Spaces:
Running
Running
Upload 6 files
Browse files- app.py +48 -1
- ctag.py +3 -3
- hft2i.py +551 -0
- model.py +44 -0
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from ctag import MODELS, DEFAULT_DF, search_char_dict, on_select_df
|
|
|
|
|
|
|
|
|
3 |
|
4 |
CSS = """
|
5 |
.title { font-size: 3em; align-items: center; text-align: center; }
|
6 |
.info { align-items: center; text-align: center; }
|
7 |
img[src*="#center"] { display: block; margin: auto; }
|
|
|
|
|
|
|
8 |
"""
|
9 |
|
10 |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as app:
|
@@ -19,11 +26,51 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as app:
|
|
19 |
with gr.Group():
|
20 |
with gr.Row(equal_height=True):
|
21 |
search_tag = gr.Textbox(label="Output tag", value="", show_copy_button=True, interactive=False)
|
|
|
22 |
search_md = gr.Markdown("<br><br><br>", elem_classes="info")
|
23 |
search_output = gr.Dataframe(label="Select character", value=DEFAULT_DF, type="pandas", wrap=True, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
gr.on(triggers=[search_input.change, search_model.change], fn=search_char_dict,
|
26 |
inputs=[search_input, search_model], outputs=[search_output], trigger_mode="always_last")
|
27 |
-
search_output.select(on_select_df, [search_output, search_detail], [search_tag, search_md])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
app.launch(ssr_mode=False)
|
|
|
1 |
import gradio as gr
|
2 |
from ctag import MODELS, DEFAULT_DF, search_char_dict, on_select_df
|
3 |
+
from hft2i import (gen_image, save_gallery, get_models, get_def_model, change_model, warm_model, get_model_info_md, get_recom_prompt_mode, update_prompt)
|
4 |
+
|
5 |
+
MAX_IMAGES = 6
|
6 |
+
MAX_SEED = 2**32-1
|
7 |
|
8 |
CSS = """
|
9 |
.title { font-size: 3em; align-items: center; text-align: center; }
|
10 |
.info { align-items: center; text-align: center; }
|
11 |
img[src*="#center"] { display: block; margin: auto; }
|
12 |
+
.model_info { text-align: center; }
|
13 |
+
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
14 |
+
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
15 |
"""
|
16 |
|
17 |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=CSS) as app:
|
|
|
26 |
with gr.Group():
|
27 |
with gr.Row(equal_height=True):
|
28 |
search_tag = gr.Textbox(label="Output tag", value="", show_copy_button=True, interactive=False)
|
29 |
+
search_tag_model = gr.Textbox(label="Model", value="", visible=False)
|
30 |
search_md = gr.Markdown("<br><br><br>", elem_classes="info")
|
31 |
search_output = gr.Dataframe(label="Select character", value=DEFAULT_DF, type="pandas", wrap=True, interactive=False)
|
32 |
+
with gr.Group():
|
33 |
+
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
34 |
+
with gr.Accordion("Advanced options", open=False):
|
35 |
+
nprompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
36 |
+
with gr.Row():
|
37 |
+
width = gr.Slider(label="Width", info="If 0, default value is used.", maximum=2048, step=32, value=0)
|
38 |
+
height = gr.Slider(label="Height", info="If 0, default value is used.", maximum=2048, step=32, value=0)
|
39 |
+
steps = gr.Slider(label="Number of inference steps", info="If 0, default value is used.", maximum=100, step=1, value=0)
|
40 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, default value is used.", maximum=30.0, step=0.1, value=0)
|
41 |
+
seed = gr.Slider(label="Seed", info="If -1, use Randomized Seed.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
42 |
+
with gr.Row():
|
43 |
+
model_name = [None] * MAX_IMAGES
|
44 |
+
model_info = [None] * MAX_IMAGES
|
45 |
+
for i in range(MAX_IMAGES):
|
46 |
+
with gr.Column():
|
47 |
+
model_name[i] = gr.Dropdown(label=f"Select Model {int(i) + 1}", choices=get_models(), value=get_def_model(i), allow_custom_value=True)
|
48 |
+
model_info[i] = gr.Markdown(value=get_model_info_md(get_def_model(i)), elem_classes="model_info")
|
49 |
+
recom_prompt_mode = gr.Radio(label="Recommened prompt", choices=get_recom_prompt_mode(), value="Common")
|
50 |
+
gen_button = gr.Button("Generate Image", variant="primary")
|
51 |
+
with gr.Group():
|
52 |
+
with gr.Row():
|
53 |
+
output_images = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
|
54 |
+
show_download_button=True, show_share_button=False,
|
55 |
+
interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(MAX_IMAGES)]
|
56 |
+
gallery = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
57 |
+
container=True, format="png", object_fit="cover", columns=1, rows=1)
|
58 |
+
image_files = gr.Files(label="Download", interactive=False)
|
59 |
+
clear_image_button = gr.Button("Clear Gallery / Download ποΈ", variant="secondary")
|
60 |
|
61 |
gr.on(triggers=[search_input.change, search_model.change], fn=search_char_dict,
|
62 |
inputs=[search_input, search_model], outputs=[search_output], trigger_mode="always_last")
|
63 |
+
search_output.select(on_select_df, [search_output, search_detail], [search_tag, search_tag_model, search_md], queue=False, show_api=False)
|
64 |
+
search_tag.change(update_prompt, [search_tag, search_tag_model], [prompt, model_name[0], recom_prompt_mode], queue=False, show_api=False)
|
65 |
+
for i, o in enumerate(output_images):
|
66 |
+
img_i = gr.Number(i, visible=False)
|
67 |
+
model_name[i].change(change_model, [model_name[i]], [model_info[i]], queue=False, show_api=False)\
|
68 |
+
.success(warm_model, [model_name[i]], None, queue=False, show_api=False)\
|
69 |
+
.then(lambda x: gr.update(label=x.split("/")[-1]), [model_name[i]], [o], queue=False, show_api=False)
|
70 |
+
gen_event = gr.on(triggers=[gen_button.click, prompt.submit],
|
71 |
+
fn=lambda m, t1, t2, n1, n2, n3, n4, n5, t3: gen_image(m, t1, t2, n1, n2, n3, n4, n5, t3),
|
72 |
+
inputs=[model_name[i], prompt, nprompt, height, width, steps, cfg, seed, recom_prompt_mode],
|
73 |
+
outputs=[o], queue=False, show_api=False)
|
74 |
+
o.change(save_gallery, [o, gallery], [gallery, image_files], show_api=False)
|
75 |
|
76 |
app.launch(ssr_mode=False)
|
ctag.py
CHANGED
@@ -136,12 +136,12 @@ def search_char_dict(q: str, models: list[str], progress=gr.Progress(track_tqdm=
|
|
136 |
def on_select_df(df: pd.DataFrame, is_detail: bool, evt: gr.SelectData):
|
137 |
d = tag_dict.get(evt.value, None)
|
138 |
if d is None: return ""
|
139 |
-
#print(d)
|
140 |
if is_detail: info = find_char_info(d["name"])
|
141 |
else: info = None
|
142 |
-
#print(info)
|
143 |
if info is not None:
|
144 |
md = f'## [{info["name"]}]({info["wiki"]}) / [{info["series"]}]({info["wiki"]}) / {info["gender"]}\n![{info["name"]}]({info["image"]}#center)\n[{info["desc"]}]({info["wiki"]})'
|
145 |
else: md = f'## {d["name"]} / {d["series"]}' if d["series"] else f'## {d["name"]}'
|
146 |
md += f'\n<br>Tag is for {model_dict[evt.value]}.'
|
147 |
-
return d["tag"], md
|
|
|
136 |
def on_select_df(df: pd.DataFrame, is_detail: bool, evt: gr.SelectData):
|
137 |
d = tag_dict.get(evt.value, None)
|
138 |
if d is None: return ""
|
139 |
+
#print(d) #
|
140 |
if is_detail: info = find_char_info(d["name"])
|
141 |
else: info = None
|
142 |
+
#print(info) #
|
143 |
if info is not None:
|
144 |
md = f'## [{info["name"]}]({info["wiki"]}) / [{info["series"]}]({info["wiki"]}) / {info["gender"]}\n![{info["name"]}]({info["image"]}#center)\n[{info["desc"]}]({info["wiki"]})'
|
145 |
else: md = f'## {d["name"]} / {d["series"]}' if d["series"] else f'## {d["name"]}'
|
146 |
md += f'\n<br>Tag is for {model_dict[evt.value]}.'
|
147 |
+
return d["tag"], model_dict[evt.value], md
|
hft2i.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
from threading import RLock
|
4 |
+
from pathlib import Path
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
10 |
+
server_timeout = 600
|
11 |
+
inference_timeout = 600
|
12 |
+
|
13 |
+
|
14 |
+
lock = RLock()
|
15 |
+
loaded_models = {}
|
16 |
+
model_info_dict = {}
|
17 |
+
|
18 |
+
|
19 |
+
def to_list(s):
|
20 |
+
return [x.strip() for x in s.split(",")]
|
21 |
+
|
22 |
+
|
23 |
+
def list_sub(a, b):
|
24 |
+
return [e for e in a if e not in b]
|
25 |
+
|
26 |
+
|
27 |
+
def list_uniq(l):
|
28 |
+
return sorted(set(l), key=l.index)
|
29 |
+
|
30 |
+
|
31 |
+
def is_repo_name(s):
|
32 |
+
import re
|
33 |
+
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
34 |
+
|
35 |
+
|
36 |
+
def get_status(model_name: str):
|
37 |
+
from huggingface_hub import InferenceClient
|
38 |
+
client = InferenceClient(token=HF_TOKEN, timeout=10)
|
39 |
+
return client.get_model_status(model_name)
|
40 |
+
|
41 |
+
|
42 |
+
def is_loadable(model_name: str, force_gpu: bool = False):
|
43 |
+
try:
|
44 |
+
status = get_status(model_name)
|
45 |
+
except Exception as e:
|
46 |
+
print(e)
|
47 |
+
print(f"Couldn't load {model_name}.")
|
48 |
+
return False
|
49 |
+
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
50 |
+
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
51 |
+
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
52 |
+
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
53 |
+
|
54 |
+
|
55 |
+
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False, public=False):
|
56 |
+
from huggingface_hub import HfApi
|
57 |
+
api = HfApi(token=HF_TOKEN)
|
58 |
+
default_tags = ["diffusers"]
|
59 |
+
if not sort: sort = "last_modified"
|
60 |
+
limit = limit * 20 if check_status and force_gpu else limit * 5
|
61 |
+
models = []
|
62 |
+
try:
|
63 |
+
model_infos = api.list_models(author=author, #task="text-to-image",
|
64 |
+
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error: Failed to list models.")
|
67 |
+
print(e)
|
68 |
+
return models
|
69 |
+
for model in model_infos:
|
70 |
+
if not model.private and not model.gated or (HF_TOKEN is not None and not public):
|
71 |
+
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
72 |
+
if not_tag and not_tag in model.tags or not loadable or "not-for-all-audiences" in model.tags: continue
|
73 |
+
models.append(model.id)
|
74 |
+
if len(models) == limit: break
|
75 |
+
return models
|
76 |
+
|
77 |
+
|
78 |
+
def get_t2i_model_info_dict(repo_id: str):
|
79 |
+
from huggingface_hub import HfApi
|
80 |
+
api = HfApi(token=HF_TOKEN)
|
81 |
+
info = {"md": "None"}
|
82 |
+
try:
|
83 |
+
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
|
84 |
+
model = api.model_info(repo_id=repo_id, token=HF_TOKEN)
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error: Failed to get {repo_id}'s info.")
|
87 |
+
print(e)
|
88 |
+
return info
|
89 |
+
if model.private or model.gated and HF_TOKEN is None: return info
|
90 |
+
try:
|
91 |
+
tags = model.tags
|
92 |
+
except Exception as e:
|
93 |
+
print(e)
|
94 |
+
return info
|
95 |
+
if not 'diffusers' in model.tags: return info
|
96 |
+
if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1"
|
97 |
+
elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
|
98 |
+
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
|
99 |
+
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
100 |
+
else: info["ver"] = "Other"
|
101 |
+
info["url"] = f"https://huggingface.co/{repo_id}/"
|
102 |
+
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
|
103 |
+
info["downloads"] = model.downloads
|
104 |
+
info["likes"] = model.likes
|
105 |
+
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
|
106 |
+
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
|
107 |
+
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'π: {info["likes"]}'] + [info["last_modified"]]
|
108 |
+
info["md"] = f'{", ".join(descs)} [Model Repo]({info["url"]})'
|
109 |
+
return info
|
110 |
+
|
111 |
+
|
112 |
+
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None):
|
113 |
+
import shutil
|
114 |
+
from datetime import datetime, timezone, timedelta
|
115 |
+
if image_path is None: return None
|
116 |
+
dt_now = datetime.now(timezone(timedelta(hours=9)))
|
117 |
+
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
|
118 |
+
try:
|
119 |
+
if Path(image_path).exists():
|
120 |
+
png_path = "image.png"
|
121 |
+
if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path)
|
122 |
+
if save_path is not None:
|
123 |
+
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
|
124 |
+
else:
|
125 |
+
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
|
126 |
+
return new_path
|
127 |
+
else:
|
128 |
+
return None
|
129 |
+
except Exception as e:
|
130 |
+
print(e)
|
131 |
+
return None
|
132 |
+
|
133 |
+
|
134 |
+
def save_gallery(image_path: str | None, images: list[tuple] | None):
|
135 |
+
if images is None: images = []
|
136 |
+
files = [i[0] for i in images]
|
137 |
+
if image_path is None: return images, files
|
138 |
+
files.insert(0, str(image_path))
|
139 |
+
images.insert(0, (str(image_path), Path(image_path).stem))
|
140 |
+
return images, files
|
141 |
+
|
142 |
+
|
143 |
+
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
|
144 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
145 |
+
from typing import Literal
|
146 |
+
def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None):
|
147 |
+
import httpx
|
148 |
+
import huggingface_hub
|
149 |
+
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
|
150 |
+
model_url = f"https://huggingface.co/{model_name}"
|
151 |
+
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
152 |
+
print(f"Fetching model from: {model_url}")
|
153 |
+
|
154 |
+
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
|
155 |
+
response = httpx.request("GET", api_url, headers=headers)
|
156 |
+
if response.status_code != 200:
|
157 |
+
raise ModelNotFoundError(
|
158 |
+
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
159 |
+
)
|
160 |
+
p = response.json().get("pipeline_tag")
|
161 |
+
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
|
162 |
+
headers["X-Wait-For-Model"] = "true"
|
163 |
+
kwargs = {}
|
164 |
+
if hf_token is not None: kwargs["token"] = hf_token
|
165 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers, timeout=server_timeout, **kwargs)
|
166 |
+
inputs = gr.components.Textbox(label="Input")
|
167 |
+
outputs = gr.components.Image(label="Output")
|
168 |
+
fn = client.text_to_image
|
169 |
+
|
170 |
+
def query_huggingface_inference_endpoints(*data, **kwargs):
|
171 |
+
try:
|
172 |
+
data = fn(*data, **kwargs) # type: ignore
|
173 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
174 |
+
print(e)
|
175 |
+
if "429" in str(e): raise TooManyRequestsError() from e
|
176 |
+
except Exception as e:
|
177 |
+
print(e)
|
178 |
+
raise Exception() from e
|
179 |
+
return data
|
180 |
+
|
181 |
+
interface_info = {
|
182 |
+
"fn": query_huggingface_inference_endpoints,
|
183 |
+
"inputs": inputs,
|
184 |
+
"outputs": outputs,
|
185 |
+
"title": model_name,
|
186 |
+
}
|
187 |
+
return gr.Interface(**interface_info)
|
188 |
+
|
189 |
+
|
190 |
+
def load_model(model_name: str):
|
191 |
+
global loaded_models
|
192 |
+
global model_info_dict
|
193 |
+
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
194 |
+
try:
|
195 |
+
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
|
196 |
+
print(f"Loaded: {model_name}")
|
197 |
+
except Exception as e:
|
198 |
+
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
199 |
+
print(f"Failed to load: {model_name}")
|
200 |
+
print(e)
|
201 |
+
return None
|
202 |
+
try:
|
203 |
+
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
204 |
+
print(f"Assigned: {model_name}")
|
205 |
+
except Exception as e:
|
206 |
+
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
207 |
+
print(f"Failed to assigned: {model_name}")
|
208 |
+
print(e)
|
209 |
+
return loaded_models[model_name]
|
210 |
+
|
211 |
+
|
212 |
+
def load_model_api(model_name: str):
|
213 |
+
global loaded_models
|
214 |
+
global model_info_dict
|
215 |
+
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
216 |
+
try:
|
217 |
+
client = InferenceClient(timeout=5)
|
218 |
+
status = client.get_model_status(model_name, token=HF_TOKEN)
|
219 |
+
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
|
220 |
+
print(f"Failed to load by API: {model_name}")
|
221 |
+
return None
|
222 |
+
else:
|
223 |
+
kwargs = {}
|
224 |
+
if HF_TOKEN is not None: kwargs["token"] = HF_TOKEN
|
225 |
+
loaded_models[model_name] = InferenceClient(model_name, timeout=server_timeout, **kwargs)
|
226 |
+
print(f"Loaded by API: {model_name}")
|
227 |
+
except Exception as e:
|
228 |
+
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
229 |
+
print(f"Failed to load by API: {model_name}")
|
230 |
+
print(e)
|
231 |
+
return None
|
232 |
+
try:
|
233 |
+
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
234 |
+
print(f"Assigned by API: {model_name}")
|
235 |
+
except Exception as e:
|
236 |
+
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
237 |
+
print(f"Failed to assigned by API: {model_name}")
|
238 |
+
print(e)
|
239 |
+
return loaded_models[model_name]
|
240 |
+
|
241 |
+
|
242 |
+
def load_models(models: list):
|
243 |
+
for model in models:
|
244 |
+
load_model(model)
|
245 |
+
|
246 |
+
|
247 |
+
positive_prefix = {
|
248 |
+
"Pony": to_list("score_9, score_8_up, score_7_up"),
|
249 |
+
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
|
250 |
+
}
|
251 |
+
positive_suffix = {
|
252 |
+
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
|
253 |
+
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
|
254 |
+
}
|
255 |
+
negative_prefix = {
|
256 |
+
"Pony": to_list("score_6, score_5, score_4"),
|
257 |
+
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
|
258 |
+
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
|
259 |
+
}
|
260 |
+
negative_suffix = {
|
261 |
+
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
|
262 |
+
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
|
263 |
+
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
|
264 |
+
}
|
265 |
+
positive_all = negative_all = []
|
266 |
+
for k, v in (positive_prefix | positive_suffix).items():
|
267 |
+
positive_all = positive_all + v + [s.replace("_", " ") for s in v]
|
268 |
+
positive_all = list_uniq(positive_all)
|
269 |
+
for k, v in (negative_prefix | negative_suffix).items():
|
270 |
+
negative_all = negative_all + v + [s.replace("_", " ") for s in v]
|
271 |
+
positive_all = list_uniq(positive_all)
|
272 |
+
|
273 |
+
|
274 |
+
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
275 |
+
def flatten(src):
|
276 |
+
return [item for row in src for item in row]
|
277 |
+
prompts = to_list(prompt) if prompt else []
|
278 |
+
neg_prompts = to_list(neg_prompt) if neg_prompt else []
|
279 |
+
prompts = list_sub(prompts, positive_all)
|
280 |
+
neg_prompts = list_sub(neg_prompts, negative_all)
|
281 |
+
last_empty_p = [""] if not prompts and type != "None" else []
|
282 |
+
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
283 |
+
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
|
284 |
+
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
|
285 |
+
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
|
286 |
+
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
|
287 |
+
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
|
288 |
+
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
|
289 |
+
return prompt, neg_prompt
|
290 |
+
|
291 |
+
|
292 |
+
recom_prompt_type = {
|
293 |
+
"None": ([], [], [], []),
|
294 |
+
"Common": ([], ["Common"], [], ["Common"]),
|
295 |
+
"Animagine": ([], ["Common", "Anime"], [], ["Common"]),
|
296 |
+
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
|
297 |
+
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
|
298 |
+
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
|
299 |
+
}
|
300 |
+
|
301 |
+
|
302 |
+
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
|
303 |
+
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
|
304 |
+
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
305 |
+
|
306 |
+
|
307 |
+
def set_recom_prompt_preset(type: str = "None"):
|
308 |
+
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
|
309 |
+
return pos_pre, pos_suf, neg_pre, neg_suf
|
310 |
+
|
311 |
+
|
312 |
+
def get_recom_prompt_type():
|
313 |
+
return list(recom_prompt_type.keys())
|
314 |
+
|
315 |
+
|
316 |
+
def get_positive_prefix():
|
317 |
+
return list(positive_prefix.keys())
|
318 |
+
|
319 |
+
|
320 |
+
def get_positive_suffix():
|
321 |
+
return list(positive_suffix.keys())
|
322 |
+
|
323 |
+
|
324 |
+
def get_negative_prefix():
|
325 |
+
return list(negative_prefix.keys())
|
326 |
+
|
327 |
+
|
328 |
+
def get_negative_suffix():
|
329 |
+
return list(negative_suffix.keys())
|
330 |
+
|
331 |
+
|
332 |
+
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
333 |
+
tag_type = "danbooru"
|
334 |
+
words = pos_pre + pos_suf + neg_pre + neg_suf
|
335 |
+
for word in words:
|
336 |
+
if "Pony" in word:
|
337 |
+
tag_type = "e621"
|
338 |
+
break
|
339 |
+
return tag_type
|
340 |
+
|
341 |
+
|
342 |
+
def get_model_info_md(model_name: str):
|
343 |
+
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
|
344 |
+
|
345 |
+
|
346 |
+
def change_model(model_name: str):
|
347 |
+
load_model_api(model_name)
|
348 |
+
return get_model_info_md(model_name)
|
349 |
+
|
350 |
+
|
351 |
+
def warm_model(model_name: str):
|
352 |
+
model = load_model_api(model_name)
|
353 |
+
if model:
|
354 |
+
try:
|
355 |
+
print(f"Warming model: {model_name}")
|
356 |
+
infer_body(model, model_name, " ")
|
357 |
+
except Exception as e:
|
358 |
+
print(e)
|
359 |
+
|
360 |
+
|
361 |
+
# https://huggingface.co/docs/api-inference/detailed_parameters
|
362 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
363 |
+
def infer_body(client: InferenceClient | gr.Interface | object, model_str: str, prompt: str, neg_prompt: str = "",
|
364 |
+
height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1):
|
365 |
+
png_path = "image.png"
|
366 |
+
kwargs = {}
|
367 |
+
if height > 0: kwargs["height"] = height
|
368 |
+
if width > 0: kwargs["width"] = width
|
369 |
+
if steps > 0: kwargs["num_inference_steps"] = steps
|
370 |
+
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
371 |
+
if seed == -1: kwargs["seed"] = randomize_seed()
|
372 |
+
else: kwargs["seed"] = seed
|
373 |
+
if HF_TOKEN is not None: kwargs["token"] = HF_TOKEN
|
374 |
+
try:
|
375 |
+
if isinstance(client, InferenceClient):
|
376 |
+
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
|
377 |
+
elif isinstance(client, gr.Interface):
|
378 |
+
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
|
379 |
+
else: return None
|
380 |
+
if isinstance(image, tuple): return None
|
381 |
+
return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed)
|
382 |
+
except Exception as e:
|
383 |
+
print(e)
|
384 |
+
raise Exception() from e
|
385 |
+
|
386 |
+
|
387 |
+
async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0,
|
388 |
+
steps: int = 0, cfg: int = 0, seed: int = -1,
|
389 |
+
save_path: str | None = None, timeout: float = inference_timeout):
|
390 |
+
model = load_model(model_name)
|
391 |
+
if not model: return None
|
392 |
+
task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt,
|
393 |
+
height, width, steps, cfg, seed))
|
394 |
+
await asyncio.sleep(0)
|
395 |
+
try:
|
396 |
+
result = await asyncio.wait_for(task, timeout=timeout)
|
397 |
+
except asyncio.TimeoutError as e:
|
398 |
+
print(e)
|
399 |
+
print(f"Task timed out: {model_name}")
|
400 |
+
if not task.done(): task.cancel()
|
401 |
+
result = None
|
402 |
+
raise Exception(f"Task timed out: {model_name}") from e
|
403 |
+
except Exception as e:
|
404 |
+
print(e)
|
405 |
+
if not task.done(): task.cancel()
|
406 |
+
result = None
|
407 |
+
raise Exception() from e
|
408 |
+
if task.done() and result is not None:
|
409 |
+
with lock:
|
410 |
+
image = rename_image(result, model_name, save_path)
|
411 |
+
return image
|
412 |
+
return None
|
413 |
+
|
414 |
+
|
415 |
+
# https://github.com/aio-libs/pytest-aiohttp/issues/8 # also AsyncInferenceClient is buggy.
|
416 |
+
def infer_fn(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
|
417 |
+
steps: int = 0, cfg: int = 0, seed: int = -1,
|
418 |
+
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
419 |
+
if model_name in ["NA", ""]: return gr.update()
|
420 |
+
try:
|
421 |
+
loop = asyncio.get_running_loop()
|
422 |
+
except Exception:
|
423 |
+
loop = asyncio.new_event_loop()
|
424 |
+
try:
|
425 |
+
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
426 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
427 |
+
steps, cfg, seed, save_path, inference_timeout))
|
428 |
+
except (Exception, asyncio.CancelledError) as e:
|
429 |
+
print(e)
|
430 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
431 |
+
result = None
|
432 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
433 |
+
finally:
|
434 |
+
loop.close()
|
435 |
+
return result
|
436 |
+
|
437 |
+
|
438 |
+
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
|
439 |
+
steps: int = 0, cfg: int = 0, seed: int = -1,
|
440 |
+
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
441 |
+
import random
|
442 |
+
if model_name_dummy in ["NA", ""]: return gr.update()
|
443 |
+
random.seed()
|
444 |
+
model_name = random.choice(list(loaded_models.keys()))
|
445 |
+
try:
|
446 |
+
loop = asyncio.get_running_loop()
|
447 |
+
except Exception:
|
448 |
+
loop = asyncio.new_event_loop()
|
449 |
+
try:
|
450 |
+
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
451 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
452 |
+
steps, cfg, seed, save_path, inference_timeout))
|
453 |
+
except (Exception, asyncio.CancelledError) as e:
|
454 |
+
print(e)
|
455 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
456 |
+
result = None
|
457 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
458 |
+
finally:
|
459 |
+
loop.close()
|
460 |
+
return result
|
461 |
+
|
462 |
+
|
463 |
+
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
|
464 |
+
from PIL import Image, PngImagePlugin
|
465 |
+
import json
|
466 |
+
try:
|
467 |
+
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
|
468 |
+
if steps > 0: metadata["num_inference_steps"] = steps
|
469 |
+
if cfg > 0: metadata["guidance_scale"] = cfg
|
470 |
+
if seed != -1: metadata["seed"] = seed
|
471 |
+
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
|
472 |
+
metadata_str = json.dumps(metadata)
|
473 |
+
info = PngImagePlugin.PngInfo()
|
474 |
+
info.add_text("metadata", metadata_str)
|
475 |
+
image.save(savefile, "PNG", pnginfo=info)
|
476 |
+
return str(Path(savefile).resolve())
|
477 |
+
except Exception as e:
|
478 |
+
print(f"Failed to save image file: {e}")
|
479 |
+
raise Exception(f"Failed to save image file:") from e
|
480 |
+
|
481 |
+
|
482 |
+
def randomize_seed():
|
483 |
+
from random import seed, randint
|
484 |
+
MAX_SEED = 2**32-1
|
485 |
+
seed()
|
486 |
+
rseed = randint(0, MAX_SEED)
|
487 |
+
return rseed
|
488 |
+
|
489 |
+
|
490 |
+
from translatepy import Translator
|
491 |
+
translator = Translator()
|
492 |
+
def translate_to_en(input: str):
|
493 |
+
try:
|
494 |
+
output = str(translator.translate(input, 'English'))
|
495 |
+
except Exception as e:
|
496 |
+
output = input
|
497 |
+
print(e)
|
498 |
+
return output
|
499 |
+
|
500 |
+
|
501 |
+
def get_recom_prompt_mode():
|
502 |
+
return list(recom_prompt_type.keys())
|
503 |
+
|
504 |
+
|
505 |
+
def get_models():
|
506 |
+
return [""] + list(loaded_models.keys())
|
507 |
+
|
508 |
+
|
509 |
+
def get_def_model(i: int):
|
510 |
+
if i == 0: return list(loaded_models.keys())[0]
|
511 |
+
else: return ""
|
512 |
+
|
513 |
+
|
514 |
+
def warm_models(models: list[str]):
|
515 |
+
for model in models:
|
516 |
+
asyncio.new_event_loop().run_in_executor(None, warm_model, model)
|
517 |
+
|
518 |
+
|
519 |
+
def gen_image(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
|
520 |
+
steps: int = 0, cfg: int = 0, seed: int = -1, recom_mode = "None"):
|
521 |
+
if model_name in ["NA", ""]: return gr.update()
|
522 |
+
try:
|
523 |
+
loop = asyncio.get_running_loop()
|
524 |
+
except Exception:
|
525 |
+
loop = asyncio.new_event_loop()
|
526 |
+
try:
|
527 |
+
prompt, neg_prompt = insert_recom_prompt(prompt, neg_prompt, recom_mode)
|
528 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
529 |
+
steps, cfg, seed, None, inference_timeout))
|
530 |
+
except (Exception, asyncio.CancelledError) as e:
|
531 |
+
print(e)
|
532 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
533 |
+
result = None
|
534 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
535 |
+
finally:
|
536 |
+
loop.close()
|
537 |
+
return result
|
538 |
+
|
539 |
+
|
540 |
+
from model import models, models_animagine, models_noob, models_ill
|
541 |
+
all_models = list_uniq(models_animagine + models_noob + models_ill + models)
|
542 |
+
load_models(all_models)
|
543 |
+
warm_models(models_animagine + models_noob + models_ill)
|
544 |
+
|
545 |
+
|
546 |
+
def update_prompt(tag: str, model_type: str):
|
547 |
+
if model_type == "Animagine 3.1": model = models_animagine[0]
|
548 |
+
elif model_type == "Illustrious": model = models_ill[0]
|
549 |
+
else: model = models_noob[0]
|
550 |
+
recom_mode = "Animagine"
|
551 |
+
return tag, model, recom_mode
|
model.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from hft2i import find_model_list
|
2 |
+
|
3 |
+
|
4 |
+
models_animagine = ["cagliostrolab/animagine-xl-3.1", "yodayo-ai/kivotos-xl-2.0"]
|
5 |
+
models_noob = ["John6666/noobai-xl-nai-xl-epsilonpred11version-sdxl"]
|
6 |
+
models_ill = ["Raelina/Raehoshi-illust-XL-3", "John6666/illustrious-xl-early-release-v0-sdxl"]
|
7 |
+
|
8 |
+
|
9 |
+
models = [
|
10 |
+
"yodayo-ai/clandestine-xl-1.0",
|
11 |
+
"yodayo-ai/kivotos-xl-2.0",
|
12 |
+
"yodayo-ai/holodayo-xl-2.1",
|
13 |
+
"cagliostrolab/animagine-xl-3.1",
|
14 |
+
"votepurchase/ponyDiffusionV6XL",
|
15 |
+
"eienmojiki/Anything-XL",
|
16 |
+
"eienmojiki/Starry-XL-v5.2",
|
17 |
+
"digiplay/MilkyWonderland_v1",
|
18 |
+
"digiplay/majicMIX_sombre_v2",
|
19 |
+
"digiplay/majicMIX_realistic_v7",
|
20 |
+
"votepurchase/counterfeitV30_v30",
|
21 |
+
"Meina/MeinaMix_V11",
|
22 |
+
"KBlueLeaf/Kohaku-XL-Epsilon-rev3",
|
23 |
+
"KBlueLeaf/Kohaku-XL-Zeta",
|
24 |
+
"kayfahaarukku/UrangDiffusion-1.4",
|
25 |
+
"Eugeoter/artiwaifu-diffusion-2.0",
|
26 |
+
"Raelina/Rae-Diffusion-XL-V2",
|
27 |
+
"Raelina/Raemu-XL-V4",
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
#models += find_model_list("John6666", ["anime", "illustrious"], "", "last_modified", 50, public=True)
|
32 |
+
#models += find_model_list("John6666", ["anime", "animagine"], "", "last_modified", 50, public=True)
|
33 |
+
|
34 |
+
|
35 |
+
#models = find_model_list("Disty0", [], "", "last_modified", 100)
|
36 |
+
|
37 |
+
|
38 |
+
# Examples:
|
39 |
+
#models = ["yodayo-ai/kivotos-xl-2.0", "yodayo-ai/holodayo-xl-2.1"] # specific models
|
40 |
+
#models = find_model_list("John6666", [], "", "last_modified", 20) # John6666's latest 20 models
|
41 |
+
#models = find_model_list("John6666", ["anime"], "", "last_modified", 20) # John6666's latest 20 models with "anime" tag
|
42 |
+
#models = find_model_list("John6666", [], "anime", "last_modified", 20) # John6666's latest 20 models without "anime" tag
|
43 |
+
#models = find_model_list("", [], "", "last_modified", 20) # latest 20 text-to-image models of huggingface
|
44 |
+
#models = find_model_list("", [], "", "downloads", 20) # monthly most downloaded 20 text-to-image models of huggingface
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
|
|
1 |
pandas
|
2 |
-
pykakasi
|
|
|
|
1 |
+
huggingface-hub
|
2 |
pandas
|
3 |
+
pykakasi
|
4 |
+
translatepy
|