Spaces:
Runtime error
Runtime error
File size: 3,554 Bytes
5cdc3ab 65df304 24e23b4 65df304 7e28ce7 65df304 24e23b4 65df304 24e23b4 65df304 eed255c 65df304 5cdc3ab 65df304 719ad71 65df304 719ad71 65df304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
#import spaces
import torch
import re
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
from PIL import ImageDraw
from torchvision.transforms.v2 import Resize
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "vikhyatk/moondream2"
#model_id = "zesquirrelnator/moondream2-finetuneV2"
#revision = "2024-08-26"
#tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
tokenizer = AutoTokenizer.from_pretrained(model_id)
moondream = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, #revision=revision,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, #device_map="auto",
#ignore_mismatched_sizes=True,
#attn_implementation="flash_attention_2"
).to(device)
moondream.eval()
#moondream.to_bettertransformer()
#@spaces.GPU
def answer_question(img, prompt):
image_embeds = moondream.encode_image(img)
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
thread = Thread(
target=moondream.answer_question,
kwargs={
"image_embeds": image_embeds,
"question": prompt,
"tokenizer": tokenizer,
"streamer": streamer,
},
)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer.strip()
def extract_floats(text):
# Regular expression to match an array of four floating point numbers
pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
match = re.search(pattern, text)
if match:
# Extract the numbers and convert them to floats
return [float(num) for num in match.groups()]
return None # Return None if no match is found
def extract_bbox(text):
bbox = None
if extract_floats(text) is not None:
x1, y1, x2, y2 = extract_floats(text)
bbox = (x1, y1, x2, y2)
return bbox
def process_answer(img, answer):
if extract_bbox(answer) is not None:
x1, y1, x2, y2 = extract_bbox(answer)
draw_image = Resize(768)(img)
width, height = draw_image.size
x1, x2 = int(x1 * width), int(x2 * width)
y1, y2 = int(y1 * height), int(y2 * height)
bbox = (x1, y1, x2, y2)
ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
return gr.update(visible=True, value=draw_image)
return gr.update(visible=False, value=None)
with gr.Blocks() as demo:
gr.Markdown(
"""
# 🌔 moondream2
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
"""
)
with gr.Row():
prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
submit = gr.Button("Submit")
with gr.Row():
img = gr.Image(type="pil", image_mode="RGB", label="Upload an Image")
with gr.Column():
output = gr.Markdown(label="Response")
ann = gr.Image(visible=False, label="Annotated Image")
submit.click(answer_question, [img, prompt], output, queue=True)
prompt.submit(answer_question, [img, prompt], output, queue=True)
output.change(process_answer, [img, output], ann, show_progress=False)
demo.queue().launch()
|