File size: 3,554 Bytes
5cdc3ab
65df304
 
 
 
 
 
 
24e23b4
65df304
7e28ce7
65df304
 
 
24e23b4
65df304
 
 
 
24e23b4
 
 
65df304
 
 
 
eed255c
65df304
5cdc3ab
65df304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719ad71
65df304
 
 
 
719ad71
 
65df304
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#import spaces
import torch
import re
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
from PIL import ImageDraw
from torchvision.transforms.v2 import Resize

import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

device = "cuda" if torch.cuda.is_available() else "cpu"

model_id = "vikhyatk/moondream2"
#model_id = "zesquirrelnator/moondream2-finetuneV2"
#revision = "2024-08-26"
#tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
tokenizer = AutoTokenizer.from_pretrained(model_id)
moondream = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, #revision=revision,
    torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, #device_map="auto",
    #ignore_mismatched_sizes=True,
    #attn_implementation="flash_attention_2"
).to(device)
moondream.eval()
#moondream.to_bettertransformer()

#@spaces.GPU
def answer_question(img, prompt):
    image_embeds = moondream.encode_image(img)
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    thread = Thread(
        target=moondream.answer_question,
        kwargs={
            "image_embeds": image_embeds,
            "question": prompt,
            "tokenizer": tokenizer,
            "streamer": streamer,
        },
    )
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer.strip()

def extract_floats(text):
    # Regular expression to match an array of four floating point numbers
    pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
    match = re.search(pattern, text)
    if match:
        # Extract the numbers and convert them to floats
        return [float(num) for num in match.groups()]
    return None  # Return None if no match is found


def extract_bbox(text):
    bbox = None
    if extract_floats(text) is not None:
        x1, y1, x2, y2 = extract_floats(text)
        bbox = (x1, y1, x2, y2)
    return bbox

def process_answer(img, answer):
    if extract_bbox(answer) is not None:
        x1, y1, x2, y2 = extract_bbox(answer)
        draw_image = Resize(768)(img)
        width, height = draw_image.size
        x1, x2 = int(x1 * width), int(x2 * width)
        y1, y2 = int(y1 * height), int(y2 * height)
        bbox = (x1, y1, x2, y2)
        ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
        return gr.update(visible=True, value=draw_image)

    return gr.update(visible=False, value=None)

with gr.Blocks() as demo:
    gr.Markdown(
        """

        # 🌔 moondream2

        A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)

        """
    )
    with gr.Row():
        prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
        submit = gr.Button("Submit")
    with gr.Row():
        img = gr.Image(type="pil", image_mode="RGB", label="Upload an Image")
        with gr.Column():
            output = gr.Markdown(label="Response")
            ann = gr.Image(visible=False, label="Annotated Image")

    submit.click(answer_question, [img, prompt], output, queue=True)
    prompt.submit(answer_question, [img, prompt], output, queue=True)
    output.change(process_answer, [img, output], ann, show_progress=False)

demo.queue().launch()