model.tags
|
| 341 |
+
for tag in tags:
|
| 342 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
| 343 |
+
except Exception:
|
| 344 |
+
return default
|
| 345 |
+
return default
|
| 346 |
|
| 347 |
## BEGIN MOD
|
| 348 |
class GuiSD:
|
|
|
|
| 351 |
|
| 352 |
print("Loading model...")
|
| 353 |
self.model = Model_Diffusers(
|
| 354 |
+
base_model_id="Lykon/dreamshaper-8",
|
| 355 |
task_name="txt2img",
|
| 356 |
vae_model=None,
|
| 357 |
type_model_precision=torch.float16,
|
| 358 |
retain_task_model_in_cache=False,
|
| 359 |
+
device="cpu",
|
| 360 |
)
|
| 361 |
self.model.device = torch.device("cpu") #
|
| 362 |
|
|
|
|
| 376 |
yield f"Loading model: {model_name}"
|
| 377 |
|
| 378 |
vae_model = vae_model if vae_model != "None" else None
|
| 379 |
+
model_type = get_model_type(model_name)
|
| 380 |
|
| 381 |
+
if vae_model:
|
| 382 |
+
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
| 383 |
+
if model_type != vae_type:
|
| 384 |
+
gr.Info(msg_inc_vae)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
self.model.device = torch.device("cpu")
|
| 387 |
+
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
| 388 |
|
| 389 |
self.model.load_pipe(
|
| 390 |
model_name,
|
| 391 |
+
task_name=TASK_STABLEPY[task],
|
| 392 |
vae_model=vae_model if vae_model != "None" else None,
|
| 393 |
+
type_model_precision=dtype_model,
|
| 394 |
retain_task_model_in_cache=False,
|
| 395 |
)
|
| 396 |
yield f"Model loaded: {model_name}"
|
| 397 |
|
| 398 |
@spaces.GPU
|
| 399 |
+
@torch.inference_mode()
|
| 400 |
def generate_pipeline(
|
| 401 |
self,
|
| 402 |
prompt,
|
|
|
|
| 510 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 511 |
msg_lora = []
|
| 512 |
|
| 513 |
+
print("Config model:", model_name, vae_model, loras_list)
|
| 514 |
+
|
| 515 |
## BEGIN MOD
|
| 516 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
| 517 |
global lora_model_list
|
| 518 |
lora_model_list = get_lora_model_list()
|
| 519 |
## END MOD
|
| 520 |
|
| 521 |
+
task = TASK_STABLEPY[task]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
params_ip_img = []
|
| 524 |
params_ip_msk = []
|
|
|
|
| 540 |
params_ip_mode.append(modeip)
|
| 541 |
params_ip_scale.append(scaleip)
|
| 542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
if task != "txt2img" and not image_control:
|
| 544 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
| 545 |
|
| 546 |
if task == "inpaint" and not image_mask:
|
| 547 |
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
| 548 |
|
| 549 |
+
if upscaler_model_path in UPSCALER_KEYS[:9]:
|
| 550 |
upscaler_model = upscaler_model_path
|
| 551 |
else:
|
| 552 |
directory_upscalers = 'upscalers'
|
| 553 |
os.makedirs(directory_upscalers, exist_ok=True)
|
| 554 |
|
| 555 |
+
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
|
| 556 |
|
| 557 |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
| 558 |
+
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
|
| 559 |
|
| 560 |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
| 561 |
|
| 562 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
| 563 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
adetailer_params_A = {
|
| 565 |
+
"face_detector_ad": face_detector_ad_a,
|
| 566 |
+
"person_detector_ad": person_detector_ad_a,
|
| 567 |
+
"hand_detector_ad": hand_detector_ad_a,
|
| 568 |
"prompt": prompt_ad_a,
|
| 569 |
+
"negative_prompt": negative_prompt_ad_a,
|
| 570 |
+
"strength": strength_ad_a,
|
| 571 |
# "image_list_task" : None,
|
| 572 |
+
"mask_dilation": mask_dilation_a,
|
| 573 |
+
"mask_blur": mask_blur_a,
|
| 574 |
+
"mask_padding": mask_padding_a,
|
| 575 |
+
"inpaint_only": adetailer_inpaint_only,
|
| 576 |
+
"sampler": adetailer_sampler,
|
| 577 |
}
|
| 578 |
|
| 579 |
adetailer_params_B = {
|
| 580 |
+
"face_detector_ad": face_detector_ad_b,
|
| 581 |
+
"person_detector_ad": person_detector_ad_b,
|
| 582 |
+
"hand_detector_ad": hand_detector_ad_b,
|
| 583 |
"prompt": prompt_ad_b,
|
| 584 |
+
"negative_prompt": negative_prompt_ad_b,
|
| 585 |
+
"strength": strength_ad_b,
|
| 586 |
# "image_list_task" : None,
|
| 587 |
+
"mask_dilation": mask_dilation_b,
|
| 588 |
+
"mask_blur": mask_blur_b,
|
| 589 |
+
"mask_padding": mask_padding_b,
|
| 590 |
}
|
| 591 |
pipe_params = {
|
| 592 |
"prompt": prompt,
|
|
|
|
| 668 |
"ip_adapter_scale": params_ip_scale,
|
| 669 |
}
|
| 670 |
|
| 671 |
+
self.model.device = torch.device("cuda:0")
|
| 672 |
+
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
|
| 673 |
+
self.model.pipe.transformer.to(self.model.device)
|
| 674 |
+
print("transformer to cuda")
|
| 675 |
|
| 676 |
progress(1, desc="Inference preparation completed. Starting inference...")
|
| 677 |
|
|
|
|
| 679 |
return self.infer_short(self.model, pipe_params, progress), info_state
|
| 680 |
## END MOD
|
| 681 |
|
| 682 |
+
# def sd_gen_generate_pipeline(*args):
|
| 683 |
+
|
| 684 |
+
# # Load lora in CPU
|
| 685 |
+
# status_lora = sd_gen.model.lora_merge(
|
| 686 |
+
# lora_A=args[7] if args[7] != "None" else None, lora_scale_A=args[8],
|
| 687 |
+
# lora_B=args[9] if args[9] != "None" else None, lora_scale_B=args[10],
|
| 688 |
+
# lora_C=args[11] if args[11] != "None" else None, lora_scale_C=args[12],
|
| 689 |
+
# lora_D=args[13] if args[13] != "None" else None, lora_scale_D=args[14],
|
| 690 |
+
# lora_E=args[15] if args[15] != "None" else None, lora_scale_E=args[16],
|
| 691 |
+
# )
|
| 692 |
+
|
| 693 |
+
# lora_list = [args[7], args[9], args[11], args[13], args[15]]
|
| 694 |
+
# print(status_lora)
|
| 695 |
+
# for status, lora in zip(status_lora, lora_list):
|
| 696 |
+
# if status:
|
| 697 |
+
# gr.Info(f"LoRA loaded: {lora}")
|
| 698 |
+
# elif status is not None:
|
| 699 |
+
# gr.Warning(f"Failed to load LoRA: {lora}")
|
| 700 |
+
|
| 701 |
+
# # if status_lora == [None] * 5 and self.model.lora_memory != [None] * 5:
|
| 702 |
+
# # gr.Info(f"LoRAs in cache: {", ".join(str(x) for x in self.model.lora_memory if x is not None)}")
|
| 703 |
+
|
| 704 |
+
# yield from sd_gen.generate_pipeline(*args)
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
# sd_gen_generate_pipeline.zerogpu = True
|
| 708 |
|
| 709 |
from pathlib import Path
|
| 710 |
+
import random
|
| 711 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
| 712 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
| 713 |
get_valid_lora_path, get_valid_lora_wt, get_lora_info,
|
env.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
| 4 |
-
|
| 5 |
hf_read_token = os.environ.get('HF_READ_TOKEN') # only use for private repo
|
| 6 |
|
| 7 |
# - **List Models**
|
|
@@ -50,8 +50,9 @@ load_diffusers_format_model = [
|
|
| 50 |
'eienmojiki/Anything-XL',
|
| 51 |
'eienmojiki/Starry-XL-v5.2',
|
| 52 |
'gsdf/CounterfeitXL',
|
| 53 |
-
'
|
| 54 |
'WhiteAiZ/autismmixSDXL_autismmixConfetti_diffusers',
|
|
|
|
| 55 |
'GraydientPlatformAPI/aniverse-pony',
|
| 56 |
'John6666/mistoon-anime-ponyalpha-sdxl',
|
| 57 |
'John6666/ebara-mfcg-pony-mix-v12-sdxl',
|
|
@@ -61,10 +62,10 @@ load_diffusers_format_model = [
|
|
| 61 |
'John6666/cyberrealistic-pony-v63-sdxl',
|
| 62 |
'GraydientPlatformAPI/realcartoon-pony-diffusion',
|
| 63 |
'John6666/nova-anime-xl-pony-v5-sdxl',
|
|
|
|
| 64 |
'yodayo-ai/kivotos-xl-2.0',
|
| 65 |
'yodayo-ai/holodayo-xl-2.1',
|
| 66 |
'yodayo-ai/clandestine-xl-1.0',
|
| 67 |
-
'John6666/silvermoon-mix-01xl-v11-sdxl',
|
| 68 |
'digiplay/majicMIX_sombre_v2',
|
| 69 |
'digiplay/majicMIX_realistic_v6',
|
| 70 |
'digiplay/majicMIX_realistic_v7',
|
|
@@ -93,6 +94,12 @@ load_diffusers_format_model = [
|
|
| 93 |
'Eugeoter/artiwaifu-diffusion-2.0',
|
| 94 |
'Raelina/Rae-Diffusion-XL-V2',
|
| 95 |
'Raelina/Raemu-XL-V4',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
]
|
| 97 |
|
| 98 |
# List all Models for specified user
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
| 4 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 5 |
hf_read_token = os.environ.get('HF_READ_TOKEN') # only use for private repo
|
| 6 |
|
| 7 |
# - **List Models**
|
|
|
|
| 50 |
'eienmojiki/Anything-XL',
|
| 51 |
'eienmojiki/Starry-XL-v5.2',
|
| 52 |
'gsdf/CounterfeitXL',
|
| 53 |
+
'John6666/silvermoon-mix-01xl-v11-sdxl',
|
| 54 |
'WhiteAiZ/autismmixSDXL_autismmixConfetti_diffusers',
|
| 55 |
+
'kitty7779/ponyDiffusionV6XL',
|
| 56 |
'GraydientPlatformAPI/aniverse-pony',
|
| 57 |
'John6666/mistoon-anime-ponyalpha-sdxl',
|
| 58 |
'John6666/ebara-mfcg-pony-mix-v12-sdxl',
|
|
|
|
| 62 |
'John6666/cyberrealistic-pony-v63-sdxl',
|
| 63 |
'GraydientPlatformAPI/realcartoon-pony-diffusion',
|
| 64 |
'John6666/nova-anime-xl-pony-v5-sdxl',
|
| 65 |
+
'John6666/autismmix-sdxl-autismmix-pony-sdxl',
|
| 66 |
'yodayo-ai/kivotos-xl-2.0',
|
| 67 |
'yodayo-ai/holodayo-xl-2.1',
|
| 68 |
'yodayo-ai/clandestine-xl-1.0',
|
|
|
|
| 69 |
'digiplay/majicMIX_sombre_v2',
|
| 70 |
'digiplay/majicMIX_realistic_v6',
|
| 71 |
'digiplay/majicMIX_realistic_v7',
|
|
|
|
| 94 |
'Eugeoter/artiwaifu-diffusion-2.0',
|
| 95 |
'Raelina/Rae-Diffusion-XL-V2',
|
| 96 |
'Raelina/Raemu-XL-V4',
|
| 97 |
+
"camenduru/FLUX.1-dev-diffusers",
|
| 98 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 99 |
+
"sayakpaul/FLUX.1-merged",
|
| 100 |
+
"ostris/OpenFLUX.1",
|
| 101 |
+
"multimodalart/FLUX.1-dev2pro-full",
|
| 102 |
+
"Raelina/Raemu-Flux",
|
| 103 |
]
|
| 104 |
|
| 105 |
# List all Models for specified user
|
modutils.py
CHANGED
|
@@ -8,7 +8,7 @@ from pathlib import Path
|
|
| 8 |
|
| 9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 10 |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
| 11 |
-
directory_loras, hf_read_token,
|
| 12 |
|
| 13 |
|
| 14 |
def get_user_agent():
|
|
@@ -100,6 +100,24 @@ def safe_float(input):
|
|
| 100 |
return output
|
| 101 |
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
| 104 |
from datetime import datetime, timezone, timedelta
|
| 105 |
progress(0, desc="Updating gallery...")
|
|
@@ -209,11 +227,16 @@ def get_model_id_list():
|
|
| 209 |
model_ids.append(model.id) if not model.private else ""
|
| 210 |
anime_models = []
|
| 211 |
real_models = []
|
|
|
|
|
|
|
| 212 |
for model in models_ex:
|
| 213 |
-
if not model.private and not model.gated
|
| 214 |
-
|
|
|
|
| 215 |
model_ids.extend(anime_models)
|
| 216 |
model_ids.extend(real_models)
|
|
|
|
|
|
|
| 217 |
model_id_list = model_ids.copy()
|
| 218 |
return model_ids
|
| 219 |
|
|
@@ -408,7 +431,7 @@ def download_lora(dl_urls: str):
|
|
| 408 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
| 409 |
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
| 410 |
if not Path(local_path).exists():
|
| 411 |
-
download_things(directory_loras, url,
|
| 412 |
urls.append(url)
|
| 413 |
after = get_local_model_list(directory_loras)
|
| 414 |
new_files = list_sub(after, before)
|
|
@@ -670,7 +693,7 @@ def get_my_lora(link_url):
|
|
| 670 |
before = get_local_model_list(directory_loras)
|
| 671 |
for url in [url.strip() for url in link_url.split(',')]:
|
| 672 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
| 673 |
-
download_things(directory_loras, url,
|
| 674 |
after = get_local_model_list(directory_loras)
|
| 675 |
new_files = list_sub(after, before)
|
| 676 |
for file in new_files:
|
|
@@ -727,8 +750,7 @@ def move_file_lora(filepaths):
|
|
| 727 |
|
| 728 |
|
| 729 |
def get_civitai_info(path):
|
| 730 |
-
global civitai_not_exists_list
|
| 731 |
-
global loras_url_to_path_dict
|
| 732 |
import requests
|
| 733 |
from requests.adapters import HTTPAdapter
|
| 734 |
from urllib3.util import Retry
|
|
@@ -1224,7 +1246,7 @@ def get_model_pipeline(repo_id: str):
|
|
| 1224 |
try:
|
| 1225 |
if " " in repo_id or not api.repo_exists(repo_id): return default
|
| 1226 |
model = api.model_info(repo_id=repo_id)
|
| 1227 |
-
except Exception
|
| 1228 |
return default
|
| 1229 |
if model.private or model.gated: return default
|
| 1230 |
tags = model.tags
|
|
|
|
| 8 |
|
| 9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 10 |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
| 11 |
+
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
|
| 12 |
|
| 13 |
|
| 14 |
def get_user_agent():
|
|
|
|
| 100 |
return output
|
| 101 |
|
| 102 |
|
| 103 |
+
from PIL import Image
|
| 104 |
+
def save_images(images: list[Image.Image], metadatas: list[str]):
|
| 105 |
+
from PIL import PngImagePlugin
|
| 106 |
+
import uuid
|
| 107 |
+
try:
|
| 108 |
+
output_images = []
|
| 109 |
+
for image, metadata in zip(images, metadatas):
|
| 110 |
+
info = PngImagePlugin.PngInfo()
|
| 111 |
+
info.add_text("metadata", metadata)
|
| 112 |
+
savefile = f"{str(uuid.uuid4())}.png"
|
| 113 |
+
image.save(savefile, "PNG", pnginfo=info)
|
| 114 |
+
output_images.append(str(Path(savefile).resolve()))
|
| 115 |
+
return output_images
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"Failed to save image file: {e}")
|
| 118 |
+
raise Exception(f"Failed to save image file:") from e
|
| 119 |
+
|
| 120 |
+
|
| 121 |
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
| 122 |
from datetime import datetime, timezone, timedelta
|
| 123 |
progress(0, desc="Updating gallery...")
|
|
|
|
| 227 |
model_ids.append(model.id) if not model.private else ""
|
| 228 |
anime_models = []
|
| 229 |
real_models = []
|
| 230 |
+
anime_models_flux = []
|
| 231 |
+
real_models_flux = []
|
| 232 |
for model in models_ex:
|
| 233 |
+
if not model.private and not model.gated:
|
| 234 |
+
if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id)
|
| 235 |
+
else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
|
| 236 |
model_ids.extend(anime_models)
|
| 237 |
model_ids.extend(real_models)
|
| 238 |
+
model_ids.extend(anime_models_flux)
|
| 239 |
+
model_ids.extend(real_models_flux)
|
| 240 |
model_id_list = model_ids.copy()
|
| 241 |
return model_ids
|
| 242 |
|
|
|
|
| 431 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
| 432 |
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
| 433 |
if not Path(local_path).exists():
|
| 434 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 435 |
urls.append(url)
|
| 436 |
after = get_local_model_list(directory_loras)
|
| 437 |
new_files = list_sub(after, before)
|
|
|
|
| 693 |
before = get_local_model_list(directory_loras)
|
| 694 |
for url in [url.strip() for url in link_url.split(',')]:
|
| 695 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
| 696 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 697 |
after = get_local_model_list(directory_loras)
|
| 698 |
new_files = list_sub(after, before)
|
| 699 |
for file in new_files:
|
|
|
|
| 750 |
|
| 751 |
|
| 752 |
def get_civitai_info(path):
|
| 753 |
+
global civitai_not_exists_list, loras_url_to_path_dict
|
|
|
|
| 754 |
import requests
|
| 755 |
from requests.adapters import HTTPAdapter
|
| 756 |
from urllib3.util import Retry
|
|
|
|
| 1246 |
try:
|
| 1247 |
if " " in repo_id or not api.repo_exists(repo_id): return default
|
| 1248 |
model = api.model_info(repo_id=repo_id)
|
| 1249 |
+
except Exception:
|
| 1250 |
return default
|
| 1251 |
if model.private or model.gated: return default
|
| 1252 |
tags = model.tags
|